
SLiM: An Evolutionary Simulation Framework

Benjamin C. Haller and Philipp W. Messer

Dept. of Computational Biology
Cornell University, Ithaca, NY 14853

Correspondence: bhaller@benhaller.com

Last revised 5 December 2023, for SLiM version 4.1.

Author Contributions:

SLiM 2 and later were conceived and designed by BCH and PWM, based upon the previous design of SLiM
by PWM. BCH designed and implemented the Eidos scripting language, wrote almost all of the code for
SLiM 2 and later (but see the acknowledgements below), and wrote this manual. PWM provided feedback
and edited this manual.

Acknowledgements:

The authors want to thank Sam Champer, Isabel Kim, Mitch Lokey, Ian Caldas, Aaron Sams, Nathan Oakes,
and all members of the Messer lab for helpful feedback and bug reports. Thanks to Kevin Thornton and Ryan
Hernandez for many discussions and for their general help in promoting forward population genetic
simulations. Thanks to Jared Galloway, Jerome Kelleher, and Peter Ralph for their considerable work in
implementing tree-sequence recording in SLiM 3; and to Peter Ralph as well for his invaluable pyslim
framework, and for ideas and contributions to this manual. Thanks to Bryce Carson, Russell Dinnage, and
Graham Gower for major contributions to the SLiM ecosystem, including new platform installers and porting
work. Thanks to Simon Aeschbacher, Pamela Alamilla, Rodrigo Pracana Fragoso De Almeida, Jorge Amaya,
Bill Amos, Bea Angelica Andersson, Chenling Antelope, Jaime Ashander, Kevin Bairos-Novak, Hannes
Becher, John Benning, Emma Berdan, Jeremy Berg, Gertjan Bisschop, Dan Bolnick, Tom Booker, William
Booker, Gideon Bradburd, Jason Bragg, Vince Buffalo, Yoann Buoro, Richard Burns, Bryce Carson, Aude
Caizergues, Deborah Charlesworth, Anna Clark, Jeremy Van Cleve, Jonathan Cocker, Zuxi Cui, Jean Cury,
Michael DeGiorgio, A.P. Jason de Koning, Emily Dennis, Jordan Rohmeyer Dherby, Russell Dinnage, Alan
Downey-Wall, Ian Dworkin, Julia Frank, Jared Galloway, Jesse Garcia, Nandita Garud, Kimberley Gilbert,
Graham Gower, Alexandre Harris, Kelley Harris, Rebecca Harris, Matthew Hartfield, Ding He, Jody Hey,
Marcus Hicks, Kathryn Hodgins, Christian Huber, Melissa Jane Hubisz, Emilia Huerta-Sanchez, Chaz
Hyseni, Jacob Malte Jensen, Olivia Johnson, Peter Keightley, Jerome Kelleher, Andy Kern, Bhavin Khatri,
Bernard Kim, Jere Koskela, Athanasios Kousathanas, Peter Krawitz, Chris Kyriazis, Benjamin Laenen, Addison
Lander, Anna Maria Langmüller, Áki Láruson, Stefan Laurent, Clancy Lawler, Anita Lerch, Mitchell Lokey,
Qiming Long, Eugenio Lopez, Kathleen Lotterhos, Nicolas Lou, Ailene MacPherson, Andrew Marderstein,
Sebastian Matuszewski, Mikhail Matz, Rupert Mazzucco, Christopher McAllester, Jiseon Min, Maéva
Mollion, Miguel Navascués, Chase Nelson, Dominic Nelson, Bruno Nevado, Tram Nguyen, Etsuko Nonaka,
Boyana Norris, Nick O’Brien, Colin Olito, Omar Eduardo Cornejo Ordaz, Matt Osmond, Greg Owens,
Mingzuyu Pan, Josephine Paris, Harvinder Pawar, Martin Petr, Denis Pierron, Tymoteusz Pieszko, Fernando
Racimo, Peter Ralph, Erik Regla, David Rinker, Murillo Fernando Rodrigues, Andrew Sackman, Kieran
Samuk, Sara Schaal, Sebastian Schreiber, Derek Setter, Max Shpak, Elissa Sorojsrisom, Onuralp Söylemez,
Fabian Staubach, Stefan Strütt, Michelle Su, Aurelien Tellier, Anastasia Teterina, Silas Tittes, Rob Unckless,
Magnus Dehli Vigeland, Nathan Villiger, Christos Vlachos, Silu Wang, Clemens L. Weiß, James Whiting,
Alexander Whitwam, Aaron Wolf, Ricky Wolff, Yan Wong, Yannick Wurm, Peiyu Xu, Alexander Xue, Sam
Yeaman, Justin Yeh, and Yulin Zhang for comments and feedback that have led to improvements in SLiM.
Thanks also to everyone on stackoverflow, an invaluable resource and a great community; likewise to the Qt
community on Qt Interest, particularly the ever-helpful Thiago Macieira. Finally, we want to thank Dmitri
Petrov, whose support was instrumental in the initial conception of SLiM.

Text conventions:

A standardized color-coding scheme is used throughout this manual:

sections that apply only to WF models
sections that apply only to nonWF models
sections that apply only to nucleotide-based models

Eidos script, and snippets from script such as variable names, class names, and numeric values, are generally
written in a monospace font to distinguish them from other text.

 2

Citation:

To cite SLiM 4 in a publication, please cite:

Haller, B.C., and Messer, P.W. (2023). SLiM 4: Multispecies eco-evolutionary modeling. The American
Naturalist 201(5). DOI: https://doi.org/10.1086/723601

Papers using tree-sequence recording should probably also cite that paper:

Haller, B.C., Galloway, J., Kelleher, J., Messer, P.W., & Ralph, P.L. (2019). Tree-sequence recording in
SLiM opens new horizons for forward-time simulation of whole genomes. Molecular Ecology
Resources 19(2), 552–566. DOI: https://doi.org/10.1111/1755-0998.12968

Papers that use SLiM 3 can still cite that paper:

Haller, B.C., and Messer, P.W. (2019). SLiM 3: Forward genetic simulations beyond the Wright–Fisher
model. Molecular Biology and Evolution 36(3), 632–637. DOI: https://doi.org/10.1093/molbev/
msy228

Papers that use SLiM 2 can still cite that paper:

Haller, B.C., and Messer, P.W. (2017). SLiM 2: Flexible, interactive forward genetic simulations.
Molecular Biology and Evolution 34(1), 230–240. DOI: http://dx.doi.org/10.1093/molbev/msw211

Papers that wish to cite this manual (perhaps because they make reference to a recipe) should cite:

Haller, B.C., and Messer, P.W. (2016). SLiM: An Evolutionary Simulation Framework.
URL: http://benhaller.com/slim/SLiM_Manual.pdf

And if you wish to cite a publication about Eidos, please cite the Eidos manual:

Haller, B.C. (2016). Eidos: A Simple Scripting Language.
URL: http://benhaller.com/slim/Eidos_Manual.pdf

URL:

http://messerlab.org/slim

License:

Copyright © 2016–2023 Philipp Messer. All rights reserved.

SLiM is a free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any
later version.

Disclaimer:

The program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License (http://www.gnu.org/licenses/) for more details.

 3

https://doi.org/10.1086/723601
https://doi.org/10.1111/1755-0998.12968
https://doi.org/10.1093/molbev/msy228
https://doi.org/10.1093/molbev/msy228
http://dx.doi.org/10.1093/molbev/msw211
http://benhaller.com/slim/SLiM_Manual.pdf
http://benhaller.com/slim/Eidos_Manual.pdf
http://messerlab.org/slim
http://www.gnu.org/licenses/

Contents

PART I: THE SLIM COOKBOOK

1. SLiM overview 14 ...

 1.1 Introduction 14 ..

 1.2 Why SLiM? 15 ..

 1.3 A quick summary of SLiM 16 ...

 1.4 The typical SLiM usage pattern 19 ..

 1.5 Conceptual overview 21 ..

 1.5.1 Individuals and genomes 21 ...
 1.5.2 Mutations and substitutions 23 ...
 1.5.3 Mutation stacking 25 ..
 1.5.4 Genomic elements, genomic element types, mutation types, and the chromosome 29 ...
 1.5.5 Subpopulations and migration 30 ...
 1.5.6 Recombination, gene conversion, and biased gene conversion 32
 1.5.7 Community, Species, ticks, cycles, and generations 36 ...
 1.5.8 Other concepts 38 ..

 1.6 Wright–Fisher (WF) versus non-Wright–Fisher (nonWF) models 38 ...

 1.7 Tree-sequence recording 41 ...

 1.8 Nucleotide-based models 45 ..

 1.9 Multispecies models 48 ..

 1.10 Online resources for SLiM users 50 ..

2. Installation 54 ...

 2.1 Installation on macOS 54 ...

 2.1.1 Installing the prebuilt SLiM package on macOS 54 ...
 2.1.2 Building SLiM from sources on macOS 54 ..

 2.2 Installation on Linux and other Un*x platforms 59 ...

 2.2.1 Installing SLiMgui using AppImage on Linux 59 ..
 2.2.2 Installing SLiM with a platform-dependent binary package on Linux 59
 2.2.3 Building SLiM from sources on Linux 62 ...

 2.3 Installation on Windows 64 ..

 2.3.1 Installing SLiM with an installer on Windows 64 ...
 2.3.2 Building SLiM from sources on Windows 66 ...

 2.4 Building SLiMgui 67 ...

 2.4.1 Building SLiMgui on macOS 67 ..
 2.4.2 Building SLiMgui on Linux / Un*x 69 ...
 2.4.3 Troubleshooting SLiMgui build issues on Linux / Un*x 72 ..
 2.4.4 Building SLiMgui on Windows 73 ...
 2.4.5 Troubleshooting SLiMgui build issues on Windows 74 ..
 2.4.6 Building SLiMgui on Windows with WSL 74 ...

 2.5 Installation with conda 80 ..

 2.6 Testing the SLiM installation 81 ..

 2.7 Post-installation issues 82 ...

3. Running simulations in SLiMgui 86 ..

 3.1 The SLiMgui simulation window 86 ...

 3.2 The script help window 88 ...

 4

 3.3 The Eidos console 89 ...

 3.4 The Eidos variable browser 90 ..

 3.5 Automatic code completion and command syntax lookup 90 ..

 3.6 Script prettyprinting 92 ...

 3.7 Further SLiMgui features 93 ..

4. Getting started: Neutral evolution in a panmictic population 95 ...

 4.1 A basic neutral simulation 95 ...

 4.1.1 initialize() callbacks 97 ...
 4.1.2 Mutation rate 98 ...
 4.1.3 Mutation types 98 ...
 4.1.4 Genomic element types 99 ...
 4.1.5 Genomic elements 100 ..
 4.1.6 Recombination rate 101 ...
 4.1.7 Eidos events 102 ...
 4.1.8 Subpopulations 103 ..
 4.1.9 Executing the simulation 103 ..

 4.2 Basic output 105 ..

 4.2.1 Entire population 105 ...
 4.2.2 Random population sample 107 ...
 4.2.3 Sampling individuals rather than genomes 108 ...
 4.2.4 Substitutions 110 ..
 4.2.5 Automatic logging with LogFile 111 ...
 4.2.6 Custom output with Eidos 113 ..
 4.2.7 The simulation endpoint 116 ..

5. Demography and population structure 117 ...

 5.1 Subpopulation size 117 ..

 5.1.1 Instantaneous changes 117 ...
 5.1.2 Exponential growth 117 ..
 5.1.3 The population visualization graph 121 ..
 5.1.4 Cyclical changes 122 ..
 5.1.5 Context-dependent changes: Muller’s Ratchet 122 ..

 5.2 Population structure 123 ..

 5.2.1 Adding subpopulations 123 ..
 5.2.2 Removing subpopulations 125 ..
 5.2.3 Splitting subpopulations 126 ..
 5.2.4 Joining subpopulations 126 ..

 5.3 Migration and admixture 127 ...

 5.3.1 A linear stepping-stone model 127 ...
 5.3.2 A non-spatial metapopulation 129 ..
 5.3.3 A two-dimensional subpopulation matrix 130 ..
 5.3.4 A random, sparse spatial metapopulation 131 ..
 5.3.5 Reading a migration matrix from a file 134 ...

 5.4 The Gravel et al. (2011) model of human evolution 136 ...

 5.5 Rescaling population sizes to improve simulation performance 142 ...

6. Sexual reproduction 146 ..

 6.1 Recombination 146 ..

 6.1.1 Crossing over: Making a random recombination map 146 ..
 6.1.2 Crossing over: Reading a recombination map from a file 147 ...

 5

 6.1.3 Gene conversion 149 ...
 6.1.4 Multiple chromosomes 149 ..

 6.2 Separate sexes 151 ...

 6.2.1 Enabling separate sexes 151 ...
 6.2.2 Sex ratios 151 ...
 6.2.3 Modeling sex-chromosome evolution 153 ..

 6.3 Selfing and cloning 154 ..

 6.3.1 Selfing in hermaphroditic populations 154 ...
 6.3.2 Cloning 155 ...

7. Mutation types, genomic elements, and chromosome structure 156 ...

 7.1 Mutation types and fitness effects 156 ..

 7.2 Genomic element types 158 ...

 7.3 Chromosome organization 159 ..

 7.4 Custom display colors in SLiMgui 161 ..

8. SLiMgui visualizations for polymorphism patterns 165 ...

 8.1 Mutation frequency spectra 166 ...

 8.2 Mutation frequency trajectories 167 ...

 8.3 Times to fixation and loss 168 ..

 8.4 Population fitness over time 169 ...

9. Selective sweeps 172 ..

 9.1 Introducing adaptive mutations 172 ...

 9.2 Making sweeps conditional on fixation 174 ...

 9.3 Making sweeps conditional on establishment 176 ..

 9.4 Partial sweeps 178 ..

 9.5 Soft sweeps from de novo mutations 179 ...

 9.5.1 A soft sweep from recurrent de novo mutations in a large population 179
 9.5.2 A soft sweep with a fixed mutation schedule 181 ...
 9.5.3 A soft sweep with a random mutation schedule 183 ...

 9.6 Sweeps from standing genetic variation 185 ...

 9.6.1 A sweep from standing variation at a random locus 185 ...
 9.6.2 A sweep from standing variation at a predetermined locus 187 ..

 9.7 Adaptive introgression 188 ...

 9.8 Fixation probabilities under Hill–Robertson interference 190 ...

 9.9 Keeping a reference to a sweep mutation 192 ..

 9.10 Tracking the fate of background mutations 193 ..

 9.11 Effective population size versus census population size 195 ...

10. Context-dependent selection using mutationEffect() callbacks 202 ..

 10.1 Temporally varying selection 202 ...

 10.2 Spatially varying selection 203 ...

 10.3 Fitness as a function of genomic background 205 ..

 10.3.1 Epistasis 205 ...

 10.4 Fitness as a function of population composition 207 ..

 10.4.1 Frequency-dependent selection 207 ...
 10.4.2 Cultural effects on fitness 209 ...
 10.4.3 Kin selection and the green-beard effect 211 ..

 6

 10.5 Changing selection coefficients with setSelectionCoeff() 215 ..

 10.6 Varying the dominance coefficient among mutations 216 ..

11. Complex mating schemes using mateChoice() callbacks 220 ..

 11.1 Assortative mating 220 ...

 11.2 Sequential mate search 226 ..

 11.3 Gametophytic self-incompatibility 230 ...

12. Direct child modifications using modifyChild() callbacks 235 ...

 12.1 Social learning of cultural traits 235 ...

 12.2 Lethal epistasis 237 ..

 12.3 Simulating gene drive 238 ..

 12.4 Suppressing hermaphroditic selfing 242 ...

 12.5 Tracking separate sexes in script 243 ..

13. Phenotypes, fitness functions, quantitative traits, and QTLs 246 ..

 13.1 Polygenic selection 247 ...

 13.2 A simple model of variable QTL effect sizes 249 ..

 13.3 A model of discrete QTL effects with a structured chromosome 252 ..

 13.4 A quantitative genetics model with heritability 258 ..

 13.5 A QTL-based model with two quantitative phenotypic traits and pleiotropy 263

 13.6 A variety of fitness functions 270 ..

14. Advanced WF models 277 ..

 14.1 Relatedness, inbreeding, and heterozygosity 277 ...

 14.2 Mortality-based fitness 279 ...

 14.3 Reading initial simulation state from an MS output file 282 ..

 14.4 Modeling chromosomal inversions with a recombination() callback 285

 14.5 Modeling both X and Y Chromosomes with a Pseudo-Autosomal Region (PAR) 292

 14.6 Estimating model parameters with ABC 296 ...

 14.7 Tracking true local ancestry along the chromosome 299 ..

 14.8 Live plotting with R using system() 303 ...

 14.9 Modeling haploid organisms 307 ...

 14.10 Using mutation rate variation to model varying functional density 308 ...

 14.11 Modeling microsatellites 310 ...

 14.12 Modeling transposable elements 315 ...

 14.13 Modeling opposite ends of a chromosome 321 ..

 14.14 Visualizing ancestry and admixture with mutation() callbacks 324 ...

 14.15 Modeling biallelic loci with a mutation() callback 327 ...

 14.16 Modeling biallelic loci in script 334 ...

15. Going beyond Wright–Fisher models: nonWF model recipes 337 ...

 15.1 A minimal nonWF model 337 ..

 15.2 Age structure (a life table model) 340 ...

 15.3 Monogamous mating and variation in litter size 343 ..

 15.4 Beneficial mutations and absolute fitness 345 ..

 15.5 A metapopulation extinction-colonization model 348 ..

 15.6 Habitat choice 351 ...

 7

 15.7 Evolutionary rescue after environmental change 355 ..

 15.8 Pollen flow 360 ..

 15.9 Litter size and parental investment 362 ..

 15.10 Forcing a specific pedigree in a nonWF model 366 ..

 15.11 Modeling clonal haploids in a nonWF model with addRecombinant() 371

 15.12 Modeling clonal haploid bacteria with horizontal gene transfer 372 ..

 15.13 Implementing a Wright–Fisher model with a nonWF model 375 ..

 15.14 Alternation of generations 379 ...

 15.15 Meiotic drive 383 ...

 15.16 Range expansion in a stepping-stone model in two recipes 386 ...

 15.17 Logistic population growth with the Beverton–Holt model 392 ..

 15.18 Dynamic population structure in nonWF models 396 ..

 15.19 Sperm storage with a survival() callback 400 ..

 15.20 Tracking separate sexes in script, nonWF style 406 ...

 15.21 Modeling haplodiploidy with addRecombinant() 408 ...

16. Continuous-space models, interactions, and spatial maps 412 ..

 16.1 A simple 2D continuous-space model 413 ...

 16.2 Spatial competition 414 ...

 16.3 Boundaries, boundary conditions, and dispersal kernels 416 ..

 16.4 Mate choice with a spatial kernel 421 ..

 16.5 Mate choice with a nearest-neighbor search 423 ..

 16.6 Divergence due to phenotypic competition with an interaction() callback 425

 16.7 Modeling phenotype as a spatial dimension 430 ..

 16.8 Sympatric speciation facilitated by assortative mating 433 ..

 16.9 Speciation due to spatial variation in selection 435 ..

 16.10 A simple biogeographic landscape model 441 ...

 16.11 Local adaptation on a heterogeneous landscape map 446 ..

 16.12 Periodic spatial boundaries 452 ...

 16.13 Density-dependent fecundity with summarizeIndividuals() 456 ..

 16.14 Directed dispersal with the SpatialMap class 462 ...

 16.15 Spatial competition and spatial mate choice in a nonWF model 468 ..

 16.16 A spatial model with carrying-capacity density 474 ..

 16.17 A spatial epidemiological S-I-R model 478 ...

 16.18 A sexual, age-structured spatial model 484 ..

17. Tree-sequence recording: tracking population history and true local ancestry 488

 17.1 A minimal tree-seq model 488 ...

 17.2 Overlaying neutral mutations 489 ..

 17.3 Simulation conditional upon fixation of a sweep, preserving ancestry 491

 17.4 Detecting the “dip in diversity”: analyzing tree heights in Python 495 ..

 17.5 Mapping admixture: analyzing ancestry in Python 498 ..

 17.6 Measuring the coalescence time of a model 501 ..

 17.7 Analyzing selection coefficients in Python with tskit 503 ..

 17.8 Starting a hermaphroditic WF model with a coalescent history 504 ..

 8

 17.9 Starting a sexual nonWF model with a coalescent history 506 ..

 17.10 Adding a neutral burn-in after simulation with recapitation 509 ...

 17.11 Optimizing tree-sequence simplification 514 ...

18. Modeling explicit nucleotides 518 ..

 18.1 A simple neutral nucleotide-based model 518 ..

 18.2 Reading an ancestral nucleotide sequence from a FASTA file 520 ..

 18.3 Sequence output from nucleotide-based models 521 ...

 18.4 Back-mutations, independent mutational lineages, and VCF output 524

 18.5 Modeling elevated CpG mutation rates and equilibrium nucleotide frequencies 526

 18.6 A nucleotide-based model with introduced non-nucleotide-based mutations 530

 18.7 Using standard SLiM fitness effects with nucleotides: modeling synonymous sites 532

 18.8 Defining sequence-based fitness effects at the nucleotide level 534 ...

 18.9 Defining sequence-based fitness effects at the amino acid level 536 ..

 18.10 Varying the mutation rate along the chromosome in a nucleotide-based model 538

 18.11 Modeling GC-biased gene conversion (gBGC) 539 ...

 18.12 Reading VCF files to create nucleotide-based SNPs 541 ...

 18.13 Tree-sequence recording and nucleotide-based models 545 ...

 18.14 Modeling identity by state (IBS): uniquing mutations with a mutation() callback 548

 18.15 Modeling identity by state (IBS): uniquing back-mutations to the ancestral state 551

19. Multispecies modeling 555 ...

 19.1 A simple multispecies model 555 ...

 19.2 A two-species model 556 ...

 19.3 A deterministic host–parasitoid model 559 ...

 19.4 An individual-based host–parasitoid model 563 ...

 19.5 A continuous-space host–parasitoid model 570 ..

 19.6 A coevolutionary host–parasitoid trait-matching model 576 ...

 19.7 A coevolutionary host–parasite matching-allele model 581 ..

 19.8 Within-host reproduction in a host–pathogen model 586 ...

20. Runtime control 595 ...

 20.1 The random number generator 595 ..

 20.2 Defining constants on the command line 596 ..

 20.3 Other command-line options 599 ..

 20.4 File input and output 600 ...

 20.5 Lambda execution 601 ...

 20.6 Debugging 603 ..

21. Implementation and performance 607 ..

 21.1 Writing fast SLiM simulations 607 ..

 21.2 Performance evaluation 609 ...

 21.3 Memory usage considerations 611 ...

 21.4 Mutation runs and runtime optimization 612 ...

 21.5 Profiling simulations in SLiMgui 615 ..

 21.6 Profiling memory usage in SLiMgui, or with outputUsage() 622 ..

 21.7 Profiling in SLiM at the command line 625 ...

 9

PART II: THE SLIM REFERENCE

23. SLiM architecture (WF models) 630 ..

 23.0 Step 0: Execution of first() Eidos events 630 ..

 23.1 Step 1: Execution of early() Eidos events 631 ..

 23.2 Step 2: Generation of offspring 631 ..

 23.2.1 The order of offspring generation 631 ...
 23.2.2 Mate choice 632 ..
 23.2.3 Mutation and recombination 632 ...
 23.2.4 Child modification 634 ..
 23.2.5 Child generation 635 ..

 23.3 Step 3: Removal of fixed mutations 635 ...

 23.4 Step 4: Offspring become parents 635 ..

 23.5 Step 5: Execution of late() Eidos events 636 ..

 23.6 Step 6: Fitness value recalculation 636 ...

 23.7 Step 7: Tick/cycle count increment 638 ..

24. SLiM architecture (nonWF models) 639 ..

 24.0 Step 0: Execution of first() Eidos events 639 ..

 24.1 Step 1: Generation of offspring 639 ..

 24.1.1 The order of offspring generation 640 ...
 24.1.2 Individual-based reproduction with reproduction() callbacks 640
 24.1.3 Mutation and recombination 641 ...
 24.1.4 Child modification 641 ..
 24.1.5 Child generation 641 ..

 24.2 Step 2: Execution of early() Eidos events 642 ..

 24.3 Step 3: Fitness value recalculation 642 ...

 24.4 Step 4: Viability/survival 643 ..

 24.5 Step 5: Removal of fixed mutations 644 ...

 24.6 Step 6: Execution of late() Eidos events 644 ..

 24.7 Step 7: Tick/cycle count increment 645 ..

25. SLiM classes and built-in functions 646 ..

 25.1 Simulation initialization: initialize() callbacks 646 ..

 25.2 Class Chromosome 658 ..

 25.2.1 Chromosome properties 658 ..
 25.2.2 Chromosome methods 661 ..

 25.3 Class Community 664 ..

 25.3.1 Community properties 664 ...
 25.3.2 Community methods 665 ...

 25.4 Class Genome 669 ...

 25.4.1 Genome properties 669 ..
 25.4.2 Genome methods 670 ..

 25.5 Class GenomicElement 676 ..

 25.5.1 GenomicElement properties 677 ..
 25.5.2 GenomicElement methods 677 ..

 10

 25.6 Class GenomicElementType 677 ..

 25.6.1 GenomicElementType properties 677 ...
 25.6.2 GenomicElementType methods 678 ...

 25.7 Class Individual 678 ...

 25.7.1 Individual properties 678 ...
 25.7.2 Individual methods 682 ..

 25.8 Class InteractionType 685 ..

 25.8.1 InteractionType properties 690 ...
 25.8.2 InteractionType methods 691 ...

 25.9 Class LogFile 700 ...

 25.9.1 LogFile properties 701 ..
 25.9.2 LogFile methods 701 ..

 25.10 Class Mutation 703 ..

 25.10.1 Mutation properties 704 ...
 25.10.2 Mutation methods 705 ...

 25.11 Class MutationType 705 ...

 25.11.1 MutationType properties 706 ..
 25.11.2 MutationType methods 709 ..

 25.12 Class SLiMEidosBlock 709 ..

 25.12.1 SLiMEidosBlock properties 709 ..
 25.12.2 SLiMEidosBlock methods 710 ..

 25.13 Class SLiMgui 711 ..

 25.13.1 SLiMgui properties 711 ..
 25.13.2 SLiMgui methods 711 ...

 25.14 Class SpatialMap 711 ...

 25.14.1 SpatialMap properties 712 ..
 25.14.2 SpatialMap methods 713 ..

 25.15 Class Species 718 ...

 25.15.1 Species properties 718 ...
 25.15.2 Species methods 719 ..

 25.16 Class Subpopulation 730 ..

 25.16.1 Subpopulation properties 730 ..
 25.16.2 Subpopulation methods 732 ...

 25.17 Class Substitution 746 ..

 25.17.1 Substitution properties 747 ...
 25.17.2 Substitution methods 747 ...

 25.18 SLiM built-in functions 748 ..

 25.18.1 Nucleotide utilities 748 ..
 25.18.2 Population genetics utilities 750 ...
 25.18.3 Other utilities 753 ..

26. Writing Eidos events and callbacks 756 ..

 26.1 Defining Eidos events 756 ..

 26.2 Defining mutation effects with a mutationEffect() callback 757 ...

 26.3 Defining individual-level fitness effects with a fitnessEffect() callback 760

 26.4 Defining mate choice with a mateChoice() callback 761 ..

 26.5 Defining child generation with a modifyChild() callback 763 ...

 11

 26.6 Defining recombination behavior with a recombination() callback 765 ..

 26.7 Defining interaction behavior with a interaction() callback 767 ..

 26.8 Defining reproduction behavior with a reproduction() callback 769 ...

 26.9 Defining mutation behavior with a mutation() callback 770 ...

 26.10 Defining survival and mortality with a survival() callback 772 ..

 26.11 Further details on Eidos events and callbacks 773 ..

27. SLiM output formats 775 ..

 27.1 Species output methods 775 ...

 27.1.1 outputFull() 776 ..
 27.1.2 outputFixedMutations() 778 ..
 27.1.3 outputMutations() 779 ..

 27.2 Subpopulation output methods 780 ..

 27.2.1 outputSample() 780 ..
 27.2.2 outputMSSample() 781 ...
 27.2.3 outputVCFSample() 782 ...
 27.2.4 outputVCFSample() in nucleotide-based models 784 ..

 27.3 Genome output methods 787 ...

 27.3.1 output() 788 ...
 27.3.2 outputMS() 788 ..
 27.3.3 outputVCF() 788 ...

 27.4 SLiM additions to the .trees file format 789 ...

28. SLiM extensions to the Eidos language 798 ...

 28.1 Extensions to the Eidos grammar 798 ...

 28.2 SLiM scoping rules 799 ..

29. SLiM reference sheet 804 ...

30. Revision history 813 ...

31. Credits and licenses for incorporated software 828 ...

32. References 834 ...

 12

PART I: THE SLIM COOKBOOK

 13

1. SLiM overview

1.1 Introduction
SLiM is an evolutionary simulation package that provides facilities for very easily and quickly

constructing genetically explicit individual-based evolutionary models. By default, SLiM is based
upon a Wright–Fisher or “WF” model of evolution; in particular, (1) generations are non-
overlapping and discrete, (2) the probability of an individual being chosen as a parent for a child
in the next generation is proportional to the individual’s fitness, (3) individuals are diploid, and
(4) offspring are generated by recombination of parental chromosomes with the addition of new
mutations. Some of these assumptions can be relaxed in WF models using techniques described in
this manual, and an alternative non-Wright–Fisher or “nonWF” type of model can be used for even
greater flexibility; nevertheless, the default WF model type is the conceptual foundation of SLiM,
and it should be understood thoroughly before venturing into more advanced models.

The original version of SLiM (through version 1.8; Messer 2013) was written by Philipp Messer,
now of Cornell University; its name stands for Selection on Linked Mutations. SLiM 2 and later –
the subject of this manual, hereafter simply referred to as SLiM – is a ground-up redesign of SLiM
(by Benjamin C. Haller, now of the Messer Lab at Cornell) that provides much greater power,
flexibility, and speed on top of the same foundational architecture as the original.

SLiM is based upon two main components: a simple scripting language called Eidos that was
invented for use with SLiM, and a set of Eidos classes that implement entities such as
subpopulations, mutations, and chromosomes. A minimal SLiM simulation, such as you will see in
section 4.1, comprises just a few lines of Eidos code; virtually all of the simulation details are
handled by SLiM, so the Eidos script needs only to set up basic parameters such as the population
size and mutation rate. Because of the extensibility provided by Eidos, however, it is
straightforward to extend such a simulation to model almost any evolutionary scenario.

Regardless of the specific problem studied, evolutionary simulations will often entail common
design elements: multiple subpopulations connected by migration, for example, or selective
sweeps, or spatial and temporal variation in selection. Such design elements will come up over
and over for users of SLiM, and it might not be obvious – particularly to biologists with little
programming experience – how to model them using the toolbox provided by Eidos and SLiM.
The first part of this manual has thus been structured as a “cookbook”, an assemblage of recipes
showing how to build different sorts of models in SLiM. The design of each recipe will be
explained, so that users of SLiM feel comfortable modifying the recipes to build their own models.

Under the hood, SLiM is a complex piece of software, with dozens of source files devoted to
implementing both the Eidos language and the Eidos classes provided by SLiM. However, users of
SLiM should not need to confront that complexity; SLiM users should literally never need to delve
into the C++ and C code that drives SLiM. All that you need to understand, as an end user, is the
Eidos scripting interface that SLiM presents for your use. Understanding the Eidos language itself is
an important part of using SLiM effectively; this manual will briefly introduce Eidos concepts as
they arise, but for a more thorough and complete introduction to Eidos it is recommended that you
refer to its separate manual (Haller 2016). Eidos is similar to the popular R language (R Core Team
2015); if you have used R, Eidos should feel fairly natural. (The Eidos manual discusses why we
invented a new language for SLiM, rather than using an existing language.)

This manual does not need to be read from cover to cover; each recipe is designed to stand
alone to the extent possible, although concepts do build on each other. We recommend that all
SLiM users read at least this introductory chapter, which lays out the conceptual foundations of
SLiM. We also urge beginning users to start by doing the SLiM Workshop, which is available both
in-person and online; see section 1.10 for more information on it.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 14

1.2 Why SLiM?
Many evolutionary simulation packages already exist, from custom-built one-off models that

address only a single problem, to simulation toolkits designed to fit a wide variety of tasks. It
would be reasonable to ask why we have made yet another toolkit, and what sets SLiM apart. This
section will explain what SLiM is designed to do and why it adds something important and unique
to existing modeling tools. Note that here we are discussing SLiM 2 and later, which is quite
different in its design philosophy and approach than earlier versions of SLiM.

The primary reason for SLiM is flexibility. Most evolutionary modeling toolkits, including SLiM
1.8, are quite limited in their abilities. They are not easily extensible or modifiable; typically, if
you wish to make such a toolkit do something new, you need to modify the actual source code
(often C or C++) in which the toolkit is written – a non-trivial task. Some toolkits embrace this
shortcoming as a feature, and are thus designed as a set of C++ templates or other reusable
objects; but again, although this approach is flexible, a great deal of programming experience is
needed. Because existing toolkits are so difficult to modify and extend, it is often simpler for
researchers to write their own purpose-built model from scratch; however, this also entails
substantial drawbacks. First, it involves reinventing the wheel over and over. Second, it limits the
level of complexity attainable, since each research project begins again more or less from scratch.
Third, it is a very bug-prone approach, since the code underlying such simulations is often
complex, and all of the debugging and testing that went into previous models is lost with each
new model. SLiM is designed to radically simplify the process of making an evolutionary model,
because of the way that the inner mechanisms of the SLiM simulation are exposed in the Eidos
scripting language. Modifying a simulation to add a new and complex behavior such as epistasis
or sequential mate choice can often be expressed in just a couple of lines of simple Eidos code – a
much simpler proposition than trying to do the same thing in the underlying C++ in which the
toolkit is written. The underlying SLiM engine is quite complex – it contains a full interpreter for
the Eidos language – but it can be treated as a black box, and never needs to be modified or
understood by the end user at all. The script that drives a particular simulation, on the other hand,
can usually be trivially short, easily understood, and quickly modified. The end result is power
and flexibility coupled with simplicity and reusability.

A second reason for SLiM’s existence is performance. When writing a one-off model, it is often
prohibitive – in terms of both time and effort – to optimize the model for fast execution, and once
code is optimized it becomes much harder to maintain and modify, hindering reusability. Because
SLiM will be used for many different models, however, we deemed it worthwhile to spend the
effort on optimization. Months of hard work have gone into making SLiM run fast, including a
number of complex and non-obvious algorithmic optimizations. By using SLiM, you get all of the
speed benefits of those optimizations for free. Individual-based simulations are often speed-
limited; one is often forced to explore only a limited range of parameter space, or use smaller
population sizes than desired, or make other such compromises because of limited computing
resources. SLiM's speed helps to lift that constraint.

A third reason for SLiM’s existence is to provide interactive execution and graphical debugging.
With SLiMgui, you can visualize your simulation as it runs, with graphical depictions of mutations,
genomic elements, subpopulations, migration patterns, and simulation metrics. You can single-
step through your simulations, examine the values of all of the underlying objects, and even
execute arbitrary Eidos code to modify your simulation as it runs. This allows much more rapid
and bug-free simulation development. We highly recommend that you use SLiMgui for model
development even if your production runs will be on a cluster; the value of graphical model
development and debugging is immense (Grimm 2002).

We believe that flexibility, performance, and graphical interactivity make SLiM a worthy
addition to the ecosystem of evolutionary modeling toolkits. We hope that you will agree.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 15

1.3 A quick summary of SLiM
This section is a quick summary of SLiM’s design, as a brief introduction to provide context for

the recipes in this cookbook. See part II of this manual, the SLiM Reference, for further details.
Glossary. We begin with a glossary of terms that have a special meaning in SLiM:

community: The community in SLiM, of Eidos class Community, is the top-level object that
manages the simulation. It contains all of the species objects in the simulation.

species: A species in SLiM, of class Species, corresponds to one species in the simulation.
All other objects related to the species are contained within the species object.

population: A population in SLiM comprises all of the individuals being simulated by one
species in SLiM. There is no Eidos object corresponding to the population; the
species object handles everything related to the population.

subpopulation: A population is divided into subpopulations, discrete groups of individuals
which may or may not be connected to each other by migration. The Eidos class
Subpopulation is used to represent the subpopulations in a species.

individual: An individual, in SLiM, is a diploid organism composed of two haploid genomes
(see below). Individuals are represented by the Eidos class Individual. The
individual is the conceptual level at which fitness is computed, mate choice is
conducted, and so forth.

genome: A genome is the haploid set of all mutations occurring in one of the two
homologous chromosomes of a diploid individual; diploid individuals thus contain
two genome objects. (In haploid individuals, the second genome in SLiM is not
used and is kept empty.) The Eidos class Genome is used to represent genomes.

mutation: A mutation is a change in the genetic information of an individual, represented by
the Eidos class Mutation. Mutations have a position in the genome, a selection
coefficient, information about when/where they arose, and (in nucleotide-based
models) an associated nucleotide. Each mutation references a mutation type that
governs additional properties of the mutation, such as its dominance coefficient.

mutation type: Mutations are drawn from a particular mutation type, representing
simulation-dependent categories of mutations (neutral, beneficial, lethal,
synonymous, etc.). In general, the mutation type determines the distribution of
fitness effects (DFE) from which mutations of that mutation type are drawn. The
mutation type also determines the dominance coefficient of all mutations of that
type. The Eidos class MutationType is used to represent mutation types in SLiM.

chromosome: In SLiM’s terminology, the chromosome is the positional map of regions, such
as genes, being modeled for a species by SLiM; the term does not refer to a single
chromosome carried by a particular individual (the term genome is used for that
purpose). The chromosome, represented by the Eidos class Chromosome, defines
regions according to both their recombination rate and their mutational profile.

genomic element: A chromosome is spanned by non-overlapping genomic elements, of Eidos
class GenomicElement, each referencing a genomic element type (see below).

genomic element type: A genomic element type defines the particular mutation types that
can occur in genomic elements of the given type. It is represented by Eidos class
GenomicElementType. Biological examples of genomic element types could be
introns, exons, or non-coding regions. All of the genomic elements referencing a
type use that type’s mutational profile to generate new mutations.

substitution: When mutations reach fixation in an entire population, they are often replaced
by substitution objects, of Eidos class Substitution, for efficiency reasons. The
substitution provides a permanent record of the fixed mutation’s characteristics.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 16

Population structure. SLiM allows arbitrary population structure; you can model any number of
subpopulations, connected by any pattern of migration, and subpopulations may be created,
change size, and be removed at any time. In WF models, mate choice occurs within
subpopulations – adult organisms do not migrate or mate between subpopulations – and migration
occurs at the juvenile stage. (These restrictions are relaxed in nonWF models, which are more
flexible in many ways; see section 1.6). Individuals in SLiM are always diploid, and gametes are

always haploid; SLIM does not provide much intrinsic
support for other ploidy levels (but haploids can easily be
modeled by modifying the default behavior with scripting;
see section 14.9). See chapter 5 for further discussion.
 Sexual reproduction. SLiM can model either
hermaphroditic individuals (no distinction between sexes) or
sexual individuals (distinct males and females). In either
case, individuals normally undergo biparental mating to
produce offspring through sexual recombination (including
both crossing over and, optionally, gene conversion). Clonal
reproduction is also supported, instead of or in addition to
biparental mating, and in the hermaphroditic case, SLiM
also supports self-fertilization (“selfing”). In sexual models
the sex ratio is controllable, and sex chromosomes may be
modeled. These topics are discussed further in chapter 6.
 Genetics. SLiM is genetically explicit: it models
mutations at specific base positions in genomes with an
explicit chromosome structure. SLiM does not, by default,
model nucleotide sequences, but it can; see section 1.8 and
chapter 18. The chromosome is composed of genomic
elements (e.g., sections of a gene), each of a particular
genomic element type (e.g., intron versus exon) that defines
the mutational profile of genomic elements of that type,
using a set of mutation types and associated probabilities.
These topics are discussed further in chapter 7.
 Fitness. By default, SLiM calculates fitness
multiplicatively, based upon all of the mutations possessed
by each individual. The selection coefficient s of a given
mutation defines the mutation’s fitness effect when
homozygous (1+s); when heterozygous, the fitness effect is
modified by a dominance coefficient h (1+hs). The effects of
mutations may be altered by mutationEffect() callbacks
that provide full control over how the fitness of an individual
is calculated given the particular set of mutations present in
its genome, and possibly other properties of the population.
These topics are discussed further in chapter 10.
 Tick cycle. SLiM is based, by default, on an extended
Wright–Fisher or “WF” model with non-overlapping,
discrete generations (a non-Wright–Fisher or “nonWF”
model can also be used, as discussed in section 1.6 and
chapters 15 and 24, but that is an advanced topic that we
will pass over here). Within each generation, events occur
in a fixed order (see left). A generation in SLiM is also often

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 17

1. Execution of early() events

3. Removal of fixed mutations
unless convertToSubstitution==F

4. Offspring become parents

6. Fitness recalculation using
mutationEffect() and

fitnessEffect() callbacks

7. Tick/cycle count increment

2. Generation of offspring;
for each offspring generated:

2.1. Choose source subpop
for parental individuals,
based on migration rates

2.2. Choose parent 1, based
on cached fitness values

2.3. Choose parent 2, based
on fitness and any defined
mateChoice() callbacks

2.4. Generate the candidate
offspring, with mutation
and recombination
(including mutation() and
recombination() callbacks)

2.5. Suppress/modify the
candidate, using defined
modifyChild() callbacks

5. Execution of late() events

The WF model’s tick cycle

0. Execution of first() events

called a tick or a cycle, but those terms having slightly different meanings, especially in nonWF
models and multispecies models, discussed further in section 1.5.7; we will lean towards using the
term “tick” since it applies correctly in all of those situations. Each tick begins with the execution
of user-defined Eidos scripts called first() and early() events. Examples of such events might be
demographic events, such as changes in population size, population splits, changes in migration
rates, etc. Offspring are then generated by drawing gametes from the parent population according
to fitness; this default mating scheme may be modified to implement non-standard mating
scenarios via user-defined mateChoice() callbacks (see chapter 11). Gametes are generated from
the genomes of the candidate parents, modified by mutation and recombination; furthermore, the
standard mutation behavior can be modified using a mutation() callback (see section 26.9), and
the standard user-defined recombination map can be modified arbitrarily for each gamete
generated using a recombination() callback (see sections 14.4 and 26.6). After offspring have
been created, their genomes and other attributes can be modified according to user-defined rules
using modifyChild() callbacks (see chapter 12). After (optional) removal of fixed mutations from
the model, the offspring become the parents. Next is another opportunity for Eidos events – in this
case, late() events – to run. This is where output events, such as drawing a random sample of
individuals from the population, would typically be specified. Fitness values are then calculated,
modified by mutationEffect() callbacks (see chapter 10). Finally, the simulation advances to the
next tick. This sequence of events is called the “tick cycle”.

Tags. User-defined “tag” values can be attached to almost all of the objects defined by SLiM in
order to associate your own information with SLiM’s objects, whether short-term flags or long-term
state. Tags are used in many recipes in this cookbook; see those recipes for a variety of examples
of the utility of tags. One may also attach values to most SLiM objects using a dictionary-like
getValue() / setValue() mechanism that associates a value (which may be an entire vector or
matrix) with a named key on the target object. This facility, which is provided by the Eidos class
Dictionary (acting as the superclass for many Eidos classes in SLiM), provides an even broader
and more flexible way to attach model state to objects; see the Eidos manual for details on the
getValue() / setValue() methods, and see the recipe in section 11.1 for an example of their use.

Continuous space. Beginning in SLiM 2.3, SLiM provides support for continuous space. If this
optional feature is enabled, individuals in SLiM maintain a spatial position – either (x), (x, y), or
(x, y, z) – within their subpopulation. These spatial positions can be changed at any time
(simulating phenomena such as foraging and dispersal, for example), and are used to create a
spatial visualization of the subpopulation in SLiMgui. Positions can used in script in any way,
allowing models to incorporate the consequences of continuous space in any way desired. In
particular, spatial positions may be used as the basis for spatial interactions between individuals
(see below), and may be used in conjunction with spatial maps that define variation in
environmental variables across continuous space. This advanced feature is first introduced in
recipes in chapter 16.

Interactions. Beginning in SLiM 2.3, SLiM adds a new class, InteractionType, which can
govern interactions between individuals. Interactions can still be handled with pure Eidos code,
but the use of InteractionType automates and accelerates many common tasks, such as finding
the total interaction strength felt by an individual (as a result of competition, for example).
InteractionType can also manage spatial interactions, providing features such as interaction
strengths that vary according to distance, and handling spatial queries such as nearest-neighbor
searches. This advanced feature is first introduced in recipes in chapter 16.

Multiple species. Beginning in SLiM 4.0, SLiM allows the simulation of more than one species
in a single SLiM model, opening the door to ecological interactions and coevolutionary dynamics.
Each species has its own genetic structure (chromosome, mutation types, genomic element types),
its own mutations, and its own population and subpopulations; the only configuration choice that

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 18

all species must share is that they must all use the same model type – WF or nonWF. The tick
cycles of species can be run in an interleaved manner, or can run separately. This advanced
feature is summarized in section 1.9, and first used in chapter 19.

At this point, let’s take a step back to see where we’re heading. Beyond the brief overview
above, this chapter will introduce some more specialized topics. Section 1.4 sketches out some
practical details about how SLiM is typically used. Section 1.5 provides a more detailed overview
of some of the concepts above, including how mutations are represented in SLiM, how SLiM
models recombination between genomes, and what happens when mutations fix; it is essential
reading. Section 1.6 then introduces non-Wright–Fisher or “nonWF” models, section 1.7
introduces tree-sequence recording, section 1.8 introduces nucleotide-based models, and section
1.9 introduces multispecies models; these are all advanced topics, but it is good to be aware of the
existence of these features and the reasons why you might wish to use them. Finally, section 1.10
wraps up this introductory chapter with a summary of various online resources available for SLiM
users – importantly, including free SLiM Workshops that can be attended in-person or completed
online. That can be a good way for beginners to get going on SLiM.

Chapter 2 provides instructions on building and installing SLiM on various platforms. Chapter 3
gives an introduction to SLiMgui, the graphical modeling environment provided for use on macOS,
Linux, and Windows. Most of the remainder of Part I of this manual, the SLiM Cookbook, then
provides “recipes” demonstrating the core concepts of SLiM. Two chapters at the end of Part I are
not so recipe-focused: chapter 20 discusses a variety of runtime control issues such as the random
number generator used by SLiM, command-line options supported by SLiM, and so forth, and
chapter 21 covers issues related to implementation and performance – how to write models that
are fast and memory-efficient, and how to profile the performance of your model to find “hot
spots” in need of optimization.

Finally, Part II of this manual, the SLiM Reference, provides technical reference documentation
for SLiM, including such aspects as the tick cycle in WF and nonWF models, the Eidos classes
provided by SLiM, the various types of events and callbacks, and the output formats supported by
SLiM, beginning in chapter 23.

1.4 The typical SLiM usage pattern
Before delving more deeply into the concepts introduced in the previous section, it might be

helpful to clarify how a typical user would use SLiM, in practical terms.
First of all, many or most users will use the SLiMgui modeling environment for their model

development and testing, and perhaps for exploratory, non-production runs as well. SLiMgui
provides many tools for model development, such as code completion, syntax coloring, online
documentation, interactive model execution, live graphing of common model metrics,
performance analysis, and graphical debugging. It also makes model development logistically
simpler; there is no need to write a dispatch script, no need to execute Unix commands in a
terminal, etc. When learning how to use SLiM, it is therefore strongly recommended that you use
SLiMgui, which now runs on macOS, Linux, and Windows. Note that all of the recipes in this
manual are directly accessible in SLiMgui through the Open Recipe submenu of the File menu.

Second, many or most SLiM users will do their “production” model runs on a computing
cluster. One reason is that individual-based models often take a long time to execute; SLiM is
highly optimized, but simulating the genomic details of a large number of individuals over many
generations is inevitably slow. Another reason is that many replicate runs are typically needed;
one run of an individual-based model provides just one data point, one solitary example of what
could happen, so one usually needs to perform many runs and then use statistical methods to draw
inferences (just as one often would in field-based or lab-based research). Finally, most studies

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 19

involving individual-based modeling explore a “parameter space”, examining how the model’s
outcome depends upon the parameters of the model; each set of parameter values explored
implies another full set of replicated runs. Together, these facts mean that a single study using
SLiM might entail months or even years of processor time; the use of a computing cluster is thus
often necessary.

For this reason, SLiM is mainly designed to fully utilize a single processor; it is not presently
designed to take advantage of multiple processors using multi-threading or MPI. A single run of
the slim command runs a given model a single time on a single processor; to conduct the many
runs that are typically needed, slim will be run many times. This single-threaded design makes it
straightforward for the user to run a separate instance of a model on each processor on a multicore
machine or a computing cluster. This can be done manually in some cases, but is more typically
done using a batch-queueing system such as Open Grid Scheduler. Either way, some sort of a
dispatch script is generally needed to schedule each of the individual runs of slim. Because there
are so many different possible ways that the user might want to run SLiM, and so many different
computing environments in which it might be run, a standard dispatch script is not provided as a
part of the SLiM package; however, this is usually straightforward. It can usually be done in
whatever scripting language you prefer, from R or Python to a Bash shell script, and often just
consists of a loop over all of the parameter values and replicates desired, with a call to launch or
schedule a run of slim inside that loop. In Python, sublaunching a Unix process can be done with
the subprocess package; in R, with system() or system2(); in a Bash shell script, by just invoking
slim directly. A couple of examples of dispatch scripts for use on a local machine are provided in
the SLiM-Extras repository at https://github.com/MesserLab/SLiM-Extras/tree/master/sublaunching,
including a sublaunching tutorial by Sam Champer (see section 1.10). If you are working on an
institutional computing cluster, the cluster administrator may be able to provide you with examples
of dispatch scripts appropriate for that environment.

Finally, SLiM users will typically want to collect results from model runs and perform statistics
and other analyses on them. This can sometimes be done directly in the dispatch script; that script
might collect the model output and tabulate simple results as runs complete. In other cases, each
invocation of slim will be set up to produce its own output files, and then a separate analysis
script – typically written in a language like R or Python that has support for statistics and plotting –
will read in those output files, parse the relevant information out of them, and conduct the desired
analyses. In this undertaking, you are on your own. However, it is worth noting that SLiM can
generate output in some standard file formats, such as FASTA, VCF, and MS (as well as CSV and
TSV for non-genetic data), and that many tools already exist to read in and analyze such standard-
format files, so in some cases you might be able to use pre-existing software for at least some of
your analysis. If your model uses tree-sequence recording (see section 1.7), you can also output
a .trees file that can be read and processed in Python using the tskit, msprime, and pyslim
packages, making many types of post-run analysis much easier (see examples in chapter 17);
indeed, this could in itself be a compelling reason to use tree-sequence recording, since parsing
output files to do analysis is otherwise such an annoyance. Finally, in some cases you might want
to do some of the needed analysis inside the SLiM model itself, in Eidos code, to simplify the post-
processing needed. For example, if your analysis needs the number of mutations fixed at the end
of each model run, it might be simpler to count the fixed mutations inside the SLiM model, and
just output that count, rather than parsing full genomic output files from each model run just to
extract the count of fixed mutations. The LogFile class in SLiM is designed to facilitate automatic
logging of summary statistics and other metrics (see section 4.2.5). It is even possible to generate
plots with R or Python from inside a SLiM model with sublaunching (see section 14.8), a technique
that can be useful in some scenarios. In short, output and analysis present complex issues, and it

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 20

https://github.com/MesserLab/SLiM-Extras/tree/master/sublaunching

will be beneficial to think, up front, about how to design your model and your analysis code so
that they communicate as cleanly and simply as possible.

1.5 Conceptual overview
This section will delve into further detail on some of the concepts set out in section 1.3 (which

should be read before this section), to present a more complete picture of how SLiM works at a
conceptual level. We will not show any Eidos code here; that will be left for the recipes in the
“cookbook” that begins in chapter 4. We will, however, make reference to the Eidos classes used
by SLiM to represent various concepts, and to some of the properties and methods of those classes.
We will gloss over some minor details here in order to present the big picture as clearly as
possible; for more comprehensive information, see Part II of this manual, the SLiM Reference that
begins in chapter 23.

1.5.1 Individuals and genomes
SLiM is a framework for running individual-based models; this means that every individual

organism in the model is simulated explicitly. Each individual is represented in SLiM as an
instance of the Individual class (see section 25.7) in the Eidos scripting language. At the most
minimal level individuals are born and die, and in between they find mates and produce offspring
(or they reproduce by selfing or cloning); these actions are built into SLiM. In more complex
models individuals may also do things like gather resources, learn from experience or through
social learning, interact with other individuals, be subject to events that alter their state, move in
discrete or continuous space, and exhibit various other behaviors; these actions are not built into
SLiM (although supporting infrastructure is provided for some of them), but they can easily be
implemented in Eidos script.

Perhaps most importantly, since SLiM models are genetically explicit simulations, individuals
contain genetic information. Individuals in SLiM are diploid; each individual thus possesses two
homologous chromosomes (or one X and one Y chromosome, if sex chromosomes are being
simulated), referred to as the genomes of that individual. (It is possible to model more than one
chromosome in SLiM, conceptually, but this is done by using a recombination map that specifies
free recombination at particular positions, effectively subdividing the chromosome into unlinked
sub-chromosomes; see section 6.1.4.) Each of the two genomes of an individual is represented
using an instance of the Genome class in Eidos (see section 25.4).

A genome is essentially a container that holds a set of mutations. If both of an individual’s
genomes contain exactly the same mutation (a surprisingly subtle concept, which will be defined
rigorously in the next subsection), the individual is homozygous for that mutation; if a given
mutation is contained in only one of the two genomes, the individual is heterozygous for that
mutation. Note that SLiM does not model nucleotides explicitly by default, but it does model
explicit, discrete base positions along the genome. (Beginning with version 3.3, SLiM can in fact
model nucleotides explicitly, but that is an advanced feature that will not be discussed in this
overview; see section 1.8 and chapter 18.)

The overall picture, then, looks like this:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 21

Each yellow square represents one individual. Each individual contains two genomes; and each
genome contains the state of all of the base positions along the chromosome, from beginning
(position 0) to end (position L−1, so that the chromosome is of length L). Each base position is
represented here as an empty box, and all of the boxes from 0 to L−1 together represent a genome.

A key concept in SLiM is that genomes begin, by default, as empty: they contain no mutations
and no genetic information. This can be thought of as the “wild type”, in a sense, and we will
refer to it in that way sometimes in what follows, but it does not have to represent the wild-type
state of the organism you are modeling. Instead, it simply represents the base, un-mutated state of
individuals, whatever you want to consider that to be. All mutations in SLiM can be thought of as
modifications that are layered on top of this empty base state. The base state can also be thought
of as “neutral”, in terms of fitness, but it does not have to actually be neutral (i.e., 1.0) in absolute
fitness. Instead, the base state can have any absolute fitness value you like – but in general that is
unimportant, since SLiM’s core engine is only concerned with relative fitness (at least in WF
models, the default mode of operation, which we will limit ourselves to in this discussion). When
the simulation begins, and all genomes are empty, it does not matter to SLiM what the absolute
fitness of those empty genomes is; since they all have the same absolute fitness, they all have a
relative fitness of 1.0, and that is what matters to SLiM (again, in WF models). The fitness effects of
mutations then modify those relative fitnesses, multiplicatively. (See section 8.4 for a more
complete discussion of what “fitness” really means in SLiM.)

You can, of course, set up your simulation to begin with whatever mutational state you want, by
explicitly adding mutations to particular genomes, or by loading mutational state from a VCF or
MS file. Even more commonly, a simulation will begin with a “burn-in” period that establishes an
equilibrium level of genetic diversity through mutation–selection–migration balance before the
more interesting part of the simulation begins. It is important to understand that such genetic
diversity is always built on top of empty chromosomes in SLiM, however. In general, if two
mutations are segregating at a given base position, there are effectively three alleles in the
population at that base position: the first mutation, the second mutation, and what you could think
of as the “wild-type allele” represented by the absence of either of those mutations. In script, you
could force a mutation to exist at every base position in every genome, so that there are no empty
positions in any of the genomes in your simulation; if you do so, however, you will find that your
simulation then runs quite slowly, since SLiM is having to track and manage all of those mutations,
so such a strategy is usually undesirable.

Learning to let go of the idea of chromosomes filled with genetic information at every position
(as is the case biologically, when regarding a DNA molecule), and thinking instead in terms of
mutations layered on top of the empty “wild-type” state, is an essential conceptual leap to make in
using SLiM. To move from one conceptual model to the other, imagine the “wild-type” nucleotide
sequence for your study organism: some specified genome sequence of A, C, G, and T. Whatever
that sequence might be, it is represented in SLiM by the absence of any genetic information at all:
empty chromosomes. SLiM tracks only mutations on top of that sequence: SNPs, in the
nucleotide-based paradigm. But any individual that does not possess a SNP at a given location
instead possesses the “wild-type” nucleotide, conceptually – represented in SLiM by an empty
base position. This conceptual model is preserved even when modeling nucleotides explicitly in
SLiM, although that is beyond the scope of our discussion here (see section 1.8).

We will not dwell upon it here, but it is worth noting that genomes in SLiM can sometimes be
so-called null genomes. Null genomes are placeholders, representing the absence of a genome,
because every individual in SLiM always has two genomes but sometimes you do not, in fact, want
two genomes. If you are modeling haploids, for example, every individual would have one non-
null genome, containing the individual’s haploid genetic information; the second genome could
just be kept empty, or it could be a null genome signifying that the second genome does not exist.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 22

1.5.2 Mutations and substitutions
With the foundation of individuals and genomes laid by the previous section, let’s now explore

the idea of mutations in SLiM in more detail. In SLiM, a mutation is an instance of class Mutation
in Eidos (see section 25.10). A mutation has various properties – its base position and its selection
coefficient, most importantly. (In nucleotide-based models, each mutation also has an associated
nucleotide.) In SLiM, the multiplicative fitness effect of a mutation with selection coefficient s is
1+s for a homozygote; in a heterozygote it is 1+hs, where h is the dominance coefficient (kept by
the mutation type; see section 1.5.4). Let’s update our conceptual schematic to include some
mutations:

This simulation has three mutations, represented here with blue, red, and green. At position 3,
the first individual is homozygous for the blue mutation, the second individual is heterozygous for
red and heterozygous for blue, and the third individual is heterozygous for blue (the other allele in
that individual being the empty “wild-type allele” as discussed above).

An important concept to absorb is that the genomes that contain the blue mutation do not just
contain their own particular copies of blue-mutation-type information; they actually contain
references to the very same shared blue-mutation object. A more accurate conceptual diagram
might therefore look like this:

Here the particular base positions in the genomes have references to the three shared mutation
objects in the model. Since this diagram is quite difficult to interpret visually, we will stick with
showing mutations as residing inside genomes; but you should always keep in mind that mutations
are really shared objects. A new mutation object is created either (1) when a random mutation
event occurs in SLiM (as governed by the overall mutation rate set for the simulation), or (2) when
requested by the simulation script with the addNewMutation() or addNewDrawnMutation() methods
of Genome (see section 25.4.2). In both cases, these events always create a new mutation object,
even if a mutation with exactly the same properties – position, selection coefficient, etc. – already
exists in SLiM. In our conceptual diagram above, the blue and red mutations might be identical in
every detail; they are nevertheless considered to be different mutations by SLiM, and will be
tracked separately and never merged into a single identity. You can therefore think of SLiM as
tracking mutational lineages, following a sort of identity by descent; the red and blue mutations
might represent the very same SNP, but they arose due to separate mutational events, and thus they
seeded mutational lineages that SLiM keeps separate.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 23

This distinction becomes particularly important when you ask whether two genomes contain
“the same mutation” – if you ask, for example, whether a given individual is heterozygous or
homozygous for a given mutation. The second individual in the diagram is heterozygous for blue
and heterozygous for red; even if the blue and red mutations are identical, the individual is not
considered by SLiM to be homozygous. The combined multiplicative fitness effect of being red/
blue, (1+hs)×(1+hs), is therefore different from the fitness effect of being red/red or blue/blue,
(1+s), and – depending upon the selection coefficient and dominance coefficient involved – this
difference could be quite large. Often this can be ignored; if mutations are neutral then this
clearly doesn’t matter, and if mutational effects are drawn from a distribution of fitness effects then
in general no two new mutations will be the same anyway so the point is moot. However, if some
mutations in a simulation use a fixed, non-neutral fitness effect then this might become important;
this could be important in a model of a soft sweep by recurrent de novo mutations, for example.
In such cases, you may wish to ensure that all references to identical mutations are transmuted into
references to the same mutation object, enforcing a single mutational lineage. When new
mutations are being introduced in script, rather than by SLiM, you can ensure that an existing
mutation object is used by using the addMutations() method of Genome (see section 25.4.2), which
adds already-existing mutations to a genome instead of creating new mutation objects (and thereby
new mutational lineages). For new mutations introduced automatically by SLiM, the technique
shown in section 18.14 may prove useful.

Another key concept involving mutations is that by default, mutations are removed from the
simulation when they become fixed. Suppose that, after mate choice and biparental mating, the
next generation of our conceptual diagram looked like this:

This genomic state will be visible to the simulation script only momentarily, if at all, because in
each tick, at a particular point in the tick cycle, it will be detected by SLiM and replaced by this
state instead:

The fixed mutation has been removed from the simulation and stored as a “substitution” object
(represented here by the blue square to the right). This substitution object will be kept by SLiM
forever, to remember the fixed mutation. The substitution object is available to the script; but the
mutation is no longer contained by the genomes of each individual, and it no longer influences
SLiM’s fitness computations. This is usually a good idea, because it allows SLiM to run much faster
than it otherwise would; without removal of fixed mutations, simulations would slowly bog down
under the weight of more and more accumulated fixed mutations. It is also usually safe, since a

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 24

mutation that is possessed by every individual will usually have an effect on absolute fitness but
not on relative fitness – since its multiplicative fitness effect is the same in every individual, it can
be neglected. However, simulations that involve epistasis, or that model additive mutational
effects upon quantitative traits, or that otherwise depend upon mutations in ways that go beyond
their direct effect on relative fitness, may wish to disable this automatic conversion for the
mutations involved in such effects; this can be done easily in SLiM using the
convertToSubstitution property (see section 25.11.1).

The above ideas, about the distinct identity of each mutational lineage and the way that fixation
is defined in SLiM, combine in a way that is worth mentioning since it might be unexpected.
Suppose that there are two mutations, blue and red, segregating at base position 3, as above, and
suppose further that these mutations are identical in every detail but arose separately, as described
above. Finally, suppose that the population reaches this state:

It might be natural to suppose that the mutations at position 3 would be considered to have
fixed, and would be removed, as above, given that they are all identical and merely represent
independent mutational lineages of what you might think to be the same mutation. As above,
however, this is not how SLiM thinks! Since the blue and red mutations are different mutation
objects, neither is considered to have reached fixation; fixation in SLiM occurs when a specific
mutation reaches a population-wide frequency of 1.0, without any consideration for other
identical mutations segregating in the population. In a scenario like this, such as a soft-sweep
model, if you want fixation of independent mutational lineages to be detected you will need to
either merge the independent lineages yourself in script, as described above (and see section
18.14), or simply detect fixation yourself directly. You could detect fixation by checking that every
genome in the model contains an appropriate mutation (either red or blue, in this case), or by
summing the counts of all of the appropriate mutations in the population to confirm that the total
count is equal to 2N (where N is the population size and the constant factor of 2 accounts for
diploidy). (You might be inclined to sum the mutation frequencies instead and compare to 1.0,
but this strategy is vulnerable to floating-point roundoff error, so it is not advisable.) This is all
simpler than it sounds; the soft-sweep recipes in section 9.5 provide some examples.

1.5.3 Mutation stacking
There is one more key concept about mutations in SLiM to consider, and it is this: by default, a

given base position in a given genome may actually contain more than one mutation – indeed, it
may contain an arbitrarily large number of mutations. This is referred to as “mutation stacking”;
the multiple mutations at a single base position in a given genome are referred to as being
“stacked”. For example, imagine that this individual exists in a SLiM simulation:

And then imagine that a new mutation, which we will show as red, occurs at the same position,
in the same genome, where the blue mutation already exists. By default, here is what will happen:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 25

The red mutation has stacked on top of the blue mutation; both mutations now exist at that
position in that genome. This does not fit terribly well into the concept of “genotype” – SLiM does
not really think in terms of genotypes. You could perhaps say that the genotype of this individual is
something like “wild/red-blue”, if you wished, where “red-blue” is the allele created by the
stacking of a red and a blue mutation together at the same locus. SLiM, however, just thinks in
terms of the mutations actually possessed by each genome, so in SLiM’s terms, rather than talking
about genotype, we would simply say that the individual is wild-type (i.e., empty) at the given
position in one genome and has a red mutation and a blue mutation at that position in the other
genome. We could also say that the individual is heterozygous for red and heterozygous for blue;
that is true, but is a bit ambiguous since the same would be said of a red/blue heterozygote that
had a red allele in one genome and a blue allele in the other; unless the red and blue mutations
are epistatic, however, that distinction is probably unimportant. Note that further mutations at the
same position could occur as well, and would stack on top of those already present, making all
this even more complex. Probably the simplest thing is to learn to think in the same terms in
which SLiM thinks: which mutations are present in which genomes.

This behavior of SLiM is perhaps quirky, but usually harmless. It is not common for mutations
to end up stacked in practice, since normal mutation–selection balance in finite populations
usually clears out genetic diversity quickly enough that it is unusual for a new mutation to occur
right on top of another mutation that is still segregating in the population. Furthermore, when
mutations do occasionally stack, it is usually not important to the dynamics of the model; in most
cases the resulting behavior is identical, for practical purposes, to if the new mutation had
occurred at an immediately adjacent base position instead, which would result in the two
mutations being extremely tightly physically linked rather than actually being stacked:

In principle these mutations could be separated by recombination, whereas the stacked
mutations cannot be, but in practice that is unlikely enough that it will probably not make a
difference to the model’s dynamics. It is therefore important to understand that SLiM works in this
way, but in most cases models do not need to concern themselves with stacking.

However, there are cases where it does present problems. If you want to simulate actual
nucleotides (see section 1.8 and chapter 18), for example, then each base position must be
unambiguously either A, C, G, or T; it makes no biological sense for an A and a G to be “stacked” at
a single position. Similarly, if you want to make a quantitative-genetics model with particular
discrete quantitative effects for the alleles at each QTL (see section 13.3), such as a −1/0/+1 allelic
system, you would not want mutation stacking to occur since stacking of more than one mutation
at a given QTL would violate your design. The default mutation stacking behavior may therefore
be modified.

The stacking behavior of mutations is governed by their mutation type, a concept we haven’t yet
discussed. All mutations in SLiM belong to a mutation type, represented by the Eidos class
MutationType (section 25.11). Mutation types are important primarily because they dictate the
distribution of fitness effects from which mutations are drawn; for example, all of the mutations of
a given mutation type might be neutral, or they might be deleterious and drawn from a gamma
distribution. When a new mutation is generated by SLiM, the selection coefficient for the mutation
is drawn from the distribution specified by the relevant mutation type, as will be discussed in detail

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 26

in section 1.5.4. Simulations may define as many mutation types as desired, but most simulations
contain just one or a few mutation types.

Besides defining the distribution of fitness effects from which mutations are drawn, mutation
types define a few other behaviors for mutations too. For example, the convertToSubstitution
property mentioned in section 1.5.2, which determines whether a mutation will be removed when
it fixes, is actually a property of MutationType, not of each individual mutation, since it makes
sense for this behavior to be uniform across each class of mutations. The dominance coefficient of
mutations is also a property of the mutation type, not of individual mutations, for the same reason.

For our discussion of mutation stacking here, however, mutation types are important because
stacking behavior is controlled by the mutationStackGroup and mutationStackPolicy properties of
MutationType (see section 25.11.1); all of the mutations of a given mutation type follow the same
stacking policy. In fact, more than one mutation type can be joined together into a single
“mutation stacking group” using mutationStackGroup, and then all of the mutations in that
stacking group follow the same policy. This is a power-user feature that we will mostly gloss over
for the rest of the discussion here, however; we will just assume that each mutation type
constitutes a separate stacking group (which is the default behavior).

Given this design, in the example above the red mutation needs to be of the same mutation type
(or in the same stacking group) as the blue mutation before stacking can be prevented. If they are
not of the same mutation type (or more precisely, not in the same stacking group), then they will
stack, regardless of what stacking policy has been set for each mutation type. The idea is that you
generally don’t want different kinds of mutations to interfere with each other in a model. If a QTL
mutation exists at a given position, for example, then you might want a new QTL mutation at the
same locus to replace the old one, rather than stacking – but if a neutral mutation occurred at the
same locus, you would probably not want that neutral mutation to replace the existing QTL
mutation. Even more clearly, if you used a particular mutation type to represent epigenetic
modifications along the genome, such as methylation – which is certainly possible in SLiM – then
you certainly would want those epigenetic modifications to be able to stack with mutations of
other types. Whatever you might think of that argument, you can always modify it by placing all of
your mutation types into a single stacking group.

So let’s now assume that the red and blue mutations are in the same stacking group – of the
same mutation type, most trivially. Now the stacking policy can be modified. The default policy is
referred to as type "s" (for “stack”), and yields the stacked result we saw above. Instead, you can
set the policy to type "l" (for “last”), which produces this result after the red mutation occurs:

The red mutation has replaced the mutation in this genome, because this stacking policy
dictates that the last mutation at a given position should be kept. This is the common alternative to
the "s" policy, but you can also set a policy of "f" (for “first”) which produces this result:

Here the red mutation has simply been thrown away, because the blue mutation was there first.
The post-mutation state is therefore identical to the pre-mutation state (note that this means the
effective mutation rate will be lower than the requested mutation rate, since some mutations will
be suppressed). This policy is less commonly used, since its biological motivation is unclear, but it
is provided as an option in SLiM just in case it is called for (see, e.g., section 9.5.1).

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 27

Note that all three stacking policies – "s", "l", and "f" – depend only upon the existing
mutation(s) at the specific base position in the specific genome where a new mutation is occurring.
The state at other positions, or in other genomes, is completely irrelevant. Changing the mutation
stacking policy is not a way to prevent more than one allele from existing in a population at a
given locus; it is only a way to prevent more than one mutation from existing in one genome at a
given locus. Suppose, in our ongoing example, that the new red mutation had occurred in the
other genome of the individual instead; regardless of the stacking policy, the result would then be:

That base position in that genome was empty; the stacking policy is therefore irrelevant, since
there is no pre-existing mutation to stack on top of, so the red mutation is always added. More
generally, suppose we have a population of three individuals, with a few mutations:

Different new mutations could occur at each of the empty sites at base position 3, regardless of
the stacking policy. So whether the stacking policy is "s", "l", or "f", new mutations could easily
lead to this state:

If the stacking policy were "f", further new mutations at position 3 beyond this could not be
introduced; now that every genome has a mutation at position 3, those pre-existing mutations
would prevent the new mutations from being added. Under stacking policy "l", new mutations
would still be possible at position 3 even in this state; the new mutations would just replace the
old mutations. Under policy "s", the new mutations would stack, the default behavior.

Sometimes it is desirable to allow for the possibility of back-mutation in a model. This can be
accomplished in several ways in SLiM. One way is to use a mutational distribution of fitness
effects that provides only a limited set of possible values, and use type "l" stacking so that new
mutations replace existing mutations; new mutations are then automatically sometimes back-
mutations. (This would occur automatically in a nucleotide-based model; see section 1.8).
Another possibility, if you only need back-mutation to the “wild type” empty-genome state, is to
remove existing mutations yourself, in script; if done with the appropriate probability, this could
simulate back-mutation to the wild type. For nucleotide-based models, see section 18.15 for
further discussion of such approaches; there is a lot of complexity here!

0 L−1

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 28

Finally, note that the stacking policy is applied to new mutations introduced in script, as well as
to new mutations added by SLiM as a result of the overall mutation rate. New mutations that you
add will be allowed to stack unless you change the stacking policy; and conversely, if you change
the stacking policy then new mutations that you add might result in the removal of pre-existing
mutations, or might not be added at all, in accordance with the policy you have chosen. However,
when the stacking policy is changed in mid-run it is not retroactively enforced upon existing
mutations, and when a saved population is loaded the current stacking policy is not enforced upon
the mutations loaded.

The issue of mutation stacking is a bit complicated and confusing; if the discussion above has
left you with more questions than answers, rest assured that this is an advanced topic that generally
does not impact simple models at all. Play around with SLiM for a while, and then when you
revisit this section it will probably make much more sense.

1.5.4 Genomic elements, genomic element types, mutation types, and the chromosome
SLiM allows you to model complex chromosomes with genomic regions that have different

mutational effects. For example, exons would be expected to sustain beneficial, deleterious, and
neutral mutations, whereas introns might sustain only deleterious and neutral mutations, and non-
coding regions might only allow neutral mutations. You set up this structure in SLiM using a
hierarchical configuration: the chromosome (class Chromosome, section 25.2) contains genomic
elements (class GenomicElement, section 25.5), which are each of a given genomic element type
(class GenomicElementType, section 25.6), and each genomic element type draws new mutations
from a weighted set of mutation types (class MutationType, section 25.11), each of which specifies
a distribution of fitness effects for that type of mutation. In an exon/intron/non-coding model, for
example, each type of genomic region – “exon”, “intron”, and “non-coding” – would be a
genomic element type, and the chromosome would be a mosaic of genomic elements using these
three genomic element types. Each of these genomic element types would draw its mutations from
a different set of mutation types – perhaps “beneficial”, “deleterious”, and “neutral”, in this case.
In practice, that might look something like this:

Here the chromosome contains two genes, each of which is composed of an alternation of
exons and introns, and non-coding regions are interspersed around the genes. Those regions along
the chromosome are defined by genomic elements, which reference the three genomic element
types defined here (non-coding, exon, and intron). Those three genomic element types each
utilize some subset of the mutation types that have been defined here (neutral, beneficial, and
deleterious). Although this diagram simply shows arrows from genomic element types to mutation
types, there are in fact weights associated with the mutation types of a given genomic element
type; in this case, you might specify that 90% of mutations within introns are neutral and 10% are
deleterious, by giving those weights to SLiM when the intron genomic element type is configured.
In this way, new mutations that are automatically generated by SLiM will have appropriate fitness
effects depending upon the genomic region in which they occur.

Note that this example is entirely arbitrary; you can define whatever mutation types, genomic
element types, and genomic elements you wish. You could make your chromosome entirely
neutral, or you could model the specific mutational effects of each region in an empirical genome

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 29

map, right down to the full level of detail known for your study organism. There is no practical
limit to the number of mutation types and genomic element types you may define. In the opposite
direction, you can also make a much simpler model than the one above. Not all of the
chromosome needs to be assigned to a genomic element; much of the chromosome can simply be
empty. For example, you could make a model of epistatic interactions between two loci with a
chromosome like this:

Here most of the chromosome is empty, containing no genomic elements. No mutations will
be generated in these regions, since mutation generation in SLiM is governed by genomic
elements. Only the purple loci will be active; we have one genomic element type and one
mutation type in this model, and quite possibly only two mutations (one at each locus). A simple
genetic structure like this will often run much faster in SLiM than simulating a whole chromosome;
if you are not interested in what is going on in some regions of the chromosome, just don’t
simulate them. The only limitation in setting up your chromosome structure in SLiM is that
genomic elements must be non-overlapping.

Note also that in general, this chromosomal structure only influences the way that SLiM
automatically generates new mutations; it has no effect upon mutations added in script. When
offspring are generated, the overall mutation rate is used to draw the number of mutations that
have occurred in a given gamete. The position of each mutation is then drawn, and SLiM
determines which genomic element the mutation falls within. Given that, SLiM can find the
genomic element type, and it then chooses a mutation type from the weighted set of mutation
types used by that genomic element type. Finally, knowing the mutation type for the mutation, it
draws a selection coefficient from the distribution of fitness effects for that mutation type. That
yields a new mutation object, which is placed in the gamete. That is the only time that SLiM uses
the genomic elements and genomic element types you have defined; none of the other machinery
inside SLiM’s core cares about those constructs at all. This means – following the earlier example –
that your script is free to explicitly add a beneficial mutation within an intron; the fact that introns
are defined as not experiencing beneficial mutations is irrelevant. You may consult the
chromosomal structure in your script and use it in whatever way you wish, but doing so would be
quite unusual. By and large, the behavior of SLiM simulations depends upon the mutations
contained by the genomes of individuals, without reference to the chromosomal structure apart
from the moment when a new mutation is created.

Mutation types, however, do continue to be used in a minimal fashion, as we saw in section
1.5.3; each mutation knows its mutation type, and some properties of mutations, such as their
dominance coefficient, their stacking behavior, and their fixation behavior, are specified by their
mutation type.

1.5.5 Subpopulations and migration
The previous section discussed hierarchy levels from the individual to the genome to the

mutation, and the dependence of mutations upon mutation types, genomic element types,
genomic elements, and ultimately the chromosome itself. However, there are also higher
hierarchy levels: individuals live within subpopulations, and all of the subpopulations together
exist within the whole modeled population.

Subpopulations are represented by the class Subpopulation in Eidos. A subpopulation is a set
of individuals, and is characterized primarily by the fact that random mating occurs (weighted by
individual fitness) within each subpopulation. In other words, subpopulations primarily influence
reproductive isolation; each subpopulation is internally panmictic (again, weighted by individual

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 30

fitness), but externally isolated. Migration rates can be configured between subpopulations in
order to allow gene flow, but by default the migration rate among subpopulations is zero.

For example, one might have a population structure like this:

Here we have ten subpopulations linked into a “stepping-stone” model that might represent a
river system; subpopulation p1 is upstream, and relatively high levels of migration produce gene
flow in the downstream direction, while much lower levels of migration exist in the upstream
direction (as shown by the relative widths of the arrows). This is just an example; you can have as
many subpopulations as you wish, linked by any pattern of migration. The effect of the population
structure on SLiM will manifest in the pattern of reproductive isolation among individuals.

The details of this conceptual model can be important. Offspring are always generated by
parents within a single subpopulation; parental individuals do not move between subpopulations
for the purposes of mating. Instead, migration occurs at the juvenile stage in SLiM; generated
offspring are placed into particular subpopulations in accordance with the specified migration
rates. SLiM allows you to define spatial simulations involving one-, two-, or three-dimensional
landscapes for each subpopulation; again, even in such spatial models, panmixis (weighted by
individual fitness) is the default, although effects like spatial competition and spatial mate choice
preference may be added in script. The subpopulation is the fundamental unit of reproductive
isolation in SLiM. (All of this refers to WF models only, to which we are still limiting our
discussion; in nonWF models, individuals can mate with other individuals regardless of
subpopulation structure, and can migrate at any time; see section 1.6.)

An important conceptual point is that when setting the size of a subpopulation in SLiM, this
should be thought of as a request for a future change, not as a present-time change. If a
subpopulation contains 800 individuals and the script requests that it be 900 or 700 instead, that
change does not happen immediately (which individuals would be removed? how exactly would
the new individuals be created – with what genetic state?); instead, the subpopulation size change
is a request that will take effect in the next generation. That is, when offspring are generated, 900
or 700 offspring will be generated from the current subpopulation of 800, and the requested
subpopulation size will thus take effect in the child generation. This is always the case in SLiM (in
WF models); there is actually no straightforward way to create new individuals or kill existing
individuals within a single generation (although the fitness of an individual can be set to zero,
which has much the same effect as killing it, all else being equal).

Another key concept is that zero-size subpopulations do not exist in SLiM (in WF models). If a
subpopulation is set to size zero, it will (in the child generation) cease to exist entirely. For this
reason, a new subpopulation cannot be created with a size of zero, since that has no meaning in
SLiM. Instead, you should create the new subpopulation with a non-zero size at the moment that
its size grows above zero. This can be inconvenient in metapopulation models that involve
dynamic local extinction and re-colonization; such models are better written as nonWF models,
which follow very different rules (see section 1.6, and section 15.5 for an example of a nonWF
extinction/recolonization model).

p1
p2

p3

p4

p5
p6

p7

p8

p9

p10

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 31

1.5.6 Recombination, gene conversion, and biased gene conversion
In sexual models, recombination is an important process because it breaks down linkage

between different areas of the chromosome over time. SLiM has two fairly different ways of
modeling recombination: a simple “crossover breakpoints” model, and a much more realistic
“double-stranded break (DSB)” model. We will discuss both in this section.

The “crossover breakpoints” model has existed since SLiM 1.x, and continues to be supported.
It is a model of crossover only; gene conversion is not modeled. The only parameter to this model
is the recombination rate per base position per gamete (although it can be supplied as a
recombination map, varying the rate along the chromosome, if desired). When generating a
gametic genome during (non-clonal) offspring generation, SLiM begins with one of the two
parental genomes as the copy strand, and draws the number and the positions of crossover
breakpoints based upon the recombination rate (or rate map). At each crossover breakpoint, the
copy strand switches to the opposite strand. The gametic genome is generated by copying from the
current copy strand, switching copy strands at each crossover breakpoint, until the end of the
chromosome is reached. New mutations are incorporated as a part of this process, changing the
state at a given base position from the state in the copy strand, but mutations will not be discussed
further in this section. The process of gamete generation in the “crossover breakpoints” model
therefore looks like this:

The red and blue lines at top are the two parental strands, and the thin black lines are crossover
breakpoints that occur between one base position and the next, switching the copy strand at that
point. The resulting gametic genome is shown below the parental strands; it is a patchwork of red
and blue sections as a result of the crossovers.

The “crossover breakpoints” model is chosen by simply setting a recombination rate (or rate
map) with initializeRecombinationRate(). It is the recombination model used by most SLiM
models; it is conceptually simpler and faster to execute, and is sufficiently realistic for most
purposes. However, it does not support gene conversion.

The “double-stranded break (DSB)” model is an extension of the basic gene conversion facility
that existed in SLiM 1.x and onward. In SLiM 3.3 it was cleaned up and redesigned, and
backward compatibility with the old scheme was deliberately not preserved (see below), so it can
be considered to be essentially new. This model is designed with two main goals: (1) to allow
gene conversion at both crossover and non-crossover points to be modeled reasonably accurately,
not at the level of a single generation (where these processes are quite complex and biological
realism would be difficult to achieve), but at the level of producing realistic long-term average
behavior, and (2) to provide intrinsic support for biased gene conversion with SLiM 3.3’s new
nucleotide-based models (about which see section 1.8). The mechanics of the “DSB” model
described here are a simplified version of the biological recombination mechanisms described in
Duret & Galtier (2009), attempting to achieve the two aforementioned goals while preserving
conceptual simplicity and ease of implementation.

As in the “crossover breakpoints” model, in the “DSB” model when SLiM is generating a
gametic genome it copies from a “copy strand”, one of the two homologous parental strands.
Similarly, too, breakpoints are chosen based upon the rate or rate map; in a hypothetical example
that we will follow through the recombination process, the breakpoints might look like this:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 32

In the “DSB” model, these breakpoints represent double-stranded breaks, or DSBs, in a more
biologically accurate manner than the breakpoints of the “crossover breakpoint” model, as we will
see below. We will therefore refer to them interchangeably as either “breakpoints” or “DSBs”
hereafter.

Next, at each DSB, gene conversion is configured. Gene conversion is a phenomenon in which
a short stretch of DNA surrounding a DSB – a gene conversion tract – is taken from the opposite
strand. (A technical aside: if a recombination rate of exactly 0.5 occurs between two bases, to
produce the effect of independent loci/chromosomes as in section 6.1.4, then no gene conversion
tract will be constructed around a DSB at that position; it will be considered a simple crossover
point, as in the “crossover breakpoints” model.) A gene conversion tract is constructed around
each DSB by drawing an extent for the tract to the left of the DSB, and independently drawing an
extent for the tract to the right of the DSB. These two draws are each taken from a geometric
distribution with mean λ/2; the expected length of the gene conversion tract as a whole, then, is λ
(where λ is a model parameter), but the length distribution is not geometric (it is negative binomial,
in fact), and the tract may not be centered on the DSB. The gene conversion tracts around the
DSBs shown above might look like this:

Note that two of the tracts here overlap. This is considered to be a bad draw, and is rejected.
As a result, new DSBs are drawn (the number of DSBs is retained, and the tract lengths around the
DSBs are retained, to be precise; only the DSB locations are re-drawn). This process repeats until a
good draw is achieved. (In practice, for biologically realistic parameters, bad draws are very
unlikely to occur since DSBs are not common and λ is small, but we illustrate the procedure here
for completeness.) In our hypothetical example, the redrawn configuration looks like this:

The gene conversion tracts are now non-overlapping, and so the recombination process
continues. In the “DSB” model, each DSB can result in a switch in the copy strand (a crossover
event), or can be repaired with no switch in the copy strand (a non-crossover event). For each DSB
this determination is made independently, according to a given probability of non-crossover
(which is a model parameter). In our hypothetical example, the DSBs might look like this after the
determination has been made, with crossovers represented by a solid black line and non-
crossovers by a dashed black line:

The leftmost DSB has been designated as a crossover; the other two are non-crossovers. The
next step is that each gene conversion tract is designated as either simple or complex. This
determination is made, again, independently for each tract according to the probability of a simple
gene conversion tract (which is a model parameter). This determination is independent of whether
the DSB is a crossover or non-crossover.

E[λ/2] E[λ/2]

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 33

If, for our ongoing example, the first two gene conversion tracts are designated as simple tracts,
while the third is designated as a complex tract, then the recombination configuration now looks
like this, showing complex tracts outlined with a box:

In a simple gene conversion tract, the copy strand simply switches at the beginning of the tract,
and then switches back again at the end of the tract. A simple gene conversion tract thus behaves
very similarly to two closely-spaced crossover breakpoints (and indeed, it is modeled as such
under the hood). In a complex gene conversion tract, on the other hand, the red and the blue
parental strands actually end up paired with each other within the gene conversion tract (why this
occurs gets into the topic of Holliday junctions, etc., which we will not describe here). Where the
two parental strands are identical, this is fine; one could think of either one as being the “copy
strand” but the distinction doesn’t matter since they are identical. Where they are not identical,
however, this pairing means that heteroduplex mismatches exist, at which mismatched bases such
as A-C or G-T are paired. Each of these heteroduplex mismatches is repaired independently, in
SLiM, making complex gene conversion tracts a sort of hybrid between the red and blue parental
strands on a mismatch-by-mismatch basis. Conceptually, however, and for the purposes of tree-
sequence recording (see section 1.7), we will think of their ancestry as being just like simple gene
conversion tracts, entailing a switch in the copy strand at the beginning and end of the tract. Any
mismatches that are repaired toward the non-copy strand will be represented as new mutations
rather than as a change in ancestry, as we will see below.

Continuing our example, then, we can now actually construct the resulting gametic genome,
which looks like this:

Note that the first DSB, which was designated as a crossover, switched the copy strand at its
beginning and did not switch it back (or, to be precise, it switched back at the end of the gene
conversion tract and then immediately switched over again to model the crossover). The other two
DSBs, designated as non-crossovers, switched the copy strand at both their beginning and their
end. Each stretch of the gametic genome has a designated ancestry, either red or blue, including
the complex gene conversion tract (which is recorded as red, entailing a temporary switch in the
copy strand, just as with the preceding simple gene conversion tract). The complex gene
conversion tract, however, might have heteroduplex mismatches that will need to be resolved, case
by case, and it is therefore shown with a yellow underlying stripe; that stripe represents the non-
copy strand that is paired with the copy strand within the tract.

The final step is repair of heteroduplex mismatches within any complex gene conversion tracts
(such as the region marked with the yellow stripe above). This process looks at each mismatch
between the red and blue strands within each complex gene conversion tract and chooses
probabilistically whether to adopt the state of the red strand or the blue strand. Normally this
choice is done with equal probabilities for either option, but the choice can be biased if desired
(see below). After all of the heteroduplex mismatches have been found and repaired, the final
genome might look like this:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 34

Sites where a heteroduplex mismatch was repaired toward the non-copy (blue) strand are
shown as tiny fragments of yellow, representing single SNPs that were present on the non-copy
strand and were added as new mutations (but sharing the same SLiM mutation objects as the
original SNPs) in the final gametic genome. Their ancestry is not tracked as blue in tree-sequence
recording, which is why they are shown here as yellow rather than blue.

Note that if a mutation is present in the copy strand and not in the non-copy strand, the repair
toward the non-copy strand could really involve the removal of a copy-strand mutation. Also,
mutations that were newly created during the copying process would exist in the copy strand, and
heteroduplex mismatch repair could immediately remove such mutations by repairing them back
toward the non-copy strand. The yellow fragments shown in the diagram above could therefore
represent (1) addition of a non-copy-strand mutation not present in the copy strand, (2) removal of
a pre-existing copy-strand mutation not present in the non-copy strand, or (3) removal of a newly
added mutation in the copy strand. In all three cases, however, the yellow fragments would
represent the fixing of a heteroduplex mismatch toward the non-copy strand. Finally, note that
heteroduplex mismatch repair is performed position by position, not mutation by mutation; if
stacked mutations exist at a position (see section 1.5.3), mismatch repair will involve choosing
either the copy-strand stack or the non-copy-strand stack, never breaking up a stack.

The final concept to discuss is biased gene conversion. When repairing heteroduplex
mismatches in complex gene conversion tracts, the repair can be unbiased – repairing an A-C
heteroduplex mismatch to either A-T or G-C with equal probability, for example – or biased toward
a tendency to fix the mismatch in a particular way. The typical bias in biological systems is called
GC-biased gene conversion, or gBGC, and entails a preference for G and C alleles in the repair
process. This means that an A-C mismatch would be more likely to be repaired to G-C than to A-T.
The degree of bias is represented by a gene conversion bias coefficient (a model parameter). If it is
0.0, there is no bias. A value of 1.0 indicates that a G or C allele will always be chosen in
preference to an A or T allele; a value of -1.0, the opposite. (Other possible mismatches are
unaffected by the gene conversion bias coefficient, and are always resolved with equal
probability.) Since biased gene conversion is a nucleotide-based phenomenon, it may only be
enabled in a nucleotide-based model (see section 1.8).

The “DSB” model, then, has five parameters: (1) the recombination rate (or rate map), as before;
(2) the mean length λ of gene conversion tracts (drawn with two independent geometric draws with
mean λ/2); (3) the fraction of DSBs that result in non-crossovers (the remainder becoming
crossovers); (4) the fraction of gene conversion tracts that are “simple” (the remainder becoming
“complex”); and (5) the gene conversion bias coefficient, influencing resolution of heteroduplex
mismatches in complex gene conversion tracts, which is 0.0 by default. The “DSB” model is
selected by calling initializeRecombinationRate() to set the recombination rate (or rate map),
and then calling initializeGeneConversion() with the remaining parameters. Specifically, the
call to initializeGeneConversion() switches SLiM to using the “DSB” model, rather than the
simpler “crossover breakpoints” model.

It is worth briefly mentioning that prior to SLiM 3.3 the initializeGeneConversion() function
did not have a parameter for the fraction of gene conversion tracts that are simple, nor a parameter
for the gene conversion bias coefficient. Old code that uses initializeGeneConversion() will no
longer run (because of the missing parameters), and will need to be fixed manually. This lack of

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 35

backward compatibility is deliberate, since the underlying conceptual model has changed; existing
users of gene conversion in SLiM need to think about how they wish to adapt their scripts. The
three key conceptual differences, prior to SLiM 3.3, were that (1) all gene conversion tracts were
“simple”, (2) DSBs that resulted in a crossover event did not have any associated gene conversion
tract, and (3) gene conversion tracts started at the DSB point, rather than extending to both sides of
the DSB point.

1.5.7 Community, Species, ticks, cycles, and generations
SLiM 2 supported only non-overlapping generations, because it supported only simulations

based upon the Wright–Fisher model, which assumes non-overlapping generations. In SLiM 3,
support was added for non-Wright–Fisher models that allowed overlapping generations (see
section 1.6), and the conceptual model became more complex. In SLiM 4, support for modeling
more than one species was added (see section 1.9), and so the conceptual model became more
complex again – especially since those multiple species could run on different timescales (since
mosquitoes, for example, reproduce much more frequently than humans). This section will
attempt to clear up some of the resulting conceptual confusion.

One area where confusion arises is: what object has the property/method I’m looking for? In
SLiM 2 and SLiM 3, the top of the population hierarchy was the SLiMSim object, named sim. If you
wanted anything having to do with the simulation as a whole, you would look in that class – to get
the segregating mutations, or the active subpopulations, or the generation counter, for example, or
to add a new subpopulation, or create a new log file, or generate output with a standard method
like outputFull(). In SLiM 4, in order to support multiple species, SLiMSim was broken into two
pieces. Now we have Species, which represents one species in the model, and Community, which
is the new top-level object that contains all the species being simulated. In both single-species
and multispecies models, there is now always one Community object, named community. If you're
writing a single-species model (which will be the topic for the first 500-plus pages of this manual),
there is also one Species object, named sim. The name sim was kept to preserve some degree of
backward compatibility across this transition; most, but not all, of the functionality that used to be
in SLiMSim is now in Species, so most legacy code will run with few or no modifications.

So now, when you’re looking for a property or method having to do with “the simulation” in a
single-species model, where do you look – Community or Species? To answer this, think about the
responsibilities, at a conceptual level, of each of these classes. If you’re looking for something that
has to do with the particular species being simulated, then look in Species. To cover the examples
given previously, the segregating mutations belong to the species; a different species would have
different segregating mutations. Similarly for the active subpopulations of a species, or adding a
new subpopulation to a species; and similarly for generating output with outputFull(), since that
produces an output file about the individuals and mutations in the species. On the other hand, if
you’re looking for something that has to do with the entire simulation, or with all of the species (if
you were to have more than one), then look in Community. From the previous examples, this
would include creating a new log file (since these can log information about the whole simulation,
not just one species). You would also look in Community for properties and methods that provide
information spanning multiple species, in a multispecies model; to get a vector of all the
subpopulations in the model, not just those belonging to one species, look in Community.

You might have noticed that one thing in that previous list of examples was not clarified above:
“the generation counter”. That used to live in SLiMSim's generation property, but that property no
longer exists in SLiM 4. Where do you look now for information about time in the simulation?

The answer is that there are three answers, because there are three different ways of thinking
about time now. This can be confusing. The three concepts of time are ticks, cycles, and
generations.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 36

Ticks are the unit of time kept by Community, and the tick counter is available from
community.tick. You can think of ticks as being an objective measure of time in the simulation,
like the ticking of a clock. Each tick represents one time unit. You get to decide what length of
time a tick represents in your model; it could be a year or a season or a day or anything else. You
don’t even need to tell SLiM what it is; SLiM doesn’t care. SLiM executes a set of standard
behaviors in every tick: things like reproduction, fitness assessment, and mortality. This set of
standard behaviors, and the exact order in which they occur, is referred to as the “tick cycle”. The
tick cycle for WF and nonWF models is not the same, but they both have a tick cycle. You can see
a brief overview of the WF tick cycle in section 1.3; complete reference documentation for the WF
and nonWF tick cycles is in chapters 23 and 24, respectively. At the end of the tick cycle, the tick
counter kept in community.tick is incremented by one, and then the next tick cycle begins. So the
tick counter begins at 1, and increments at the end of every tick cycle.

Cycles are the unit of time kept by Species, and the cycle counter is available from sim.cycle
in single-species models (or a similar syntax in multispecies models). This counter simply indicates
the number of tick cycles that the species has completed. When the tick cycle finishes, the cycle
counter for the species is incremented by one – if the species was active during that tick. In single-
species models, the species is active in every tick, always, and so the cycle counter and the tick
counter always have exactly the same value; there is a conceptual difference between them, but
there is no practical difference. In multispecies models, a given species might be active in some
ticks and inactive in others (because, e.g., mosquitoes reproduce more often than humans), and so
the cycle counter for a given species might count upward more slowly than the tick counter.

Generations are a biological unit of time having to do with things like the lifespan of an
organism, the mean age at first reproduction, and so forth. There is no one “right” definition of a
“generation”, for organisms with overlapping generations and age structure, and it can be hard to
pin down what one even means by the term in some cases (if, for example, males and females
have very different life histories). SLiM makes no attempt to measure generations for you; if you
want to do that, you would write some Eidos script that would calculate it based upon the
definition of “generation” that you want to use. However – confusingly – SLiM used to use the
term “generation” to refer to its unit of time, before SLiM 4. Back in those days, there were no
“ticks” or “cycles”; both of those time units were added in SLiM 4, and what they represent was
called a “generation” back then. What has happened in SLiM 4 is quite parallel, then: SLiMSim
split into Community and Species, and SLiMSim itself no longer exists; and sim.generation split
into community.tick and sim.cycle, and sim.generation no longer exists.

Which should you use, then? If you want the overall “objective” measure of time that is the
same for any species in the model, and that represents something like seasons or days or years,
then use community.tick. If you want a view of time from the perspective of the species,
representing how many opportunities that species has had to reproduce since the simulation
started, then use sim.cycle. And if you want the biological concept of “generations”, whatever
exactly you mean by that, then use that term (and calculate it yourself).

Which will this manual use, in its recipes and discussion? Unfortunately, it will use all three,
since all three concepts are important. Times for events and script blocks in your code are always
specified in ticks – everything runs off of the objective clock, not subjective species times. But
when you’re talking about what a species does, and the behaviors it exhibits, talking in terms of
cycles often makes the most sense. And we will use the term “generation” too, especially in the
context of WF models (with non-overlapping generations), since the concepts of the “parental
generation” versus the “offspring generation” are important, and the number of times that the
parents have died and the children have taken over the world is conventionally called the number
of generations.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 37

On the bright side, as long as you are writing single-species WF models all three are the same;
with a single species and non-overlapping generations, ticks, cycles, and generations are all the
same length of time (although the conceptual differences between the terms remain). And as long
as you are writing single-species nonWF models, ticks and cycles remain the same; they just don’t
necessarily match up with biological generations any more (if your nonWF model has non-
overlapping generations and age structure). But when you get into writing multispecies models, all
three terms refer to different units of time, and really, different ways of thinking about the passage
of time; so then you need to be careful. We will try to retain a clear conceptual separation
between these terms throughout the manual, but sometimes it can be difficult.

1.5.8 Other concepts
That completes our overview of the foundational concepts underlying SLiM. There is a lot more

to SLiM that will be covered in the following chapters, but if you understand these fundamental
ideas the rest should be fairly straightforward.

Other sections of this manual also provide important conceptual information. Section 1.3
contains a brief introduction to some other key SLiM concepts that did not merit an in-depth
discussion here, such as fitness, the tick cycle, continuous space, interactions, and tags; it would
be good to read now, if you haven’t already. The following sections of chapter 1 provide
conceptual introductions to various types of advanced models that can be written in SLiM: non-
Wright–Fisher or “nonWF” models (section 1.6), models using tree-sequence recording (section
1.7), nucleotide-based models (section 1.8), and multispecies models (section 1.9); these are
recommended reading so that you understand the possibilities that exist in SLiM, even if you do
not intend to use these features now.

Part II of this manual, the SLiM Reference, also has some conceptual sections; chapter 23
contains detailed information on the stages of the tick cycle in SLiM for WF models (and chapter
24, for nonWF models), including details on how mate choice, migration, offspring generation,
fitness calculation, and other stages are implemented, and chapter 26 describes how to modify
those default cycle stages through the use of several different types of scripted callbacks, which
provides much of the power and flexibility of SLiM. Reading those chapters might be deferred
until you have become more familiar with SLiM, however, as they are more technical; if you are a
beginning SLiM user, it is recommended that you finish reading this chapter and then proceed with
installing SLiM and begin experimenting with the recipes presented in the chapters that follow.

The learning curve for SLiM can be steep, and this manual is unfortunately rather long. Perhaps
the best conceptual introduction to SLiM is provided by the free SLiM Workshop, which can be
attended in-person or completed online. See section 1.10 for more information.

1.6 Wright–Fisher (WF) versus non-Wright–Fisher (nonWF) models
SLiM 1.x and 2.x supported only one type of model, Wright–Fisher models (usually referred to

as WF models). In SLiM 3.0, support was added for a second type of model, non-Wright–Fisher
models (nonWF models). The choice between these types of models is made with an optional
initialization call, initializeSLiMModelType(); if no call to that function is made, the WF model
type is used by default, providing complete backward compatibility with SLiM 2.x.

Use of the nonWF model type is an advanced topic, recommended only for users experienced
with SLiM. Most of this manual will be about the default WF model type. Only three areas of this
manual will discuss nonWF models in any detail: section 1.6 (e.g., this section, which summarizes
the differences between WF and nonWF models), chapter 15 (which introduces nonWF models in
more detail and presents nonWF model recipes), and the SLiM Reference (Part II of this manual).

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 38

The differences between WF and nonWF models are pervasive, but may be regarded as falling
into a few major categories:

• Age structure. In WF models, generations are discrete and non-overlapping. Each “tick”
of SLiM’s tick counter is associated with the creation of a new offspring generation and the
demise of the previous parental generation. There is thus no concept of the age of an
individual, since all individuals live for a single tick. In nonWF models, generations may
instead be overlapping. Each “tick” of SLiM’s tick counter is associated with the
opportunity for creation of new offspring and the opportunity for mortality among existing
individuals. SLiM keeps track of the age of individuals, which may live for many ticks.
This makes it simple to construct models of overlapping generations with any type of age
structure and any age-related behaviors desired.

• Offspring generation. In WF models, offspring are generated automatically by SLiM each
tick. This process may be modified by various callbacks, but the process itself – how
many offspring to generate, from which parental individuals, into which subpopulations –
is managed by SLiM in such a way as to “fill out” each subpopulation with a fresh batch of
offspring while satisfying the constraints imposed by parameters such as subpopulation
size, sex ratio, cloning rate, and selfing rate. In nonWF models, offspring are instead
generated in response to a request from the model script, made in a reproduction()
callback, and the script itself is in charge of managing the process. In nonWF models,
SLiM no longer attempts to enforce any particular subpopulation size, sex ratio, cloning
rate, or selfing rate; typically, these are instead emergent properties of the individual-based
dynamics of the model. This approach is somewhat more complex, but allows the
genetics and state of each individual to influence the way that individual reproduces – its
expected litter size, its reproductive behavior (cloning, selfing, biparental mating), the sex
of its offspring, and so forth.

• Population regulation. In WF models, population regulation (keeping population size
within bounds) is managed automatically by SLiM, which keeps each subpopulation at the
initial size it is given, or at whatever new size is set by a setSubpopulationSize() call.
Subpopulation size is therefore a parameter of the model, in effect. In nonWF models,
population regulation is instead an emergent property, a side effect of how many offspring
are created versus how many individuals die due to selection in each tick. This makes it
much more natural to construct models with realistic population dynamics such as
density-dependence, fitness-dependence, resource limitation (i.e., carrying capacity), and
so forth. In a nonWF model, the parameters of the model that result in population
regulation would more likely be things like carrying capacity, the strength of density-
dependent fitness, or the size of a limited resource pool.

• Fitness. In WF models, all offspring survive to maturity, and fitness specifies the
probability that an individual will be chosen as a parent in the next generation. Higher-
fitness individuals thus have a larger expected litter size, but fitness in WF models is
relative fitness because the population size is held to whatever size is set by the model as
described above. In nonWF models, fitness influences survival instead (mating success
and fecundity can be modified also, but in script, not through SLiM’s automatic fitness
evaluation mechanism). Fitness differences are thus expressed through the likelihood that
a given individual will survive to maturity. This allows a more realistic modeling of the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 39

variance in reproductive output, as well as simplifying model dynamics that are
influenced by the survival of individuals, such as competition. In nonWF models, fitness
is absolute fitness, which is more realistic but can be more challenging to model since it
forces you to think explicitly about population regulation in concrete, individual-based,
mechanistic terms. (See section 8.4 for further discussion of fitness in SLiM.)

• Migration. In WF models, migration is governed by model parameters set on each
subpopulation, specifying what rate of migration SLiM should enforce with each other
subpopulation. Migration is simulated in these models as the movement of an offspring
individual, immediately after it is generated in the parental subpopulation; thus, only
juvenile migration can be modeled. In nonWF models, migration is instead implemented
in script, by explicitly moving individuals from subpopulation to subpopulation. This can
be done at any time; migration of adults as well as juveniles can be modeled, or multiple
migrations over the course of an individual’s life. This design also makes it much simpler
to implement migration that depends upon the circumstances of each individual: habitat
choice, condition-dependent migration, genetic variation in dispersal, sex differences in
migration behavior, and so forth.

• Subpopulation splits. In WF models, the splitting of a subpopulation is modeled as a new
subpopulation being founded by a wave of such migrant offspring. In nonWF models,
subpopulation splits are modeled as the migration of a set of individuals (of any age) to
form a new subpopulation. Particularly in models with small population sizes, this can
produce more realistic splits, particularly when migration of parental individuals, rather
than juveniles, is desired to found new populations.

The general trend across all of the above points is that nonWF models are more individual-
based, more script-controlled, and potentially more biologically realistic – but also more complex
in some respects, because the SLiM core is managing fewer details of the model’s dynamics
automatically. In particular, all nonWF models must implement at least one reproduction()
callback in order to generate new offspring. Each type of model has its appropriate uses; nonWF
models are not “better”, although they are more flexible in some respects. WF models may be
simpler to design, and may run somewhat faster; and of course staying within the WF conceptual
framework may make it easier to compare simulation results with theoretical expectations from
analytical models that are based in the Wright–Fisher paradigm.

As mentioned above, most of the remainder of this manual will discuss WF models, since they
are SLiM’s original mode of operation and remain the default model type. Whenever a given
section does not explicitly state otherwise, it should be assumed that the focus is on WF models.
All of the recipes in Part I of the manual are WF recipes up until chapter 15, which specifically
presents nonWF models.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 40

The reference section of this manual, Part II, will provide reference information covering both
WF and nonWF models. A color-coding convention will thus be used in Part II: items which apply
only to WF models will be highlighted in green, and items which apply only to nonWF models (or
primarily so) will be highlighted in blue. For example:

– (void)a_WF_only_method(...)

and:

– (void)a_nonWF_only_method(...)

Again: nonWF models are an advanced topic. As a beginning SLiM user, it’s good to know that
nonWF models exist, but don’t worry if all of the above information is not clear. You can forget
about nonWF models for now, and focus on familiarizing yourself with the default, WF models.

1.7 Tree-sequence recording
SLiM 3 introduces a major feature called tree-sequence recording. This is essentially a method

of tracking the true local ancestry of every chromosome position in every individual as a SLiM
model runs. Such ancestry information can be saved out to files called .trees files, and can be
loaded in to SLiM from .trees files as long as they are in the correct SLiM-compliant format.
These .trees files can also be loaded into Python, where their ancestry information can be
browsed, analyzed, and even modified using the packages tskit (for tree sequences) and msprime
(for coalescent simulation). When moving data between SLiM, tskit, and msprime, the pyslim
Python package is also essential, since it knows how to translate some types of SLiM-specific
information in .trees files from SLiM into a form the other packages can work with, and vice
versa. Models using tree-sequence recording will sometimes be referred to as “tree-seq” models.

Use of tree-sequence recording is an advanced topic, recommended only for users experienced
with SLiM. Most of this manual will be about models that do not use tree-sequence recording.
Only three areas of this manual will discuss tree-seq models in detail: section 1.7 (e.g., this
section, which summarizes the concept of tree-sequence recording), chapter 17 (which presents
tree-seq model recipes), and the SLiM Reference (Part II of this manual). Tree-sequence recording
is adjacent to some other key concepts, such as the coalescent and ancestral recombination graphs
(ARGs), that are not discussed in any detail in this manual. For a good introduction to those
adjacent concepts, you might consult Lewanski et al. (2023), a conceptual review paper about
ARGs and their relationship to tree sequences, or Pritchard (2023), an online book that provides a
gentle introduction to population genetics; chapters 2.1–2.3 in that book might be helpful on those
topics.

Tree-sequence recording does not record the full pedigree of a model. Instead, it records only
the specific ancestry information needed to reconstruct the mutational and recombinational history
of each extant individual’s genomes. Over time, some information that originally needed to be
recorded in the tree sequence may become unnecessary to keep; perhaps a whole branch of the
evolutionary tree went extinct and so the information recorded about it is no longer relevant, for
example. Through the process of simplification, which is performed periodically upon the
recorded tree sequence, all information that is not relevant to any extant genomes gets pruned
away, which keeps the memory requirements of tree-sequence recording manageable.

This recorded information is referred to as a “tree sequence” because it is literally a sequence of
trees. Conceptually, each position along the chromosome has its own ancestry tree, which is the
result of recombination at that position; as one walks along the chromosome, one encounters a
sequence of such ancestry trees, from which the pattern of inheritance can be traced from every
extant genome back to the most recent common ancestor for the population at that chromosome

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 41

position (and thence all the way back to the original ancestor). The ancestry tree at a given
position may have multiple roots, if there is no common ancestor for all of the individuals in the
population at that position; forward simulations begin with every individual unrelated to every
other, and common ancestry is only built over time through the process of coalescence. The
ancestry trees at adjacent chromosome positions are generally highly correlated, and indeed are
often identical (since those adjacent positions may never have been split by recombination, or
traces of such recombination might not have survived in any living individual). Tree-sequence
recording accounts for this correlation, tracking each distinct ancestry tree along successive
chromosome intervals rather than at every position. This is one reason why the tree sequence is
sometimes called a succinct tree sequence; it is much more compact than the full set of trees for
every position, because it omits the redundant information shared between positions with identical
ancestry. This multiplicity of trees is not easy to depict, but here is a sketch of the concept (thanks
to Yan Wong; see this vignette):

The intervals between the ticks on the x axis are intervals on the chromosome that have distinct
ancestry trees (this example chromosome is only 1000 base positions long, and has seven intervals
with distinct trees). Each interval’s ancestry tree reflects its particular pattern of inheritance along
the chromosome; however, the trees at adjacent sites tend to be highly correlated, with redundant
information that is represented concisely by the tree sequence data structure. Within each tree, the
leaf nodes at the bottom (labeled 0 through 3) might be extant genomes with no descendants,
whereas the internal nodes might be ancestral genomes that are no longer extant; however, with
overlapping generations things might be less clear-cut, since ancestors might still be extant. As
mentioned above, the tree for a given interval might have multiple roots, if coalescence is not yet
complete; that situation is not pictured above, however.

In addition to the sequence of ancestry trees along the chromosome, the tree sequence data
structure also encodes mutations that have occurred. In the diagram above, four mutations have
occurred, labeled 0 through 3 in red. Mutations are placed, not in individuals or genomes, but on
the ancestry trees. A given mutation therefore needs to be represented only once, even if it has
been inherited by millions of individuals; which individuals contain a given mutation can be
inferred from the particular edge in the tree sequence where the mutation occurred. The tree
sequence data structure is therefore extremely compact; datasets containing a very large number of

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 42

https://tskit.dev/tutorials/viz.html#moving-and-transforming-elements

genomes, each with a very large number of mutations, can be represented in a small fraction of the
space used by other representations.

This is just a brief summary of tree-sequence recording, and may or may not be
comprehensible; for a full overview of tree-sequence recording, including details of how
simplification works, please refer to the definitive paper on the topic, Kelleher et al. (2018).

Tree-sequence recording enables some very powerful techniques, such as:

• Overlaying neutral mutations. You can run a model without any neutral mutations (which
is generally much faster), and then overlay neutral mutations afterwards using msprime.
This gains tremendous efficiency from the fact that neutral mutations only need to be
overlaid on branches of the ancestry tree that lead to extant individuals; neutral mutations
on all branches that went extinct before the end of the simulation do not need to be
considered at all. For models that contain many neutral mutations, this can result in a
speedup of an order of magnitude or more.

• Analyzing ancestry directly. You can sometimes avoid simulating neutral mutations
altogether, when it is actually the pattern of ancestry you are interested in. Often the
pattern of neutral mutations from a forward simulation is used to infer things about a
population’s history – selection, bottlenecks, immigration, and so forth. Using neutral
mutations for this purpose is a blunt instrument, however, since they are sparse and occur
stochastically; inference from them is difficult, time-consuming, and inexact. Instead, it is
often possible to draw such inferences from the recorded tree sequence itself, which in a
sense embodies every possible mutational history that the population could have had
given its actual history of inheritance and recombination. The inferential power can
therefore be much higher. This means that inferences from the tree sequence can often be
exact, and can also often be computed much more quickly and easily than from neutral
mutations.

• Detecting coalescence during forward simulation. Often you want to “burn in” a model
until it has reached an equilibrium state, which can often be defined as occurring some
time after full coalescence across the whole chromosome has occurred. The time at
which this happens, however, is often hard to know. A heuristic of “10N” (running for a
number of generations equal to ten times the population size) is often used, but even for
simple models it can be an underestimate. For models with a variable population size,
multiple subpopulations, or non-neutral dynamics of any kind, the proper burn-in
duration is often just a guess, and it is often necessary to make a large overestimation “just
to be safe”. With tree-sequence recording enabled, SLiM can tell you whether your model
has coalesced fully or not; it has all the information needed. You can then use that
information to decide when to end the burn-in period of the model. (The moment of
coalescence itself is special in some respects, and so it might not itself be a good
equilibrium point at which to end burn-in, but it provides a baseline.)

• Moving between coalescent and forward simulation methods. Tree-sequence recording
and the .trees file format build a sort of bridge between coalescent and forward
simulation methods, allowing both methods to be used in a single simulation. For
example, a neutral “burn-in” period for a model could be simulated using the coalescent
in msprime without mutations, and the results saved to a .trees file in the proper SLiM-
compatible format using pyslim. That .trees file could then be loaded into SLiM as the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 43

starting state for forward simulation; perhaps the evolutionary dynamics become non-
neutral at that point in time, due to a change in the environment, and so now one wishes
to forward simulate those non-neutral dynamics. Since the coalescent is so fast, this can
result in much quicker burn-in compared to simulating the burn-in with SLiM. You could
then overlay neutral mutations after forward simulation is completed (see above); this is a
common strategy for moving between coalescent and forward simulation. Moving
between methods in this manner allows the strengths of each method to be leveraged,
while avoiding their weaknesses; “recapitation”, described below, is another such strategy.
As mentioned above, the pyslim package is essential to this sort of interoperability, as we
will see in chapter 17. Several ways of moving .trees data between SLiM and msprime
using pyslim will be shown in chapter 17. The pyslim documentation has even more
examples of such interoperability; for example, the vignette at https://tskit.dev/pyslim/
docs/stable/vignette_coalescent_diversity.html shows how to generate a neutral burn-in
with msprime, including overlaid neutral mutations, and import that whole burn-in into
SLiM (as opposed to overlaying the neutral mutations after completing forward simulation,
which is the more typical workflow); this can be useful if the forward simulation actually
needs to use or modify mutations that come from the burn-in period.

• “Recapitating” to construct the ancestral history of a simulation. With this technique,
you could run a model forward with no neutral burn-in period at all, from a set of empty
genomes, and then reconstruct the ancestry of the initial genomes using the coalescent
after the forward simulation has completed. This technique, called recapitation, is much
more efficient even than generating a burn-in state using the coalescent directly, because
only the ancestry trees present at the end of forward simulation need to be coalesced
back; any part of any genome that was present in the initial state of the model but was
later lost does not need to be coalesced, so most of the work of burn-in can be avoided.
As before, neutral mutations can be overlaid at the end of the model run, after
recapitation has constructed the ancestral history, rather than having to be simulated. This
technique can allow very large models to be simulated relatively efficiently, since most of
the work of burn-in can be eliminated. The use of this technique is shown in section
17.10.

Tree-sequence recording has a large impact on the performance of models, in terms of both
runtime and memory usage. It is therefore disabled by default, and needs to be enabled with a
call to an initialization function, initializeTreeSeq(). When it is enabled, you can control the
frequency of simplification to minimize runtime or to keep memory usage low (but typically not
both, as they tend to trade off), as discussed in section 17.11. You can also turn on checking for
coalescence if your model needs to know when full coalescence has been attained (for a small
additional performance penalty on top of each simplification), as shown in section 17.6.

Again, tree-seq models are an advanced topic; it is good to know that tree-sequence recording
is an option, but beginning SLiM users should postpone trying to use it until they have become
fairly familiar with the basics of SLiM. However, if you’re finding that performance is an issue, and
you’re bogged down simulating huge numbers of neutral mutations or running endless burn-in
periods, tree-sequence recording may be able to help. Similarly, if you want to detect
coalescence, or obtain a record of the ancestry at every chromosome position, tree-sequence
recording can provide a solution. Tree-sequence recording also provides an output format for
saving simulation state that can be much more compact than either VCF or SLiM’s native output
file format (even though it includes information about ancestry that those file formats do not), and

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 44

https://tskit.dev/pyslim/docs/stable/vignette_coalescent_diversity.html
https://tskit.dev/pyslim/docs/stable/vignette_coalescent_diversity.html

that can be analyzed and manipulated in Python with pyslim; those advantages can also be a
reason to use tree-sequence recording.

Section 1.10 of this manual contains some useful links for those interested in learning more.

1.8 Nucleotide-based models
Beginning with SLiM 3.3, SLiM now supports models in which an explicit nucleotide sequence

along the chromosome is tracked. Such models, henceforth called nucleotide-based models, are
fundamentally quite similar to other SLiM models, but there are a few key differences, particularly
in the areas of model initialization and mutation generation. Those differences will be
summarized here; beyond this, chapter 18 contains several recipes that provide examples of
nucleotide-based models. This section assumes that the reader is already familiar with non-
nucleotide-based SLiM models; nucleotide-based models are an advanced feature.

Nucleotide-based models may be WF or nonWF models (see section 1.6), and they may use
tree-sequence recording or not (see section 1.7); the decision as to whether a model is nucleotide-
based or not is orthogonal to those other choices. To make a nucleotide-based model, the first step
is to notify SLiM by passing nucleotideBased=T to the initializeSLiMOptions() function in the
model’s initialize() callback. Flipping this switch has various consequences and provides
various new features:

• Keeping an ancestral nucleotide sequence. Nucleotide-based models must supply an
ancestral nucleotide sequence in their initialize() callback, by calling
initializeAncestralNucleotides(). The ancestral nucleotide sequence specifies the
nucleotide that SLiM will consider to be present at a given position of a genome unless a
nucleotide-based mutation is present at that position (overriding the ancestral sequence
with a derived nucleotide). This ancestral sequence could also be thought of as the “wild-
type” sequence, in the sense introduced in section 1.5.1; it represents the nucleotide
sequence for the empty genomes that SLiM begins with by default. Keeping an ancestral
nucleotide sequence allows SLiM to avoid keeping a separate nucleotide sequence for
each genome; instead, it can track the mutational differences from a common genetic
background, just as it does for non-nucleotide-based models. SLiM provides a
convenience function, randomNucleotides(), for generating a random ancestral
nucleotide sequence; alternatively, an ancestral nucleotide sequence may be loaded from
a file (such as a FASTA file).

• Defining nucleotide-based mutations. The initializeMutationType() function now has
a nucleotide-based twin, initializeMutationTypeNuc(), that is used to declare a
nucleotide-based mutation type. (Nucleotide-based models may still also use non-
nucleotide-based mutation types, as discussed below.) Mutations that belong to a
nucleotide-based mutation type will keep track of the nucleotide they represent, available
through the nucleotide property on Mutation (as a string value, "A" / "C" / "G" / "T") or
through the nucleotideValue property on Mutation (as an integer value, 0 / 1 / 2 / 3
respectively). (The same properties exist on Substitution as well, carrying over from the
original mutation.) In all other respects nucleotide-based mutations behave identically to
non-nucleotide-based mutations; for example, the standard SLiM fitness machinery using
the mutation type’s distribution of fitness effects and dominance coefficient still applies.
When a nucleotide-based mutation fixes it is converted to a Substitution object unless
convertToSubstitution is F, as usual (see section 1.5.2); in addition, the ancestral
nucleotide sequence will be updated to use the new fixed nucleotide instead of the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 45

nucleotide that was originally present. Nucleotide-based mutations are automatically set
up by SLiM to comprise a single “stacking group” with a “last” stacking policy (see section
1.5.3), ensuring that a new nucleotide-based mutation at a site that already contains a
nucleotide-based mutation will correctly replace the old mutation (while stacking, by
default, with any non-nucleotide-based mutations also present at the site).

• Defining sequence-based mutation rates for genomic element types. The mutation rate
along the chromosome is no longer determined by an overall mutation rate or a mutation
rate map; indeed, in nucleotide-based models it is not legal to call
initializeMutationRate() at all. Instead, the initializeGenomicElementType()
function takes a new parameter named mutationMatrix. This supplies a matrix of
mutation rates that depend upon the original nucleotide present at a given site. For
example, the mutationMatrix might state that if the existing nucleotide is an A, then it will
mutate to a G with a probability of 2.23×10−8 (per base position per gamete, as usual in
SLiM); it could provide different rates for an A-to-T mutation, etc. The mutationMatrix is
thus a 4×4 matrix containing 16 values, providing rates for mutation from any nucleotide
to any nucleotide (the values along the diagonal, representing the rate of mutation from a
given nucleotide to the same nucleotide, must be 0.0 by convention). Alternatively,
mutationMatrix may be a 4×64 matrix providing rates for mutation from any given
trinucleotide sequence (with the potentially mutating base being the center of the
trinucleotide) to a new central nucleotide (again, the entries representing the mutation of a
nucleotide to itself must be 0.0). This allows the mutation rate to depend upon the
nucleotide sequence immediately surrounding the point of mutation, so that (for example)
an elevated mutation rate at CpG sites can be implemented. SLiM defines helper
functions to set up these matrices for common cases such as the Jukes–Cantor mutational
model. Examples of this are provided in chapter 18.

• A new nucleotide-based mutational model. The previous point is one aspect of what is
really a new mutational model in SLiM, used in all nucleotide-based models. In this new
mutational model, the overall mutation rate per gamete is not constant because the
mutation rate at each position is sequence-dependent; a genome with many CpG sites (for
example) might mutate more rapidly than a genome with lower CpG content. For reasons
of conceptual clarity, this new mutational model allows only nucleotide-based mutations
to be auto-generated by SLiM (the ratio between mutation types specified to
initializeGenomicElementType() would not be easily interpretable if one mutation type
were nucleotide-based and another weren’t). Note that non-nucleotide-based mutations
can still be added in script, and can coexist with nucleotide-based mutations in a
nucleotide-based model; they just can’t be auto-generated by SLiM, to keep the new
mutational model simple.

• A new mutational hotspot map. In non-nucleotide-based models the mutation rate along
the chromosome can be varied, providing mutational “hot spots” and “cold spots”; in
nucleotide-based models, since initializeMutationRate() is not used, such mutation-
rate variation along the chromosome can instead be supplied with a new function,
initializeHotspotMap(). The values of the hotspot map combine multiplicatively with
the base rates specified by the mutationMatrix properties of genomic element types,
making mutation overall more or less likely within a region while preserving the relative
frequencies of particular mutations. If no hotspot map is supplied, a default value of 1.0

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 46

is assumed across the chromosome, meaning that the rates supplied by the
mutationMatrix properties of genomic element types are used unmodified as the absolute
mutation rates for the model.

• Access to genome nucleotide sequences for any purpose in script. The nucleotide
sequence of any genome is available in script, in whole or within a given range, with the
nucleotides() method of Genome. The nucleotide sequence for a genome is based upon
the ancestral sequence, with the nucleotides for any nucleotide-based mutations in the
genome overlaid on top. The ancestral sequence itself is also available in script, from the
ancestralNucleotides() method of the Chromosome object (sim.chromosome). For
example, if one wanted to implement a fitness effect that depended upon the codon
sequence within an exon (making stop codons lethal and synonymous mutations neutral,
for example), one could get the nucleotide sequence for the exon from a given
individual’s genomes and, based upon examination of their nucleotide sequences in script
(perhaps in comparison to the ancestral sequence), assign a fitness effect to the individual
using the fitnessScaling property or with a fitnessEffect() callback. Many other uses
for these nucleotide sequences are also possible, such as outputting nucleotide sequences
from a sample of genomes/individuals at key points in a run, assessing GC richness in
different populations, and computing sequence-based FST values.

• Intrinsic support for biased gene conversion. With these new nucleotide-based models,
SLiM now provides intrinsic support for biased gene conversion (see section 1.5.6). This
can be configured, if biased gene conversion is desired, simply by providing a bias
parameter to the initializeGeneConversion() function that gives the probability that, at
mismatched sites within a gene conversion tract that need to be repaired, the mismatch
will be repaired by taking the G or C nucleotide in preference to the A or T nucleotide. For
example, if there is an A/G mismatched pairing, where one nucleotide comes from one
parental strand and the mismatched nucleotide comes from the homologous parental
strand that invaded along the gene conversion tract, either the G will be repaired to T or
the A will be repaired to C, and the bias indicates any preference between those
alternatives in the mismatch repair machinery. The default bias of 0.0 indicates that the
choice is random; a positive value up to 1.0 provides GC-biased gene conversion (gBGC),
whereas a negative value down to -1.0 provides AT-biased gene conversion instead
(which is probably non-biological, in general, but is provided for completeness).

The reference section of this manual, Part II, will provide reference information covering both
non-nucleotide-based models and nucleotide-based models. Since non-nucleotide-based models
are the default (and were the only option available until SLiM 3.3), material specifically related to
nucleotide-based models will be highlighted in purple in this manual. For example:

– (void)aNucleotideModelOnlyMethod(...)

Again: nucleotide-based models are an advanced topic. As a beginning SLiM user, it’s good to
know that one can create a nucleotide-based model, but don’t worry if all of the above information
is not clear; this section assumed a fairly detailed familiarity with the default, non-nucleotide-
based models, as a basis for discussing how nucleotide-based models are different. If you are just
starting out with SLiM, you should probably focus on non-nucleotide-based models first.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 47

1.9 Multispecies models
Beginning with SLiM 4, SLiM now supports models in which more than one species is

simulated simultaneously. Such models, henceforth called multispecies models, are based upon
all of the same fundamental concepts as other SLiM models, but utilize an extended SLiM script
syntax to allow the various species in the model to be independently declared, configured, and
managed. These extensions and related concepts will be summarized here; beyond this, chapter
19 contains recipes that provide examples of multispecies models. This section assumes that the
reader is already familiar with single-species SLiM models; multispecies models are an advanced
feature. Most of this manual will avoid discussion of multispecies models, for clarity.

Each species in a multispecies model may be independently configured in most respects. One
might be sexual while another is hermaphroditic; one might use tree-sequence recording while
another does not; one might be nucleotide-based while another is not; one might live in
continuous space while another lives in discrete subpopulations connected by migration. The
various species may also have completely different genetics, different scripted behavior (including
callbacks), and different schedules for reproduction, migration, and mortality.

In one respect, however, all of the species in a multispecies model must match: they must all
use the same model type. In other words, they must all be based upon the WF model, or all be
based upon the nonWF model (see section 1.6); the two model types cannot be mixed in a
multispecies model. This is because the model type determines the phases of the tick cycle; in a
multispecies model, the species typically share the tick cycle and execute in an interleaved
fashion, so the structure of their tick cycles must match.

To make a multispecies model, the first step is to switch to explicit species declarations. In a
single-species SLiM model, the declaration of the single species is implicit; that species is always
named sim, and the global symbol sim representing that species is declared for you automatically
by SLiM. Multispecies models instead declare each species in the model explicitly, giving each
species a unique name; perhaps a model might have fox and mouse species, for example. In that
case, global symbols named fox and mouse will exist, representing the two declared species, and
the symbol sim will no longer exist. Chapter 19 will show how to write such explicit species
declarations to create a multispecies model.

Once a model has explicitly declared one or more species, SLiM’s behaviors change in various
ways, providing new features related to multispecies simulation:

• Species-specific initialization. Each species must have its own initialize() callback, in
which that species is configured independently of the other species in the model. No
configuration may be shared between species; each species must declare its own genomic
elements types, mutation types, interaction types, and so forth. (The identifiers for these
objects must be unique across the whole model, however; for example, if one species
declares a mutation type m1, no other species may use that m1, and no other species may
declare its own m1). For configuration at the whole-simulation level (the community level,
in SLiM’s terminology), such as setup of model parameter values, a non-species-specific
initialize() callback can be written, as we will see in chapter 19.

• Species-specific callbacks. In general, every callback in a multispecies model must be
declared with a species specifier that tells SLiM which species that callback applies to.
Every callback applies to exactly one species, in general; callbacks may not be shared by
multiple species. If more than one species needs to have the same callback-driven
behavior, that behavior can be implemented in a shared user-defined function, called by
the callbacks of each species; this can be a bit roundabout, but is worth it for the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 48

conceptual clarity provided by the rule that every callback belongs to exactly one species,
always. (The hedge phrase “in general” was used because interaction() callbacks are
always non-species-specific, configuring behavior at the community level.)

• Independent tick schedules. The objective measure of time (years, months, days) in SLiM
models is the tick, and a counter with the number of ticks that have elapsed – the number
of times that the tick cycle has executed – is kept by the Community object, available in
community.tick. Each species also keeps a counter of the number of times its tick cycle
has executed, available in single-species models in sim.cycle. In single-species models
these are the same; the species executes its tick cycle in every tick. In multispecies
models, on the other hand, ticks pass at the same rate for all species, but each species
may choose to be active or inactive in any given tick, independent of the other species.
When a species is inactive in a given tick, it does not execute the tick cycle, and its cycle
counter does not increment. As a result, the cycle counter for different species may differ
from the tick counter, and from each other; species live on independent tick schedules.
Furthermore, if non-overlapping generations are modeled both of these measures of time
may be different from the biological concept of the number of generations that have
passed. See section 1.5.7 for further discussion of these concepts.

• Interleaved tick cycle execution. In ticks for which more than one species is active (see
above), the tick cycles of the species are interleaved. In essence, this means that each
stage of the tick cycle executes for all species, one by one, before SLiM proceeds to the
next stage. For example, each species would be given an opportunity to reproduce, one
after the other, and then after all reproduction is done, each species would undergo
mortality, one after the other. The precise way in which this works will be discussed in
chapter 19; for now, the point is that the tick cycle events for species can occur (almost)
simultaneously, if you wish, through this interleaving; if you do not want that to happen,
simply configure the model so that in any given tick only one species is active.

Not every model that involves multiple species ought to be a SLiM multispecies model. There
are two cases where it is particularly likely that you will not want to use a multispecies model.
One case is when you are modeling the process of speciation itself. Multispecies models are
required to declare every species in the model explicitly; when modeling the process of speciation,
you might not know whether multiple species will emerge, how many there will be, what their
characteristics will be, etc. In such cases, it is often easier to model a single species, and allow
divergence within that species to emerge, reproductive isolation to develop, etc., without explicitly
declaring each species. The other case is when species are so similar that they are allowed to
hybridize (even if they are partially reproductively isolated). As mentioned above, every species in
a multispecies model is completely distinct, using different genomic element types, mutation
types, etc.; hybridization between individuals of different species is thus strictly not allowed.
Again, in such cases it will typically be better to model a single SLiM species, with individuals
tagged according to which species they belong; this will allow hybridization to occur. If you are
unsure whether to approach a given problem as a single-species or multispecies model, it might be
useful to try both approaches; one will likely feel much simpler and more natural.

Again: multispecies models are an advanced topic. As a beginning SLiM user, it’s good to know
that one can create a multispecies model, but don’t worry if all of the above information is not
clear; this section assumed a fairly detailed familiarity with SLiM’s default single-species models, as

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 49

a basis for discussing how multispecies models are different. If you are just starting out with SLiM,
you should probably focus on single-species models first, as this manual will do.

1.10 Online resources for SLiM users
Users of SLiM should be aware of various online resources that are available to support their

work. This section summarizes them and provides links. Let’s start with resources from the
Messer Lab itself (where SLiM is developed by yours truly):

• First of all, there is the SLiM home page at the Messer lab website. This is the primary
place from which to download SLiM, and provides a history of SLiM releases as well as a
list of publications that have used SLiM. https://messerlab.org/slim/

• The slim-announce mailing list is only for announcements from our group, such as new
versions of SLiM, new SLiM publications related to SLiM, and plans for conferences where
you could connect with us. https://groups.google.com/forum/#!forum/slim-announce

• The slim-discuss mailing list is for questions from SLiM users that might be of general
interest. Please feel free to post your own questions – and even to answer other people’s
questions, if you can. https://groups.google.com/forum/#!forum/slim-discuss

• The SLiM Workshop download page provides downloadable materials for the SLiM
Workshop, a 3–5 day workshop for beginning-to-intermediate SLiM users. We have
offered the workshop in person several times already; see the SLiM home page for the
dates and places of any upcoming scheduled workshops. We have also made the
materials available for download, so you can do it on your own, or with a group of friends
on the online platform of your choice. If you find it hard to climb the learning curve with
this manual, the workshop is recommended as a more methodical and gentle introduction
to SLiM. http://benhaller.com/workshops/workshops.html

• The SLiM-Extras GitHub repository is a place for the SLiM community to share useful
resources related to SLiM. This could include reuseable Eidos functions, full SLiM models
that might be of general interest, code for reading or analyzing SLiM output in languages
like R or Python, code for sublaunching multiple SLiM runs on computing clusters (see
section 1.4), and so forth. There is already lots of useful stuff there – notably, a whole
tutorial written by Sam Champer on sublaunching SLiM runs from R, Python, or the Bash
shell. Please feel free to email us your own submissions for additions to SLiM-Extras, or
better, submit them as pull requests on GitHub. https://github.com/MesserLab/SLiM-Extras

• The SLiM GitHub repository is where SLiM’s source code lives. SLiM is open-source, but
unless you have some specific reason to access the source, you probably don’t need to.
As described in chapter 2, installers now exist for all major platforms supported by SLiM
(macOS, Linux, and Windows), so building SLiM from sources is uncommon. The GitHub
repository, then, is mostly useful for people who want to be on the cutting edge, running
the latest version of SLiM before it has been publicly released. Be aware that doing this
will mean you are more exposed to bugs, and that sometimes the sources on GitHub may
not even build (although we try to avoid that). https://github.com/MesserLab/SLiM

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 50

https://messerlab.org/slim/
https://groups.google.com/forum/#!forum/slim-announce
https://groups.google.com/forum/#!forum/slim-discuss
http://benhaller.com/workshops/workshops.html
https://github.com/MesserLab/SLiM-Extras
https://github.com/MesserLab/SLiM

Then there are online resources from related labs and software development groups; these are
software packages that are documented, supported, and maintained:

• The tskit, pyslim, and msprime software packages, which are increasingly important for
modeling using SLiM (see chapter 17), all have excellent online documentation and
resources hosted at https://tskit.dev. The pyslim docs are particularly helpful for SLiM
modelers; start with the Introduction and continue on to the Tutorial and the Vignettes,
which are essential for understanding what’s going on with tree sequences on the Python
side. Incidentally, if you would like to develop a deeper understanding of tree sequences,
how they work and what they’re for, an excellent lecture by Wilder Wohns and Jerome
Kelleher is at https://www.youtube.com/watch?v=X1GEuQrF1jQ.

• The stdpopsim software package, developed by the PopSim Consortium, can simulate a
wide variety of standard population genetics models using both msprime and SLiM as the
“back end” for the simulation. This provides easy access to sophisticated simulations
using published demographic models, empirical recombination maps, and more, for a
growing collection of species. The best place to start with stdpopsim is with their manual,
at https://stdpopsim.readthedocs.io/en/latest/index.html, or more specifically with the
tutorials at https://stdpopsim.readthedocs.io/en/latest/tutorial.html.

• The shadie Python package, developed by Elissa Sorojsrisom, provides a simple Python
front end (using SLiM as a back end) for simulations of complex plant mating systems and
life cycles, including detailed and biologically accurate simulation of the alternation of
generations (i.e., explicitly modeling both the sporophyte and gametophyte stages). It is
on GitHub at https://github.com/elissasoroj/shadie, and a paper about it can be obtained
at http://doi.org/10.1002/aps3.11472. Here is a gorgeous diagram, drawn by Elissa
Sorojsrisom, showing some of the diversity of plant biology that shadie makes it easy to
simulate (A–E: monoicous and dioicous bryophytes, homosporous and heterosporous
pteridophytes, and monoecious and dioecious spermatophytes):

dioecious spermatophytes, deviate considerably and can
require many additional parameters to accurately describe.

Biological background: Plant life cycles

This section provides a description of six generalized land
plant life cycle categories. Three groups, bryophytes,
pteridophytes, and spermatophytes, were chosen based on
shared life cycle similarities, with two sexual system
variations for each group. There are, of course, exceptions
and variations for each of the life cycles presented here. In
its most general form, the life cycle of a land plant proceeds
as follows: (1) the haploid gametophyte life stage undergoes
mitosis to form archegonia and antheridia, where eggs and
sperm are produced; (2) an egg is fertilized by a single
sperm to form a diploid zygote sporophyte; (3) once mature,
the sporophyte creates specialized diploid structures called
sporangia, which may be housed within further specialized
structures; (4) diploid sporocytes, or spore “mother cells,”
are created by mitosis within the sporangia; (5) each
sporocyte performs two meiotic divisions to create four
haploid spores; (6) spores develop into new haploid
gametophytes by mitosis. It is important to note that the

meiotic divisions in step 5 are the only opportunity for
recombination to occur throughout the life cycle. All
subsequent haploid structures that arise from a spore (i.e.,
gametophyte, archegonia, antheridia, gametes) are geneti-
cally identical to the original spore.

The bryophyte life cycle consists of a long‐lived, free‐living
gametophyte stage and an ephemeral diploid sporophyte that
remains attached and nutritionally dependent on the gameto-
phyte until it dies (Shaw and Beer, 1999). In monoicous
bryophytes (Figure 4A) and dioicous bryophytes (Figures 4B
and 5A), each archegonium gives rise to a single egg, while
each antheridium produces many sperm that, when released,
fertilize eggs retained in the archegonia of other gametophytes
(in monoicous species, eggs may be fertilized by sperm from
the same gametophyte). Fertilization produces a zygote
sporophyte, which develops as a superficial structure growing
from the gametophyte (in dioicous species, only from female
gametophytes). Sporangia develop within the sporophyte and
release spores when mature. The spores are dispersed into the
surrounding environment and develop into new gameto-
phytes. The sporophyte then dies, but the gametophyte parent
continues living, and may reproduce again.

Lycophytes and ferns (known collectively as the
paraphyletic group, pteridophytes) have life cycles in which

F IGURE 4 Diagrammatic, generalized life cycles of (A) monoicous bryophytes, (B) dioicous bryophytes, (C) homosporous pteridophytes,
(D) heterosporous pteridophytes, (E) monoecious spermatophytes, and (F) dioecious spermatophytes.

6 of 17 | MODELING GAMETOPHYTE SELECTION

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 51

https://tskit.dev
https://www.youtube.com/watch?v=X1GEuQrF1jQ
https://stdpopsim.readthedocs.io/en/latest/index.html
https://stdpopsim.readthedocs.io/en/latest/tutorial.html
https://github.com/elissasoroj/shadie
http://doi.org/10.1002/aps3.11472

• The slendr R package, developed by Martin Petr and others, provides a framework for
programmable, visual, interactive encoding of spatial population boundaries on real and
abstract landscapes, as well as specifying other standard demographic events (population
divergences, changes in population size, and gene flow). Here is a quick look at plots
produced by slendr for a simple demographic model running on a map of Europe:

The left panel above shows a summary of subpopulation range boundary changes over
time in the model, for the five subpopulations shown in the legend at bottom. The right
panels show spatial information about the ancestors of one individual (the black dot near
the center), for that individual’s two chromosomes, illustrating how that individual’s spatial
pattern of ancestry differs markedly between its maternal and paternal sides.

Spatio-temporal population models in slendr are written as simple R scripts and then
executed by a SLiM back-end script built into the package. For convenience, a collection
of R functions for analyzing and processing output tree sequences and calculating
population genetic statistics on them is provided via an R interface to the tskit Python
module. As you can see, slendr is a remarkably powerful tool. Martin has a preprint on
slendr, available at https://www.biorxiv.org/content/10.1101/2022.03.20.485041v1. It
includes tutorial vignettes, including one vignette that goes into depth on the plots shown
above. You can find slendr itself at https://www.slendr.net.

• The slimr R package, developed by Russell Dinnage and others, is for running SLiM
models in R. It is on GitHub at https://rdinnager.github.io/slimr/, and Russell plans to get
it onto CRAN soon. It is “designed to create a seamless link between SLiM 3 and the R
development environment”; a preprint describing its many bells and whistles can be
found at https://www.biorxiv.org/content/10.1101/2021.08.05.455258v1.

And finally, there are miscellaneous third-party online materials provided by individual users of
SLiM, which may be less polished / supported. We can’t vouch for the accuracy or usefulness of
these materials, but they’re out there and you might benefit from them:

20°N20°N

30°N

40°N

50°N

60°N

 0° 20°E 40°E
longitude

la
tit

ud
e

chrom
osom

e 1
chrom

osom
e 2

 0° 20°E 40°E

20°N20°N

30°N

40°N

50°N

60°N

20°N20°N

30°N

40°N

50°N

60°N

longitude

la
tit

ud
e

OOA EUR EHG ANA YAM

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 52

https://www.biorxiv.org/content/10.1101/2022.03.20.485041v1
https://www.slendr.net
https://rdinnager.github.io/slimr/
https://www.biorxiv.org/content/10.1101/2021.08.05.455258v1

• Miguel Guardado has produced a Python-based tool called ped_slim that can simulate
genomic data onto complex family pedigrees, represented in networkx format (or .ped
or .fam formats, which it can convert to networkx format), using SLiM as a back end.
Miguel says it is still under development, but is ready for early adopters to try it out. You
can find it at https://github.com/MiguelGuardado/ped_slim.

• Zuxi Cui has a GitHub repo about doing whole-genome simulations, based upon
empirical VCF/FASTA data: https://github.com/zxc307/GWAS_simulation_handbook. At
the time I added this note it was a work in progress, but it looks very helpful already!

• Cyril Monjeaud has posted a solution for installing SLiM 3 with Docker, although I’m not
a Docker user and can’t vouch for it; it is at https://github.com/cmonjeau/docker-slim.

• Jared Galloway has posted some benchmarking scripts for SLiM simulations onto GitHub,
at https://github.com/jgallowa07/SLiM_TSBenchmarks.

• Peter Ralph has posted lecture notes and teaching materials for a course he teaches in
Population Biology using SLiM, at https://petrelharp.github.io/popbio/, including a very
helpful introduction to SLiM using Jupyter notebooks; this would be a good starting point
for anyone thinking of using SLiM in the classroom.

• Graham Gower has posted tools for using Demes demographic models in SLiM (as
described here), at https://github.com/grahamgower/demes-slim.

• Chris McAllester posted a SLiM syntax file for the Sublime Text editor onto the slim-
discuss list, at https://groups.google.com/g/slim-discuss/c/bYh-ZiGf8rY. Downloading and
installing this as he describes will provide SLiM syntax coloring in Sublime Text, if you
want to use that editor instead of SLiMgui. He notes that it may not be complete and bug-
free; improvements are welcome, as are SLiM syntax files for other popular editors.

• Sam Champer has posted code for visualizing spatial simulations as videos with Python
by saving snapshots from SLiM and turning them into movies with ffmpeg and
matplotlib, at https://github.com/samchamper/slim_vis.

• There are lots of papers out there that use SLiM for one purpose or another, and many of
them even have open-source SLiM model code posted on GitHub. This can be a valuable
resource – for seeing how other people are using SLiM, for finding specific SLiM coding
solutions, and even for finding collaborators.

There are probably other SLiM-related resources out there as well; if you’re aware of something
useful that should be added to this list, please let us know. Similarly, drop us a line if any of the
links above have become stale, or are no longer useful.

Finally, it’s worth mentioning that Jonathan Pritchard has been putting together a nice online
book that provides a gentle introduction to concepts in population genetics (Pritchard, 2023); if
you want more conceptual background than this manual provides, try that book.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 53

https://github.com/MiguelGuardado/ped_slim
https://github.com/zxc307/GWAS_simulation_handbook
https://github.com/cmonjeau/docker-slim
https://github.com/jgallowa07/SLiM_TSBenchmarks
https://petrelharp.github.io/popbio/
https://popsim-consortium.github.io/demes-spec-docs/
https://github.com/grahamgower/demes-slim
https://groups.google.com/g/slim-discuss/c/bYh-ZiGf8rY
https://github.com/samchamper/slim_vis

2. Installation

The slim command-line tool for SLiM is designed to be portable; it is written in pure C++, with
no external dependencies. Code from various third-party libraries such as the GNU Scientific
Library (Galassi et al. 2009), Boost (Boost 2015), and tskit (Kelleher et al. 2016) is used in SLiM
(see chapter 31), but that code has been integrated directly into SLiM, so those libraries are not
required in order to build or run SLiM. SLiM should be buildable on macOS, Linux, other Un*x
platforms, Windows, and – possibly with minor modifications – on other platforms as well.

The SLiMgui application is also fairly portable; it is written on top of the Qt 5 widget kit (Qt is
pronounced “cute”), which exists on macOS, Linux, and Windows, and also runs under the
Windows Subsystem for Linux. Since the code for the Qt 5 widget kit is not included inside
SLiMgui’s code, the Qt 5 library has to be installed first as an external dependency (if it is not
already present) in order to build SLiMgui. (The original SLiMgui application was written for
macOS only, in Objective-C++ using Apple’s Cocoa library; it is now called SLiMguiLegacy, and is
no longer supported. The new Qt-based SLiMgui was originally called QtSLiM, and you will still
see that term referenced occasionally, because the QtSLiM name lives on in SLiM’s build system.)

The steps to install SLiM and SLiMgui depend upon the platform you are on; please refer to the
appropriate subsection below.

2.1 Installation on macOS
On macOS you have a choice between (1) installing a prebuilt package containing the slim

command-line tool and the SLiMgui application (as well as EidosScribe, the eidos command-line
tool, and manual PDFs), or (2) cloning the SLiM GitHub repository and building the targets
yourself using Apple’s Xcode development environment. Unless you are an experienced
developer, the first option is recommended. Building SLiM on macOS at the command line is not
recommended, although it is possible; use of the Xcode project will provide the proper compiler
settings, etc., for a standard macOS build.

2.1.1 Installing the prebuilt SLiM package on macOS
Installing SLiM with the prebuilt installer package is quite straightforward. First, download the

installer package from SLiM’s home page at http://messerlab.org/slim/, which looks like this:

If multiple versions are available, be sure to download the appropriate version for your system.
Once it is downloaded, double-click the package in the Finder to run the installer. Click through
all steps in the installer, and SLiM will now be installed on your system. The applications (SLiMgui
and EidosScribe) will be installed in your /Applications folder; the command-line tools (slim and
eidos) will be installed in /usr/local/bin/. Pre-existing Terminal windows may not find slim and
eidos; open a new Terminal window to get the updated paths.

2.1.2 Building SLiM from sources on macOS
This option is relatively complex. If you are not an experienced developer it is recommended

that you install SLiM using the prebuilt package instead (see the previous section). There is no

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 54

http://messerlab.org/slim/

advantage to building SLiM from sources unless you wish to run it under the debugger, modify its
code, or other similarly advanced tasks, or wish to run the current development version of SLiM.

First of all, you need to have Xcode and Apple’s other developer tools installed on your
machine. SLiM’s project is generally kept synchronized with the current version of Xcode; older
versions of Xcode may be unable to open the SLiM project. To run the current version of Xcode,
you generally need to be on the current version of macOS as well, so you may need to upgrade
your macOS installation before installing Xcode. Once you have done that, you will need to
obtain and install Xcode itself. This will probably involve registering as a developer with Apple
(which is free, for the basic level) at their developer website, developer.apple.com, and then
downloading and installing the developer tools package including the latest version of Xcode
(which may be possible through the App Store, otherwise through the developer website’s Member
Center). It is quite a large download, so do it through a fast connection. Once you have
completed this step, you should see Xcode.app in your /Applications folder, and you should be
able to launch it by double-clicking it.

Second, you need to obtain the SLiM source code. If you are following these instructions, you
probably want to obtain the current development version of SLiM from its GitHub repository at
https://github.com/MesserLab/SLiM. You can of course clone the SLiM repository if you know how
to do so; otherwise, just go to https://github.com/MesserLab/SLiM, click the big green “Code”
button, and then click “Download ZIP”:

Locate the downloaded file and double-click it to decompress the zip file if that has not already
been done for you automatically by your browser. This distribution will include the sources to
allow you build both the slim command-line tool and the SLiMguiLegacy interactive graphical
modeling environment (building SLiMgui, rather than SLiMguiLegacy, is done at the command
line; see section 2.4). Be aware that the current development version on GitHub may not be
thoroughly tested – indeed, it may not even compile. We try to keep it working, though.

Third, open the SLiM project in Xcode. To do so, locate the Xcode project file within the
archive you have just downloaded; it is at the root level, with the name SLiM.xcodeproj. Double-
click it to open the project in Xcode. You should see a big project window.

Fourth, choose a build target. A target is basically a product that an Xcode project knows how
to build. The SLiM project has four targets that may be selected: SLiM (the slim command-line
tool), SLiMguiLegacy, EidosScribe (an interactive Eidos script development environment), and Eidos
(the Eidos interpreter command-line tool, eidos). For now, select SLiMguiLegacy; it is no longer

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 55

https://github.com/MesserLab/SLiM
https://github.com/MesserLab/SLiM

supported (SLiMgui should be used instead), but it is still usable, and it will allow us to explore
Xcode’s options a bit more. You select the SLiMguiLegacy target in the pop-up near the upper left
of the project window:

Fifth, build and run the selected target by pressing command-R (which is the Run command in
the Product menu). It should build fairly cleanly (perhaps apart from some nib warnings that are
difficult to eliminate). Once it finishes building (which may take several minutes, depending on
your machine), SLiMguiLegacy should launch automatically. Assuming that worked, quit
SLiMguiLegacy for now, as we are not quite done setting things up in Xcode.

Sixth, there is an additional twist: the build configuration and other build scheme options.
These options are accessed by choosing the “Edit Scheme...” menu item that can be seen in the
pop-up menu in the above screenshot. Choose this, and you will see a sheet:

In this screenshot, the “Run” action has been selected on the left, so we are configuring what
Running this target (the SLiMguiLegacy target) will do. At the top, the Info tab is selected, which
provides the most basic configuration options. Finally, the pop-up menu next to the label “Build
Configuration” has been clicked in order to choose the Release build configuration. In general,
you will want to build and run SLiM and SLiMguiLegacy using the Release build configuration
unless you have a specific reason to wish to do otherwise; Release builds are much faster than

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 56

Debug builds, partly because of optimization, and partly because additional runtime checks are
turned on in SLiM’s code when built in the Debug configuration. After choosing Release, you can
click the Close button, and command-R (run) will now build and run a Release build of
SLiMguiLegacy.

If your goal is to run SLiMguiLegacy, you can simply run it from within Xcode; there is no
particular disadvantage to doing so. If your goal is to run the slim command-line tool, doing so
from within Xcode is a little bit inconvenient (since it is a little bit complicated to supply
command-line arguments to it, for example), so the simplest course is to build slim in Xcode and
put the built executable wherever you want it to be so that you can run it in Terminal as usual.

To do this, first select the SLiM target from the target pop-up in the project window, as described
above (since the SLiMguiLegacy target is presently selected, if you have been following along).
Second, choose Edit Scheme... again and make sure that the SLiM target is using the Release build
configuration for its Run action, as described above (since we set that for the SLiMguiLegacy target
above, not for the SLiM target – each target has its own settings), and close the Edit Scheme...
sheet. Third, press command-B to build the target (this is the Build command in the Product
menu).

Once the build completes, you will want to locate the built product in the Finder. To do this in
Xcode 12 and earlier (see below for Xcode 13 and later), first select the Project Navigator in the
project window by clicking the folder icon at the left edge of the strip of icons at the top left of the
project window:

Then click disclosure triangles to open the SLiM top-level item and the Products subfolder in the
outline view shown there (if you don’t see this, read on below):

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 57

The slim product may be shown in red even if it has been successfully built; this appears to be
a bug in Xcode. Right-click (i.e., click with the right-hand mouse button) or control-click (i.e.,
hold down the control key and click) on the slim product, and choose “Show in Finder” from the
context menu displayed, as shown in the screenshot above. Your computer should switch to the
Finder and open a new window in the Finder, showing the contents of a folder that is probably
named “Release” (because the Release build configuration has been chosen). A file named slim
should be selected in this window. This is the built executable for the slim command-line tool.
(There are other, more standard ways to get to this point, but they are a bit more complicated.)

For Xcode 13 and later, the workflow above no longer works because the Product folder is no
longer shown in the Project Navigator. Instead, choose the “Show Build Folder in Finder” menu
item from the Product menu. That will open a Finder window showing the folder within which all
of your build products are located. Inside that folder should be a Products folder, and inside that
should be Release and Debug subfolders (if you have built Release and Debug targets, at least),
and inside those are your individual build products such as the Release build of slim.

Having found the built slim product in the Finder, you should copy this file to whatever
location you wish, and then run slim using that copy. The standard install location for slim is at /
usr/local/bin/, but since this is a custom build you might not wish to put it at that location to
avoid confusion. Instead, a location like ~/bin/ inside your home directory might be appropriate
(you might need to create this folder first, in the Finder). In any case, once you have installed slim
at the desired location, you can open a Terminal window and cd to that location (your Terminal
shell prompts may look different from mine, of course):

darwin:~ bhaller $ cd ~/bin
darwin:~/bin bhaller $

Then you can run the local copy of slim that is at that location:

./slim <rest of command line>

The syntax ./slim tells Terminal to run the copy of SLiM in the current directory, rather than
running the standard version that might be installed at /usr/local/bin/ on your machine. You
can verify that the correct version of SLiM is being run using the -v (version) option:

darwin:~/bin bhaller $./slim -v
SLiM version 2.3, built Apr 18 2017 17:20:34

The build date and time should correspond with the build you just did in Xcode; if not, you
have done something wrong and should re-check the steps above.

You can in fact follow the same steps to locate the built SLiMguiLegacy application in the Finder
and install it somewhere on your machine for later use; the ~/Applications/ folder might be a
good choice of location. However, it is probably simpler to run it from within Xcode – or to build
and run the new SLiMgui app instead (see section 2.4.1).

Obviously Xcode is a very complicated application, and we can’t provide a thorough
introduction to using it, but the steps above should allow you to build and run both slim and
SLiMguiLegacy using the current development head sources from GitHub. If you run into any
problems with these instructions, please let us know.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 58

2.2 Installation on Linux and other Un*x platforms
For users on Linux, there may be an installer for SLiM and SLiMgui available; see section 2.2.2.

If not, you can build the slim and eidos command-line tools following the instructions in section
2.2.3, and the SLiMgui modeling environment following section 2.4.2.

Building the command-line tools from sources is very easy, whereas building SLiMgui from
sources can be more complicated because it requires the Qt widget library. For this reason, as of
SLiM 4.0.1, a portable option is also provided for installing only the SLiMgui graphical modeling
environment; see the AppImage installation instructions in section 2.2.1. Particularly if a platform-
specific installer is not available for your Linux distribution, you may wish to use the AppImage to
get SLiMgui (following section 2.2.1) and then build the command-line tools from sources yourself
(following section 2.2.3). If all you want is SLiMgui, the AppImage may also be useful.

2.2.1 Installing SLiMgui using AppImage on Linux
The AppImage installation option was contributed by Bryce Carson. To quote from the

AppImage website,

The key idea of the AppImage format is one app = one file. Every AppImage
contains an app and all the files the app needs to run. In other words, each
AppImage has no dependencies other than what is included in the targeted base
operating system(s).

The chances are very high that if you use a graphical environment with the Linux kernel your
environment is supported by AppImage, whatever user–space software you might run, whether
GNU or non–GNU.

To install SLiMgui on Linux with AppImage:

1. Download the AppImage from GitHub
2. Make it executable: chmod a+x SLiMgui-x86_64.AppImage
3. Run it: ./SLiMgui-x86_64.AppImage

There is no need for administrative privileges on the target system, nor any need for
“installation”. The application can be run from wherever it is downloaded to (so in this sense, the
“installation” step is just downloading; it does not need to be installed to a special location).

If you would like desktop integration, then you should follow the hyperlinks related to
appimaged at https://github.com/probonopd/go-appimage; otherwise, there is no automatic desktop
integration.

2.2.2 Installing SLiM with a platform-dependent binary package on Linux
With extensive help from the SLiM community, we now have installers for SLiM on many Linux

platforms as detailed below. If an installer is not available for your platform, you will need to build
from SLiM and/or SLiMgui from source (see sections 2.2.3 and 2.4.2) – or set up an installer for
your platform that the whole community can use, if you know how to do that. Check the SLiM
home page (https://messerlab.org/slim/), the slim-announce list on Google Groups (https://
groups.google.com/g/slim-announce), or SLiM’s GitHub repository (https://github.com/MesserLab/
SLiM) for information on new installers or beta versions of installers that need community testing
and feedback.

Debian and Ubuntu:
The only non–AppImage installation option for Debian and Ubuntu users is a Bash script,

DebianUbuntuInstall.sh. Unlike the AppImage, the Bash script also builds and installs both of
the command–line tools alongside the SLiMgui modelling environment, and it also provides

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 59

https://github.com/probonopd/go-appimage
https://messerlab.org/slim/
https://groups.google.com/g/slim-announce
https://groups.google.com/g/slim-announce
https://github.com/MesserLab/SLiM
https://github.com/MesserLab/SLiM

desktop integration for SLiMgui, but there is no defined uninstallation or removal method other
than what a system administrator should be capable of performing after reading the installation
script.

(Advanced users: If you would prefer a DEB package, please understand that the
packaging process and distribution methodology for these platforms is difficult, and
despite significant time investment no satisfactory option has been found. If you are an
experienced Debian user or developer, with experience deploying independently
compiled binaries for multiple Debian (and preferably also Ubuntu) versions/releases,
and you wish to enter SLiM (both the command–line tools and SLiMgui) into the
official repositories and maintain that package, please open a pull request against the
debian/ folder sources on GitHub, tag @bryce-carson, and you’ll receive thanks for
any improvements to the methodology discussed in the now-closed Issue 288.)

The rest of this section will discuss the use of the installer script, which is the recommended
solution for both Debian and Ubuntu at this time (unless you only want SLiMgui, in which case
AppImage is recommended). The installation script downloads the source code archive for the
current release version of SLiM, builds its targets with cmake and make, and installs slim, eidos,
and SLiMgui in /usr/bin. The /usr/bin directory is normally in the search path defined by the
Unix $PATH environment variable, so the slim and eidos command-line programs should be
available in your terminal without any extra work; SLiMgui can also be launched from the
terminal, but is integrated with the desktop environment in FreeDesktop compliant environments.
If this script works for you, then you are completely done.

The installer script is hosted in the SLiM-Extras repository on GitHub; you can view the script at
https://raw.githubusercontent.com/MesserLab/SLiM-Extras/master/installation/DebianUbuntuInstall.sh.
Note that it requires cmake, qmake, Qt, and either curl or wget to be installed on your system first;
if they are not, it will print instructions on how to install them. Follow those instructions to install
the needed packages, and then try running the install script again.

Note that because this script installs the built components into /usr/bin, the sudo command is
used to run the script with root privileges, so you will need to enter your system’s root password. If
you do not have root access to your system, you won’t be able to use this script directly; you might
request that your system administrator run it for you. Alternatively, you could download and build
SLiM yourself, without installing it into /usr/bin, either following the script’s outline by hand, or
using the build instructions in sections 2.2.3 and 2.4.2.

If you have wget installed (which appears to be present by default on Ubuntu), you can run the
install script directly from the web with the following single command line (which should be
entered as a single line in Terminal):

wget --output-document /dev/stdout - --quiet https://
raw.githubusercontent.com/MesserLab/SLiM-Extras/master/installation/
DebianUbuntuInstall.sh | sudo bash -s

or if you have curl installed and prefer to use it, you can execute this single command line to
install directly from the web:

curl --silent https://raw.githubusercontent.com/MesserLab/SLiM-Extras/
master/installation/DebianUbuntuInstall.sh | sudo bash -s

These two options should be identical for all practical purposes. They download the install
script from its URL and pipe it directly into bash to be executed.

However, since the script is run as root, you may wish to examine it locally before running it (if
you don’t trust us – and why would you?). To do so, first fetch the script with wget:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 60

https://github.com/MesserLab/SLiM/issues/288
https://raw.githubusercontent.com/MesserLab/SLiM-Extras/master/installation/DebianUbuntuInstall.sh

wget https://raw.githubusercontent.com/MesserLab/SLiM-Extras/master/
installation/DebianUbuntuInstall.sh

or with curl:

curl https://raw.githubusercontent.com/MesserLab/SLiM-Extras/master/
installation/DebianUbuntuInstall.sh > DebianUbuntuInstall.sh

or with the browser of your choice, using the link above. Examine the script to your satisfaction,
then make it executable with chmod and run the script with sudo:

chmod +x ./DebianUbuntuInstall.sh
sudo ./DebianUbuntuInstall.sh

You may remove the script afterwards if you like, or retain it so you know what changes were
made to your system. An uninstallation script is not provided; if you need help removing the
software installed by the script, please make a request for help with uninstallation instructions at
https://github.com/MesserLab/SLiM-Extras/issues/new, or study the installation script and simply
remove the files that were installed.

Please direct issues and pull requests to SLiM-Extras on GitHub.

RPM-based distributions: Fedora, CentOS, RedHat Enterprise Linux, openSUSE, and SUSE Linux
Enterprise:

Bryce Carson has kindly created binary packages for RPM-based Linux distributions, especially
those in the Fedora family. The packages are hosted on a COPR repository (“copper”); COPR is a
Fedora community service that builds packages and hosts third-party software repositories.

Fedora-based distributions (including RHEL and CentOS) need only enable the Copr repository,
and then the package will be available for installation:

sudo dnf copr enable bacarson/SLiM-Selection_on_Linked_Mutations
sudo dnf install SLiM

openSUSE and SUSE Linux Enterprise users must follow a slightly different set of instructions,
since these distributions do not use the DNF package manager, but instead use Zypper. The
repository file must be added to the directory containing all such files which Zypper manages.

openSUSE Leap:

Unfortunately, for the SLiM 4.1 release, openSUSE Leap has been dropped as a target for
binary packages due to package signing issues on Copr. Adventurous users may download
the source RPM package and rebuild it on their machine locally, but this does not have the
advantage of avoiding the time-consuming binary package build procedure.

openSUSE Tumbleweed:

sudo zypper add-repo https://copr.fedorainfracloud.org/coprs/bacarson/
SLiM-Selection_on_Linked_Mutations/repo/opensuse-tumbleweed/bacarson-SLiM-
Selection_on_Linked_Mutations-opensuse-tumbleweed.repo
sudo zypper refresh
sudo zypper install SLiM

The installed executables (slim, eidos, and SLiMgui) are placed in /usr/bin. The /usr/bin
directory is normally in the search path defined by the $PATH environment variable, so the slim
and eidos command-line programs should be available in your terminal without any extra work;

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 61

https://github.com/MesserLab/SLiM-Extras/issues/new

SLiMgui can also be launched from the terminal, but is integrated with the desktop environment in
FreeDesktop compliant environments (GNOME, KDE, MATE, XFCE, LXQt, and so forth).

Arch Linux:
Graham Gower has kindly created an installer package for Arch. The first step it to acquire the

PKGBUILD file from https://aur.archlinux.org/packages/slim-simulator; then install with makepkg -si.
This package is hosted on the Arch User Repository; more detailed instructions for installing
packages from that repository can be found on the Arch Linux wiki at https://wiki.archlinux.org/
index.php/Arch_User_Repository#Installing_packages. If that procedure works for you, you now
have slim and SLiMgui! If you are using a standard desktop environment, such as GNOME or
KDE, and SLiMgui has not been integrated with the desktop environment by this procedure, you
may want to run the relevant commands in the DebianUbuntuInstall.sh script described in the
instructions for Debian and Ubuntu users before this subsection. The script is hosted in the SLiM-
Extras repository on GitHub, at https://raw.githubusercontent.com/MesserLab/SLiM-Extras/master/
installation/DebianUbuntuInstall.sh.

2.2.3 Building SLiM from sources on Linux
It is recommended that users on Linux use their platform’s installer for SLiM if possible; that will

avoid these complicated instructions. See section 2.2.2 for details.
Details of building SLiM at the command line on Linux and other Un*x platforms (including

macOS) may vary depending on the platform, but the basic gist should be the same. First, you
need to obtain the SLiM source code. It is recommended that you obtain the code for the latest
supported release from SLiM’s home page at http://messerlab.org/slim/:

However, you may also obtain the current development version from SLiM’s GitHub repository
at https://github.com/MesserLab/SLiM. Be aware that the version on GitHub may not be
thoroughly tested – indeed, it may not even compile. We try to keep it working, though.

The following steps have changed considerably with the release of SLiM 3, since we have
switched from using the make build tool to using a tool called cmake that is considerably more
modern (but also a bit more complicated to use). The cmake tool is often preinstalled on Linux
systems, but if it is not installed on your machine, you will need to install it before proceeding.
You can tell whether cmake is installed on your system by executing this in a terminal window:

which cmake

If a path is printed in response, cmake is installed; if not, it needs to be installed. On macOS,
cmake can be installed using MacPorts (https://www.macports.org) or Homebrew (https://brew.sh);
which installation system you use seems to be largely a matter of taste, although you can read
strong opinions in both directions online. On Linux and other Un*x systems, you can install cmake
using your package manager (e.g., sudo apt-get install cmake on Ubuntu and Debian), or
directly from the cmake home page at https://cmake.org/download. The cmake tool builds a
makefile for us, which can then be used to build with make, as we will see next.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 62

https://aur.archlinux.org/packages/slim-simulator
https://wiki.archlinux.org/index.php/Arch_User_Repository#Installing_packages
https://wiki.archlinux.org/index.php/Arch_User_Repository#Installing_packages
https://raw.githubusercontent.com/MesserLab/SLiM-Extras/master/installation/DebianUbuntuInstall.sh
https://raw.githubusercontent.com/MesserLab/SLiM-Extras/master/installation/DebianUbuntuInstall.sh
https://raw.githubusercontent.com/MesserLab/SLiM-Extras/master/installation/DebianUbuntuInstall.sh
http://messerlab.org/slim/
https://github.com/MesserLab/SLiM
https://www.macports.org
https://brew.sh
https://cmake.org/download

With cmake installed, go to a new Un*x shell window and type:

cd SLiM
cd ..
mkdir build
cd build
cmake ../SLiM
make slim

The first cd command changes the current directory to your SLiM source directory (you will
need to supply the appropriate path there instead of just SLiM), and the next cd command changes
to the enclosing directory (of course you can just cd there directly). We then use mkdir to create a
build directory adjacent to the SLiM source directory in the filesystem; this keeps all of the cruft
associated with the build process separate from SLiM’s sources. We cd into that build directory,
and then tell cmake to update its information regarding SLiM. The last command actually builds
the slim command-line tool. Note that SLiM uses C++11 extensions; the g++ compiler installed
on your machine must be recent enough to support C++11 or your build will fail. The slim tool
will appear as an executable file in the build directory once the build is finished (not, as in SLiM
2.x, in a bin directory inside the source directory).

You can copy the built executable to a different location, such as /usr/bin/, if you wish; the
standard location for user-built executables depends upon your Un*x flavor, so consult your
documentation to install it in a standard location. Depending upon your system configuration,
executing:

make install slim

may (or may not) automatically copy the slim executable to a standard location on your system.
You may need administrator privileges to do that, in which case you may need to do:

sudo make install slim

The eidos command-line tool can also be built on Un*x platforms following the same
procedure, with the final command make eidos; a simple make command will build both. Building
SLiMgui is a more complicated and platform-dependent topic since it depends upon the Qt library
(see section 2.4).

Once cmake’s information has been set up, rebuilding after minor source changes can generally
be done just by re-executing the make slim command in the build directory. If you make major
changes to the SLiM sources – and in particular, if you add or remove source files, or do a
git pull of new changes from GitHub – you might need to tell cmake to update its information
before you run make to rebuild the project. This is necessary because SLiM’s CMakeLists.txt
configuration file uses a cmake feature called GLOB to collect a list of source files to be used for
building, and that means that cmake cannot automatically re-update in all cases. If you make such
changes to the sources, you should do the following:

cd SLiM
touch ./CMakeLists.txt

Then cd to the build directory and execute make slim to rebuild; cmake’s cached information
will be rebuilt, since the configuration file was touched, so you do not need to re-run cmake.

The build instructions above use a build directory named build, and use a default “build type”
with cmake (producing a Release build), and this will suffice for almost all SLiM users; you need
not read further unless you really want to complicate your life. In fact, however, you can name
your build directory whatever you wish, and you can have more than one build directory if you

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 63

wish; and you can specify a build type of either Release or Debug with cmake. For example, you
could do this to make a build directory named Release, using the Release build type:

cd SLiM
cd ..
mkdir Release
cd Release
cmake -D CMAKE_BUILD_TYPE=Release ../SLiM
make slim

A Release build has optimization turned on and debugging symbols turned off, giving you a
lean, fast executable suitable for most purposes. This is cmake’s default when building SLiM; the
original build instructions above produced a Release build since no build type was specified.
Similarly, you could make a Debug build in a directory named Debug:

cd SLiM
cd ..
mkdir Debug
cd Debug
cmake -D CMAKE_BUILD_TYPE=Debug ../SLiM
make slim

A Debug build has optimization turned off and debugging symbols turned on, giving a large
symbolicated build suitable for runtime debugging. Debug builds also have some additional
runtime error checking turned on in SLiM, designed to catch a variety of internal error states that
might cause a Release build to crash or produce incorrect output. Most users, however, will be
fine with just the standard build directory named build and the default cmake build type.

2.3 Installation on Windows
For users on Windows (64-bit only, Windows 7 or later; only tested on Windows 10 and 11, so

those are recommended), an installer that provides both slim and SLiMgui is available; see section
2.3.1. If you wish to build from sources (perhaps to get the latest changes from GitHub), see
section 2.3.2. Note that SLiM can also be installed on Windows under the WSL (Windows
Subsystem for Linux) as detailed in section 2.4.6; which environment is the better choice may be a
matter of taste, but may also depend upon what other tools you plan to use alongside SLiM.

The Windows port of SLiM, the pacman installer package, and the writeup of these installation
instructions were done by Russell Dinnage, the author of the slimr R package (see section 1.10).
Thanks Russell!

2.3.1 Installing SLiM with an installer on Windows
On Windows, a full installation of SLiM, including the slim and eidos command-line tools and

SLiMgui, can be done using the MSYS2 Software Distribution and Building Platform for Windows.
MSYS2 can be downloaded from https://www.msys2.org/. After following the MSYS2 installation
instructions, you can install SLiM using the following steps:

(1) Click on “search” in the Start menu, and start typing msys2. Click on “MSYS2 MSYS” when
it appears. This will open an MSYS2 command prompt.

(2) At the MSYS2 command prompt, make sure the MSYS2 package manager is fully up to date
by typing:

pacman -Syu

(3) Then install SLiM by typing:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 64

https://www.msys2.org/

pacman -S mingw-w64-x86_64-slim-simulator

You should see something like this, ending with a prompt:

Type Y at this prompt to continue. You should then get output like this:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 65

SLiM should now be installed. You can find slim.exe, eidos.exe, and SLiMgui.exe in your
MSYS2 installation directory under <msys2_install>\mingw64\bin. In a typical MSYS2 install, for
example, you could find your executables in C:\msys64\mingw64\bin.

All executables should now work if you run them at a command prompt. You may also double-
click on the SLiMgui.exe executable to run the SLiMgui graphical user interface. You may want to
create a shortcut to SLiMgui for easier access.

Note that once this is done, you can update to the latest SLiM version with pacman -Syu.

2.3.2 Building SLiM from sources on Windows
Rather than installing SLiM on Windows using the pacman installer tool (see section 2.3.1), you

can build SLiM from sources if you wish. This process is relatively complicated and error-prone;
therefore, it is recommended that you use the installer instead, as described above, unless you
need to run SLiM under the debugger, or obtain the latest changes from GitHub.

First, you will need the MSYS2 Software Distribution and Building Platform for Windows, which
has the build tools necessary to compile SLiM on Windows. MSYS2 can be downloaded from
https://www.msys2.org/. After following the MSYS2 installation instructions, you can compile and
install SLiM using the following steps:

(1) Download and unzip SLiM’s source code, either from https://messerlab.org/slim/ (for the last
released version) or from SLiM’s GitHub repository at https://github.com/MesserLab/SLiM (for any
release version, or for the current development head).

(2) Click on “search” in the Start menu, and start typing msys2. Click on “MSYS2 MinGW 64-
bit” when it appears. This will open an MSYS2 command prompt. Note that it is important that
you choose the “MinGW 64-bit MSYS” command, rather than the “MSYS2 MSYS” command,
because this makes sure the environment is set up correctly to run the correct build tools.

(3) At the MSYS2 command prompt, install prerequisites for SLiM by typing:

pacman -Syu
pacman -S mingw-w64-x86_64-cmake

(4) Now cd into the directory where SLiM was unzipped, and create a new directory to hold the
build by typing:

mkdir build

(5) Build SLiM with the following commands (note the trailing double dots should be included):

cd build
cmake -G"MSYS Makefiles" ..
make

(6) Install into the directory of your choice with:

DESTDIR="<install_dir>" make install

For <install_dir> you might wish to use the MSYS2 bin directory (C:\msys64\mingw64\bin for
a typical install), but that is not required.

Note that building from sources can take some time. At the price of slowing down everything
else you’re doing on your machine, you can speed up compilation by passing the -j option to
make, which tells it to use multiple cores for compilation tasks. For example, if you wish to use six
cores for building SLiM, then instead of using just make, as above, use:

make -j6

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 66

https://www.msys2.org/
https://messerlab.org/slim/
https://github.com/MesserLab/SLiM

The instructions above do not build SLiMgui, since that requires a couple of additional steps.
Once you have a build of SLiM working with the above instructions, see section 2.4.4 to add
SLiMgui to your build.

2.4 Building SLiMgui
The SLiMgui application uses a cross-platform object kit called “Qt” (pronounced “cute”). It

was originally named QtSLiM (“cute SLiM”), and you will see that name still used internally in
SLiM’s code. In SLiM 3.5, it replaced the old Cocoa-based SLiMgui (now called SLiMguiLegacy).
This port from Cocoa to Qt provides a graphical modeling environment on Linux, macOS,
Windows, and the Windows Subsystem for Linux (WSL), based upon a single unified code base.

This section will discuss how to build SLiMgui, which is fairly complex because of its external
dependency on the Qt 5 widget library. An installer that installs both slim and SLiMgui might be
available for your platform (see the previous sections); if so, that provides a much simpler
alternative unless you really need to build SLiM from sources. If you only need to build the slim
command-line tool, see section 2.1.2 for macOS instructions, section 2.2.3 for Linux instructions
(these should work for the Windows Subsystem for Linux also), and 2.3.2 for Windows
instructions. If you also need to build SLiMgui, see section 2.4.1 for macOS, section 2.4.2 for
Linux, section 2.4.4 for Windows, and section 2.4.6 for the Windows Subsystem for Linux.

2.4.1 Building SLiMgui on macOS
You should be running macOS 10.13 or later to run SLiMgui, in general; this is the minimum

system version for Qt 5.15.2, which is strongly recommended on macOS. If you’re on an older
version of macOS, you can probably install an older version of Qt 5 to match; Qt 5.11.x supports
macOS 10.11 and later, for example. However, these combinations have not been tested as
extensively, and SLiMgui’s code will produce a compile-time error (which you can disable) if you
try to build against any Qt 5 version earlier than 5.15.2, as a safeguard against people using an old
Qt 5 version unintentionally. Note that Qt 6 has been released, but SLiMgui has not been ported
to it; Qt 5 is required. Alternatively, you can continue to use the SLiMguiLegacy app, which can
be built on macOS in Xcode (see section 2.1.2); it is no longer supported, but may work for you.

Please note that for end users of SLiM there is usually no need to build SLiMgui on macOS; it is
included in the standard double-click installer for SLiM on macOS. If you download and run that
installer (see section 2.1.1), you should then be all set; you do not need to read this section.

For those who do want to build SLiMgui themselves (perhaps to get bug fixes and other changes
from the GitHub head before they are released, or to be able to run SLiMgui under the debugger),
this section will show how to build SLiMgui on macOS.

The first step is to install Qt, which is not installed by default on macOS. There are several
ways to do this: via MacPorts, via Homebrew, or via the Qt Online Installer; read on.

If you are a MacPorts user, you can install it with sudo port install qt5; this will give you Qt
5.15.2 as of this writing, so it should work well. Other versions are also available, such as qt59
(Qt 5.9.9), qt511 (Qt 5.11.3), and qt513 (Qt 5.13.2), but see the warning above; in any case, you
should not use a Qt version older than 5.9.5. The last time I checked, MacPorts did not
automatically set up a symlink to qmake, so after installing you should probably execute the
command sudo ln -s /opt/local/libexec/qt5/bin/qmake /opt/local/bin/qmake to do so (after
checking that that is where MacPorts put qmake for you). If you want the Qt Creator IDE as well
(perhaps to run SLiMgui under the debugger), do sudo port install qt5-qtcreator; Qt Creator
will then be available at /Applications/MacPorts/Qt5/Qt Creator.app.

If you are a Homebrew user, the package named qt5 currently provides Qt 5.15.3; do not use
the qt package, as that will install Qt 6, which you do not want. The command would thus be

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 67

brew install qt5; using sudo should not be needed, but if the install fails due to permissions then
try sudo brew install qt5. You can get qmake on your $PATH (so Terminal can find it) after this
install by doing echo 'export PATH="/opt/homebrew/opt/qt@5/bin:$PATH"' >> ~/.profile or,
alternatively, you can set up a symlink to it with sudo brew link qt5 —force, or if that doesn’t
work, sudo ln -s /usr/local/Cellar/qt/<QT_VERSION_HERE>/bin/qmake /usr/local/bin/qmake.
If you want the Qt Creator IDE as well (perhaps to run SLiMgui under the debugger), you should be
able to install it with brew install qt-creator and a link to it in your /Applications folder
should be created by Homebrew automatically. (You probably also want to do brew install git
to install git, and brew install cmake to get cmake; both may be needed below.)

If you are not a MacPorts or Homebrew user, you can install Qt using their “Online Installer”.
Start by surfing to https://www.qt.io/download-open-source. Scroll down past all the verbosity
about their different license types; you want to download the free, open source license version of
Qt. At the bottom of the page is a large green button labeled “Download the Qt Online Installer”.
Click that and you will land on a page with a large green button that says “Download”. Click that
and the installer will download. Double-click the downloaded .dmg file in Finder, run the installer
it contains, and follow its instructions. It will likely make you sign up for a “Qt Account”; this is
free, albeit somewhat annoying. (If you install with MacPorts or Homebrew you can avoid this
step.) It defaults to installing in a directory named Qt inside your home directory; that is fine. After
you choose the destination, the installer will give you a choice of versions to install. As discussed
above, 5.15.2 is the strongly recommended choice for SLiMgui on macOS. The installer defaults
to installing Qt Creator for you, which is harmless and might prove useful; it will be located inside
the install folder – at /Users/bhaller/Qt/Qt Creator.app, for me.

Next, confirm your installed Qt version. Try executing qmake --version in Terminal:

bhaller@lanois ~ % qmake --version
zsh: command not found: qmake

If you installed with MacPorts or Homebrew following the above procedures, the correct path
might already be set up; having installed with the Online Installer, it is not, so you will get an error,
as above. If you get an error, or if the version of Qt that qmake reports is not what you expected
(i.e., it is finding some other installation of Qt), see the troubleshooting guide in section 2.4.3.

Next, build SLiMgui. We will use the qmake tool to do so; it is also possible to use cmake, as in
the Linux build instructions in the next section, but on macOS qmake currently produces a better
build of the app (as a “bundle”, properly formed for macOS). If you experience a problem with
qmake, you can try following the Linux build instructions below to use cmake, starting with setting
up the Qt5_DIR environment variable as described in section 2.4.3, but it is not recommended.

Here, we’re proceeding with qmake, then. As with building the slim and eidos command-line
tools, we want to use a build directory that is parallel to SLiM’s source directory – and let’s use a
different one than we perhaps used for building slim and eidos, since we built those with cmake.
So execute the following:

cd SLiM
cd ..
mkdir SLiMgui_QMAKE
cd SLiMgui_QMAKE
qmake ../SLiM
make

The first line, cd SLiM, should be a cd to the SLiM source code directory that you previously
obtained from the Messer Lab’s SLiM home page or from GitHub (see section 2.1 and 2.2). Then
you cd to the directory above that, and make a build directory named SLiMgui_QMAKE parallel to

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 68

https://www.qt.io/download-open-source

the source code directory (the name of the build directory is arbitrary). Do a cd into the build
directory, execute qmake providing the path to the source code directory (and supplying the full
path to qmake if you did not set it up to be in your path). Finally, execute make to do the build.

If all that went without a hitch, after a minute or two the build should be complete. The
SLiMgui application should be located at ./QtSLiM/SLiMgui.app; you can find it in Finder and
double-click it, or launch it from Terminal with ./QtSLiM/SLiMgui.app/Contents/MacOS/SLiMgui.

As a final step, install SLiMgui in the standard folder /Applications rather than having it just
live in its build directory. This will help macOS find it – for Launchpad, for opening .slim model
files automatically when they are double-clicked, and for other such purposes. After make finishes,
you can simply execute the command sudo make install, which should install it for you after you
type in your administrator password. Alternatively, you can copy SLiMgui.app to /Applications in
the Finder, if you prefer. After installing it, you might want to drag SLiMgui from /Applications
into your Dock for easy access.

2.4.2 Building SLiMgui on Linux / Un*x
First of all, please note that for end users of SLiM there is often no need to build SLiMgui on

Linux; standard installers for SLiM are available on several Linux platforms. If you can use an
installer (see section 2.2.2), you should then be all set; you do not need to read this section.

Building SLiMgui with cmake on Linux is fairly straightforward, but is not enabled by default
since we don’t want to cause trouble with builds of SLiM on computing clusters and other
platforms where SLiMgui is not needed (and might fail to build). Before getting into the details, let
me first say up front: I am not an experienced user of Linux, I don’t know anything about different
Linux distros, I don't know anything about software installation on Linux, nor am I particularly
good with obscure platform-dependent compiler/linker/toolchain/makefile issues. The instructions
below were puzzled out with some effort, but may be wrong on some distros/versions. If you run
into a problem with these instructions, and you figure out a solution, please let me know so that I
can promulgate that information.

The first step is to check your existing Qt version. On some Linux platforms Qt may already be
preinstalled. You can check the version on your system by executing qmake --version. On
Ubuntu 18.04 LTS and 20.04 LTS, however, qmake is not present, because Qt is not preinstalled,
and so that command will likely give an error of some kind – indeed, it may urge you to install the
qtchooser package, but that is not recommended (see section 2.4.3 for discussion). If you do
have Qt already installed, you might see something like this:

bhaller@darwin-ubuntu:~$ qmake --version
QMake version 3.1
Using Qt version 5.9.5 in /usr/lib/x86_64-linux-gnu

That indicates that Qt 5.9.5 is already present on the system.
What version of Qt 5 is best for SLiMgui? Officially, we support Qt 5.9.5 and later (that is the

earliest version we test on). Qt, like Ubuntu, designates some versions as “LTS” (Long-Term
Support); these are considered the most stable versions, and receive bug fixes and patches for the
longest time. As of this writing, the most recent LTS version of Qt 5 is 5.15.2, and it works well for
me. I have not noticed any important issues with any Qt 5 version from 5.9.5 forward, though, so
in general it is probably fine to go with whatever the default version is for the installer that you
choose to use (see below). They do fix lots of bugs in each Qt release, though, so a more recent
version might be better, especially if you experience problems with an older version. Note that
Qt 6 has been released, but SLiMgui has not been ported to it; Qt 5 is required.

The next step is to install Qt (assuming whatever may be preinstalled is insufficient). There are
several possible ways to do this, depending upon the distro you’re on. In Debian/Ubuntu, do:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 69

sudo apt-get install qtbase5-dev

On Ubuntu 18.04 LTS this installs Qt 5.9.5, which is the earliest version of Qt we support; on
Ubuntu 20.04 LTS it gives you Qt 5.12.8; and on Ubuntu 22.04 LTS it gives you Qt 5.15.2. On all
recent Debian versions it gives Qt 5.15.2. Of course the version provided by the default install
will change over time, so the versions mentioned here are just for reference. If qtbase5-dev
doesn’t work for you, try qt5-default.

On Arch, you probably just want to use the SLiMgui installer created by Graham Gower (see
above), which will pull in Qt as a dependency automatically, but if you do want to install Qt
yourself for some reason, you can run:

pacman -S qt5-base

If those installers don't work well for you, or if you want more control over which version of Qt
you’re getting, where it goes, etc., you can use the Qt “Online Installer”. To do that, here is a link
about installing Qt on Ubuntu: https://wiki.qt.io/Install_Qt_5_on_Ubuntu. This is a much more
complicated route, however, and is not recommended. To run the online installer you will need to
create a “Qt Account” (free, but annoying), and things like the path to qmake and the Qt
configuration for cmake will not be set up automatically. Fixes for those issues will be covered in
the troubleshooting guide in section 2.4.3, but if you use the standard distro installer instead, you
probably won’t have to deal with them in the first place.

Next, confirm your installed Qt version. Try executing qmake --version again:

bhaller@darwin-ubuntu:~$ qmake --version
QMake version 3.1
Using Qt version 5.9.5 in /usr/lib/x86_64-linux-gnu

Here we see that Qt version 5.9.5 is installed (because here we installed with apt-get on
Ubuntu 18.04 LTS). If Qt was preinstalled, your system might still find the old preinstalled qmake;
or if Qt was not preinstalled, your system might be unable to find the newly installed qmake, and so
you might get an error. In those cases, see the troubleshooting guide in section 2.4.3.

Next, build SLiMgui. Now that you have a good version of Qt installed, the rest is (maybe)
easy. You will use cmake as described in section 2.2, but with an additional flag that tells cmake to
include SLiMgui as a target (in addition to the eidos and slim targets, which will build as usual). If
you have already built slim and eidos, you can use the same build directory to build SLiMgui;
otherwise you will need to make a new build directory:

cd SLiM
cd ..
mkdir build
cd build
cmake -D BUILD_SLIMGUI=ON ../SLiM
make SLiMgui

make install # optional; see the fourth following paragraph

The -D BUILD_SLIMGUI=ON flag passed to cmake tells it to include SLiMgui in its list of targets,
since it does not do so by default. The final line, make SLiMgui, builds only the SLiMgui target; if
you want to build slim and eidos as well, you can simply do make.

If you get an error at this stage that cmake can’t find necessary configuration information for Qt,
you will need to help it find Qt with Qt5_DIR or CMAKE_PREFIX_PATH; see section 2.4.3.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 70

https://wiki.qt.io/Install_Qt_5_on_Ubuntu

Once the build is finished, you should have a built SLiMgui app in your build directory that you
can launch with the command:

./SLiMgui

As usual you can copy/move the executable to a standard location if you wish; the command
make install does this automatically, defaulting to the standard location /usr/local/bin. It will
also integrate SLiMgui into the desktop environment. You can then delete the build directory and
the sources; the installed app does not need them. Alternatively, you could add the directory
where SLiMgui lives to your PATH environment variable if you wish to execute it from there.

If you find that SLiMgui won’t run, particularly after you do make install or otherwise copy/
move it, with an error like “error while loading shared libraries: libQt5Widgets.so.5:
cannot open shared object file”, you may need to give the loader a path to your Qt libraries;
see the troubleshooting guide in section 2.4.3.

Finally, if you open the About panel in SLiMgui, in the lower left it will show the version of Qt
against which it was built. If the version you see there is not the version of Qt you installed and
intended to use, or if SLiMgui gives you an error on launch that the run-time Qt version does not
match the build-time Qt version, you will probably need to set up the Qt5_DIR environment
variable after all; again, see section 2.4.3.

Before we finish, it is worth mentioning that there are two alternative ways to build SLiMgui.
The first way is to use qmake instead of cmake; because SLiMgui is based on Qt, the qmake build tool
provided with Qt works with it. You can do this at the command line in much the same way as
with cmake; mkdir and cd to a parallel build directory as above, execute qmake ../SLiM, and then
execute make. The qmake configuration is only set up to build SLiMgui; it will not build eidos or
slim. With qmake, you can find the built executable at ./QtSLiM/SLiMgui if you don’t use make
install to install it elsewhere (/usr/local/bin by default). The macOS installation instructions in
the previous subsection use qmake, so you might refer to them. If you have trouble getting the
cmake build of SLiMgui to work, try using qmake instead; it often smoothes out Qt-specific issues.

The second alternative way to build and run SLiMgui is with Qt Creator, the development
environment for Qt; you can double-click the SLiM.pro project file at the top level of your SLiM
local repository to launch Qt Creator (or, if double-clicking the file doesn’t work, launch Qt
Creator and then open the SLiM.pro file from within the app). The main reason that you might
want to use Qt Creator is that it provides a debugger, which might be useful to pin down a crash or
other problem. However, this is really only useful for experienced programmers; caveat lector.

OK, now you have SLiMgui! You may notice that SLiMgui does not have an application icon
until it is launched, and that it does not appear in the application launcher, and that the .slim file
extension is not registered to SLiMgui (and so double-clicking .slim files in your Linux windowing
system doesn’t launch SLiMgui and open the file), and so forth. These issues are external to
SLiMgui itself; they have to do with how SLiMgui is registered as an application in the desktop
environment. The standard SLiM installers for most Linux platforms perform this “desktop
integration” for you, but if you build SLiMgui yourself, as we have done here, this desktop
integration remains to be done. If you want to do it, you can find the appropriate commands in
the installer script for your platform (see section 2.2.2), and try running them for yourself.
However, there is no harm to not doing those steps, if you don’t mind the lack of integration with
the desktop environment.

When you run the app, if things seem poorly scaled (small buttons, tiny text), or if you just want
things to be larger for readability on a screen with high pixel density, see section 2.4.3. Also, if
you get square “missing symbol” icons where little pythons should be next to Python recipes under
the File menu, see section 2.4.3.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 71

2.4.3 Troubleshooting SLiMgui build issues on Linux / Unix
In this subsection I’ll try to anticipate some of the most common difficulties with getting

SLiMgui to build on Linux. See section 2.7 for runtime issues after you have built SLiMgui.

The qmake command can't be found
If you execute qmake --version and get some kind of error that qmake can’t be found, you’ll

want to track down the location of qmake. (If you’re trying to use cmake to build, finding qmake is
not strictly essential, but it helps you to find where your whole Qt installation is located, and to
check what version of Qt you installed, so it’s best to find it if you can.)

Since we are juggling a variety of distros and installation methods with these instructions, it
could be in several different places. The simplest thing is to try these commands:

find /usr -name qmake -print
find /opt -name qmake -print
find ~ -name qmake -print

If there’s more than one and you can’t tell which one is the one you just installed, you can run
each one with --version to find out its version. Having installed Qt with the Online Installer
(which is a common reason why it can't be found), I find that qmake is at /home/bhaller/Qt/
5.14.2/gcc_64/bin/qmake. You will want to use the qmake that is under a directory named
something like gcc_64 or clang, not other qmake installs that might be present under platform-
specific directories named android, wasm_32, etc., or under directories like Src, Examples, or Docs.

Having located the right qmake, we now want to help the system automatically find it. The
simple way is to make a symlink:

sudo ln -s /home/bhaller/Qt/5.14.2/gcc_64/bin/qmake /usr/local/bin/qmake

Use the correct path for qmake on your system, of course.
Alternatively, on Linux there is a tool called qtchooser is responsible for finding qmake and

other Qt tools. It is most useful if you want to have multiple Qt versions installed on your
machine, and switch between them. I’m not going to get into how to set it up and use it (which is
a bit technical); if you wish to use it, help is available online.

Tools like gcc, g++, cmake, git, etc. can’t be found, OR cmake can’t find OpenGL
If you experience problems that seem to be due to uninstalled tools or software, here are some

standard packages that you can try installing. They will be installed automatically for many
installation strategies, but might need to be manually installed in some cases, especially if you use
the Qt Online Installer. Try these commands:

sudo apt-get install build-essential
sudo apt-get install libfontconfig1
sudo apt-get install mesa-common-dev
sudo apt-get install libglu1-mesa-dev
sudo apt-get install cmake

If you still get an error from cmake that it can’t find OpenGL, try this:

sudo apt-get install libgl1-mesa-dev

You might also wish to install these additional packages, although they’re not required:

sudo apt-get install git
sudo apt-get install r-base-core

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 72

The cmake build fails because it can’t find Qt, or it builds with the wrong Qt version
If cmake builds against the wrong version of Qt, or if it gives an error like:

Could not find a package configuration file provided by “Qt5" with any of
the following names:

 Qt5Config.cmake
 qt5-config.cmake

then cmake needs help finding your Qt installation. The cmake build tool refers to an environment
variable named Qt5_DIR to find the various components of Qt that it needs. This seems to be
automatically set up by some installation procedures (or perhaps cmake is smart enough to find Qt
automatically when it is in certain standard install locations), but in other cases Qt5_DIR needs to
be set up in order for cmake to work. The simplest thing is to just set it in Terminal, like:

export Qt5_DIR=/home/bhaller/Qt/5.14.2/gcc_64

Use the corresponding path for your installation; again, the path I have given above is for an
Online Installer installation of Qt 5.14.2 in my home directory. Note that the path needed for
Qt5_DIR ends at the gcc_64 directory under the Qt install directory.

If you want this definition of Qt5_DIR to be more global and permanent, so you don’t need to
keep remembering to set it, you could put it in a startup script like ~/.bashrc.

Another option that also seems to work is to help cmake find Qt by set CMAKE_PREFIX_PATH, a
define that cmake uses to find libraries and such. Sticking with the example above of Qt 5.14.2
installed in my home directory by the Online Installer, I could build using cmake with:

cmake -D CMAKE_PREFIX_PATH=/home/bhaller/Qt/5.14.2/gcc_64
 -D BUILD_SLIMGUI=ON ../SLiM

That’s all one line in the terminal. The -D CMAKE_PREFIX_PATH=... define tells cmake where to
look for Qt and other libraries; the rest is the standard cmake build line for building SLiMgui.
Again, note that the path provided should be to the gcc_64 directory inside the directory for the Qt
version you want cmake to use.

Other issues
For other build issues, you might try building with qmake instead of cmake (see the end of section

2.4.2). For everything else, perhaps Google will help; please let us know any useful tips.
For post-install issues (when actually running SLiMgui), see section 2.7.

2.4.4 Building SLiMgui on Windows
Section 2.3.2 provides instructions for building SLiM on Windows. Those instructions do not

build SLiMgui, since it involves a few additional complications; that topic is covered here. See
section 2.3.2 for the base instructions, including installation of the MSYS2 build tools. It is
recommended that you successfully build SLiM before attempting to build SLiMgui, so that if
problems occur it is easier to debug them.

To build SLiMgui, you will first need to install the Qt 5 library, prior to running cmake. You can
install it with MSYS2 with the command:

pacman -S mingw-w64-x86_64-qt5-base

With Qt 5 successfully installed, you can then follow the instructions in section 2.3.2, but
substitute the following command line in place of the cmake command line there:

cmake -G"MSYS Makefiles" -DBUILD_SLIMGUI=ON ..

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 73

If you encounter problems, please see the next section.

2.4.5 Troubleshooting SLiMgui build issues on Windows
When you try to run the SLiMgui.exe file, you may get an error about “missing DLLs”. If so,

you need to add the MSYS2 bin directory to your PATH environment variable so that the Qt 5 DLLs
can be found. To do this, just click the search box in the Start menu and begin typing
environment, then click on “Edit the system environment variables” when it appears. In the
subsequent dialog box, click the “Environment Variables” button in the lower right corner. In the
“System variables” pane, find the entry for “PATH” (it may be spelled “Path” or “path” also; it is not
case-sensitive). Double-click on that entry, and in the next dialog box, click “New”. Now type the
MSYS2 bin path and click OK when finished. As discussed in section 2.3.1, the MSYS2 bin path is
C:\msys64\mingw64\bin for a typical installation of MSYS2 at C:\msys64, but if you chose a
different installation directory the bin path will be correspondingly different. After fixing PATH,
when you try to run SLiMgui.exe again it should work.

You might also get a more esoteric error message along the lines of “The procedure entry point
_Z20qResourceFeatureZlibv could not be located in the dynamic link library …\SLiMgui.exe”.
This error message means that Windows is using the wrong version of Qt 5, perhaps from a
previous installation. You could make sure Windows is using the version that has been installed
into your MSYS2 bin directory by putting it higher on your PATH environment variable, before any
other Qt 5 installations; unfortunately, this could break other software that relies upon a different
Qt 5 version. Happily, there is a simple solution that should always work and won’t break any
other software: copy the Qt 5 DLLs (prefixed with Qt5, e.g., Qt5Core.dll) from the MSYS2 bin
directory, where they should have been installed by pacman, into the same directory as your
SLiMgui.exe. Windows will look there before it looks in directories specified in the PATH variable,
so SLiMgui should then run without any change to PATH.

For other post-install issues (when actually running SLiMgui), see section 2.7.

2.4.6 Building SLiMgui on Windows with WSL
SLiM now builds and runs natively for Windows; see section 2.3 for details. Alternatively, it is

also possible to run SLiMgui on Windows using the “Windows Subsystem for Linux” (WSL), which
– despite its name – is essentially a Linux subsystem for Windows. These instructions for building
and running SLiMgui under the WSL come from Bernard Kim (thanks Bernard!); I have not tested
them at all, since I am not on Windows. If you have any improvements for these instructions,
please let us know (thanks to Chaz Hyseni for a few additions).

There are two ways to approach running SLiMgui under the WSL. The first way is to use
Microsoft’s new GPU-accelerated WSL 2, called the WSLg. At the time of this writing, the WSLg is
currently in “preview”, so this is prerelease software. Also, this method of running SLiMgui has,
thus far, only been demonstrated to work with Ubuntu 20.04 LTS; Ubuntu 18.04 produced only a
black window, and other Linux distros have not been tried. To use the WSLg you will have to
update your Windows to the latest version on the developer channel, which can introduce
instability to your system and is irreversible unless you do a fresh installation of Windows.
Installation instructions for the WSLg are at https://github.com/microsoft/wslg. Once the WSLg is
installed, you may be able to simply install SLiMgui using the standard Linux installer for the Linux
version you have installed inside the WSLg; see section 2.4.2 for the standard Linux installation
instructions. If the installer doesn’t work for you, you can follow Bernard’s build instructions
below, but ignore everything having to do with VcXsrv or X11 – skip steps 4, 7, 8, 9, and 10.

Whichever way you get SLiMgui built and installed to /usr/bin, it should probably then appear
under the Windows Start menu, as shown here:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 74

https://github.com/microsoft/wslg

If that works, then to run SLiMgui, you can simply click on the icon there; you do not need to
set up a Windows X server, or worry about any of the related X server configuration steps, or set up
a batch script for launching as described below. You are done.

If SLiMgui does not appear in the Start menu (apparently this sometimes happens, for reasons
unknown), you should still be able to run it in Linux, like any other binary, and again there should
be no need to worry about X server config or batch scripts.

Having gotten SLiMgui to run under the WSLg, you should be able to set up a Windows
“shortcut” to it if you wish. You can initiate this by right-clicking on the desktop (or wherever you
want the shortcut to reside) and choosing New > Shortcut. Configure it something like this:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 75

For the target of the shortcut (highlighted red in the screenshot above), make sure that the latter
half of the target’s specification is consistent with your Linux and SLiMgui installations. For
example, if you installed SLiMgui to /usr/local/bin with sudo make install and your WSLg
installation is using Ubuntu 20.04, then the shortcut’s target would be:

C:\Windows\System32\wslg.exe ~ -d Ubuntu-20.04 /usr/local/bin/SLiMgui

The second way, if you choose not to use the WSLg as described above, is to build SLiMgui
under the WSL 1 or WSL 2 and run it under an X server, VcXsrv, that handles its windowing and
graphics. You should be running a 64-bit version of Windows 10 with the Anniversary Update; the
Creator’s Update is recommended also. (I have no idea what these things are.)

There are ten steps:
Step 1 is to set up the Windows Subsystem for Linux. Microsoft provides installation

instructions; see https://docs.microsoft.com/en-us/windows/wsl/install-win10. The workflow
described here is for WSL 1. WSL 2 is included in the Windows 10 version 2004 update, which
was recently released (not, apparently, in 2004). Based on preliminary testing, changes to this
workflow for WSL 2 are given at the very end, after Step 10.

Step 2 is installing Ubuntu 20.04 LTS from the Windows Store. Other Linux distros might also
work, but have not been tested with SLiMgui.

Step 3 is optional: install Windows Terminal from the Windows Store for a nicer terminal
interface. If you don’t install Windows Terminal, just execute the bash command at the Windows
command prompt to get to a Linux shell where you can enter the commands below.

Step 4 is to set up VcXsrv. This is an X11 server for Windows – a windowing system server,
allowing Linux apps that use X11 to run inside windows on Windows. Note that Xming, an
alternative X11 server for Windows, seems to have problems with Qt apps that use OpenGL, such
as SLiMgui, so it should not be used. VcXsrv is found at https://sourceforge.net/projects/vcxsrv/.
Download the installer by clicking the big green button near the top of the page, then run it. More
extensive instructions can be found with Google if you hit bumps, of course. Do not run VcXsrv
yet; we will configure it below before running it.

Step 5 is to install the Linux dependencies you will need. Bernard recommends this:

sudo apt-get update
sudo apt-get install -y cmake gcc g++ qt5-default mesa-utils
sudo apt-get install -y libgl1-mesa-glx x11-apps unzip wget

It may be that not all of these packages are necessary, but they are what Bernard had installed
when he got all this to work, and if some are extra, it should be harmless.

Step 6 is to use an installer to install SLiM (see section 2.2.2) – which may or may not work, the
installers have not been tested under the WSL – or to download and build SLiMgui following the
instructions in section 2.4.2, which can be summarized as:

wget http://benhaller.com/slim/SLiM.zip
unzip SLiM.zip
cd SLiM
cd ..
mkdir build
cd build
cmake -D BUILD_SLIMGUI=ON ../SLiM
make SLiMgui

You can just execute make as the last step, instead of make SLiMgui, if you also want to build the
slim and eidos command-line tools.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 76

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://sourceforge.net/projects/vcxsrv/

Step 7, to be done before running VcXsrv, is to fix an issue with blurry fonts on high-resolution
monitors. Right-click on the VcXsrv icon (named “XLaunch”), go to the “Compatibility” tab, and
click the “Change high DPI settings” button. In the resulting panel, enable “High DPI scaling
behavior” and change the “Scaling performed by” popup to “Application” or “System Enhanced”.
Here are some screenshots of this step:

Step 8 is to run VcXsrv in “Multiple windows” and “Start no client” mode, with “Native opengl”
unchecked. Note the display server address here, or (as shown in the last screenshot below) by
hovering over the VcXsrv icon in your taskbar. The display server address will be in the format
hostname:display.screen. The number to note is the first number after hostname: – as long as this
display server number is provided, SLiMgui should be able to connect to the X server. It is possible
to have multiple display servers running, each with multiple screens. However, if VcXsrv is
allowed to automatically set the display server number by using -1 in the Display settings dialog
box (as in the screenshot below), and if no additional instances of VcXsrv are running, it will
default to one display server numbered 0 and one screen numbered 0. In the last screenshot
below, the end result of this automatic configuration is DESKTOP-H8HOPN2:0.0. Here are the
screenshots for this step:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 77

Step 9 is to unset the environment variable LIBGL_ALWAYS_INDIRECT in the Linux terminal by
entering:

export LIBGL_ALWAYS_INDIRECT=

This must always be done before running SLiMgui. The best solution to this is given in step 10, so
rather than doing this now in your terminal, you can just proceed to step 10.

Step 10, finally, is to run SLiMgui. You can run it from the build directory at the Linux
command line with ./SLiMgui. Since LIBGL_ALWAYS_INDIRECT needs to be unset, and since it is
best to feed the display server number to VcXsrv via an environment variable as well (to avoid
issues with the display server not being found), the best solution is to make a Windows batch script
that opens SLiMgui for you. To do this, open the Notepad app in Windows and type the following
commands into a new empty window:

bash -c 'export LIBGL_ALWAYS_INDIRECT=; export DISPLAY=:0; ~/build/SLiMgui'
pause

The path to SLiMgui should be its path in the Linux filesystem (e.g., ~/build/SLiMgui for the
example given here), not the path within Windows (e.g., C:\Users\Program Files). Also note the
display server number here; this should match the display server number configured for VcXsrv.
The display server address we noted before for this example was DESKTOP-H8HOPN2:0.0, so we
want to tell SLiMgui to connect to display server 0 by executing export DISPLAY=:0. It is typically
unnecessary to provide the full address, but doing export DISPLAY=:0.0 or export
DISPLAY=localhost:0.0 will also work (where localhost is DESKTOP-H8HOPN2:0.0 in this
example , but will be different for you). If you change the display server number when running
VcXsrv (e.g., manually set it to 1), this file must be edited to match the new number.

Save this file as type “All Files” and name it SLiMgui.bat. As long as you have VcXsrv running,
double-clicking this file will automatically run SLiMgui with the correct settings.

An error that might bite you at this stage, when you double-click the batch file to launch
SLiMgui, is:

error while loading shared libraries: libQt5Core.so.5: cannot open shared
object file: No such file or directory

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 78

This appears to happen on some systems because WSL 1 is missing a Linux kernel call that Qt
relies upon. You can work around it by stripping out the offending bit of the Qt core library, with
one of the following two commands:

sudo strip --remove-section=.note.ABI-tag /usr/lib64/libQt5Core.so.5
sudo strip --remove-section=.note.ABI-tag /usr/lib/x86_64-linux-gnu/libQt5Core.so.5

Use whichever command corresponds to the path to libQt5Core.so.5 on your system. I don’t
know why this works, but apparently it does. More information on this can be found at: https://
github.com/dnschneid/crouton/wiki/Fix-error-while-loading-shared-libraries:-libQt5Core.so.5. This
problem does not seem to occur for WSL 2.

If you have problems with the SLiMgui build in step 6, the troubleshooting tips in section 2.4.3
might be helpful; but then again they might not, since Windows with WSL is a different beast from
a normal Ubuntu installation.

If you get it all working, here is the glorious end result – SLiMgui running on Windows:

These instructions will launch SLiMgui in a standalone window on your Windows desktop, as in
the screenshot above. If you prefer to run it inside a Linux desktop environment (like running
under a VM), or if the standalone window approach doesn’t work for you, you might try using
xfce4 (https://medium.com/@dhanar.santika/installing-wsl-with-gui-using-vcxsrv-6f307e96fac0) or
Unity (https://www.zdnet.com/article/how-to-run-run-the-native-ubuntu-desktop-on-windows-10/).
However, this manual will not attempt to cover the details of those configurations. Chaz Hyseni,
who supplied this information, says that Unity didn’t work very well for him under WSL 1, but
xfce4 worked fine.

Further polish – installing SLiMgui in a standard location, making it findable by the standard
Windows mechanisms for launching apps so that you don’t have to launch it with a batch script,
making .slim files show the correct icon and launch SLiMgui when they are double-clicked, etc. –
may be possible, but these things remain a mystery at this time.

Changes for WSL 2. The instructions above are for WSL 1. If you install WSL 2 instead, a few
alterations need to be made. SLiMgui seems to work well in both, but in WSL 2 disk access is
much faster, so if you plan to generate large amounts of output WSL 2 might be preferable.
However, due to differences in virtualization, Ubuntu in WSL 2 has its own IP address and does
not share one with the machine, so connecting to the display server is a bit more complex, as we’ll
see below.

First of all, with WSL 2, every time Windows is rebooted one must run the Windows Powershell
as administrator and run the following command to allow connections to VcXsrv from Ubuntu:

Set-NetFirewallProfile -DisabledInterfaceAliases 'vEthernet (WSL)'

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 79

https://github.com/dnschneid/crouton/wiki/Fix-error-while-loading-shared-libraries:-libQt5Core.so.5
https://github.com/dnschneid/crouton/wiki/Fix-error-while-loading-shared-libraries:-libQt5Core.so.5
https://github.com/dnschneid/crouton/wiki/Fix-error-while-loading-shared-libraries:-libQt5Core.so.5
https://medium.com/@dhanar.santika/installing-wsl-with-gui-using-vcxsrv-6f307e96fac0
https://www.zdnet.com/article/how-to-run-run-the-native-ubuntu-desktop-on-windows-10/

This is not trivial to set up to run automatically on startup, since it has to run as administrator; one
can hope that Microsoft will find a way to make it unnecessary in a future version.

Second, when you run VcXsrv (Step 8 above), in the “Extra settings” panel the “Disable access
control” checkbox should be checked when using WSL 2, as in this screenshot:

The other settings in this panel remain the same. This stackoverflow thread discusses this setting:
https://stackoverflow.com/questions/61110603/how-to-set-up-working-x11-forwarding-on-wsl2.

Third, at the Ubuntu command prompt the display address should now be set with the
command:

export DISPLAY=$(awk '/nameserver / {print $2; exit}' /etc/resolv.conf 2>/dev/null):0

This looks up the correct IP address for the VcXsrv display server, which as mentioned earlier is
different from hostname on WSL 2 because Linux gets its own IP address.

Note that the LIBGL_ALWAYS_INDIRECT environment variable still needs to be unset with:

export LIBGL_ALWAYS_INDIRECT=

As before (Step 10), these two commands can be placed in a Windows batch script, so that you
can simply double-click the batch script to run SLiMgui with the correct configuration.

Note that if you install WSL 2, it actually allows you to choose whether to use WSL 1 or WSL 2
for your Linux installation(s); WSL 2, in a sense, contains both WSL 1 and WSL 2 within it (for now,
at least). Given that you installed WSL 2, if you forget which WSL version you have chosen to use
for a given Linux installation, you can always check by executing wsl -l -v at a Linux shell
prompt. If you install WSL 2 but choose to actually use WSL 1 for your Linux installation, then you
should follow the WSL 1 instructions, not the WSL 2 instructions. Could they make this any more
confusing? Who’s on first?

2.5 Installation with conda
An alternative to the aforementioned ways of installing SLiM (building from sources using

cmake, or using the macOS double-click installer), beginning with SLiM 3.3.2, is to install SLiM
using conda. conda is a package manager and environment manager that is available on many
Un*x and Linux platforms, including macOS. It is particularly useful for configuring self-contained
environments within which particular versions of particular packages are installed, without

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 80

https://stackoverflow.com/questions/61110603/how-to-set-up-working-x11-forwarding-on-wsl2

affecting the overall configuration of your machine. It is often used to set up a whole software
stack in a standard and reproducible way, such as on a computing cluster. If you’re already happy
with how you build/install SLiM, you can ignore this section, but if you use conda this information
may be of interest. Note that the conda installer does not install SLiMgui.

To install SLiM with conda, assuming you already have conda set up and you are already within
the conda environment that you want to work in, just do:

conda install -c conda-forge slim

This means “install the package named slim from the conda-forge channel” (which is where
SLiM happens to live). If you're an experienced conda user, you may of course want to do some
variant of this. If you don’t yet have a conda environment set up and activated, you might want to
do something like this:

conda create -n test-slim
source activate test-slim
conda install -c conda-forge slim

The first command creates a new environment named test-slim, which we activate in the
second line. We are now working within a self-contained, quarantined environment, and software
that we install here will only be available when this environment is activated; it will not be
installed on the machine in the usual way, only within test-slim. Once you have done this, you
can check that the installation worked, as described in the next subsection. The conda-built
version of SLiM ought to be functionally identical to SLiM built from sources yourself, with the
same performance; there’s nothing magic going on here.

When you are finished, executing:

source deactivate

will then take you out of the test-slim environment, which makes the slim command unavailable
(or reverts you to whatever version of slim is installed on your machine outside of conda), until you
activate the environment again.

For more information on conda, a good place to start might be the anaconda installation
documentation at https://docs.anaconda.com/anaconda/install/. Let us know if you have any
issues – but please, don't contact us with conda technical support questions unless they are
specifically related to SLiM’s conda configuration. Thanks to Ian Caldas for testing, and for help
with this documentation; and a big thank-you to Jerome Kelleher for making this happen, and to
Kevin Thornton and Peter Ralph for contributions as well.

2.6 Testing the SLiM installation
Regardless of your platform or method of installation, it is a good idea to run some self-tests

after installing SLiM. In your Terminal window, Un*x shell window, or platform equivalent, run the
following two commands (while in the build directory where the slim executable resides):

./slim -testEidos

./slim -testSLiM

Each command should print a result line beginning with SUCCESS and then a count of successful
self-tests. If any other lines print, indicating failure of a test, you should probably contact us to ask
how to proceed; but see section 2.7, below, for a couple of exceptions to that.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 81

https://docs.anaconda.com/anaconda/install/

2.7 Post-installation issues
This section is about problems that occur once you have successfully built/installed SLiM and

SLiMgui, when you try to run them. See sections 2.4.3 and 2.4.5 for other issues that might arise;
the dividing line between this section and those sections is not entirely clear. If you figure out fixes
for other issues that should be documented here, please let us know.

This build of Eidos does not detect integer arithmetic overflows
You may see a warning message when you run the Eidos self-tests, something like:

WARNING: This build of Eidos does not detect integer arithmetic overflows.
Compiling Eidos with GCC version 5.0 or later, or Clang version 3.9 or
later, is required for this feature. This means that integer addition,
subtraction, or multiplication that overflows the 64-bit range of Eidos
(-9223372036854775808 to 9223372036854775807) will not be detected.

The error message says pretty much what the problem is: the compiler you are using is too old
to support integer arithmetic overflows (which an operation on integer values produces a result
that is outside of the representable range for integer values). Note that this means you are using a
very old compiler; but some computing clusters, in particular, use very old compilers by default
because they don't want to break old software. Your system administrator, if you have one, should
be able to tell you how to switch to building SLiM with a more modern toolchain.

However, in practice this warning is unlikely to cause you real problems. The representable
range for 64-bit integers, such as Eidos uses, is extremely wide (as stated in the error message).
Unless you expect that your code might actually trigger such overflows somehow, you might get
away with ignoring this message.

This build of Eidos does not have a working <regex> library
You may see a warning message when you run the Eidos self-tests, something like:

WARNING: This build of Eidos does not have a working <regex> library, due
to a bug in the underlying C++ standard library provided by the system.
This may cause problems with the Eidos functions grep() and readCSV(); if
you do not use those functions, it should not affect you. If a case where
a problem does occur is encountered, an error will result. This problem
might be resolved by updating your compiler or toolchain, or by upgrading
to a more recent version of your operating system.

As with the previous warning, this likely indicates that you are building with a very old
compiler or toolchain. If you don't use the regular-expression facilities provided by Eidos, this may
not affect you at all; if you get runtime errors when you try to do things with regular expressions,
you will need to update your toolchain.

This system does not appear to have a writeable temporary directory
You may see a warning message when you run the Eidos or SLiM self-tests, something like:

WARNING: This system does not appear to have a writeable temporary
directory. Filesystem tests are disabled, and functions such as
writeTempFile() and system() that depend upon the existence of the
temporary directory will raise an exception if called (and are therefore
also not tested). Other self-tests that rely on writing temporary files,
such as of readCSV() and Image, will also be disabled. If this is
surprising, contact the system administrator for details.

This problem generally comes up on computing clusters. Normally, the operating system
provides a directory such as /tmp on Linux where temporary files can be stored. Some computing

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 82

clusters do not provide this, because there is little or no local storage on the individual cluster
nodes. This is not, in itself, a problem for Eidos or SLiM; but as the warning message says, some of
the Eidos and SLiM self-tests will not be run because they need a temporary directory to write to.
If you have no other reason to believe that there is a problem, you can probably ignore this
warning, but be aware that some components of Eidos/SLiM have not been tested and might have
undiscovered problems. The lack of a temporary directory will also prevent you from using some
Eidos/SLiM features, particularly the tempdir() and writeTempFile() functions. If you want to
resolve this problem, try asking your system administrator for guidance.

The built app won’t launch because of shared library issues
This issue was written up for Linux, but may also be relevant on Windows, and certainly for

Windows under the WSL.
If SLiMgui builds successfully, but it won't launch because either (a) Qt-related shared object

files can’t be found, or (b) it says there is a mismatch between the run-time and compile-time Qt
versions, you may need to help the system’s loader find the Qt libraries. To do this, add the
appropriate path to the LD_LIBRARY_PATH environment variable:

export LD_LIBRARY_PATH=/home/bhaller/Qt/5.14.2/gcc_64/lib:$LD_LIBRARY_PATH

Use the corresponding path for your installation; again, the path I have given above is for an
Online Installer installation of Qt 5.14.2 in my home directory. Note that the path needed for
LD_LIBRARY_PATH ends at the gcc_64/lib directory under the version-numbered directory inside
the Qt install directory. You may wish to put this in a startup script like ~/.bashrc.

If you do this and you still get an error that the run-time Qt version does not match the compile-
time Qt version, you probably need to set up the Qt5_DIR variable as explained above; your run-
time version may now be correct, but you may be building against the wrong Qt version. Set up
Qt5_DIR and then do a new, clean build of SLiMgui. “Missing symbol” boxes after the Python
recipes in the File menu

Emojis are not displaying in SLiMgui

SLiMgui uses emojis in a couple of places. For example, it shows the “snake” emoji, 🐍 , after
Python recipes in the Open Recipe menu. Also, multispecies models typically set up emojis as
“avatars” for the species being simulated, which SLiMgui uses to represent the species in its user
interface. If you notice “missing symbol” boxes where emojis ought to be, or if they don't display
at all, you may need to install an emoji font that provides the “snake” emoji. In the Arch distro, at
least, the relevant package is named noto-fonts-emoji. Ubuntu 18.04 LTS and 20.04 LTS seem to
come with the necessary font preinstalled, but you could check that they are correctly installed on
your system (see https://fonts.google.com/noto).

If you still have problems with emoji display in SLiMgui, Graham Gower recommends surfing to
https://gist.github.com/charveey/091b11ea554436d15c7fffcf01129a8a and copying the file there
named 75-noto-color-emoji.conf into /etc/fonts/conf.d/. Then run fc-cache -f, and then
restart SLiMgui. Presumably more recent versions of Linux distros will fix these issues out of the
box; but note that since new emojis are being added all the time, some emojis may display
correctly while others do not. Furthermore, some emojis may display in SLiMgui in full color,
while others display only as an outline. Numerous bugs in Qt seems to be entangled with all of
this; there is not much SLiMgui can really do about it; the problem is really manifesting at lower
software levels. For further discussion, see https://github.com/MesserLab/SLiM/issues/306.

If widgets or text are small, or the SLiMgui window layout is screwed up
If you have a high-DPI screen that Qt doesn’t recognize as high-DPI, SLiMgui’s buttons and

widget text may be at 50% size, with rather awful consequences. On Linux, and on Windows

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 83

https://fonts.google.com/noto
https://gist.github.com/charveey/091b11ea554436d15c7fffcf01129a8a
https://github.com/MesserLab/SLiM/issues/306

under the WSL, you may be able to fix this by launching SLiMgui from Terminal while setting two
environment variables, like this:

QT_SCALE_FACTOR=2.0 QT_FONT_DPI=144 SLiMgui

These scale up the user interface and the fonts; users who simply want the interface to be larger
may also find them useful. Depending on your system, QT_SCALE_FACTOR=1.5 and/or
QT_FONT_DPI=128 might work better; experiment to find the optimum settings. If you decide that
you want to make such a configuration option permanent, and have it apply when you launch the
app from the desktop environment as well, you can set up the environment variable in the
appropriate Linux configuration script. If you want to launch SLiMgui from the desktop
environment, not from Terminal, then setting these variables up in ~/.bashrc may not suffice,
because the desktop environment may not use that file; you may need to put these settings in a
special config file that your distro and desktop environment uses. For Ubuntu some advice is at
https://help.ubuntu.com/community/EnvironmentVariables).

This issue also occurs on Windows (when not under the WSL) sometimes. Addison Lander has
supplied instructions for fixing the issue on that platform:

Click the Windows logo and type "System", click there, then “Advanced System Settings” →
“Advanced” → “Environment Variables” (toward the bottom of the dialogue box) → “New”.
From there, type QT_AUTO_SCREEN_SCALE_FACTOR for the variable name and 1 for the value of
the variable. Restart your machine and then relaunch SLiMgui.

Here are some screenshots Addison supplied:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 84

https://help.ubuntu.com/community/EnvironmentVariables

As with Linux, different values might work on different machines; for Addison, a value of 1
worked, but another person reported that a value of 2 worked for them (and 1 did not). You could
also try tweaking the QT_SCALE_FACTOR and QT_FONT_DPI variables mentioned above for Linux.
Basically, Qt seems to be quite screwed up on this point, and it’s a bit of a black box; you just have
to use trial and error to find settings that produce a good appearance on your machine. (If
anybody has deeper insight into this, particularly how to guess the correct values for a particular
machine, that would be helpful.) Sorry – in other respects Qt is a great framework, but they seem
to have dropped the ball on this, or perhaps I am using it incorrectly in some way.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 85

3 Running simulations in SLiMgui

This chapter introduces the SLiMgui graphical development environment for SLiM. The
screenshots throughout this manual are taken in SLiMgui or SLiMguiLegacy on macOS; the
appearance on Linux and Windows will of course be different in minor ways.

On macOS, SLiMgui is typically located in /Applications/ if you installed from the prebuilt
package; if you built SLiM from sources, you may run SLiMguiLegacy directly from Xcode. On
Linux and Windows, the location of SLiMgui depends upon how you built it; see chapter 2.

3.1 The SLiMgui simulation window
When you first launch SLiMgui, you should see a window similar to this:

The main sections of the window are indicated with red numbered circles; they are:
1. The scripting pane. This is where input commands for SLiM – in the form of an Eidos script –

are entered. A simple script is given by SLiMgui by default, as a starting point. At the top of this
pane you can see the pane’s title, “Input Commands”, and to the left of that title are six buttons,
and another one to the right of the title. All of the buttons in the window have tooltips, so just
hover the mouse over them to be reminded of what they do. We will see some of these buttons
again in later sections, but for now, in brief, here is what they do (left to right):

• Clear Debug Points: This clears “debug points” that you can set in SLiMgui to obtain
runtime debugging information about your model’s execution (see section 20.6).

1

2

3 4 5

6

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 86

• Check Script: This checks your script for errors. Since your script is also checked when
you restart (i.e., “recycle”) your model, checking your script with this button is usually
unnecessary, but can occasionally be useful.

• Prettyprint Script: This reformats your script by adding (or removing) tab characters at
the start of each line to indent them nicely, showing the logical structure of your script. If
you hold down the option (alt) key and click this button, it performs a more extensive
reformatting, producing a script in a completely standard format.

• Script Help: This brings up a documentation window that provides help on both Eidos
and SLiM, including information on functions, classes, and methods, as well as Eidos
operators and keywords, SLiM events and callbacks, and so forth.

• Show Eidos Console: This shows a console window in which you can enter Eidos
commands and get immediate, interactive output.

• Show Variable Browser: This shows a browser window in which you can examine the
values of all defined Eidos constants and variables, including elements of vectors and
properties of objects. This can be useful for debugging.

• Jump: This button pops up a menu that makes it easy to jump to different parts of your
script – different SLiM events or callbacks that you have defined. This is very useful for
navigating around in a large model script.

2. The output pane. This is where run output from SLiM – diagnostic output as well as output
explicitly generated by your simulation script – is shown. At the top of this pane you can see the
pane’s title, “Run Output”, surrounded by four buttons – and a fifth over at the right-hand edge.
Again, we will see many of these more later, but for now (left to right):

• Clear Output: This clears any output that has been dumped into the output pane,
providing a clean slate for further output.

• Dump Population State: This outputs the current population state to the output pane.
This is essentially the same output as you would get from a call to the outputFull()
method of Species, which we will see later on.

• Show Debugging Output: This opens a window that shows debugging output, which
SLiMgui keeps separately from the output of your model. Section 20.6 discusses
debugging output in detail, including the use of “debug points” in SLiMgui.

• Show Graph: This button pops up a menu, from which you can choose to display one
of a variety of built-in graphs supported by SLiMgui.

• Change Working Directory: This button changes the “working directory” used by
SLiMgui. If your script reads or writes a file using a simple filename like foo.txt rather
than a full file path like /Users/bhaller/Desktop/foo.txt, SLiM will use the current
working directory as the location of the file. By default the working directory is the ~/
Desktop folder, if you have one. Note this can be changed with the setwd() function.

3. The population view. This is a table view that displays all of the subpopulations in the
current simulation population. Since the simulation has not yet been started in the screenshot
above, there are presently no subpopulations, and thus the table is empty. This table will be
covered in more detail once we have a running simulation.

4. The individual view. This is where individual “organisms” in the simulation are displayed
from the subpopulation(s) selected in the population view. At present this is empty since there are
no individuals to display; the model has not yet started to execute.

5. The tick controls. The three large buttons are, from left to right:
• Step: This runs one tick of the SLiM model and then stops.

✓

?

>

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 87

• Play: This runs SLiM model ticks until you click it again to stop execution.
• Recycle: This resets SLiM back to the initialization stage of the simulation. Recycling

also clears the output pane, and re-parses the script in the script pane (which cannot
happen while you’re in the middle of executing a script). Whenever you change your
script, you will need to recycle for your changes to take effect.

The slider below the Play button controls the speed at which the simulation runs; usually you
will want this to be the maximum speed, but occasionally it is useful to slow the simulation down
to better see what is happening on short timescales. The small stopwatch button , overlaying the
Play button, is the Profile button, used to profile the speed and memory usage of a simulation (see
sections 21.5 and 21.6). The Tick textfield shows the tick that SLiMgui is about to execute; if you
press the Step button, the tick shown will execute. Similarly, the Cycle textfield shows the cycle
that SLiM will next execute; unless you are doing multispecies modeling (see section 1.9 and
chapter 19), this will be the same as the Tick textfield. At present, in the screenshot, the simulation
is paused prior to the execution of initialize() callbacks, a special initialization stage that
happens first before the simulation begins to run.

6. The chromosome view. The two wide stripes show views onto the simulated chromosome
(empty at present since the simulation has not yet started); these will be discussed later. To the
right of those views are two buttons:

• Show Object Tables: This button, with the right-pointing hand icon, opens an auxiliary
window that contains several tables of useful information about the running model.

• Chromosome View Actions: This button, with the gear icon, pops up a menu with
various configuration options for the chromosome view. This gear button is used in other
places in SLiMgui’s user interface too, always to indicate an “action button” providing
commands and options that are specific to a particular part of the user interface.

This is a lot of information, and to avoid drowning in details we will now move on to other parts
of SLiMgui’s interface. We will see most of these buttons and commands again later, in applied
contexts that will make their use more clear.

3.2 The script help window
Before moving on to writing your first Eidos script for SLiM, there are a few other components of

SLiMgui that it might be useful to briefly mention. One such is the script help window. If you
click the Script Help button , the script help window will open:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 88

This window can be used to browse information about both Eidos and SLiM. A list of top-level
topic headings appears on the left; you can click on these headings to expand them to show the
sub-headings and sub-sub-headings they contain. When you click on a “leaf” – an actual topic –
the information about that topic will be shown in the pane on the right. You can also use the
search field at the top of the window to search on a given topic; the button to the left of the search
field allows you to choose whether the search is done on topic headers only (for fewer and
probably more relevant results), or is done on the full help text of each topic (for more
comprehensive results).

A useful shortcut: an option-click (or alt-click, depending on your keyboard’s labels) on
anything in the Eidos script of the simulation window’s scripting pane will pop up the script help
window with search results for the item you option-clicked. This is very useful for quickly looking
up functions, methods, language keywords, and other topics.

3.3 The Eidos console

Clicking the Show Eidos Console button will show the console:

We won’t go into detail about this now, since we haven’t really discussed Eidos at all yet; but in

essence, this console is a window where you can execute arbitrary Eidos commands at any point
in your simulation. Commands are entered, and their output is shown, in the console pane on the
right-hand side of the window, following the > prompt. You can clear the console pane’s previous
output using the button, just as in the main window. The left-hand side is a scratch area where
you can work on longer blocks of script, using the arrow buttons at top to execute either the
selected line only, with , or the entire scratch area, with . If you want to experiment with
Eidos and try out ideas interactively, this is the place to do it; as new Eidos concepts are introduced
in this manual, you may wish to try them out.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 89

3.4 The Eidos variable browser

Finally, clicking the Show Variable Browser button will show a variable browser that looks
like this:

Only a few variables are presently defined; these are all constants – unmodifiable values

defined for your use by Eidos or SLiM. These constants include the values T and F representing
true and false, the values PI and E representing those mathematical constants (3.1415... and
2.7182...), the value INF representing infinity and NAN representing “Not A Number” (both
numerical constants used in floating-point arithmetic), and some others; these will be discussed as
they come up.

The built-in Eidos constants are shown in gray in the variable browser since they are
unmodifiable and, frankly, uninteresting. The variable browser will show other symbols in black
rather than gray (whether constants or variables). For example, you might try now entering x=10 at
the console prompt in the Eidos console window. After you press return to execute that command,
you will see the variable x appear in the variable browser, defined with a type of integer, a size of
1 (because 10 is a single value, as opposed to a larger vector of values), and a value of 10.

We will return to the variable browser in later sections to examine some of the objects defined
by SLiM. In general, however, just be aware that the variable browser exists, and that you can use
it to examine all of the Eidos variables that you will be working with in later sections. It can be a
useful tool for debugging.

3.5 Automatic code completion and command syntax lookup
In the next chapter, we will start exploring a simple neutral model in SLiM. As you start writing

scripts like that, you will sometimes find it difficult to remember the name of something you need
to use in your script – a function, a property, or a method. We are getting a bit ahead of ourselves,
but there is a final feature of SLiMgui to discuss here. Suppose you were writing a script, but you
couldn’t remember the name of the initializeGeneConversion() function. You could look it up
in the documentation, but in SLiMgui there is an easier way: code completion.

To try this out, first click in your script at the appropriate spot inside an initialize() callback,
and then start typing with init since you know you’re looking for an initialize...() function.
Now press the <esc> key, which requests the code completion feature from SLiMgui. In response,
you should see something like this:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 90

This is a pop-up list of all of the things Eidos knows about that start with init. The entry for
initializeGeneConversion() is second in the list; to accept it you could click on it, or press
down-arrow and then press return. You could also type a G, which dismisses the auto-complete
pop-up; now you have initG, and if you press <esc> again, initializeGeneConversion() will
conveniently be the first choice listed. (If you decide you don’t want to auto-complete after all,
just press <esc> again, or click elsewhere in the window.)

Having accepted initializeGeneConversion() as your choice, you might now also be unable
to remember what its parameters are. Again, SLiMgui has a feature that can help. Simply click
between the parentheses of the function call, and then look at the status bar at the bottom of the
window:

The function signature shown there reminds you of the parameters needed, including their types
and their names. Section 4.1.3 has further discussion about this feature, getting into details of the
structure and symbolism of the function signature, which would have little meaning before we
have started scripting.

As described in section 3.2, there is a script help facility provided in SLiMgui, which can be
called up with an option-click on any part of your script. If the function signature shown above is
not sufficient to jog your memory, and you want to see the full documentation for the
initializeGeneConversion() function, just option-click on the function name,
initializeGeneConversion, and the script help window will come up showing the results of a
search on that term:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 91

The full documentation for initializeGeneConversion() is shown, which should clarify any

remaining questions.
The code completion (with <esc>) and context help (with option-click) features work for

properties and methods as well. This may not mean much to you yet, since functions, properties,
and methods have not yet been formally introduced, but keep all this in the back of your mind as
you start exploring scripting in chapter 4.

3.6 Script prettyprinting
As you start writing your own scripts in SLiMgui, you may find that they look a bit raggedy

because their line indentation doesn’t follow standard coding conventions, like this:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
subpopCount = 5;

 for (i in 1:subpopCount)
sim.addSubpop(i, 500);
 for (i in 1:subpopCount)
 for (j in 1:subpopCount)
 if (i != j)
 sim.subpopulations[i-1].setMigrationRates(j, 0.05);
}
10000 late() {
sim.outputFull();
}

This is a contrived example (based on the recipe in section 5.3.2), but you really will find that
your script indentation starts to suffer as you change the structure of your code, moving code from
block to block, wrapping some code in loops and unwrapping other code, and so forth.
Indentation issues can make your code hard to read and maintain, but manually fixing the
indentation of each line is a hassle. Instead, you can just use SLiMgui’s automatic script

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 92

prettyprinting facility. Select “Prettyprint Script” from the Script menu, or click the button just
above the scripting pane, and your code will be reformatted:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 subpopCount = 5;

 for (i in 1:subpopCount)
 sim.addSubpop(i, 500);
 for (i in 1:subpopCount)
 for (j in 1:subpopCount)
 if (i != j)
 sim.subpopulations[i-1].setMigrationRates(j, 0.05);
}
10000 late() {
 sim.outputFull();
}

Only the line indentation is changed; all other aspects of your coding style are preserved,
including blank lines, brace style, spacing around operators, and so forth. As mentioned before,
you can option-click (alt-click) the Prettyprint Script button to have SLiMgui do more extensive
reformatting that does not preserve those things. In either case, prettyprinting your script is an
undoable operation, so try it and see whether you like the results.

3.7 Further SLiMgui features
SLiMgui has many more features, but they won’t make much sense until we have gotten into

writing scripts. For future reference, here is a cross-reference to some sections that present more
features of SLiMgui:

Running a simulation: section 4.1.9.
Viewing script block registration/deregistration: section 5.1.2.
Executing a simulation up to a specified tick: section 5.1.2.
Visualizing population structure and migration: sections 5.1.3 and 5.3.
Using the Play speed slider: section 5.2.2.
Using the Jump pop-up menu: section 5.4.
Viewing the recombination rate map and mutation rate map: sections 6.1.1 and 14.10.
Viewing the sex ratio, cloning rate, and selfing rate: sections 6.2.2, 6.3.1, and 6.3.2.
Viewing the registered mutation types and their distributions of fitness effects: section 7.1.
Viewing the registered genomic element types: section 7.2.
Viewing genomic elements and selecting a subrange of the chromosome: section 7.3.
Customizing display colors for mutations, genomic elements, and individuals: section 7.4.
Graphing of mutation and population dynamics in SLiMgui: chapter 8, section 11.1.
Alternative population display modes: section 12.3.
Haplotype display in the chromosome view: chapter 8, section 14.4.
Haplotype plots (not in the chromosome view): sections 13.3, 14.4, 16.9.
Live plots generated by R inside SLiMgui: sections 13.5 and 14.8.
Multispecies modeling in SLiMgui: chapter 19, particularly section 19.2, 19.3, and 19.5.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 93

Debugging output and “debug points” in SLiMgui: section 20.6.
Profiling the speed and memory usage performance of models: sections 21.5 and 21.6.
Manipulating SLiMgui from script using the SLiMgui Eidos class: section 25.13.

Many of these features of SLiM are covered in detail in the SLiM workshop, which is available
online, and is free and open to all; see section 1.10 for further information. Doing the workshop is
a great way to learn to use SLiMgui effectively.

Finally, note that SLiMgui knows the recipes presented in this cookbook, and can open them for
you directly. Just choose the recipe you want from the “Open Recipe” submenu under SLiMgui’s
File menu, and the recipe will open in a new SLiMgui window.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 94

4. Getting started: Neutral evolution in a panmictic population

This chapter will introduce the basic concepts involved in making, configuring, running, and
obtaining output from a simple neutral simulation.

4.1 A basic neutral simulation
There is a tradition in computer programming of introducing a new language by writing a

“hello, world” program. In Eidos, this minimal “hello, world” program is quite simple:

print("hello, world");

This single-line program calls a built-in function named print(), which prints whatever you tell it
to. Here, print is called with a single argument, the string “hello, world”, enclosed in quotes
that indicate it is a string. The semicolon at the end indicates to Eidos that the statement – the line
of code – ends at that point. If you are using SLiMgui, you can open the Eidos console window
now and enter this command at the prompt; after you press return, "hello, world" will be shown
as output. In SLiM, we use Eidos as a tool for building and controlling SLiM simulations; for a
complete introduction to Eidos, see the manual Eidos: A Simple Scripting Language.

That was a minimal Eidos program; now let’s look at a minimal SLiM simulation script, which is
a bit more involved. Here’s a truly minimal “hello, world” SLiM script:

initialize()
{
}

1 early()
{
 print("hello, world");
}

This shows the basic structure of a SLiM script: it is made up of blocks, enclosed by braces {},
that can contain Eidos code inside them; there are two blocks in the script above. Each block is
declared with a heading that tells SLiM what kind of block it is, when it should run, and so forth; in
the above script we declare one block as an initialize() callback that performs initialization
tasks, and the other as an early() event that runs in tick 1, providing an opportunity to say hello to
the world with a call to print(). We will go into all those concepts in detail soon. This script is
not a representative SLiM script, however, in that it doesn’t set up any genetics at all; we haven’t
told SLiM anything about the length of the genome, the mutation or recombination rate, and so
forth. This is called a “no-genetics model”, and it is something SLiM allows you to do, but in
general it is not terribly useful – the point of SLiM, in general, is to simulate genetics! We will not
see another no-genetics model until chapter 19, when we delve into the world of multispecies
modeling; when simulating more than one species, you might wish for one of the species to evolve
while another is being simulated purely for its ecological effects, so no-genetics models become
more useful in that context. The above model also doesn’t create any subpopulations or
individuals, so it doesn't actually simulate anything at all. Let’s leave it behind, and start instead
with a minimal SLiM script that actually simulates genetics, since that is our goal.

We’ll start with a basic neutral simulation that models a genomic region of length 100 kb in a
population of 500 diploid individuals, evolving over 10000 generations. Neutral mutations occur
uniformly in this region at a rate of 10-7 per bp per gamete. Recombination also occurs uniformly
at a rate of 10-8 per bp per gamete (corresponding to 1 cM/Mbp). The Eidos commands for
specifying this simulation are as follows:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 95

// set up a simple neutral simulation
initialize()
{
 // set the overall mutation rate
 initializeMutationRate(1e-7);

 // m1 mutation type: neutral
 initializeMutationType("m1", 0.5, "f", 0.0);

 // g1 genomic element type: uses m1 for all mutations
 initializeGenomicElementType("g1", m1, 1.0);

 // uniform chromosome of length 100 kb
 initializeGenomicElement(g1, 0, 99999);

 // uniform recombination along the chromosome
 initializeRecombinationRate(1e-8);
}

// create a population of 500 individuals
1 early()
{
 sim.addSubpop("p1", 500);
}

// run to tick 10000
10000 early()
{
 sim.simulationFinished();
}

Running this script at the command line on a Un*x system (including macOS), or on Windows,
is very simple. If it is saved in the current directory as a file named test.txt, and if the slim
command-line tool is in the shell’s executable path, then the command:

slim test.txt

should suffice to run it. Otherwise, paths will be needed, which depend upon where the slim
command-line tool and the test.txt file are located. On macOS, the SLiM installer will install
slim in /usr/local/bin; if test.txt is in your home directory, then the command would be:

/usr/local/bin/slim ~/test.txt

Running this script in the SLiMgui application on macOS, Linux, or Windows is also
straightforward. Just launch SLiMgui (installed in /Applications by the macOS SLiM installer; see
chapter 2 on installation of SLiMgui on Linux and Windows), and then copy/paste the script into
the script area of SLiMgui’s window – or, even easier: select the section 4.1 recipe from the Open
Recipe submenu of SLiMgui’s File menu. Then press the big Recycle button at the upper right of
the window to reset the simulation with the new script, and press the Play button just to the left of
the Recycle button. Chapter 3 provided a brief introduction to SLiMgui and the parts of its
window, and the sections below will walk through running this particular simulation in SLiMgui in
detail.

There are a couple of general things to say first about the whole script. First of all, comments in
Eidos begin with two slashes, //, and continue to the end of their line; the script above has a
comment above most of the lines of executable code.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 96

Second, this code snippet utilizes syntax coloring to make the meaning of the script clearer, just
as shown in SLiMgui’s input area. Numeric constants are shown in blue, string constants in red,
SLiM object constants such as m1, g1, and sim in sage, and comments in green. Syntax coloring
will generally be used in this manual for Eidos scripts.

Third, braces {} are used in Eidos to enclose whole blocks of code. The code above has three
such blocks: an initialize() callback that sets up the simulation, an Eidos event that is set to
execute in tick 1 – the beginning of simulation execution – to add a subpopulation, and an Eidos
event that runs in tick 10000 and stops the simulation. (We could somewhat equivalently say that
the events run in cycle 1 and cycle 10000, or in generation 1 and generation 10000; until we look at
nonWF models in chapter 15 and multispecies models in chapter 19, “generation”, “tick”, and
“cycle” will be effectively synonymous. However, they are conceptually different, and events are,
in fact, scheduled in ticks, not cycles or generations. See section 1.5.7 for further discussion.)

Fourth, whitespace characters such as spaces, tabs, and newlines are not generally significant in
Eidos; comments, also, are considered whitespace and do not matter to the execution of your
code. The above script could thus be written more compactly as:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
10000 early() { sim.simulationFinished(); }

With that prelude, the following subsections will explore each of the commands in this script in
detail. If you wish to follow along in SLiMgui, you can open the section 4.1 recipe in SLiMgui
(from the Open Recipe submenu of the File), then press the Recycle button to reset the simulation
to the current script (redundant here, in fact, since the newly opened window begins in a Recycled
state), and then press Play to see the simulation run.

4.1.1 initialize() callbacks
Before a simulation can really begin running, some initialization tasks need to be done. SLiM

needs to know basic simulation parameters like the mutation rate, the length of the chromosome,
and so forth. Setting up this foundational state is done before the execution of the first tick, at what
is called “initialization time”. At initialization time, SLiM calls any blocks in the script that are
designated as initialize() callbacks (simply by having initialize() before their starting brace).
Our sample script defines one initialize() callback; you are allowed to have more than one, in
which case they are called sequentially in the order in which they are defined in the script. This
would be useful mostly for conceptual division of your code into discrete sections.

An initialize() callback may contain arbitrary Eidos code; you can define variables, execute
loops, and call functions (all topics we will explore in future sections). Mostly what you will do in
your initialize() callbacks, in practice, is call initialization functions that are built into SLiM to
help set up your simulation. These functions have names that begin with the word initialize; the
initialize() callback here calls five such functions, discussed in the following sections. (A full
reference of all of the initialize...() functions provided by SLiM is given in Part II of this
manual, the reference section; in general all of the topics discussed in Part I are summarized in a
more reference-oriented format there).

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 97

4.1.2 Mutation rate
The first line of our initialize() callback is:

initializeMutationRate(1e-7);

This calls the SLiM function initializeMutationRate(), passing a single parameter, the
numeric constant 1e-7. This is written in a sort of scientific notation commonly used in
programming; 1e-7 means 1.0×10−7, and could also be written in Eidos as 0.0000001. Numeric
values in Eidos may be of type integer, like 6 or -17, or of type float, like 1e-7 or 0.0000001.

The effect of this statement is to tell SLiM that the simulation will use a uniform mutation rate of
1e-7 (per base position per gamete) across the whole chromosome. SLiM uses this rate to
determine how many mutations arise in each offspring that it generates in each generation in the
genomic elements being simulated. It is also possible to set up a mutation rate map that varies the
mutation rate along the chromosome, but we will defer that until later. Precisely what mutations
can arise in a given element is governed by other aspects of the simulation configuration,
discussed next.

4.1.3 Mutation types
The next line in the initialize() callback is:

initializeMutationType("m1", 0.5, "f", 0.0);

This calls the SLiM function initializeMutationType() to set up a new mutation type. You
may define as many mutation types in SLiM as you wish. Each is given a unique symbolic name;
the mutation type defined here is given the name m1, as requested by the first parameter to the
function call. A mutation type encapsulates a few key pieces of information about a particular
type of mutation: the dominance coefficient for mutations of this type (0.5 here), the distribution of
fitness effects (DFE) to be used (a fixed fitness effect here, as represented by "f"), and any
parameters that configure the distribution of fitness effects (0.0 here, giving the fixed selection
coefficient that will be used by all mutations of this type). This call creates a new Eidos variable
named m1, and so henceforth we can use the symbol m1 to refer to this mutation type.

This mutation type, m1, thus represents neutral mutations – always with a selection coefficient of
0.0. Mutation types might represent things like neutral mutations, beneficial mutations,
deleterious mutations, nearly neutral mutations, etc., with different distributions of fitness effects.
Each time that a mutation is created, its selection coefficient is drawn from the distribution of
fitness effects specified by the mutation type to which the new mutation belongs. It can be useful
to use different mutation types to represent mutations that are conceptually different in your
simulation even if they share the same DFE. For example, you might use mutation type to
represent neutral mutations created by SLiM randomly as a result of normal mutational processes,
and a different mutation type with exactly the same DFE to represent a particular neutral mutation
that you deliberately create in your script and want to track separately during the simulation.

You might notice that it seems hard to remember what all four parameters are and which order
they are supposed to go in. If you are using SLiMgui, a helpful feature is provided to address this
problem (introduced in section 3.5, with a screenshot). If you click anywhere inside the
parentheses of the initializeMutationType() call, a summary of the syntax of the call is shown in
the status bar at the bottom of the window:

(object<MutationType>$)initializeMutationType(is$ id,
 numeric$ dominanceCoeff, string$ distributionType, ...)

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 98

The Eidos manual has a complete description of meaning of these summaries, called function
signatures. Briefly, this function signature first gives the type of value returned by the function –
here, an object value of class MutationType, representing the new mutation type created by the
function call. As shown by the trailing $, this returned value is a singleton, meaning that there will
be only a single value present, rather than a vector containing multiple values. You could assign
the result of initializeMutationType() into a variable:

x = initializeMutationType("m1", 0.5, "f", 0.0);

This would define x to refer to the new mutation type. Since the variable m1 is defined
automatically with the same value, this is usually not necessary; you would use m1 to refer to the
new mutation type. In some cases, however, it can be useful, particularly if you are defining more
than one mutation type using a loop.

Now we get to the parameters listed in the function signature. The first parameter may be either
an integer or a string (thus the designation is, from the leading character of each permitted type
name). This parameter should be a singleton (as shown by the $, again), and is named id; it gives
the identifier to be used for the new mutation type, either as an integer like 1 or as a string like
"m1" (both of which would lead to a variable named m1 being defined). The second parameter
must be numeric (meaning either an integer or a float), is a singleton, and is named
dominanceCoeff; this is self-explanatory. The third parameter must be a singleton string, and is
named distributionType. Then there is ..., a signifier that zero or more additional parameters
might be supplied of unspecified type and name. In the case of initializeMutationType(), these
additional parameters configure the distribution of fitness effects for the new mutation type, and
their number and type depend upon the distribution specified by distributionType. Exponential,
gamma, and normal DFEs are also supported by SLiM, for example, and require different
parameters for their specification; consult the reference manual (section 25.11) for details about all
of the DFE types currently supported in SLiM.

For now, the overall point is that the function signature is always available in the status bar
whenever you click inside a function, and can be used as a quick reference to remind you of the
meaning and type of each parameter. Remember that in SLiMgui you can also option-click in
Eidos code to bring up the script help window showing a search on the clicked term (see section
3.5); an option-click on initializeMutationType would bring up not only the function signature
for the function, but the full text from the reference section regarding the function. You might try
this now, as an experiment.

4.1.4 Genomic element types
Let’s now turn to the third line of the initialize() callback:

initializeGenomicElementType("g1", m1, 1.0);

This creates a new genomic element type named g1. A genomic element type represents a
particular type of chromosomal region – introns, exons, UTRs, etc. As with mutation types, you
might wish to use a special genomic element type for a particular chromosomal region that you
want to track separately in your simulation, even if it has the same characteristics as other similar
regions – an exon of particular interest, for example.

Each genomic element type has a particular mutational profile. Mutations in this model occur
in all genomic elements at the same uniform rate, as set by the overall mutation rate; but the types
of mutations that can occur in a particular genomic element type are determined by the mutational
profile of that genomic element type. Here, genomic element type g1 is defined as using mutation
type m1 for all of its mutations (as specified by the proportion 1.0 supplied as the third parameter).

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 99

Suppose we wanted to define g1 as using a mix of three mutation types, m1, m2, and m3? Let’s
look at the function signature for initializeGenomicElementType() to see how we might do this:

(object<GenomicElementType>$)initializeGenomicElementType(is$ id,
 io<MutationType> mutationTypes, numeric proportions)

In some ways this is quite similar to the function signature for initializeMutationType() that
we examined above; it returns an object (this time of class GenomicElementType), and it takes a
singleton integer or string named id to specify the identifier for the new object. The second
parameter is named mutationTypes, and can be either of type integer or object (with class
MutationType); so we could specify the mutation type for the genomic element type either using
an object like m1, as we did in the example script, or using an integer like 1 (identifying mutation
type m1), which might be more convenient. The third parameter is of type numeric (integer or
float, remember) and specifies the proportion of all mutations that will be drawn from the given
mutation type.

The second and third parameters are not designated as singletons (they do not have a $ in their
type specifier). This means that they can be vectors of values, which allows us to specify multiple
mutation types for a genomic element type:

initializeGenomicElementType("g1", c(m1,m2,m3), c(1,2,10));

The c() built-in function returns all of its parameters pasted together into a single vector; we use
it here to make a vector containing the three mutation types, and another vector containing
proportions. Notice the proportions don’t have to sum to 1; they are just relative proportions.

In Eidos, all values are in fact vectors; singletons are just vectors containing exactly one value.
Even when you write a numeric constant like 10, that is actually an Eidos vector that happens to be
a singleton. Many Eidos operators and functions are built to work with whole vectors; this
simplifies your code by removing the need for many of the loops that would be necessary in other
languages in order to loop over the elements in an array. It also makes Eidos much faster, since a
whole vector can be processed in a single statement. For example, take this Eidos statement:

sum(1:10);

This adds the numbers from 1 to 10 using the built-in sum() function. A vector containing the
numbers from 1 to 10 is generated using the sequence operator of Eidos, :, which counts upwards
(or downward) from its first operand to its second operand. Once you get used to the way vectors
work in Eidos, you will find that they often make complicated tasks very easy.

4.1.5 Genomic elements
Having set up genomic element type g1 in the third line, the fourth line of the initialize()

callback now uses g1 to set up a genomic element:

initializeGenomicElement(g1, 0, 99999);

A genomic element is simply a region of the chromosome that uses a particular genomic
element type. For example, you might have one genomic element type that represents introns, and
you might then have dozens (or thousands) of genomic elements in your chromosome that use that
genomic element type to represent a specific intron at a particular position. The call here sets up a
single genomic element that stretches from base position 0 to base position 99999, and is thus
100000 bases long, using genomic element type g1.

A chromosome can consist of many genomic elements, but two genomic elements cannot
overlap. Genomic elements also do not have to cover the entire chromosome. For example, you

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 100

can run a simulation with only two genomic elements of length 1 kb each, separated by 50 kb of
“empty space” (see section 14.13). Mutations are only simulated in those regions of the
chromosome where a genomic element has been specified. Recombination events, however, are
still simulated across the whole chromosome. You can see the genomic elements you have defined
by turning on the display of genomic elements in SLiMgui’s chromosome view (see section 3.1).

The following example shows how we can set up a chromosome consisting of ten genomic
elements of type g1, with gaps between them at regular intervals:

for (index in 1:10)
 initializeGenomicElement(g1, index*1000, index*1000 + 499);

This introduces a few new Eidos concepts. First of all, 1:10 makes a vector containing the
sequence from 1 to 10, as we saw above; it is equivalent to c(1,2,3,4,5,6,7,8,9,10).

Second, the for...in construct loops over that vector; for every value in 1:10, the value will be
assigned to the variable index and then the body of the loop – the statement on the next line – will
be executed. In this way, initializeGenomicElement() will be called ten times, first with index
equal to 1, then with index equal to 2, and on up to index equal to 10.

Third, you can see that Eidos, like most programming languages, allows you to write
mathematical expressions that are evaluated when the script executes. The * operator indicates
multiplication and the + operator indicates addition, so the expressions here calculate start and
end positions based upon the current value of index. All in all, this for loop is essentially
equivalent to:

initializeGenomicElement(g1, 1000, 1499);
initializeGenomicElement(g1, 2000, 2499);
...
initializeGenomicElement(g1, 10000, 10499);

It should now be fairly obvious how one might extend the for loop above to create a much
more complex chromosome involving multiple genes, each with UTRs and introns and exons,
interspersed with non-coding regions, and so forth. You would likely want to use additional
features of Eidos that are described in the Eidos language manual, such as nested for loops and the
modulo operator %. You could also potentially read in a chromosome map from a file on disk,
parse that map in whatever format it is written in, and execute the corresponding commands to
build the map in Eidos; Eidos has all of the tools you would need to do this, including file input/
output and string processing.

4.1.6 Recombination rate
The final line of the initialize() callback in our script is:

initializeRecombinationRate(1e-8);

This specifies the recombination rate for the whole chromosome to be 1e-8, which means that a
crossing-over event will occur between any two adjacent bases with a probability of 1e-8 per
gamete (see section 1.5.6 for a discussion of how exactly SLiM then models those crossing-over
events). In this case, a single recombination rate is used along the whole chromosome. The
function signature for initializeRecombinationRate(), however, is:

(void)initializeRecombinationRate(numeric rates, [Ni ends = NULL],
 [string$ sex = "*"])

Parameters named ends and sex are listed; however, they are in brackets []. This indicates that
these parameters are optional and may be omitted (in which case they are assigned the default

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 101

values shown in the signature; see the Eidos manual for further discussion of optional arguments).
That is what we did in the example script, so ends was assigned its default value of NULL (and sex
received its default value of "*"; other values can be used to define sex-specific recombination
rates/maps). If we included ends, which must be either NULL or an integer value according to its
Ni type-specifier in the signature, then it should be the last base position of the chromosome, like
this:

initializeRecombinationRate(1e-8, 99999);

Notice that the rates and ends parameters are not singletons (no $). In fact, we may supply a
vector of end positions and a matching vector of rates, defining a series of recombination regions,
each starting at the base position after the previous range ends (or at the beginning of the
chromosome, for the first range). For a simple example, we could make the first half of the
chromosome experience a much higher recombination rate than the second half:

initializeRecombinationRate(c(1e-7,1e-8), c(49999,99999));

You may supply as many recombination regions as you wish, specifying recombination
hotspots, etc. These recombination regions are not related to genomic elements; the boundaries of
recombination regions and genomic elements do not need to match up at all. You can see the
recombination regions you have defined by turning on the display of recombination regions in
SLiMgui’s chromosome view (see section 3.1). Note also that recombination can be tailored on an
individual-level basis using a recombination() callback to model things such as chromosomal
inversions; see sections 14.4 and 26.6.

As mentioned in section 4.1.2, it is also possible to define a mutation rate map that varies the
mutation rate along the chromosome. In fact, that is done with exactly the same syntax that we
have just seen here to configure a recombination rate map; a vector of rates and end positions is
supplied to initializeMutationRate() instead a singleton rate.

With this, we’re done discussing the initialize() callback section of the script. After the
initialize() callback finishes, the tick counter will be set to 1 and the first tick will be ready to
execute, as discussed next. If you’re following along in SLiMgui (which you can do by pressing the
Step button in the simulation window once), the tick counter will change from initialize() to 1,
indicating that the initialization phase is done and tick 1 is next up to be executed (but has not
begun yet), and likewise for the cycle counter shown in SLiMgui, which is in sync with the tick
counter for this simple model (see section 1.5.7 for discussion of timescale concepts, but the
distinctions between ticks, cycles, and generations are not really important this point). If you have
the variables browser open, you will see that the variables m1 and g1, defined by the initialize()
callback, are now listed, along with another variable named sim that will be discussed below.

4.1.7 Eidos events
The next section of our script is:

1 early()
{
 sim.addSubpop("p1", 500);
}

This defines an Eidos event that is scheduled to run in tick 1 – at the very beginning of the
simulation, but after the initialize() callbacks have completed. This is the usual time at which
new subpopulations are constructed, and that is what this event does, as will be discussed in the
next section. For now, however, we’re interested in this idea of defining Eidos events.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 102

Eidos events are scheduled to run in a specific tick or range of tick. A single tick is specified
with a single number, as here. A range of ticks is specified with the Eidos sequence operator; we
could make an event run in ticks 10 through 19, for example, by writing:

10:19 early() { ... }

After the tick range for the event is early(), which specifies the point in the tick cycle when the
event will run (early in the tick cycle, in this case; see the tick cycle diagram in section 1.3).
The ... here is the script for the event, of course; it can be whatever Eidos code you wish. We will
see a great many Eidos events in later examples.

4.1.8 Subpopulations
The Eidos event scheduled to run in tick 1 has a single line in its body:

sim.addSubpop("p1", 500);

This looks a bit like a function named sim.addSubpop() is being called – and that is almost
right, but not quite. After initialize() callbacks complete, SLiM defines a new Eidos constant
named sim that represents the species being simulated. The sim object is used to access all sorts of
species-level properties, as we will see later. It is also a sort of gateway for a specialized sort of
function calls referred to as methods. A method is a call that can be made to a particular object,
to request that that object perform some operation. All values of type object in Eidos support a
handful of basic methods (as you can read about in the Eidos manual), and the object classes
defined by SLiM often support several more specialized methods as well.

So here we call the addSubpop() method of the sim object. This adds a new subpopulation to
the species; it will be represented by the new variable p1, as specified by the first parameter, and it
will have an initial size of 500 diploid individuals (the second parameter). The individuals in the
new subpopulation are blank slates; they contain no mutations as of yet. The method call is done
using the member operator of Eidos, a period (“.”); this operator selects one member, such as a
method, from an object. Apart from this syntactic difference, methods are in many ways quite
similar to functions, but they encapsulate an “object-oriented” perspective; instead of a globally
defined function performing an operation, a specific object is asked to perform the operation.
Subpopulations “belong” to the species, and therefore the species – the sim object – is asked to
add new subpopulations.

If you have been following in SLiMgui, press Step again and you will see that a new variable
named p1 appears in the variable browser to represent the new subpopulation. You might now
open the Eidos console and enter sim.methodSignature(). This is a method that returns the
signatures for all of the methods supported by an object. Among other methods in this list (all
documented in the reference section of this manual), you will see the signature for addSubpop():

– (object<Subpopulation>$)addSubpop(is$ subpopID, integer$ size,
 [float$ sexRatio = 0.5])

Notice there is a third parameter, which is optional, named sexRatio. This will be discussed
when sexual simulations are covered in chapter 6. The dash at the very beginning indicates that
the signature is for a method, as opposed to a function signature, which has no leading dash.
Methods are sometimes referred to by name with this leading dash; the addSubpop() method is
thus sometimes called -addSubpop(). The meanings are identical.

4.1.9 Executing the simulation
We have already executed the initialization phase and the first tick of the simulation (if you are

following along in SLiMgui). Now try pressing the Play button. The simulation will suddenly run

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 103

at full speed, which is probably pretty fast in this case. You will see mutations flicker in and out of
existence, and rise and fall in frequency, along the length of the chromosome, as displayed in the
chromosome view. If you let the simulation run, it will continue until it reaches tick 10000, at
which point it will stop because of the final snippet of code in our example script, defining a
terminating event:

10000 early()
{
 sim.simulationFinished();
}

This defines an Eidos event that executes in tick 10000. The event calls a method named
simulationFinished() on the sim object, and that method declares that the simulation is finished
(although it continues to execute until the end of the current tick). This is actually not the typical
way that a simulation ends, as we will see in the next section; but it will serve for now. When the
simulation stops, the tick counter will read 10001 because tick 10000 finished executing and the
next tick to execute (were the simulation not finished) would be 10001.

Having reached the end of the simulation, let’s look at a few parts of the simulation window.
The population table view now looks something like this:

This shows the subpopulation that the tick 1 Eidos event created, named p1 as shown in the ID
column, along with its size (500) and its selfing and cloning rates (all 0.00). The last column shows
the sex ratio (M:M+F); species in SLiM are hermaphroditic by default, so the sex ratio in this model
is undefined.

The individual view now looks something like this:

Each yellow square represents one individual; there are 500 squares since the subpopulation
size is 500. Each individual is colored according to the calculated fitness of that individual;
however, in this simulation all mutations are neutral, so all individuals have the same relative
fitness, 1.0, and so they are all yellow (as expressed by the color stripe for fitness values, discussed
in section 3.1). In a simulation with beneficial and deleterious mutations you would see a range of
colors, giving you an immediate visual sense of the fitness distribution across the subpopulation.

Finally, the chromosome view area looks something like this:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 104

The top band shows the whole chromosome; the numbers and ticks below indicate base
positions. You can click and drag here to select a subrange of the chromosome for display in the
bottom view; a simple click in the top band will return you to viewing the full chromosome. The
bottom band displays the selected range of the chromosome (here, the full range). Each yellow bar
is a mutation that exists at that position in the chromosome. The height of the bar indicates the
frequency of the mutation; if the bar reaches the full height of the band, it has reached fixation and
is removed from the display (but you can turn on display of fixed mutations by choosing Display
Substitutions using the action button to the right, in which case they will display as full-height
blue bars, by default). Here, all the bars are yellow because all the mutations in this simulation are
neutral, and neutral mutations are colored yellow in SLiM by default.

You might have noticed that whole sets of yellow bars tend to rise and fall in synchrony. These
are haplotypes that have become associated with each other through genetic drift. The dynamics
of mutations, haplotypes, and genetic drift is immediately visually apparent here, underlining the
value of having an interactive graphical interface in which you can develop, debug, test, and
experiment with your simulations. This visual, interactive workflow also makes SLiMgui a
potentially valuable tool for classroom instruction in population genetics and evolutionary biology.

4.2 Basic output
So far, our basic neutral simulation simply stops in tick 10000. Typically, it is desirable for a

simulation to produce some output. We will look at a few output options in this section.

4.2.1 Entire population
One option is to output the full state of the population (i.e., all individuals in all subpopulations

of the species). To do this, we might change our script just a bit:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
10000 late() { sim.outputFull(); }

The only change here is that the final event, including the sim.simulationFinished() call, has
been replaced by a different event to generate output using the sim.outputFull() method:

10000 late() { sim.outputFull(); }

Note the keyword late() here. SLiM can run user-defined Eidos events at three different points
in the tick cycle, as shown in section 1.3. These three points are referred to as first(), early(),
and late() events.

Often, running events early in the tick, prior to the generation of offspring, is desirable. In some
cases, however, it is better for an event to run toward the end of the tick, after the generation of
offspring – and events that produce output are usually such a case. If the late() specifier were
early() instead, the output would be generated at the beginning of tick 10000, instead of at the
end, and would thus reflect the results of running the model for only 9999 ticks. After the output
was generated at the start of the tick, the model would then run for the final tick, with no effect on
the model’s output.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 105

That would be quite a subtle bug, and easy to miss. In fact, generating output at the beginning
of a tick, in an early() event, is so likely to be a bug that SLiM will output a warning if you try to
do it using one of SLiM’s standard output methods. For example, if we change the late()
designation on the output event above to early(), SLiM will generate a warning when the model
executes:

#WARNING (Species::ExecuteInstanceMethod): outputFull() should probably
not be called from an early() event; the output will reflect state at the
beginning of the cycle, not the end.

There are a few other common situations in which you want to use a late() event instead of
early() events, most notably when you introduce new mutations into the simulation in script;
these situations will be discussed as they arise, as will first() events.

Once you have got this recipe open in a simulation window in SLiMgui (from the Open Recipe
submenu under the File menu), press Recycle and then Play, and let the simulation run to the end.
Notice that the full state of the population has been printed, in an output section that looks
something like this (with large chunks of output skipped over with ellipses):

#OUT: 10000 10000 A
Populations:
p1 500 H
Mutations:
29 68306 m1 34640 0 0.5 p1 6848 450
2 68503 m1 7251 0 0.5 p1 6867 561
...
Individuals:
p1:i0 H p1:0 p1:1
p1:i1 H p1:2 p1:3
...
Genomes:
p1:0 A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
p1:1 A 16 17 18 7 8 19 9 20 21 22 23 24 25 26 27 28
...

The format here is fairly simple and easily parsable by something like an R script (full output
format details are given in section 27.1.1); it can also be read by SLiM in order to read in a
population from a saved state, as we will see later. It begins with an output prefix, #OUT:, followed
by the tick (10000), the cycle (again 10000), and the type of output (A for all).

The next section describes the subpopulations; p1 is of size 500 and is hermaphroditic (H).
Next comes a list of all mutations present; each line shows one mutation, including (1) a

temporary unique identifier used only in this output section, (2) a permanent unique identifier kept
by SLiM throughout a run, (3) the mutation type, (4) the base position, (5) the selection coefficient
(here always 0 since this is a neutral model), (6) the dominance coefficient (here always 0.5), (7)
the identifier of the subpopulation in which the mutation first arose, (8) the tick in which it arose,
and (9) the prevalence of the mutation (the number of genomes that contain the mutation, where –
in the way that SLiM uses the term “genome” – there are two genomes per individual).

Next comes a list of individuals. The first line of this section as shown above, for example,
shows that individual 0 in subpopulation 1 (p1:i0) is a hermaphrodite (H), and is comprised of two
genomes, p1:0 and p1:1, that will be listed in the following section. This section makes it easier to
match genomes with individuals, and can provide additional individual-level information.

The final section lists all of the genomes in the simulation. The first line in the Genomes section
as shown above, for example, shows that genome p1:0 (which the Individuals section told us

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 106

belonged to individual p1:i0) is an autosome (A) and contains the mutations with the identifiers 0,
1, 2, ... 15.

From all of this information, the complete state of the population can be reconstructed – every
individual, and every mutation contained by every individual. Thus, the method name
outputFull(). It does not contain the complete information needed to recreate the entire
simulation, however; just the current population state.

4.2.2 Random population sample
Often the outputFull() method is overkill; you might just want a sample of genomes that is

randomly drawn from a particular subpopulation. For example, to output a 10-genome sample at
the halfway point of the simulation, here is a modified script:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
5000 late() { p1.outputSample(10); }
10000 late() { sim.outputFull(); }

The only change relative to the previous script is the added line:

5000 late() { p1.outputSample(10); }

This calls the method outputSample() on the subpopulation from which the sample should be
taken, p1, with a requested sample size of 10 genomes (not 10 individuals, note; outputSample()
outputs randomly selected haploid genomes). If you open this recipe in SLiMgui, Recycle and
Play, you will see that at tick 5000 some output appears:

#OUT: 5000 5000 SS p1 10
Mutations:
21 203188 m1 92838 0 0.5 p1 4489 4
4 203247 m1 73991 0 0.5 p1 4495 6
...
Genomes:
p1:0 A 0 1 2 3 4 5 6
p1:1 A 0 7 1 3 4 5 8 6 9
...

The format here is similar to that of outputFull(), but the header #OUT: 5000 5000 SS p1 10
indicates that in tick 5000 (also cycle 5000) a sample (S) was taken from p1 of size 10 genomes and
was output in SLiM (S) format. The list of mutations and genomes is identical in format to
outputFull(), except that only those mutations are shown that are actually present in the sample,
and prevalence now refers to the sample rather than the entire population. The list of populations
and the list of individuals are also omitted in this output style. (Full output format details are given
in section 27.2.)

SLiM also supports output of samples in MS format. The previous recipe can be modified to use
the outputMSSample() method instead of the outputSample() method; running the recipe in
SLiMgui would then produce MS-style output at tick 5000:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 107

segsites: 73
positions: 0.0262003 0.0351204 0.0445104 0.0597206 0.0647306 0.0702307
0.0871209 0.1039710 0.1046410 0.1162212 0.1222912 0.1407114 0.1608916
0.1728717 0.1775018 0.2036920 0.2366524 0.2462625 0.2468625 0.2475225
0.2531725 0.2858329 0.2880929 0.2913729 0.2998330 0.3045530 0.3048630
0.3132831 0.3279533 0.3400434 0.3484835 0.3544035 0.3547335 0.3586336
0.3594236 0.3765438 0.3845438 0.4385444 0.4441644 0.4460845 0.4483745
0.4692747 0.4801248 0.5282953 0.5387154 0.5493255 0.5563656 0.5660457
0.5810758 0.5871859 0.5880459 0.6183762 0.6271763 0.6368964 0.6389064
0.6678067 0.6880269 0.6961170 0.6961970 0.7082871 0.7340373 0.7362074
0.8214782 0.8450485 0.8694387 0.8696087 0.9022290 0.9114191 0.9187892
0.9264793 0.9364694 0.9835098 0.9969800
1011010000000100001100110001001010100010000010010000000011001011001010001
0011010000010100001111110101001001100000000010010000000000101011011000011
0001010000000100000000001000010000000101100101100100111000010000000001000
1011010000100100001100110001001010100010000010010000000011001111001010101
1011010000000100001100110011001010101010000010010000000011001011001010001
0011010000010100001110110101001001100000000010010000000000101011011000011
0000101111001011111100010001101100110000011000011011000100001010101100000
0101010000000100000000001000010000000101100101100100111000010000000001000
1011010000000100001100110011001010101010000010010000000011001011001010001
1011010000100100001100110001001010100010000010010000000011001011001010001

Finally, SLiM supports output of samples in VCF format. If the outputVCFSample() method is
used instead of outputSample() in the above recipe, VCF-style output would be produced:

##fileformat=VCFv4.2
##fileDate=20160609
##source=SLiM
##slimGenomePedigreeIDs=4999898,4999899,...
##INFO=<ID=S,Number=1,Type=Float,Description="Selection Coefficient">
##INFO=<ID=DOM,Number=1,Type=Float,Description="Dominance">
##INFO=<ID=PO,Number=1,Type=Integer,Description="Population of Origin">
##INFO=<ID=TO,Number=1,Type=Integer,Description="Tick of Origin">
##INFO=<ID=MT,Number=1,Type=Integer,Description="Mutation Type">
##INFO=<ID=AC,Number=1,Type=Integer,Description="Allele Count">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=MULTIALLELIC,Number=0,Type=Flag,Description="Multiallelic">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT p1:i166 p1:i100
 p1:i462 p1:i8 p1:i0 p1:i314 p1:i318 p1:i488 p1:i81 p1:i287
1 547 . A T 1000 PASS S=0;DOM=0.5;PO=1;TO=4822;MT=1;AC=4;DP=1000
 GT 1|0 0|1 1|0 0|0 0|0 0|0 0|0 0|0 0|0 0|1
1 826 . A T 1000 PASS S=0;DOM=0.5;PO=1;TO=4342;MT=1;AC=5;DP=1000
 GT 0|0 0|0 0|0 1|1 0|1 0|0 1|0 0|0 0|0 1|0
...

4.2.3 Sampling individuals rather than genomes
The previous section showed how to use methods of the Subpopulation class to output a

sample of genomes from a subpopulation, in either SLiM’s own format, or in MS or VCF format.
However, in many situations you want to output information about a sample of individuals, rather
than a sample of genomes – you want to ensure that pairs of genomes, each belonging to an
individual, are the level of granularity at which the sampling for output occurs. Also, the
Subpopulation output methods only support sampling from a single subpopulation at a time, but
sometimes you want to output a sample drawn from multiple subpopulations, or from the full
population. Finally, sometimes you want to output a custom sample that your script chooses itself,
rather than a random, equally-weighted sample of the sort that the Subpopulation methods allow.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 108

These tasks are all quite straightforward using lower-level methods of the Genome class. As an
illustration of this approach, we will look at a recipe that outputs the genomes of a weighted
sample of individuals drawn from the whole population:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 0.5, "f", 0.01);
 initializeGenomicElementType("g1", c(m1,m2), c(1.0,0.01));
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 500);
 sim.addSubpop("p2", 500);
 p1.setMigrationRates(p2, 0.01);
 p2.setMigrationRates(p1, 0.01);
}
10000 late() {
 allIndividuals = sim.subpopulations.individuals;
 w = asFloat(allIndividuals.countOfMutationsOfType(m2) + 1);
 sampledIndividuals = sample(allIndividuals, 10, weights=w);
 sampledIndividuals.genomes.output();
}

This model involves a few things that we haven’t looked at yet, such as multiple subpopulations
connected by migration (see section 5.2.1) and multiple mutation types (see section 7.1).
However, those details are not our focus here. For our current purposes, it suffices to recognize
that there are two subpopulations, p1 and p2, connected by migration, and there are two mutation
types, m1 and m2, with m1 representing common neutral mutations and m2 representing less
common beneficial mutations. Our focus is on the late() event in tick 10000, which produces the
output for the model. We will follow through its logic one line at a time.

The first line defines the set of individuals from which our sample will be drawn, here called
allIndividuals. The sim.subpopulations property gives us a vector of all of the subpopulations
in the model (i.e., p1 and p2). The individuals property of that vector is then all of the individuals
(that is, objects of class Individual; see section 25.7) gathered from across those subpopulations.

The second line determines the weights that we will use for sampling, here called w. Note that
the use of weights here is optional; if you want an unweighted sample, you can skip this line and
omit the weights vector in the call to sample() that follows. In this recipe, however, we want the
likelihood that an individual is chosen for sampling to be related to the number of m2 mutations the
individual possesses, so we use countOfMutationsOfType(m2). We add 1 to that count, so that
individuals with no m2 mutations have a weight of 1, individuals with one m2 mutation have a
weight of 2, and so forth. This is somewhat arbitrary, but it does have the nice property that we are
guaranteed that the weights vector is not all zero (which would cause a runtime error, since it
would not be possible to draw a sample). If you draw your own samples, you probably want to
ensure that the sample can always be drawn, to avoid runtime errors.

The third line draws a sample of 10 individuals from allIndividuals, using the sample()
function and passing it the weights vector w (using the named arguments syntax of Eidos, for
readability). The sample is put into the temporary variable sampledIndividuals.

Finally, the fourth line outputs the genomes of the sampled individuals using the output()
method of Genome. This outputs the sample in SLiM’s own format, similarly to what we saw in the
previous sections; there are also outputMS() and outputVCF() methods on Genome that can be used

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 109

similarly to produce MS and VCF output. Since there are two genomes per individual, twenty
genomes will be output. Each pair of genomes in the output will come from one sampled
individual; in the SLiM and MS output formats this is not explicit, but in the VCF format, since it is
a diploid format (as used by SLiM), this pairing into individuals is explicit in the output. See
section 25.4.2 for more information on these output methods, and section 27.3 for details on the
format of output they generate.

While this recipe implemented one particular sampling scheme, the Genome methods used here
can be used to output any vector of genomes, whether a random sample or a specifically selected
set. The higher-level output methods of Species and Subpopulation are a little easier to use, but
these low-level methods provide greater power and generality.

4.2.4 Substitutions
The outputFull() method of Species does output the full state of the population, but there is

some historical state that it does not output. Most notably, it does not output substitutions –
mutations which have been fixed and have thus been removed from the population by SLiM for
efficiency (see section 1.5.5). If fixed mutations are of interest, SLiM does keep a record of them
and can output that record on request. For example, we could output substitutions, in addition to
other state, with this script:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
5000 late() { p1.outputSample(10); }
10000 late() { sim.outputFull(); }
10000 late() { sim.outputFixedMutations(); }

The important change relative to the previous script is the added line:

10000 late() { sim.outputFixedMutations(); }

If you open this recipe in SLiMgui, Recycle and Play, you will see that at simulation end some
additional output appears:

#OUT: 10000 10000 F
Mutations:
0 220169 m1 98564 0 0.5 p1 107 1053
1 221802 m1 1217 0 0.5 p1 268 1152
...

The header #OUT: 10000 10000 F indicates simply that in tick 10000 (also cycle 10000) fixed
mutations (F) were output. The rest is a list of mutations in almost the same format as before.
However, the final number in each line is no longer a prevalence; since the mutation fixed, we
know that it was present in every genome. Instead, the final number shows the tick number in
which the mutation reached fixation. The output format used here is documented in section
27.1.2. Note that the default behavior of SLiM – that substitutions are removed from all individual
genomes – can be deactivated if necessary (see sections 1.5.2 and 25.11.1).

Display of fixed mutations in SLiMgui can also be enabled by clicking the action button to
the right of the chromosome view and checking Display Substitutions; when this is enabled, fixed
mutations will be displayed as full-height bars (blue, by default) in the chromosome view.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 110

4.2.5 Automatic logging with LogFile
Often it is desirable to produce an output file that, rather than being a dump of genetic

information about a population or a sample, is a table of summary statistics or metrics regarding
the simulation. It can be useful to append such table-based output to a file periodically, so that the
state of the simulation can be observed through time as the simulation runs. To support this
common style of output, SLiM (as of version 3.5) provides a built-in class called LogFile
(documented in full in section 25.9).

The recipe we will use is quite simple:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 999999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 1000);
 sim.addSubpop("p2", 1000);
 p1.setMigrationRates(p2, 0.001);
 p2.setMigrationRates(p1, 0.001);
 log = community.createLogFile("sim_log.txt", logInterval=10);
 log.addCycle();
 log.addCustomColumn("FST", "calcFST(p1.genomes, p2.genomes);");
}
20000 late() { }

Like section 4.2.3, we have two subpopulations, but with a lower migration rate, and neutral
mutations only. The new and interesting change here is the addition of automatic logging using
LogFile:

log = community.createLogFile("sim_log.txt", logInterval=10);
log.addCycle();
log.addCustomColumn("FST", "calcFST(p1.genomes, p2.genomes);");

The first line creates a new LogFile object that is attached to the simulation. We request that it
log to a file named sim_log.txt in the Desktop folder of our home directory (which is symbolized
with a tilde, ~, in macOS and Linux); LogFile outputs to a file, not to SLiM’s output stream as we
have seen thus far. We also request that it log automatically every ten ticks, with logInterval=10;
automatic logging is optional, but often useful. Finally, the createLogFile() method returns the
LogFile object, which we put in the local variable log.

This method is called on an object we have not seen before, community. The community object
represents the entire ecological community being modeled; as we will see in chapter 19,
multispecies models can contain more than one species, and community manages them all. The
community object is of class Community, whereas sim is of class Species; the class of an object tells
you what methods that object has, and where to look in the reference documentation for more
information about it. We will use community to access simulation-level facilities that are shared by
all species; LogFile creation with createLogFile() is one such shared facility.

The next two lines configure the data that we want to be logged. The first calls addCycle() to
add a standard column, named cycle, that contains the current cycle number. The second calls
addCustomColumn() to add a column named FST that contains custom data calculated by our script
– in this case, the FST (a standard metric of divergence) between our two subpopulations p1 and p2.
The data for the FST column is generated by a snippet of Eidos code that is passed to

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 111

addCustomColumn() as a string (called a “lambda” in Eidos; see section 20.5). Stripped of its
quotes, that code is:

calcFST(p1.genomes, p2.genomes);

The LogFile will run the lambda provided to addCustomColumn() whenever it is generating a
new row of output. In this case, calcFST() is a built-in function in SLiM that calculates the FST
between two vectors of genomes and returns it as a float (see section 25.18.2), which LogFile
then outputs as the data value for the FST column.

If we run this model, the sim_log.txt file looks like this at the end of the run (with many lines
elided by the ellipsis):

cycle,FST
1,0.000250063
11,0.000681749
21,0.00102468
...
19971,0.0140662
19981,0.0121124
19991,0.0108835

There are several things to notice here. The log file is in CSV (comma-separated value) format,
which is LogFile’s default; its optional sep parameter allows the creation of a TSV (tab-separated
value) file instead, by passing sep="\t", if desired. A header line was automatically emitted with
the names of the columns; LogFile always generates a header. New rows have been generated
every ten cycles, as requested. Finally, note that although our model finished at the end of cycle
20000, the last line emitted is for cycle 19991; this is because automatic logging would have next
triggered at the end of cycle 20001, so we might wish to make our model end with that cycle
instead so that the log file covers the full simulation run.

Beginning in SLiM 3.7, we can view this LogFile output directly in SLiMgui. If you click the
debugging output viewer button in the main model window, it opens the debugging output
viewer, and clicking on the sim_log.txt tab button provides the output (shown here from a
different run):

This can be useful for viewing output as a simulation is running, for debugging purposes.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 112

We can also easily open this CSV file in R and plot it:

This shows that the FST between the two subpopulations starts at zero and grows over time,
eventually reaching a dynamic equilibrium around 0.02 or so. This equilibrium depends upon
parameters such as the migration rate and the mutation rate, of course. It is interesting to integrate
the beneficial mutations of section 4.2.3 and see what they do to the FST over time (with, perhaps,
a much lower m2 fraction, like 0.0001, and a higher selection coefficient, like 0.1).

This is a rather trivial example of the use of LogFile. It has some other interesting features: it
can output a compressed file, and log out new data rows on request rather than on an automatic
schedule (see section 25.9). We will see LogFile again in later sections, such as sections 9.11 and
15.16.

4.2.6 Custom output with Eidos
The outputFull(), outputSample(), outputMSSample(), outputVCFSample(), and

outputFixedMutations() methods described in the preceding sections generate output in fixed
formats that may or may not be useful to you, and you may or may not wish to avail yourself of the
table-based logging provided by LogFile. There is one more built-in output method that is
described in the reference section – outputMutations() – but it, too, may not be what you need.
What to do when you want to produce output in a format not supported by SLiM?

This is an area where the power of Eidos really shines, since you can write whatever Eidos script
you want, to generate whatever kind of output you want. Some of the more advanced recipes in
this cookbook will generate custom output of interesting kinds; section 11.1’s recipe will include
code to calculate and print the FST between two subpopulations to assess their genetic divergence,
for example, and section 14.1’s recipe calculates and prints the heterozygosity of a population to
assess the effects of inbreeding. In this section, we will look at a much simpler example, as an
introduction to the topic of custom output using Eidos.

Suppose you are interested only in the base positions of all of the mutations in the population;
you can achieve this with the following output event:

100 late() { cat(paste(sim.mutations.position, sep="\n")); }

With our basic neutral simulation script, this generates output like:

31113
57761
8790
...

This is precisely what we want. How does it work? Let’s dissect it, step by step, since it is more
complex than the Eidos code we’ve seen so far.

First of all, we have seen the sim object before, representing the simulated species. This object,
which is an Eidos object of class Species, has a property named mutations that yields a vector

0 5000 10000 15000 20000
0.
00

0.
02

0.
04

Generation

F
ST

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 113

containing all of the mutations in the simulation (a vector of type object and class Mutation, to be
precise). Apart from section 4.2.3, where we quickly glossed over this issue, this is the first use we
have seen of a property; a property is somewhat like a method, in that it is a member of an object,
but whereas a method performs an operation (perhaps involving a lot of computation, and perhaps
altering the state of the simulation), a property simply corresponds to a value that exists inside the
object. The sim object knows all of the mutations it contains; it doesn’t have to calculate them or
create them, it just has to return the value it already has. It is therefore a property – the mutations
property. The member operator is used to access properties, just as it is used to access methods, so
the value of sim.mutations is the vector of mutations contained by the simulation.

That value is itself an object vector. As mentioned before, all values in Eidos are actually
vectors; the vector of mutations might contain many elements (each of which is called an object-
element), but it is nevertheless a single Eidos value, an object vector. The Mutation class in SLiM
defines a property, position, that is the base position of the mutation; we can access this property
on our vector of mutations to get a vector of positions. This involves a certain amount of work
behind the scenes; each mutation has its own position, and Eidos must loop over all of the
mutations in the vector of mutations, getting the position of each one and pasting all the positions
together to make a new vector. Eidos does this for you, though, since Eidos is a vector-based
language; so sim.mutations.position is all the Eidos code that is needed to get a vector of the
positions of all mutations in the simulation.

Peeling the onion back a layer, this expression is contained in a function call:

paste(sim.mutations.position, sep="\n")

This function takes a vector argument (sim.mutations.position) and pastes all of the elements
together to form a singleton value of type string. We haven’t really talked about string yet; a
string is simply a sequence of characters, like "hello, world". Eidos can paste strings together,
split them apart, and print them out; it can also convert most other types into string for the
purpose of output. The paste() function always produces a string as its result; it converts the
elements of the vector it is given into string elements in order to do so. The second parameter of
paste(), "\n", is a string containing a single character, the newline character, represented with the
escape sequence \n (you can read more about strings and escape sequences in the Eidos manual;
it is not worth getting into here). It is assigned to the sep named argument of paste(), which
controls the separator character used when pasting. The final result is that each of the integer
positions in sim.mutations.position is converted to a string representation and then pasted
together with the others, with newlines in between, to produce the desired output as seen above.

Note that this output event is designated as a late() event, for the reasons outlined in section
4.2.1; in this case, we wish to see the positions of mutations at the end of tick 100, not the
beginning. With custom output code of this sort, SLiM is not able to infer that it is likely to be an
error if it runs in an early() event instead, however; so if the late() designation is changed to
early() here, SLiM will not produce a warning. When writing custom output script events, you
need to think carefully about whether they should be first(), early(), or late() events (but a
late() event is usually what you want for output).

The simplicity of this example – just a single line of Eidos code! – should make it clear that
generating output in whatever format you desire is likely to be straightforward once you get the
hang of how Eidos works.

Since the power of this may not be entirely apparent yet, let’s consider a problem that might
arise in using SLiM. You might wish to produce MS-style output for a sample of genomes spanning
the whole population, but the built-in outputMSSample() method of Subpopulation (section 4.2.2)
only supports generation of MS-style output from a sample of a single subpopulation. This recipe

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 114

is probably of mainly historical interest, since the addition of the Genome method outputMS(), but
let’s pretend that method doesn’t exist; the same general problem will arise whenever you want to
output data in a format that SLiM does not intrinsically support. Generating MS-style output using
Eidos is trivial:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 500);
 sim.addSubpop("p2", 500);
}
// custom MS-style output from a multi-subpop sample
2000 late() {
 // obtain a random sample of genomes from the whole population
 g = sample(sim.subpopulations.genomes, 10, T);

 // get the unique mutations in the sample, sorted by position
 m = sortBy(unique(g.mutations), "position");

 // print the number of segregating sites
 cat("\n\nsegsites: " + size(m) + "\n");

 // print the positions
 positions = format("%.6f", m.position / sim.chromosome.lastPosition);
 cat("positions: " + paste(positions, sep=" ") + "\n");

 // print the sampled genomes
 for (genome in g)
 {
 hasMuts = (match(m, genome.mutations) >= 0);
 cat(paste(asInteger(hasMuts), sep="") + "\n");
 }
}

This model is quite straightforward; the only complication is that there are two subpopulations,
and we wish to produce MS-style output for a sample across both of them. The tick 2000 event
does precisely that. First it obtains the genomes upon which the output will be based; here this is
done using sample() on the vector of all genomes in the simulation, but any other sampling
scheme could be used instead. To sample specifically from subpopulations p1 and p2, for
example, without sampling from any other subpopulations that might exist, you could do:

g = sample(c(p1.genomes, p2.genomes), 10, T);

The sample size is 10, and sampling is done with replacement (the T parameter to sample()),
but that can obviously be customized. Next unique() and sortBy() are used to get a vector of the
mutations present in the sample, sorted by position. The size() of that vector is the number of
segregating sites, so that is trivial to output. Printing the positions is also simple; format() is used
to guarantee that every position is formatted with six digits to the right of the decimal, in decimal
rather than scientific notation even for very small values. Finally, the sampled genomes are printed
in MS format, using asInteger() to convert logical values from match() into 0s and 1s.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 115

This recipe brings in a lot of Eidos functions that we haven’t seen before; we will not explain
them all in detail, since they are all documented in the Eidos manual. The point is simply to
illustrate that even relatively sophisticated output can be generated very easily in Eidos.

4.2.7 The simulation endpoint
The astute reader will have noticed that in the previous sections we not only added output

events, we also removed one line from the original script of section 4.2.1:

10000 early() { sim.simulationFinished(); }

We can do this because SLiM will generally stop after the last tick in which an event is
scheduled. In our basic neutral simulation, however, we had no output commands; if we had
omitted the line above with the simulationFinished() call the simulation would have ended at
the end of tick 1. Alternatively, we could have just written:

10000 early() { }

This “empty event” would have caused SLiM to run out to the end of tick 10000, because there
was still a future event scheduled. At the end of tick 10000 SLiM would then stop, since there was
no future event after tick 10000 scheduled. In fact, simulationFinished() is really useful only
when you wish to end a simulation before it would naturally end on its own. You might check for
an equilibrium condition, for example, and end the simulation if it has been at equilibrium for the
past 1000 ticks, even though it would otherwise have run further.

There is one further caveat to mention regarding how simulations end. It is possible to define
an Eidos event that runs in every tick. For example, we could write the following script:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
late() { p1.outputSample(10); }

Notice that there is no tick number before the Eidos event defined in the last line; this indicates
that the event should be run in every tick, from here to eternity. If you open this recipe in SLiMgui
and Recycle and Play, it will stop at the end of tick 1, however; there is always a scheduled future
event (the output event), but SLiM does not use it in determining when the simulation should end,
precisely because it has no expiration date. SLiM assumes that it is not your wish to run a
simulation that runs forever – commonly known as an “infinite loop” in programming – so the
simulation end is determined without reference to that event.

To define a final tick for the simulation in this situation, you would use precisely the trick
described above: just add an “empty event”, like:

100 early() { }

The simulation will now run to the end of tick 100. Note that there is no need to designate the
event as a late() event; SLiM always runs the last tick to completion, even if
simulationFinished() is called. The only way to halt a simulation immediately, before
completing the current tick, is to call the Eidos error function stop().

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 116

5. Demography and population structure

The previous chapter discussed the structure of a basic neutral simulation in SLiM, including
initialize() callbacks, Eidos events, the Species class, and many conceptual underpinnings of
SLiM such as mutation types, genomic element types, and chromosome organization. It also
covered some basic features of the Eidos language, such as vectors and vector operations, function
calls, objects, and method calls. From here, we assume a working knowledge of these topics;
consult the Eidos manual and the SLiM reference section of this manual as needed.

In this chapter, we will focus on building on this foundation to make some simple recipes for
simulations that do interesting things with demography and population structure.

5.1 Subpopulation size

5.1.1 Instantaneous changes
As we saw in section 4.1.8, we can create a new subpopulation with sim.addSubpop(), a

method call which takes the initial size of the subpopulation as a parameter. Importantly, this sets
the census population size, not the effective population size; see section 9.11 for discussion of that
distinction. What if we want the population size to change later? This is very straightforward; for
example, here is a simple script that models a population that goes through a bottleneck:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 1000); }
1000 early() { p1.setSubpopulationSize(100); }
2000 early() { p1.setSubpopulationSize(1000); }
10000 late() { sim.outputFixedMutations(); }

The initialize() callback is unchanged from previous models. In tick 1 a subpopulation
named p1 is set up with an initial size of 1000. In tick 1000, a method named
setSubpopulationSize() is called on p1 to change its size to 100, the beginning of the bottleneck.
In tick 2000 the size is set back to 1000, ending the bottleneck. The simulation then executes until
it ends in tick 10000 with output of fixed mutations.

If you run this in SLiMgui (don’t forget to Recycle), the population size changes as expected.

5.1.2 Exponential growth
 Sometimes you may want the size of a subpopulation to vary in a continuous fashion, rather

than experiencing discrete changes as in the previous recipe. This is straightforward in SLiM
because of the power of Eidos to express mathematical relationships. We will look at several
different versions of this recipe in order to explore different aspects of the problem.

As a first example, to make a population experience a period of exponential growth:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 117

1 early() { sim.addSubpop("p1", 100); }
1000:1099 early() {
 newSize = asInteger(p1.individualCount * 1.03);
 p1.setSubpopulationSize(newSize);
}
10000 late() { sim.outputFixedMutations(); }

Most of the script is unchanged; the work is done in the second Eidos event, which is scheduled
to run from tick 1000 to 1099, producing exponential growth for 100 generations. This event
calculates a new size, assigning it into newSize, and then sets the subpopulation size using that
variable. The use of the variable is for readability; it would be essentially equivalent to write:

p1.setSubpopulationSize(asInteger(p1.individualCount * 1.03));

Let’s look more closely at that statement. First, the current size of the subpopulation is accessed
through the individualCount property of p1. That size is then multiplied by 1.03 to produce a
new size based on an exponential growth rate of 1.03. Finally, the size is converted to an integer
by the asInteger() function (since setSubpopulationSize() does not allow you to set a non-
integer size), and the integer size is passed to setSubpopulationSize(). There is a suite of as...
() functions in Eidos that allow you to convert values to various new types, but converting float
values to integer with asInteger() is probably the most common conversion.

An important point here is that the setSubpopulationSize() call does not change the current
size of the subpopulation; after all, what would the genetics of the new individuals be? Instead, it
sets a new target size that will be used the next time that an offspring generation is created; a few
additional offspring will be made to reach the new target size. If you access the individualCount
property immediately after calling setSubpopulationSize(), you therefore observe that the
individual count has not changed. This is the reason why setSubpopulationSize() is not called
setIndividualCount(); the difference in name is intended to emphasize how SLiM works.

Since the population size gets rounded down to an integer in each tick, this code does not
actually achieve the precise exponential growth rate of 1.03 that we wanted. Let’s fix that:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 100); }
1000:1099 early() {
 newSize = asInteger(round(1.03^(sim.cycle - 999) * 100));
 p1.setSubpopulationSize(newSize);
}
10000 late() { sim.outputFixedMutations(); }

Running this in SLiMgui shows that the population reaches a size of 1922, whereas the previous
version reached a size of 1630 – a significant difference! Beware accumulated roundoff error.

How does the new version work? The expression sim.cycle-999 computes the number of
generations of exponential growth that have occurred; in cycle 1000 this is 1, in cycle 1099 it is
100. Next, 1.03^(sim.cycle-999) raises 1.03 to that power; ^ is the exponentiation operator in
Eidos, as in many programming languages. That calculates the result of the exponential growth
over the requisite number of generations. Finally, that result is rounded to the nearest whole
number by round(), which produces a float result, and then that whole number is converted to
an integer by asInteger().

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 118

Sometimes we may want the population size to increase exponentially until a specific target
size is reached, without knowing how many generations that might take. This is a bit trickier. One
possible implementation does this by brute force (leaving out the initialize() code):

1 early() { sim.addSubpop("p1", 100); }
1000:2000 early() {
 if (p1.individualCount < 2000)
 {
 newSize = asInteger(round(1.03^(sim.cycle - 999) * 100));
 p1.setSubpopulationSize(newSize);
 }
}
10000 late() { sim.outputFixedMutations(); }

This uses an if statement to increase the size of the subpopulation only if it is still less than
2000 (this is the first time we’ve seen the if statement in Eidos, but it should be pretty obvious what
it does here; see the Eidos manual for clarification). The tick range for the event has been
expanded to 1000:2000, because we don’t know what tick the target size will be reached in; it will
be well before tick 2000, so this is good enough, but is a bit sloppy. Alternatively, we could
calculate the exact tick in which the target size is reached (1101, as it happens), and use that
instead of 2000; if we did that, we wouldn’t even need the if statement, since the exponential
growth would reach its target in the event’s last invocation.

To ensure that the last generation of growth produces exactly 2000 individuals, we can use the
following solution:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 100); }
1000: early() {
 newSize = round(1.03^(sim.cycle - 999) * 100);
 if (newSize > 2000)
 newSize = 2000;
 p1.setSubpopulationSize(asInteger(newSize));
}
10000 late() { sim.outputFixedMutations(); }

First of all, notice that the tick range for the exponential growth event is now written as 1000:,
omitting the end tick. Just as supplying no tick range at all for an event means “run in every tick”,
omitting the end tick means “run in every tick after the specified start tick”. One may similarly
omit the start tick with the syntax :end, meaning “run in every tick from the beginning until the
specified end tick”.

The logic inside the event has also changed. Now the code always calculates a new size. If
that size is greater than 2000 it gets clamped to 2000, which enforces the maximum population size
we wanted. The clamped size is then set on the subpopulation.

The drawback to this solution is that the event runs in every tick from 1000 onward, calling
setSubpopulationSize() to set the size to 2000 over and over in ticks after the target size has been
reached. That is inefficient; more importantly, it might interfere with other changes we might want
to make to the population size later in the simulation. We’d really like our event to run for exactly
the needed duration to reach the target size, and then not run in subsequent ticks, without having

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 119

to hard-code a final tick for it. There is a simple solution to this problem – and this, you will be
relieved to read, is the final, polished version of our exponential growth recipe (so the
initialize() callback is provided to make the recipe complete):

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 100); }
1000: early() {
 newSize = asInteger(round(1.03^(sim.cycle - 999) * 100));
 if (newSize >= 2000)
 {
 newSize = 2000;
 community.deregisterScriptBlock(self);
 }
 p1.setSubpopulationSize(newSize);
}
10000 late() { sim.outputFixedMutations(); }

Braces have been added around the if statement’s consequent to make a group of statements;
all of the statements in the group will be executed if the condition of the if statement is true. This
use of braces makes what is called a compound statement; compound statements are legal
anywhere in Eidos that a single statement is legal.

The interesting change here, though, is the addition of the line:

community.deregisterScriptBlock(self);

This line prevents the event from continuing to run after the target size has been reached. It is a
common pattern in SLiM scripting, so it is worth a bit of discussion. SLiM keeps track of script
blocks that are registered for execution in the simulation. All of the events and callbacks that you
write in your input script are automatically registered; it is also possible to construct and register
new script blocks dynamically, as we will see in a later chapter. Script blocks that are registered
can be deregistered, using the deregisterScriptBlock() method of Community, as we are doing
here. Once a block is deregistered, SLiM forgets about it and no longer executes it.

The other thing to be explained here is self. This is a variable that is defined whenever SLiM is
executing an event or callback; it refers to the currently executing script block. We use it here so
that our exponential growth event can deregister itself. Once deregistered, the event is no longer
executed, and will remain deregistered until the Recycle button is pressed.

You can see the dynamics of script registration and deregistration graphically in SLiMgui, by the
way. Start by pressing Recycle, with the recipe above already open in a SLiMgui window. Now if
you open the drawer for the simulation window by pressing the drawer button to the right of the
chromosome view area, you will see a list of registered scripts:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 120

The exponential growth event is listed as the third entry there; if you hover the mouse over its
entry for a second or two, you will even see the code for it, shown in a tooltip. Now click in the
tick field, enter 1101, and press return:

This causes SLiMgui to execute the simulation up to the beginning of the requested tick, which
is just before the target population size is attained. If you now click Step, you will see the
exponential growth event disappear from the list of registered events.

If your scripting gets complicated, with script blocks registering and deregistering frequently,
this facility for viewing all of the registered script blocks can prove quite useful.

5.1.3 The population visualization graph
In the previous section, we saw several different ways to make a subpopulation grow

exponentially for a period of time. In this section, we show how to visualize the dynamics of
demography and population structure graphically in SLiMgui.

Start by copying and pasting the last recipe into a new SLiMgui simulation window, and then
Recycle to parse the script and get ready to execute it. Now click on the Show Graph button, ,
and from its pop-up menu select “Graph Population Visualization”. This will bring up a small
window, presently empty.

If you click Step twice, in order to execute the initialization phase and then tick 1, you should
see a small yellow circle labeled “p1” appear. This circle represents subpopulation p1; in
particular, its radius represents the size of the subpopulation, and its color represents the mean
fitness value of the subpopulation.

Now press Play, and keep your eyes on the subpopulation circle. When the simulation reaches
tick 1000 the circle for p1 will begin to grow, and it will continue growing until the subpopulation
size reaches its target, 2000:

In this instance the visualization is fairly trivial; still, it is useful for verifying that the population

expansion happens in the way that it was planned. In future sections we will see that the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 121

population visualization graph can also help us to visualize migration dynamics, fitness dynamics,
and other such things, making it a very useful tool for simulation debugging.

5.1.4 Cyclical changes
Another common demographic dynamic is a cyclically varying subpopulation size, perhaps

representing seasonality, or a decadal oscillation in resource availability. Implementing this in
SLiM is quite trivial; for example:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 1500); }
early() {
 newSize = cos((sim.cycle - 1) / 100) * 500 + 1000;
 p1.setSubpopulationSize(asInteger(newSize));
}
10000 late() { sim.outputFixedMutations(); }

The initialize() callback is unchanged. The interesting work is done by the second event –
the one with no tick range, which you might recall means that it will be executed in every tick.
This event first calculates a new size, and then sets the new size in the subpopulation (converting
to integer as usual). The new size is calculated based upon the current cycle count, sim.cycle,
passed through the cos() function, which calculates a cosine. (Note that the cycle count is the
same as the tick count, for this simple model; see section 1.5.7 for discussion of timescales). The
cycle is scaled and translated in order to arrange that the first offspring generation has a size of
1500, matching the size of the parental generation set up by addSubpop(). Of course that is not
required; this particular arrangement is just for demonstration purposes.

The cos() function calculates a cosine based on a given angle in radians, as is standard. The
periodicity of the cyclical population size is therefore based upon the fact that there are 2π radians
in a circle; given the scaling factor of 100, the population will complete a full cycle in 200π
generations, which is about 628. To make a subpopulation cycle with whatever periodicity you
wish, just adjust the scaling factor accordingly. Similarly, since cosine varies between -1 and 1,
the scaling factor of 500 on that, plus the translation of 1000, means that the population size cycles
between 500 and 1500. You might wish to view these dynamics in SLiMgui’s population
visualization graph, as described in the previous section.

This recipe uses cos() to generate cyclical dynamics, but you can plug in whatever formula you
wish. The population size does not have to depend only upon the tick, either; the flexibility of
Eidos allows you to implement whatever demographic model you wish, including demography
that depends upon the model dynamics themselves, as we will see in the next section.

5.1.5 Context-dependent changes: Muller’s Ratchet
Sometimes you might want subpopulation size to depend upon something other than time. An

example would be a situation in which population size depends upon mean fitness (e.g., a model
of so-called “hard” selection); if the mean fitness is low then the subpopulation size would be
small (perhaps because the subpopulation is getting outcompeted by individuals of some other
species, or perhaps because the subpopulation is just so unfit that individuals are having trouble
surviving and feeding themselves even without competition). Here we will examine such
dynamics in a model of Muller’s Ratchet:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 122

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 0.5, "e", -0.01);
 m2.convertToSubstitution = F;
 initializeGenomicElementType("g1", c(m1,m2), c(1,1));
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 100); }
early() {
 meanFitness = mean(p1.cachedFitness(NULL));
 newSize = asInteger(100 * meanFitness);
 p1.setSubpopulationSize(newSize);
}
10000 late() { sim.outputFixedMutations(); }

The initialize() callback here has been modified so that there are two mutation types, m1 and
m2, produced with equal probability in genomic element type g1. The m1 type represents neutral
mutations as usual (a fixed DFE with selection coefficient 0.0); the m2 type represents deleterious
mutations (an exponential DFE with mean selection coefficient -0.1). In our model we want
deleterious mutations to continue to affect fitness even after fixation, progressively reducing the
population size. For this reason, the convertToSubstitution property of m2 is set to F to prevent
fixed mutations of that type from being replaced by Substitution objects (see sections 23.3 and
25.11.1 for further information on this property).

The cachedFitness() method of class Subpopulation, called on p1, provides a vector of the
fitness values of all individuals in p1 (the NULL value passed simply requests fitness values for all
individuals; a vector of indices for individuals in in p1 could be passed instead). The mean()
function calculates the arithmetic mean of the vector it is passed, resulting in the mean
subpopulation fitness. A new size for the subpopulation is then calculated using a base size of
100, representing the size if the population were of mean fitness 1.0. In our scenario, the base size
is simply multiplied by the mean fitness.

This recipe is a very primitive toy model of fitness-based population dynamics; nevertheless, it is
interesting to look at it in the population visualization graph, where the population size changes
visibly and is clearly correlated with mean fitness, shown as the color of the subpopulation. As
deleterious mutations accumulate in the subpopulation, its circle both reddens and shrinks,
showing visually that demography is being driven by mean fitness. When the subpopulation
reaches extinction due to the accumulation of deleterious mutations by Muller’s Ratchet, this
model terminates with an error (“undefined identifier p1”), because after subpopulation p1 is set to
a size of 0 the symbol p1 ceases to exist; setting a size of 0 tells SLiM to remove the subpopulation
entirely. One could end the simulation more gracefully by testing for (newSize == 0) and calling
sim.simulationFinished(), perhaps after producing some sort of output regarding the tick and the
number of deleterious mutations fixed.

This model would in some ways be simpler and more natural to write as a nonWF model, since
in nonWF models fitness is absolute and selection is “hard” by default anyway (see section 1.6).

5.2 Population structure

5.2.1 Adding subpopulations
We have already seen in previous recipes how to add a single subpopulation by calling the

addSubpop() method of sim (which is of class Species). Creating population structure by adding
multiple subpopulations – of different sizes, linked by migration – is a very simple extension:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 123

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 500);
 sim.addSubpop("p2", 100);
 sim.addSubpop("p3", 1000);
 p1.setMigrationRates(c(p2,p3), c(0.2,0.1));
 p2.setMigrationRates(c(p1,p3), c(0.8,0.01));
}
10000 late() { sim.outputFixedMutations(); }

For this recipe we have returned to the simple initialize() callback we started with, with only
one mutation type. The new action happens in the tick 1 event, where we now add three
subpopulations of different sizes. Those populations are then connected by migration using calls
to the setMigrationRates() method of Subpopulation. Let’s examine the first such call:

p1.setMigrationRates(c(p2,p3), c(0.2,0.1));

Since this method call is made on p1, it is setting up immigration into p1. Both p2 and p3 are
given as sources of immigration, with rates of 0.2 and 0.1 respectively. In SLiM’s design, this does
not mean that individuals from p2 and p3 will move from those populations into p1. Rather, it
means that when p1 generates an offspring generation, and parents are chosen for a new offspring
individual, 20% of the time both parents will be chosen from p2, 10% of the time both will be
chosen from p3, and the remaining 70% of the time both will be chosen from p1 itself. In effect,
this models immigration of newly generated juveniles from the source subpopulations. This is how
migration in WF models works; see sections 1.6 and 23.2 for further discussion. The next line sets
up migration into p2, in the same way. Since migration into p3 is not configured, p3 acts as a
source only. Note that, as discussed further in section 23.2.1, migration rates specify the
probability that any given offspring individual will come from a particular source subpopulation;
the actual number of migrants in a given generation is thus stochastic, not deterministic.

It can be hard to visualize complex population structure just from code like this; happily,
SLiMgui’s population visualization graph provides a nice way to see what’s going on. If you open
this recipe in a SLiMgui simulation window, Recycle, press Step twice so that tick 1 has been
executed, and then open the population visualization graph, you will see a nice graphical
representation of the population structure:

As before, the circle sizes represent the subpopulation sizes, and the circle colors indicate the
mean fitness of each subpopulation. The arrows show migration links, with the thicknesses of the

p1

p2 p3

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 124

arrows indicating the strength of each link. Here it is immediately obvious that p3 is a source, and
that p2 is close to being a sink but does contribute some immigrants to p1.

Of course there is no need for the population structure to all be set up in tick 1; you can add
subpopulations, remove subpopulations, and change migration rates in each tick if you wish, as
we will explore in the next section. The population visualization graph will update to show the
current population structure as your simulation runs.

5.2.2 Removing subpopulations
The population structure set up in the previous recipe was quite static, established in tick 1 and

unchanging subsequently. Let’s explore more dynamic population structure by both adding and
removing subpopulations over time and dynamically changing migration. The recipe here is
longer because it does more things, but it is only a small extension of previous concepts:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
100 early() { sim.addSubpop("p2", 100); }
100:150 early() {
 migrationProgress = (sim.cycle - 100) / 50;
 p1.setMigrationRates(p2, 0.2 * migrationProgress);
 p2.setMigrationRates(p1, 0.8 * migrationProgress);
}
1000 early() { sim.addSubpop("p3", 10); }
1000:1100 early() {
 p3Progress = (sim.cycle - 1000) / 100;
 p3.setSubpopulationSize(asInteger(990 * p3Progress + 10));
 p1.setMigrationRates(p3, 0.1 * p3Progress);
 p2.setMigrationRates(p3, 0.01 * p3Progress);
}
2000 early() { p2.setSubpopulationSize(0); }
10000 late() { sim.outputFixedMutations(); }

The initialize() callback is as before. Subpopulations p1, p2, and p3 are now set up in ticks
1, 100, and 1000 respectively. Subpopulation p2 is removed in tick 2000 by setting its size to 0; that
is all that is needed to remove a subpopulation.

The rest of the code – the 100:150 event and the 1000:1100 event – introduces some continuous
change into the population structure. In the 100:150 event the migration rates between p1 and the
newly established p2 grow over time until they reach a target rate. In the 1000:1100 event the new
subpopulation p3 grows in size over time, from a very small founder population, and its
migrational contribution to p1 and p2 grows over time as p3 grows in size.

Watching these dynamics in SLiMgui’s population visualization graph is useful for confirming
that they are functioning correctly. However, the simulation may go too fast for the dynamics to be
seen clearly. You can use the speed slider, directly below the Play button, to slow it down:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 125

If you set a slower speed, as can be seen in the position of the speed slider shown above, and
then Recycle and Play, it should be easier to follow the action.

5.2.3 Splitting subpopulations
By default, when new subpopulations are added in SLiM they are composed of “brand-new”

individuals with no mutations. To produce more realistic dynamics, we might like the new
subpopulations to be split off from an existing subpopulation. Modifying the recipe above, this is
quite a simple change:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
100 early() { sim.addSubpopSplit("p2", 100, p1); }
100:150 early() {
 migrationProgress = (sim.cycle - 100) / 50;
 p1.setMigrationRates(p2, 0.2 * migrationProgress);
 p2.setMigrationRates(p1, 0.8 * migrationProgress);
}
1000 early() { sim.addSubpopSplit("p3", 10, p2); }
1000:1100 early() {
 p3Progress = (sim.cycle - 1000) / 100;
 p3.setSubpopulationSize(asInteger(990 * p3Progress + 10));
 p1.setMigrationRates(p3, 0.1 * p3Progress);
 p2.setMigrationRates(p3, 0.01 * p3Progress);
}
2000 early() { p2.setSubpopulationSize(0); }
10000 late() { sim.outputFixedMutations(); }

The only change is that the addSubpop() calls that established p2 and p3 have been changed to
addSubpopSplit(). This call is very similar to addSubpop(), but takes an extra parameter: the
existing subpopulation from which the new subpopulation should be split. The split is
accomplished by copying the individuals for the new subpopulation from the source
subpopulation. In other words, each new individual is an exact genetic clone of an existing
individual in the source population. This might seem a bit odd; but after the next generation has
been generated, it is as if the new subpopulation had been created empty and then filled with new
offspring generated by matings within the source subpopulation. It therefore models juvenile
migration from a source subpopulation, just as migration is normally modeled in WF models in
SLiM (as we saw before in section 5.2.1). The initial filling of the source subpopulation with
clones is, in effect, just choosing which source subpopulation individuals will be the parental
individuals that generate the first offspring generation in the new subpopulation.

5.2.4 Joining subpopulations
As well as splitting subpopulations off from other existing subpopulations, subpopulations can

be joined together. In SLiM this is treated as essentially a special case of normal subpopulation
creation and migration, rather than being implemented with a special method like
addSubpopSplit().

For example, suppose we begin with two subpopulations, p1 and p2, and wish to merge them –
with a particular proportion of admixture – to form a joined subpopulation, p3. The recipe for this
is quite simple:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 126

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 500);
 sim.addSubpop("p2", 1000);
}
1000 early() {
 // set up p3 to generate itself entirely from migrants
 sim.addSubpop("p3", 300);
 p3.setMigrationRates(c(p1, p2), c(0.75, 0.25));
}
1000 late() {
 // remove the source subpopulations
 p3.setMigrationRates(c(p1, p2), c(0.0, 0.0));
 p1.setSubpopulationSize(0);
 p2.setSubpopulationSize(0);
}
10000 late() { sim.outputFixedMutations(); }

The 1000 early() event runs before offspring generation. It creates a new subpopulation, p3, at
the desired size; here we happen to use 300, but we could use 1500 if we wanted p1 and p2 to join
together without any diminishment in size. This new subpopulation is created with 300 new empty
individuals, as requested; but that is not what we want. We therefore set migration rates into p3
from p1 and p2 to be 0.75 and 0.25 respectively (again, that is just what we happen to do in this
recipe; if we wanted p1 and p2 to admix proportionally to their sizes, we could use rates of 0.3333
and 0.6664).

After this early() event, SLiM will generate offspring, and the empty individuals in p3 will be
discarded and replaced by migrant offspring from p1 and p2 as requested. The 1000 late() event
executes immediately after this occurs; p3 is now the joined subpopulation, but p1 and p2 still exist
– at this point, we have modeled something more like a joint colonization event than a joining of
subpopulations. Now we want to remove p1 and p2 from the model, after zeroing out the
migration from them. (Technically, zeroing out the migration is not necessary; SLiM will do that
automatically when the subpopulations are removed. It is shown here to illustrate the technique
that would be used if one wanted to retain p1 or p2 in the model for some reason.)

Of course this recipe can be generalized to admix any number of source subpopulations in any
proportions to produce a joined subpopulation of any size, either in a single step or through
successive joinings in different ticks; and these mechanics can also be combined with
subpopulation splits and size changes as well, to produce any desired demographic history.

5.3 Migration and admixture
The previous subsections already showed how to set up patterns of migration among multiple

subpopulations. Here, we will focus on recipes for a few standard types of population structure to
show how the flexibility of Eidos makes setting up complex population structure easy.

5.3.1 A linear stepping-stone model
This model describes a linear chain of subpopulations, each of which is connected by migration

only to its nearest neighbors. This is quite easy to set up:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 127

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 subpopCount = 10;
 for (i in 1:subpopCount)
 sim.addSubpop(i, 500);
 for (i in 2:subpopCount)
 sim.subpopulations[i-1].setMigrationRates(i-1, 0.2);
 for (i in 1:(subpopCount-1))
 sim.subpopulations[i-1].setMigrationRates(i+1, 0.05);
}
10000 late() { sim.outputFixedMutations(); }

If you open this recipe in SLiMgui, Recycle, do Step twice to step through tick 1, and open the
population visualization graph, you will see the resulting structure:

As you can see, migration is stronger in one direction than in the other; this might represent
gene flow in a river system, for example, where gene flow is more likely to go downstream than
upstream. Indeed, it would be trivial to interrupt the upstream gene flow completely in certain
spots to represent the effect of waterfalls that prevent upstream migration. Using the techniques
shown in previous sections, it would also be trivial to make the migration pattern change over
time; a major flooding event in one generation could allow gene flow to pass upstream past a
small waterfall, for example.

This population structure is achieved using three for loops. We saw for loops briefly in section
4.1.5; let’s revisit the concept now. The first loop in this recipe is:

for (i in 1:subpopCount)
 sim.addSubpop(i, 500);

This causes the statement sim.addSubpop(i, 500); to be executed repeatedly as the loop index
variable i varies from 1 up to subpopCount, following the sequence defined by 1:subpopCount.
The result is that new subpopulations are created in order: p1, p2, p3, and on up to subpopCount.

The second loop is almost as straightforward:

for (i in 2:subpopCount)
 sim.subpopulations[i-1].setMigrationRates(i-1, 0.2);

This sets up migration into each subpopulation from the previous subpopulation: into p2 from
p1, into p3 from p2, and so forth. Since p1 receives no such migration (there being no p0

p1
p2

p3

p4

p5
p6

p7

p8

p9

p10

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 128

subpopulation), the loop starts at 2, not 1. For each value of i, the corresponding subpopulation is
looked up in the simulations subpopulation array, which is a property of Species, using
sim.subpopulations[i-1]; the use of i-1 here instead of i is because p1 will be at index 0 in the
subpopulation array (since vectors in Eidos are numbered starting at 0, not 1). Given the proper
subpopulation, the setMigrationRates() call then sets up migration from the previous
subpopulation (which is the purpose of i-1 in that call).

Given that explanation, the operation of the third loop should be fairly obvious. The power of
this algorithmic approach to setting up population structure should be clear; if we want 1000
subpopulations arranged in this manner, all we have to do is change subpopCount = 10; to
subpopCount = 1000;. The population visualization graph in SLiMgui will find this a bit
challenging to display, but it should be possible to test and debug such a model with just 10
subpopulations, and then scale up to 1000 subpopulations for your production runs.

5.3.2 A non-spatial metapopulation
Another possible scenario is a non-spatial metapopulation in which migration between each

pair of subpopulations occurs at some constant rate. This can be set up as follows:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 subpopCount = 5;
 for (i in 1:subpopCount)
 sim.addSubpop(i, 500);
 for (i in 1:subpopCount)
 for (j in 1:subpopCount)
 if (i != j)
 sim.subpopulations[i-1].setMigrationRates(j, 0.05);
}
10000 late() { sim.outputFixedMutations(); }

Here a nested pair of for loops using index variables i and j sets up the migration from j into i
for each pair of subpopulations. The test if (i!=j) prevents the code from attempting to set the
migration rate from a subpopulation into itself, which is illegal.

SLiMgui’s visualization of this population structure looks like what we wanted:

This recipe uses only five subpopulations (subpopCount = 5), but again the code is general and
may be scaled up to however many subpopulations you want in your metapopulation (although
SLiMgui may not be very good at visualizing these scenarios once they become too complex).

p1

p2

p3p4

p5

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 129

5.3.3 A two-dimensional subpopulation matrix
A third common population structure is a two-dimensional grid or matrix of subpopulations,

representing a spatial metapopulation in which each subpopulation exchanges migrants only with
its direct neighbors. SLiM has no intrinsic concept of geographic space in its simulations (unless
continuous space is enabled; see chapter 16), but with a population structure like this a pseudo-
geographic regime can be imposed upon a SLiM simulation such that new beneficial mutations,
for example, will spread from subpopulation to subpopulation in a similar manner to how they
might spread across a real landscape.

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 metapopSide = 3; // number of subpops along one side of the grid
 metapopSize = metapopSide * metapopSide;
 for (i in 1:metapopSize)
 sim.addSubpop(i, 500);

 subpops = sim.subpopulations;
 for (x in 1:metapopSide)
 for (y in 1:metapopSide)
 {
 destID = (x - 1) + (y - 1) * metapopSide + 1;
 destSubpop = subpops[destID - 1];
 if (x > 1) // left to right
 destSubpop.setMigrationRates(destID - 1, 0.05);
 if (x < metapopSide) // right to left
 destSubpop.setMigrationRates(destID + 1, 0.05);
 if (y > 1) // top to bottom
 destSubpop.setMigrationRates(destID - metapopSide, 0.05);
 if (y < metapopSide) // bottom to top
 destSubpop.setMigrationRates(destID + metapopSide, 0.05);
 }
}
10000 late() { sim.outputFixedMutations(); }

This code is a bit more complex than previous recipes. In the tick 1 event, we first decide how
large of a metapopulation we want; metapopSide=3 means that we will make a 3x3
metapopulation (trivially small, but easier to check for correctness). This can be scaled up
arbitrarily; it works well in SLiMgui for values as large as a 1000x1000 metapopulation with 10
individuals per subpopulation. We calculate the number of subpopulations we will need, and
make them all with the first for loop.

Then comes the trickier part. We loop over the grid of subpopulations using x and y, which
each range from 1 to metapopSide. For each subpopulation in the grid, as determined by x and y,
we calculate the ID of the subpopulation in destID, and then fetch the subpopulation itself into
destSubpop, getting it from the simulation’s subpopulation array as before. We then set the
migration into destSubpop from each of its four sides; if it is at the edge of the matrix, it receives no
migrants from that side (although it would be trivial to modify this code to make a wrap-around
pattern of migration simulating a toroidal world). Simple arithmetic is used to determine the
identifier of neighboring subpopulations based upon destID.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 130

SLiMgui’s visualization of this setup is complicated; it is not immediately obvious that it
represents a two-dimensional metapopulation, but it does:

However, SLiMgui has an alternate method of display for these population visualizations. If you
control-click or right-click on the graph, you will get a pop-up menu. Select “Optimized
Positions” from that menu, and you should see something more like this:

Here it is much more obvious that the migration pattern is as desired. This positioning
optimization algorithm is based on a concept called force-directed layout. It is a somewhat
experimental feature in SLiMgui, and may not always give layouts that look good; it is also quite
slow for layouts involving more than a dozen or so subpopulations. However, it is worth a try if
you want to get a publication-worthy picture of your population structure.

Speaking of “publication-worthy”, note that when you control-click or right-click on the
visualization graph, the pop-up menu also has an item entitled “Copy Graph”. That copies the
graph to the clipboard as a PDF – very handy for pasting into documents or slides.

5.3.4 A random, sparse spatial metapopulation
The recipe in section 5.3.3 showed how to make a small spatial metapopulation in which

subpopulations are arranged spatially in a grid that is connected by orthogonal migration. Here
we will extend that recipe to a larger size and a more random metapopulation configuration, and
we’ll look at a very simple sweep of a beneficial mutation across the metapopulation.

The initialize() callback for this model is largely unchanged from section 5.3.3:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 0.5, "f", 0.3);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}

p1

p2

p3

p4

p5p6

p7

p8

p9

p1 p2 p3

p4 p5 p6

p7 p8 p9

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 131

The only modification here is the addition of a new mutation type, m2, which has been defined
to represent beneficial mutations (with a selection coefficient of 0.3). New mutations are still
always neutral (mutation type m1); we will introduce the sweep mutation ourselves in script.

The final output event is also unchanged:

10000 late() { sim.outputFixedMutations(); }

The interesting changes are to the 1 late() event that configures the initial state of the
metapopulation:

1 late() {
 mSide = 10; // number of subpops along one side of the grid
 for (i in 1:(mSide * mSide))
 sim.addSubpop(i, 500);

 subpops = sim.subpopulations;
 for (x in 1:mSide)
 for (y in 1:mSide)
 {
 destID = (x - 1) + (y - 1) * mSide + 1;
 ds = subpops[destID - 1];
 if (x > 1) // left to right
 ds.setMigrationRates(destID - 1, runif(1, 0.0, 0.05));
 if (x < mSide) // right to left
 ds.setMigrationRates(destID + 1, runif(1, 0.0, 0.05));
 if (y > 1) // top to bottom
 ds.setMigrationRates(destID - mSide, runif(1, 0.0, 0.05));
 if (y < mSide) // bottom to top
 ds.setMigrationRates(destID + mSide, runif(1, 0.0, 0.05));

 // set up SLiMgui's population visualization nicely
 xd = ((x - 1) / (mSide - 1)) * 0.9 + 0.05;
 yd = ((y - 1) / (mSide - 1)) * 0.9 + 0.05;
 ds.configureDisplay(c(xd, yd), 0.4);
 }

 // remove 25% of the subpopulations
 subpops[sample(0:99, 25)].setSubpopulationSize(0);

 // introduce a beneficial mutation
 target_subpop = sample(sim.subpopulations, 1);
 sample(target_subpop.genomes, 10).addNewDrawnMutation(m2, 20000);
}

This creates a 10×10 spatial metapopulation in much the same way as section 5.3.3 created a
3×3 metapopulation: first by creating the subpopulations themselves in a simple loop, and then
setting up the migration among them with a pair of nested loops over x and y (see section 5.3.3 for
further comments on that basic design).

For each subpopulation, however, it also does something new, under the “// set up SLiMgui”
comment: it calculates a visual position for the subpopulation, as xd and yd, and then calls
configureDisplay() on the subpopulation to tell SLiMgui to use that position in its display. The
coordinate system used by SLiMgui for subpopulation display spans [0,1] in x and y, so the xd and
yd values calculated here are within that range. We pass a value of 0.4 for the second parameter
to configureDisplay(); this is a scaling factor for the circle used to represent the subpopulation,
so here we are telling SLiMgui to use unusually small circles (so that all 100 subpopulations fit into
the display without overlapping).

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 132

If we ran the model without this display configuration (just comment out the call to
configureDisplay()), we would get the left-hand plot below; the subpopulations are all
overlapping and nothing can be discerned at all. (The “Optimized Positions” technique shown in
section 5.3.3 is not up to the task either; optimizing such a large network is a difficult problem.
Perhaps that experimental feature will eventually be improved to the point that it produces
acceptable results for this model, but at present it does not.) If we run it with the display
configuration, we get the right-hand plot below, which is obviously much better:

Looking at the right-hand visualization, it is now immediately apparent that this is not a
complete metapopulation, but rather a sparse metapopulation in which some subpopulations are
missing. That brings us to the next lines in the event:

// remove 25% of the subpopulations
subpops[sample(0:99, 25)].setSubpopulationSize(0);

This takes a sample, of size 25, from the sequence 0:99, selects those subpopulations (using the
subset operator on subpops), and sets their size to zero. As we saw in section 5.2.2, this removes
those subpopulations from the simulation; any connections they have to other subpopulations by
migration are broken. That one line, then, very easily produces a random sparse metapopulation.
The only caveat is that, depending upon which subpopulations get removed, the remaining
metapopulation might not be connected; there might be two or more isolated networks with no
connection between them via migration at all. If that is undesirable, further steps would have to
be taken to avoid that possibility.

You might also notice that the arrows in the population visualization now vary in their
thickness; this is because we now draw random migration rates using runif(), rather than using a
fixed migration rate as we did in section 5.3.3. This code draws migration rates from a uniform
distribution, and makes no attempt to ensure that migration rates between a given pair of
subpopulations are symmetric. One could, of course, implement any pattern of migration, random
or otherwise, that one wished.

That brings us to the final lines of the event:

// introduce a beneficial mutation
target_subpop = sample(sim.subpopulations, 1);
sample(target_subpop.genomes, 10).addNewDrawnMutation(m2, 20000);

p1p2p3p6p8p9p11p12p13p15p16p17p18p19p22p23p24p25p27p28p29p30p31p32p33p34p35p36p37p38p39p40p41p42p43p44p45p46p47p48p49p51p52p53p54p55p56p57p58p59p60p61p63p64p65
p68p69
p72p77
p78p79
p81p83
p84p87
p88p89
p90p91
p94p96p97

p98p99p100

p1 p2 p4 p5 p6 p8 p9

p12 p16 p17 p18 p19 p20

p21 p22 p23 p24 p25 p27 p28 p29 p30

p32 p34 p35 p36 p37 p38 p39 p40

p41 p42 p43 p44 p45 p48 p49 p50

p51 p54 p55 p57 p58 p60

p61 p62 p63 p64 p65 p66 p68 p70

p71 p73 p74 p75 p77 p78 p79 p80

p81 p83 p84 p85 p87 p88 p89

p91 p92 p93 p94 p95 p96 p97 p98

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 133

This manual will cover introduced mutations and selective sweeps in great detail in chapter 9,
so this is just a tiny bit of foreshadowing of that complex topic. The idea here is simple: we choose
one subpopulation from the subpopulations that remain in the model using sample(), and then we
choose ten genomes at random from the chosen subpopulation again using sample() (starting with
ten rather than just one to make it more likely that the mutation will not be lost due to drift early
on, for pedagogical purposes), and finally we call addNewDrawnMutation() to add a new m2
mutation to those ten genomes at position 20000. This code, then, introduces a beneficial mutation
that will, we hope, sweep through our sparse metapopulation.

And if it doesn’t get lost, and if the metapopulation is connected, sweep it does. Here is a
screenshot from midway through the sweep (in a different random run than was shown above):

As per the default behavior in SLiM, subpopulations are colored according to their mean fitness;
populations where the sweep mutation is approaching fixation are thus a dark green, while
populations that are still neutral are yellow. Note that the configureDisplay() method has a third
(optional) argument that would allow us to customize the color of each subpopulation as well,
coloring them according to whatever model variable we wish; we have not used that here, since
the default fitness-based coloring is in fact exactly what we want.

5.3.5 Reading a migration matrix from a file
Sometimes, when modeling an empirical population, migration rates are specified in a file, and

you would like to read that file in and create a corresponding SLiM model. This is very easy to
accomplish using Eidos in SLiM. Let’s start by looking at a very simple migration matrix file:

// For the recipe of section 5.3.5.
// Format: <src>, <dest>, <rate>.
1,1,0.78
1,2,0.10
1,3,0.12
2,1,0.01
2,2,0.96
2,3,0.03
3,1,0.33
3,2,0.17
3,3,0.50

p1 p2 p3 p4 p6 p7 p8 p9 p10

p11 p12 p13 p14 p15 p17 p19 p20

p23 p24 p26 p27 p28 p29 p30

p31 p32 p35 p36 p37 p38 p39

p41 p42 p43 p45 p46 p47 p49 p50

p51 p53 p54 p55 p57 p58 p59 p60

p61 p63 p64 p65 p66 p68 p69 p70

p71 p72 p75 p76 p77 p79 p80

p83 p84 p86 p88 p89 p90

p92 p93 p94 p95 p96 p97 p100

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 134

This file expresses the model’s migration rates as a series of lines, each of which is a series of
comma-separated values; this format is often called a CSV file. Let us suppose that it exists on disk
with the filename migration.csv. The first two lines are comments, describing the file. The rest of
the lines each have three values: the identifier of the source subpopulation, the identifier of the
destination subpopulation, and the migration rate (sometimes the destination is listed before the
source in these sorts of files, so be careful). Note that there are lines expressing the fraction of
each subpopulation that does not migrate – the remainder after all migrants have left. This is not
optimal for SLiM’s purposes, but we want to work with the file as it is.

We can read this file in and create a model based on it with a simple script:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 for (i in 1:3)
 sim.addSubpop(i, 1000);
 subpops = sim.subpopulations;

 lines = readFile("migration.csv");
 lines = lines[substr(lines, 0, 1) != "//"];

 for (line in lines)
 {
 fields = strsplit(line, ",");
 i = asInteger(fields[0]);
 j = asInteger(fields[1]);
 m = asFloat(fields[2]);

 if (i != j)
 {
 p_i = subpops[subpops.id == i];
 p_j = subpops[subpops.id == j];
 p_j.setMigrationRates(p_i, m);
 }
 }
}
10000 late() { sim.outputFixedMutations(); }

The tick 1 event is where the action is. It first creates the three subpopulations of the model
with a simple for loop. It would be easy to extend this model to determine the number of
subpopulations from the contents of the migration.csv file, and to read subpopulation sizes in
from that file, and so forth. Here, however, we hard-code those values for simplicity. Once the
subpopulations have been created, we cache the vector of subpopulations in subpops for brevity in
the script that follows.

Next, the script reads in the contents of the migration.csv file using readFile(). This creates a
string vector, with each line of the file being a separate element in the vector. The following line
uses the substr() function to find lines that begin with "//", and removes those lines by
subsetting the lines vector, stripping out the comment lines from the file.

Now we can loop through the lines with a for loop and handle each line in turn. The
strsplit() function is used to split line into its components, separated by commas; this is often a

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 135

very convenient way to parse CSV files (but using the readCSV() function is often even easier – see
section 6.1.2 for an example). The three values of the line are then extracted from the fields
vector, which is of type string, and are converted to their appropriate types.

The last block actually sets the migration rate. First it checks that i and j are not the same; this
filters away the lines that express the non-migrating fractions, which SLiM does not need to know
about. Then it looks up the subpopulations referenced by i and j, using the id property, which
corresponds to the numeric part of the subpopulation’s symbol (i.e., subpopulation p3 has an id of
3). Finally, it sets the migration rate from p_j to p_i to be the rate m that was read from the file.

When executed, SLiMgui’s visualization of this population structure looks like this:

That looks like what we would expect from looking at the file; p2 is a sink, p3 is a source, and
p1 is close to balanced. This is a very simple population model, but this script could just as easily
read in a migration matrix file for hundreds or even thousands of subpopulations; its code is quite
general. As mentioned above, it could also easily be extended to read subpopulation sizes from
the CSV file as well; indeed, other subpopulation properties, such as selfing rates and sex ratios,
could also easily be added to the file format and set up by this script, and the script could easily be
adapted to work with whatever empirical data files already exist.

5.4 The Gravel et al. (2011) model of human evolution
In this section we will look at a recipe that brings together all of the elements of demography

and population structure that have been discussed in this chapter. This is a SLiM implementation
of a model of human evolution presented by Gravel et al. (2011); in particular, we here model the
“Low-coverage + exons” model described in their Table 2. The recipe:

initialize() {
 initializeMutationRate(2.36e-8);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 9999);
 initializeRecombinationRate(1e-8);
}

// INITIALIZE the ancestral African population
1 early() { sim.addSubpop("p1", asInteger(round(7310.370867595234))); }

// END BURN-IN; EXPAND the African population
73105 early() { p1.setSubpopulationSize(asInteger(round(14474.54608753566))); }

// SPLIT Eurasians (p2) from Africans (p1) and SET UP MIGRATION
76968 early() {
 sim.addSubpopSplit("p2", asInteger(round(1861.288190027689)), p1);
 p1.setMigrationRates(c(p2), c(15.24422112e-5));
 p2.setMigrationRates(c(p1), c(15.24422112e-5));
}

p1

p2p3

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 136

// SPLIT p2 into European (p2) and East Asian (p3); RESIZE; MIGRATION
78084 early() {
 sim.addSubpopSplit("p3", asInteger(round(553.8181989)), p2);
 p2.setSubpopulationSize(asInteger(round(1032.1046957333444)));

 p1.setMigrationRates(c(p2, p3), c(2.54332678e-5, 0.7770583877e-5));
 p2.setMigrationRates(c(p1, p3), c(2.54332678e-5, 3.115817913e-5));
 p3.setMigrationRates(c(p1, p2), c(0.7770583877e-5, 3.115817913e-5));
}

// SET UP EXPONENTIAL GROWTH in Europe (p2) and East Asia (p3)
78084:79024 early() {
 t = sim.cycle - 78084;
 p2_size = round(1032.1046957333444 * (1 + 0.003784324268)^t);
 p3_size = round(553.8181989 * (1 + 0.004780219543)^t);

 p2.setSubpopulationSize(asInteger(p2_size));
 p3.setSubpopulationSize(asInteger(p3_size));
}

// OUTPUT AND TERMINATE
79024 late() {
 p1.outputSample(216); // YRI phase 3 diploid sample of size 108
 p2.outputSample(198); // CEU phase 3 diploid sample of size 99
 p3.outputSample(206); // CHB phase 3 diploid sample of size 103
}

Three subpopulations are modeled in this recipe, as shown in the diagram below (solid arrows
show subpopulation splitting events, dotted arrows show migration rates between subpopulations,
and red italic numbers show subpopulation effective sizes). Note that, while exact parameter
values from the original model are used in the recipe (Simon Gravel, pers. comm.), rounded values
are reported in the Gravel et al. (2011) manuscript. The full version of this recipe, available online
and in SLiMgui, provides extensive comments regarding the rounding of values and the timing of
simulation events; those comments are not shown here for brevity.

1 73105 7902476968 78084

Time (Generations)

Po
p

u
la

ti
o

n
 s

iz
e

0

p1: African

p2: Eurasian Bottleneck

p2: European

p3: East Asian

7310

14475

1861 554

1032

35951

48998

1
5
×

1
0
−

5

2
.5
×

1
0
−

5

0
.7

8
×

1
0
−

5 3
.1
×

1
0
−

5

48998 Subpopulation size

Subpopulation split event

Migration rate

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 137

The first subpopulation, present from the beginning of the simulation, is p1; it represents the
African population YRI (Yoruba in Ibadan, Nigeria). The second, p2, initially represents the
ancestral Eurasian bottleneck, and then becomes the European population CEU (Utah residents
with Northern and Western European ancestry). The third, p3, represents the East Asian population
CHB (Han Chinese in Beijing, China). As you can see in the diagram and the recipe, p2 splits from
p1 at tick 76968, and then p3 splits off from p2 at tick 78084. Beginning with the split of p3 from p2,
both p2 and p3 undergo exponential growth until the end of the model.

The model begins 79024 generations ago (~1.98 million years if we assume 25 years per
generation), which is also 79024 ticks ago (given non-overlapping generations). It spends quite a
long time doing neutral burn-in – 73104 ticks, to be exact, calculated as ten times the ancestral
population size (see section 17.6). Then the action really starts in tick 73105 with the expansion of
the African subpopulation. Running the full model only takes a couple of minutes, but if you’re
impatient, you can change the tick 1 event that creates p1 to run in tick 73000 instead, providing an
105-tick burn-in that should suffice for illustrative purposes (but will not produce the correct
pattern of neutral diversity at the end of the run). Note that the final population sizes, at the end of
the run, may not exactly match the values given in Gravel et al. (2011) due to roundoff error.

This model is a neutral model; the only mutation type modeled is m1, which is neutral. At the
end of the model, random samples are output from each of the three subpopulations to provide a
view of the neutral diversity present in each subpopulation. The empirical samples that this output
is intended to match were taken from (diploid) humans; the outputSample() method of
Subpopulation, on the other hand, takes as its argument the number of (haploid) genomes to
sample and output. The sample sizes in SLiM are thus double the empirical sample sizes.

A frequently asked question is: how can one produce output encompassing particular genomes
that have been sampled from multiple subpopulations? The outputSample() method used in this
recipe is a method of Subpopulation, and therefore takes its sample from the single subpopulation
that is the target of the method. But there are also output methods on Genome that can be called on
any vector of genomes, obtained from any source (see section 25.4.2). For example, we could
rewrite the final output event for this recipe as follows:

79024 late() {
 sample1 = p1.sampleIndividuals(108).genomes; // YRI
 sample2 = sample(p2.individuals, 99).genomes; // CEU
 sample3 = sample(p3.genomes, 206); // CHB
 c(sample1, sample2, sample3).output();
}

This snippet shows three different ways to take a sample from a population: with the
sampleIndividuals() method of Subpopulation (see section 25.16.2), with the sample() function
applied to the vector of individuals in a subpopulation, and with sample() applied to the vector of
genomes in a subpopulation. Note that in the first two cases individuals are sampled and then the
genomes property of Individual is used to get the two genomes of each sampled individual, so
these samples consist of diploid pairs of genomes from individuals, whereas in the third case the
genomes of the subpopulation are sampled directly, so this sample will consist of unassociated
haploid genomes. This is why the sample size in the first two cases is half what it was before; we
end up with two genomes for each sampled individual. Given these three vectors of genomes, we
use c() to construct a single vector of genomes from them, and then call output() to produce
output from that vector. Genome also has outputVCF() and outputMS() methods (see section
25.4.2), so any style of output supported by SLiM can be produced in this manner.

It is worth noting that the population sizes used in this model are effective population sizes.
The actual population sizes in human history were likely much larger, but geography and other

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 138

factors greatly reduced the effective population size. This is also the reason that the sizes of p2 and
p3 post-split are not modeled as adding up to the same size as the pre-split p2 subpopulation. For
discussion of effective population size versus census population size, see section 9.11.

It is also worth noting that this model was estimated using a mutation rate of 2.36e-8 per base
position per gamete. As this rate is somewhat higher than what has been estimated by more recent
studies of human parent/offspring ‘trios’, it might be appropriate to utilize some of the rescaling
techniques discussed in the next section for certain applications. For example, to simulate
evolution with a mutation rate of 1.2e-8 per base pair per gamete, Amorim et al. (2017) multiply
branch lengths (generations) and population sizes by a scaling factor of 1.97 (2.36-8 / 1.2e-8).
Additionally, a more recent version of the Gravel model has been estimated by Jouganous et al.
(2017) using a generation time of 29 years and mutation rate of 1.44e-8 per base position per
gamete, meant to reflect synonymous sites in protein-coding genes. Rescaling is necessary, rather
than simply changing the mutation rate used in the model, because if a lower mutation rate is used
with the same population sizes and event times, a lower level of genetic diversity will result, no
longer fitting empirical patterns of genetic diversity (see section 5.5).

The model for this recipe was written by Aaron Sams, formerly of the Messer Lab at Cornell, and
revised by Chase W. Nelson in SLiM 3.5. Incidentally, if you are interested in exploring other
human demographic models, and a wide variety of other standard population genetic models, the
stdpopsim software package may be of interest. It uses both SLiM and msprime as “back ends”,
including leveraging tree-sequence recording for efficient burn-in and analysis, and can be very
useful for reproducing and exploring standard models. See section 1.10 for discussion and links.

Before moving on, let’s wander off on a little digression, because this model is the longest SLiM
model we’ve seen yet. If you open it in SLiMgui, you may not be able to see all of its code unless
you make the model window fairly large. If you use SLiM for very long, your models may be even
longer and more complex than this recipe, and when you get to that point, scrolling around trying
to find the event you want can be confusing and annoying. There is a need for some kind of
organizational tool – and happily, SLiMgui provides such a tool.

For illustration purposes, here’s a simplified Gravel model script in which all of the old
comments in the code have been deleted – but there are a few new comments:

/// # Gravel Model in SLiM
/// #### _(with Jump Menu annotations)_
///

initialize() {
 initializeMutationRate(2.36e-8);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 9999);
 initializeRecombinationRate(1e-8);
}

///
/// **Demography:**

1 early() /* create p1 */ {
 sim.addSubpop("p1", asInteger(round(7310.370867595234)));
}

73105 early() /* end burn-in */ {
 p1.setSubpopulationSize(asInteger(round(14474.54608753566)));
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 139

76968 early() /* split p2 from p1 */ {
 sim.addSubpopSplit("p2", asInteger(round(1861.288190027689)), p1);
 p1.setMigrationRates(c(p2), c(15.24422112e-5));
 p2.setMigrationRates(c(p1), c(15.24422112e-5));
}

78084 early() /* split p3 from p2 */ {
 sim.addSubpopSplit("p3", asInteger(round(553.8181989)), p2);
 p2.setSubpopulationSize(asInteger(round(1032.1046957333444)));

 p1.setMigrationRates(c(p2, p3), c(2.54332678e-5, 0.7770583877e-5));
 p2.setMigrationRates(c(p1, p3), c(2.54332678e-5, 3.115817913e-5));
 p3.setMigrationRates(c(p1, p2), c(0.7770583877e-5, 3.115817913e-5));
}

78084:79024 early() /* exponential growth */ {
 t = sim.cycle - 78084;
 p2_size = round(1032.1046957333444 * (1 + 0.003784324268)^t);
 p3_size = round(553.8181989 * (1 + 0.004780219543)^t);

 p2.setSubpopulationSize(asInteger(p2_size));
 p3.setSubpopulationSize(asInteger(p3_size));
}

/***/
/** **Final output:** */

79024 late() {
 p1.outputSample(216);
 p2.outputSample(198);
 p3.outputSample(206);
}

These special comments annotate the script in a way that SLiMgui can understand. (This
modified script is available as “Recipe 5.4 - The Gravel et al. (2011) model of human evolution II”
in SLiMgui’s Open Recipe menu.) To see the point of this, click on the Jump button at the top of
the scripting area:

The button pops up a menu like this:

➘

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 140

And now you can see the point of this. Each item in this menu will jump you to the
corresponding spot in your code – to one of the events you have defined (or callbacks, or user-
defined functions), or to one of the bold header comments you have put in the code. All of the
labels come from the comments present in the code. Most code comments do not appear in the
Jump menu; there are three specific kinds of comments that do appear.

First of all, there are comments that add a label to an event, callback, or user-defined function.
These must appear on the same line as the declaration of the script block, before the starting brace
for the block. These code formatting styles would all produce the same result shown above:

1 early() /* create p1 */ {
 sim.addSubpop("p1", asInteger(round(7310.370867595234)));
}

1 early() /* create p1 */
{
 sim.addSubpop("p1", asInteger(round(7310.370867595234)));
}

1 early() // create p1
{
 sim.addSubpop("p1", asInteger(round(7310.370867595234)));
}

So either a /* */ comment or a // comment may be used, and the opening brace can be on the
same line or the next line, as you prefer.

Second, there are comments that add a header line, like the Demography: header above. These
use a conventional comment format sometimes called a “Doxygen” comment, after the popular
code-documentation tool. The format involves an extra / at the start of a // comment, or an extra
* at the start of a /* */ comment, like these comments in the script above:

/// **Demography:**

/** **Final output:** */

When SLiMgui sees a comment in this format, it knows that it is a Jump menu header item.
These comments have some other extra asterisks, too, highlighted in red here:

/// **Demography:**

/** **Final output:** */

These asterisks are the reason that these header lines appear in bold. They are so-called
“Markdown” annotations, telling SLiMgui that the text inside the double asterisks should be shown
in bold. You can read more about it on Wikipedia at https://en.wikipedia.org/wiki/Markdown, and
there are tons of other online resources about it, but really it’s extremely simple – especially since
SLiMgui supports only a small subset of Markdown annotations. Basically, you can put text in
italics by surrounding it with single underscores or single asterisks, like _italic_ or *italic*; you
can put it in bold with double underscores or double asterisks, like __bold__ or **bold**; you can
do both by doing both, like ***bold-italic*** or __*bold-italic*__ or similar variants; and you
can change the font size with header annotations from large, like # H1, to small, like ###### H6,
using 1–6 hash marks, followed by a space (required), followed by your label text.

Now we can understand the comments at the top of the file, which use Markdown annotations
to produce the nice-looking header at the top of the Jump menu. Let’s look at them again, with the
Markdown annotations shown in red:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 141

https://en.wikipedia.org/wiki/Markdown

/// # Gravel Model in SLiM
/// #### _(with Jump Menu annotations)_

The first comment uses a single hash mark (#), followed by the required space, to make the line
into a top-level (H1) header using the largest font size.

The second comment uses four hash marks (####) to make the line into a subhead (H4), resulting
in a font size slightly smaller than normal; in SLiMgui, the default font size in the Jump menu
corresponds to header level H3 (###). This line also uses single underscores (_) around the label
text to make it italic.

Note that SLiMgui’s support for Markdown is only rudimentary. You might want to do
something like this, for example (Markdown annotations again in red):

/// _italics here_ and **bold here**

This does not work; the entire label must be in a single style. The Markdown annotations for
things such as links, images, bullet lists, etc., are also not supported. Markdown annotations also
work only in standalone header comments like these; they do not work in comments on script
blocks (the first category of formatted comments we looked at above). (These limitations are
imposed by what the Qt widget kit, used by SLiMgui, allows in menu items.)

Finally, there are comments that add a separator line in the Jump menu, like these comments in
the script above:

///

/***/

Separator lines must be exactly the two styles above; variants will not work. All other
comments in your code will be ignored by the Jump menu, so you can (and should!) continue to
comment your code as usual.

When writing your own scripts, you can use these special comments to customize the Jump
menu in SLiMgui to suit your preferred workflow. Oh, and you can even put emojis in your
comments; they will appear in the Jump menu, which can be a very quick, visual way to mark
your most commonly used script blocks! For example, you might add a hatching chick emoji to
your event that creates the initial subpopulation, like this:

1 early() /* 🐣 create p1 */ {

That would appear like this in the Jump menu:

That might seem silly; but humans are extremely visual, and can find visual patterns must faster
than text patterns. If you mark the events that you most commonly hunt for in your script with
appropriate emojis, you will find them much more easily, even if you do feel a bit silly doing so!

5.5 Rescaling population sizes to improve simulation performance
The limiting factor in most forward population genetic simulations tends to be the actual

number of individuals simulated. In SLiM, every individual in the population is modeled
explicitly. Thus, in larger populations more time is consumed per generation creating the children
that make up the population, and more memory is needed for storing their genetic information.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 142

Perhaps we can approximate the evolution of a large population using a simulation of a smaller
population? In some ways, we can: analytical theory predicts that under certain assumptions
many important population-genetic parameters, such as the expected levels of diversity,
polymorphism frequency spectra, levels of linkage disequilibrium, etc., should primarily depend
on products of the form Nµ, Nr, and Ns, where N here is the effective population size (often
written Ne), µ is the mutation rate, r the recombination rate, and s the selection coefficient of a
given mutation.

Thus, for many analyses we do not have to simulate a population of the true size, but can
obtain similar results by simulating a much smaller population while rescaling µ, r, and s such that
the products Nµ, Nr, and Ns remain the same. Importantly, when rescaling population sizes, time
has to be rescaled as well, because drift will be faster in a smaller population. The amount of drift
in a Wright–Fisher population of 1000 individuals, observed over 100 generations, will be similar
to that in a population of 100 individuals observed over just 10 generations. In this way, rescaling
a simulation to a smaller population size not only helps us by having to model fewer individuals
per generation, but also by reducing the number of generations we need to simulate.

This rescaling “trick” can be tremendously helpful in practice, allowing the simulation of
scenarios featuring large populations that would not be feasible to simulate more directly.
However, there are clear limitations to rescaling as well. Most obviously, there will be limits to
how far downscaling of population sizes can be pushed in the light of an increasing impact of
discretization effects: as simulated population sizes become smaller, there will be fewer possible
population frequencies at which mutations can segregate, with the lowest possible frequency
being 1/(2N). Thus, the rescaling approach will break down if the goal is to study the
characteristics of very low-frequency polymorphisms.

The discreteness of generations can increasingly become a problem as time is rescaled
downwards. For example, if a selective sweep that takes 100 generations in a population of 10000
individuals takes the same amount of “time” in a downscaled population of 500 individuals, it
would complete in only 5 generations (assuming selection coefficients were rescaled upwards
accordingly). In that case, the frequency changes of the selected allele will no longer be small
over the timescale of a single generation, violating a key assumption in many analytical models.
Furthermore, since the time for a beneficial allele to sweep scales with log(N), we actually expect
the sweep in the smaller population to complete even faster than we would expect after
accounting for rescaling.

This discretization can also have unexpected and undesirable side effects on processes such as
adaptation. Since N  µ = (N / Q) µ Q), rescaling by a factor Q preserves the influx of mutations per
generation. One rescaled generation is Q original generations, so this implies a lower influx of
mutations per unit of time, but since mean TMRCA scales with N, genetic diversity at neutral sites
is preserved. Since the probability of fixation of a beneficial mutation scales with s, and since
N µ s dt = (N / Q) µ Q s Q (dt / Q)), the influx of successfully established beneficial mutations per
unit time is also preserved, implying a smaller number of fixed selected mutations since the mean
TMRCA in the population. Since rescaled values of s are larger, this has the net effect of
substituting many mutations of small effect with a single one of large effect (with Q = 100,
replacing 100 mutations of s = 0.001 by a single one of s = 0.1), a very different scenario.

While it may be tempting to always rescale any given scenario to a very small population size,
then, one must be careful that finite-size effects do not distort results too much. It is therefore
generally advisable to test any rescaled scenario at larger and smaller sizes in order to make sure
that the results are consistent. When tree-sequence recording can be used to speed up a
simulation, by allowing simulation of neutral mutations to be deferred (see section 17.2), or even
by allowing the coalescent to be used for neutral burn-in with recapitation (see section 17.10), that

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 143

will usually be strongly preferable, since tree-sequence recording does not introduce such artifacts.
Nevertheless, since tree-sequence recording may not be applicable to a given model, or may
provide insufficient performance enhancement, rescaling is still sometimes needed. Rescaling may
be used in conjunction with tree-sequence recording, with the appropriate adjustment of
parameters such as µ and r for mutation overlay and recapitation; using these techniques in
conjunction can allow a smaller rescaling factor to be used, minimizing the artifacts caused by the
rescaling.

As an example of the use of rescaling, consider the following recipe, in which we model neutral
and deleterious mutations occurring over a 10 kb locus in a population of initial size 5000. In tick
50000, the population experiences a bottleneck that lasts for 5000 generations. A random
population sample is then taken in tick 60000:

initialize() {
 initializeMutationRate(1e-8);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 0.5, "f", -0.01);
 initializeGenomicElementType("g1", c(m1,m2), c(0.8,0.2));
 initializeGenomicElement(g1, 0, 9999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 5000); }
50000 early() { p1.setSubpopulationSize(1000); }
55000 early() { p1.setSubpopulationSize(5000); }
60000 late() { p1.outputSample(10); }

The patterns of diversity observed in the population sample retrieved at the end of the
simulation should be very similar to those obtained from the following recipe, in which we
downscaled the population size by a factor of ten:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 0.5, "f", -0.1);
 initializeGenomicElementType("g1", c(m1,m2), c(0.8,0.2));
 initializeGenomicElement(g1, 0, 9999);
 initializeRecombinationRate(1e-7);
}
1 early() { sim.addSubpop("p1", 500); }
5000 early() { p1.setSubpopulationSize(100); }
5500 early() { p1.setSubpopulationSize(500); }
6000 late() { p1.outputSample(10); }

Note how the population sizes, times, mutation rates, recombination rates, and selection
coefficients were all rescaled in this scenario. On a 2.26 GHz Intel Xeon Mac Pro running the
models in SLiMgui, the first recipe runs in 218 seconds, whereas the second runs in 12 seconds –
quite a significant difference.

One caveat is that if the original model uses very high recombination rates, those rates should
not be scaled in the simple multiplicative fashion described above. In particular, consider that a
recombination rate of 0.5 represents completely independent assortment from one base to the
next, due to a probability of crossover between bases of 0.5 (see section 25.1’s documentation of
initializeRecombinationRate()). If a model uses a rate of 0.5 between sites, a rescaled version
of that model would still use a rate of 0.5 between those sites, because completely independent
assortment can’t get more independent; indeed, if the rescaling factor were, e.g., 10, then
multiplying the original recombination rate by the rescaling factor would result in a nonsensical

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 144

scaled rate of 5.0 that would not even be interpretable as a probability. In point of fact, the simple
multiplication of rates when rescaling a model is always just an approximation, but for rates less
than 0.001 and rescaling factors of 10.0 or less it will be such a close approximation that the
difference shouldn’t matter. The correct formula for rescaling of recombination rates in SLiM, that
gives the rescaled, per-locus recombination rate rscaled corresponding to an original per-locus
recombination rate of r with a rescaling factor of n, is (thanks to Peter Ralph):

For small values of r this produces an essentially linear scaling by n, but as r approaches 0.5 the
scaling saturates in the desired manner. For an original rate of 0.001 and a rescaling factor n of 10,
this suggests a rescaled recombination rate of 0.00991, which is only very slightly lower than the
rate of 0.01 produced by naive multiplication. If the original rate were 0.01, however, the rescaled
rate would be 0.0915, almost 10% off from the rate of 0.1 provided by naive multiplication.

This formula is based upon the probability that a binomial draw will be odd; as a region of
length n squeezes down to a single site, the important question for rescaling the recombination
rate is the probability that the original region of length n would have an even number of
recombination events (cancelling out to produce no effect, once rescaled) or an odd number of
recombination events (producing the same effect as a single crossover, once rescaled). In practice,
however, if you are rescaling a model in a parameter regime where the effects of this formula
matter to your results (besides the fact that a rate of 0.5 should stay 0.5 to produce independence),
you may be pushing the limits of safe rescaling, and should proceed with extreme caution. See
section 14.13 for a somewhat unusual application of this formula to scaling one particular region
of the chromosome in a model.

For further discussion of model rescaling, Uricchio & Hernandez (2014) may be of interest, and
citations therein. Some very interesting analyses of the effects of model rescaling have been done
by the stdpopsim group; see Adrion et al. (2020), especially their Appendix 1, figures 1 and 2. As
they say, “the possible effects are not well-understood, so results relying on rescaled simulations
should be carefully validated”.

rscaled =
1
2

(1 − (1 − 2r)n)

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 145

6. Sexual reproduction

The standard model of reproduction in SLiM assumes (1) hermaphroditic diploid individuals, (2)
reproduction by biparental sexual mating, (3) a uniform rate of crossing over without gene
conversion during recombination, and (4) modeling of an autosome rather than a sex
chromosome. In this chapter, we will explore how each of these assumptions can be modified to
study various other scenarios of reproduction. The only limitations are that SLiM remains restricted
to diploid organisms (but haploids and polyploids can be simulated with some creative scripting;
see section 14.9), hermaphroditism or two-sex systems, and X–Y sex chromosome systems.

6.1 Recombination

6.1.1 Crossing over: Making a random recombination map
Section 4.1.6 introduced the initializeRecombinationRate() method in a basic neutral

simulation. That section also discussed the possibility of supplying different recombination rates
for different stretches of the chromosome, since initializeRecombinationRate() takes a vector of
rates and a vector of end positions.

Here, then, let’s examine a recipe for setting up random variation in the recombination rate
along a chromosome, to simulate the presence of “hot spots” and “cold spots”:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);

 // 1000 random recombination regions
 ends = c(sort(sample(0:99998, 999)), 99999);
 rates = runif(1000, 1e-9, 1e-7);
 initializeRecombinationRate(rates, ends);
}
1 early() { sim.addSubpop("p1", 500); }
10000 early() { sim.simulationFinished(); }

First of all, please note that this recipe is not empirically based; the choice of 1000
recombination regions, and the choice of uniform distribution from which the recombination rates
are drawn, are both arbitrary. However, it would be straightforward to tailor this recipe to match
whatever empirical information about recombination rates and regions one might have.

Let’s look at how this code works. Everything new is in the initialize() callback, under the
comment “// 1000 random recombination regions”. The initializeRecombinationRates() call
sets all of the rates in one fell swoop, using a vector named rates that contains the recombination
rates (in recombination events per base pair per gamete), and a vector named ends that contains
the ends of the recombination regions (in base pairs along the chromosome). Each of these vectors
has 1000 elements.

The previous script line creates the rates vector by calling the runif() function of Eidos. This
function generates random draws from a specified uniform distribution. The first parameter
requests 1000 samples; the next two parameters give the minimum and maximum values for the
uniform distribution to be used. Note that Eidos has several other functions for drawing from other
distributions, such as rnorm() for a normal distribution, rpois() for a Poisson distribution,
rbinom() for a binomial distribution, and rexp() for an exponential distribution. Using these
facilities, it is quite easy to make simulations based upon some sort of random configuration or
behavior, as in this recipe.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 146

Continuing to work backwards, the preceding script line sets up the vector of recombination
region endpoints:

ends = c(sort(sample(0:99998, 999)), 99999);

Let’s analyze this from the inside out. The innermost call is sample(0:99998, 999). The Eidos
function sample() returns a random sample from a given vector. The given vector here is the
sequence 0:99998, containing every base pair position along the chromosome except for the very
last position (for reasons we will see momentarily). The second parameter requests 999 samples.
The sample() function draws its samples without replacement by default, which is what we want;
each recombination region should end at a different base pair. Next, the result from sample() is
passed to the sort() function, which sorts the vector (because initializeRecombinationRates()
requires the vector of end positions to be in sorted order). Finally, the c() function is used to
concatenate the value 99999 onto the end of the vector, providing the final entry for the vector; this
is the reason that only 999 samples were drawn, from positions up to only 99998. The last end
position is required by initializeRecombinationRates() to be the last position in the
chromosome.

If open this recipe in SLiMgui and do a Recycle and a Step, the random recombination map is
loaded into the simulation. To see that it has worked, click the action button to the right of the
chromosome view, and select Display Rate Maps to turn it on (displaying both recombination and
mutation rate maps if they exist – in this case, just the recombination rate map, since that is the
one that has been set). The chromosome view should then show you something like this:

The regions shown in the darkest blues are cold spots, with low rates closer to 10−9, whereas
the regions shown in lighter shades are hot spots, with high rates closer to 10−7. Remember that
you can drag out a display range in the upper chromosome view, which changes what you see in
the lower chromosome view – including the recombination map.

Note that SLiM also allows the recombination map to be tailored at an individual level using a
recombination() callback; see sections 14.4 and 26.6. Also, note that a mutation rate map may
be configured in exactly the same way as this recipe’s recombination rate map, using
initializeMutationRate().

6.1.2 Crossing over: Reading a recombination map from a file
Rather than generating a random recombination map, you might want to read in and use an

empirically determined recombination map such as the map from Drosophila melanogaster
presented by Comeron et al. (2012) (dataset available in Fiston-Lavier & Petrov 2013). Let’s work
with chromosome arm 2L, which has a recombination map that looks like this:

1 0
100001 0
200001 0
300001 0.234550139
400001 0.234550139
500001 1.993676178
...
22800001 0.234550139
22900001 0
23000001 0

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 147

The length of the 2L arm is given as 23011544 bases; positions in SLiM will thus range from 0 to
23011543 (always beware off-by-one errors!). The file gives start positions in bases, beginning with
1, with rates in the second column in cM/Mbp (centimorgans per megabasepair). We have a little
format conversion to do, but reading this file in and using it in SLiM is quite straightforward:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 23011543);

 // read Drosophila 2L map from Comeron et al. 2012
 map = readCSV("Comeron_100kb_chr2L.txt", c("ends", "rates"), sep="\t");
 ends = map.getValue("ends");
 ends = c(ends[1:(size(ends)-1)] - 2, 23011543);
 rates = map.getValue("rates") * 1e-8;
 initializeRecombinationRate(rates, ends);
}
1 early() { sim.addSubpop("p1", 500); }
10000 early() { sim.simulationFinished(); }

The action is in the initialize() callback after the comment, as before. The first line calls the
readCSV() function of Eidos to read in a text file at the given filesystem path; you will need to
change this path to the correct path to the file on your computer. The full details of readCSV() are
documented in the Eidos manual, but its usage here is straightforward. After the filesystem path,
the next parameter gives the names of the columns of the data file (since the file does not contain a
header line). Finally, the named sep parameter tells readCSV() that values within each row of data
are separated by a tab character, "\t", rather than readCSV()’s default of comma separators. The
result of readCSV() is a DataFrame object, with one column for each column of data in the file.
Again, DataFrame is documented in the Eidos manual, but for our purposes here, we can simply
fetch the values for the two columns using its getValue() method with the column names.

A brief digression. Before readCSV() was added to Eidos, this recipe read the contents of the
file directly (as in section 5.3.5). The code for doing that may still be of interest:

 lines = readFile("/Users/bhaller/Desktop/Comeron_100kb_chr2L.txt");
 rates = NULL;
 ends = NULL;

 for (line in lines)
 {
 components = strsplit(line, "\t");
 ends = c(ends, asInteger(components[0]));
 rates = c(rates, asFloat(components[1]));
 }

This read the file as a vector of string lines, split them by tabs using strsplit(), and
assembled the columns using c(). Using readCSV() and DataFrame is much easier!

We still need to convert the data into the format expected by SLiM. The input file specifies start
positions, but we want end positions. The expression ends[1:(size(ends)-1)] thus strips off the
first value, the start position 1, which is not needed. The -2 correction does two things: (1) it shifts
from starts to ends (each region ends at a position one less than the position where the next region
starts), accounting for -1, and (2) it shifts from the 1-based system of the input file, in which the
first base is at position 1, to the 0-based system of SLiM, with the first base is at position 0, for
another -1. Finally, the c() call adds the last base position, 23011543, to the tail of the vector.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 148

The rate conversion line just converts the recombination rates from cM/Mbp to a rate per base
pair per gamete, as used by SLiM, by multiplying by 10−8, a conversion ratio that comes from the
units involved. 1 cM means that there is a probability of 0.01 of crossover during meiosis.
Therefore, 1 cM/Mbp = 10−6 cM/bp = 10−8 probability of crossover per base pair.

If you open this recipe in SLiMgui, Recycle, Step, and turn on display of rate maps in the
chromosome view with the button to its right, as before, you should see something like this:

This is the Drosophila melanogaster 2L recombination map according to Comeron et al. (2012).
Note that a mutation rate map could be read in and set up in SLiM in much the same manner.

6.1.3 Gene conversion
In addition to crossing over, recombination can be caused by gene conversion, which is –

roughly speaking – the copying of a stretch of the genetic sequence from one chromosome to its
homologous chromosome (Chen et al. 2007; Duret & Galtier 2009). By default gene conversion is
not enabled in SLiM, but it can be turned on easily:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
 initializeGeneConversion(0.2, 500, 1.0);
}
1 early() { sim.addSubpop("p1", 500); }
10000 early() { sim.simulationFinished(); }

When initializeGeneConversion() is called, SLiM switches over to a “double-stranded break
(DSB)” recombination model in which every recombination breakpoint is a double-stranded break
that generates a gene conversion tract. The initializeGeneConversion() call has three required
parameters (a fourth, governing biased gene conversion, is optional; see section 18.11). The first
parameter, nonCrossoverFraction, is the fraction of recombination events that do not result in
crossover (only in gene conversion); here we decide that 0.2 or 20% will be non-crossovers. The
second, meanLength, is the mean length of each gene conversion tract, in base pairs; here we
specify 500. When a gene conversion tract is constructed, the length of the tract is drawn by SLiM
from a distribution with the specified mean length. Finally, simpleConversionFraction, the third
parameter, specifies the fraction of gene conversion tracts that are “simple”, as opposed to
“complex” tracts that involve heteroduplex mismatch repair. Section 1.5.6 provides a thorough
discussion of the “DSB” recombination model and the meaning of these parameters.

SLiM does not support variation in the gene conversion parameters along the chromosome;
however, a recombination() callback might allow a similar effect (see section 26.6).

6.1.4 Multiple chromosomes
At present, SLiM models only a single chromosome; there is no built-in support for multiple

chromosomes in SLiM. However, modeling multiple chromosomes is nevertheless quite
straightforward. A recombination rate of 0.5 between one base and the next means that a
breakpoint will be generated at that position 50% of the time; this has the effect of dividing the
simulated chromosome in two, such that the two halves of the chromosome assort independently

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 149

during meiosis. The end result is essentially to simulate two separate chromosomes. More than
one such rate 0.5 point can be configured, and so any number of chromosomes can be modeled.
The recipe for this is very simple:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 0.5, "f", 0.1);
 initializeGenomicElementType("g1", c(m1,m2), c(10000,1));
 initializeGenomicElement(g1, 0, 2999999);

 rates = c(1e-9, 0.5, 1e-9, 0.5, 1e-9);
 ends = c(999999, 1000000, 1999999, 2000000, 2999999);
 initializeRecombinationRate(rates, ends);
}
1 early() { sim.addSubpop("p1", 500); }
10000 late() { sim.outputFixedMutations(); }

This sets up a chromosome with free recombination between bases 999999 and 1000000, and
again between bases 1999999 and 2000000. The model is thus of three “effective chromosomes”,
each of length 1e6. Turning on only the display of the recombination map in SLiMgui using the
chromosome view’s button, this can be seen visually:

The two white lines indicate points with a very high recombination rate; these are the rate 0.5
“joins” between the effective chromosomes.

This model also sets up two mutation types: m1, representing neutral mutations, and m2,
representing beneficial mutations. Neutral mutations are 10,000 times more common than
beneficial mutations, according to the proportions given to initializeGenomicElementType().

If we run this model forward in SLiMgui (switching to viewing mutations rather than the
recombination map), it is quite visually apparent that the three effective chromosomes are
independent. Most obviously, whenever a beneficial mutation sweeps it carries along only the
effective chromosome in which it resides. Here, for example, is a snapshot mid-sweep on the
rightmost effective chromosome:

The mutation that is sweeping is visible as a green line fairly near the right edge of the
chromosome. Neutral diversity within that chromosome is obviously hitchhiking along with the
sweep, due both to the strong beneficial selection coefficient and the low recombination rate. The
neutral diversity in the other two chromosomes is unaffected, and all three chromosomes show
different patterns of neutral diversity because different lengths of time have elapsed since they last
experienced a sweep.

Any number of autosomes can be simulated trivially with this method. Simulating autosomes
together with sex chromosomes can also be done, although it is more complex; see section 14.5.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 150

The way in which recombination map positions with a rate of 0.5 are handled internally in
SLiM turns out to be rather subtle; section 14.13 has an extended discussion of this issue, but it is
of no practical consequence for users of SLiM.

6.2 Separate sexes

6.2.1 Enabling separate sexes
Simulations in SLiM involve hermaphroditic individuals by default. If you wish to simulate

separate sexes, however, doing so is essentially just the flip of a switch:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
 initializeSex("A");
}
1 early() { sim.addSubpop("p1", 500); }
10000 early() { sim.simulationFinished(); }

This recipe is identical to the basic neutral recipe from section 4.1, apart from the addition of a
call to the function initializeSex():

initializeSex("A");

The parameter here specifies the type of chromosome that is to be modeled; "A" specifies
modeling of an autosome, but it is also possible to model the X or Y chromosome in SLiM (see
section 6.2.3).

Once sex is turned on in a simulation, there is no way to turn it off; it is not possible to make a
SLiM simulation in which individuals switch between being sexual and being hermaphroditic.
That effect could easily be produced with a customized mate choice algorithm in a hermaphroditic
model, however (see chapter 11).

Having turned sex on, all subpopulations will keep track of female and male individuals
separately, and biparental matings will always involve a female parent and a male parent. A few
things work a bit differently when sex is enabled; each subpopulation has a sex ratio that can be
specified and modified (see section 6.2.2), for example, and selfing (see section 6.3.1) is not
allowed when separate sexes are enabled. Usually you will know whether your code is running
with sex enabled or disabled, but if you wish to write general-purpose code that works in either
environment, the sexEnabled property of Species will tell you whether sex is presently enabled.

Section 4.2 discussed output of basic simulation state using the outputFull() and
outputSample() methods of Species. When sex is enabled, the output generated by these
methods changes slightly. In particular, the H symbol that was used to designate individuals as
hermaphrodites will change to indicate the sex of each individual with M or F. In addition, if sex
chromosomes are modeled (see section 6.2.3), the A that designated genomes in the output as
autosomes will change to X or Y as appropriate. See chapter 27 for more on file output formats.

6.2.2 Sex ratios
When individuals are one of two sexes, rather than being hermaphroditic, the question of the

sex ratio immediately arises. A sex ratio of 0.5 is maintained by default in SLiM; if that is what you
want, no further action is required. To set a sex ratio (i.e., male fraction; see below) of 0.6, on the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 151

other hand, you simply supply an extra parameter to addSubpop() (or to addSubpopSplit(), which
works in the same way):

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
 initializeSex("A");
}
1 early() { sim.addSubpop("p1", 500, 0.6); }
10000 early() { sim.simulationFinished(); }

If you open this recipe in SLiMgui, Recycle, and Step twice to get through tick 1, you can see in
the population table view that this sex ratio has been used by SLiM:

The column labeled shows the current sex ratio of each subpopulation; the subpopulations
in the simulation do not all need to have the same sex ratio. The sex ratio of a subpopulation can
be accessed in script through the sexRatio property of Subpopulation; in the recipe above, for
example, p1.sexRatio would be equal to 0.6.

The “sex ratio” in SLiM refers to the male fraction, the fraction of the total subpopulation that is
male. Symbolically, it is therefore M/(M+F), where M and F are the number of males and females
respectively. A sex ratio of 0 would imply all females, a sex ratio of 1 would imply all males, and
the default sex ratio of 0.5 is half males and half females.

You are free to set almost any sex ratio you wish; SLiM will raise an error, however, if the
simulation is forced into a situation in which a subpopulation would become unisexual (whether
due to the sex ratio, cloning rate, or other factors). All subpopulations must be viable, which
means that at least one parent of each sex must be available to produce offspring.

It is possible for the sex ratio of a subpopulation to change over time. For example, here is a
recipe for a simulation in which the sex ratio fluctuates randomly around 0.5:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
 initializeSex("A");
}
1 early() { sim.addSubpop("p1", 500); }
1: early() { p1.setSexRatio(runif(1, 0.3, 0.7)); }
10000 early() { sim.simulationFinished(); }

The setSexRatio() method of Subpopulation simply takes a float representing the new sex
ratio. As with setSubpopulationSize(), the change is not effected immediately; instead, the call
sets the target sex ratio that will be used when offspring are generated. The recipe above draws a
new random sex ratio between 0.3 and 0.7 in each tick using runif().

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 152

6.2.3 Modeling sex-chromosome evolution
So far we have always seen simulations of autosomal evolution, but SLiM also supports

simulation of sex chromosome evolution. The choice of chromosome type is made in the
initializeSex() call, so to simulate X chromosome evolution one would simply do:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
 initializeSex("X");
}
1 early() { sim.addSubpop("p1", 500); }
10000 early() { sim.simulationFinished(); }

The "X" passed to initializeSex() sets SLiM to model the X chromosome. SLiM will handle
all of the necessary details; females in the simulation will be XX, whereas males will be XY. Since
the Y chromosome is not being modeled in this scenario, it will be a “null genome”, a placeholder
kept by SLiM simply to make the diploid bookkeeping balance. Null genomes have no structure,
receive no mutations, and raise an error if you attempt to do much of anything with them. It is also
possible to supply "Y" to initializeSex(), to model the Y chromosome; in this case it is the X
chromosome that will be a “null genome”. If you need to work directly with Genome objects in
your script (we will see some examples of this later), you can find out whether a given genome is
null or not with the isNullGenome property of Genome.

When modeling sex chromosomes, recombination works as you would expect it to. To be
specific, if you are modeling the X chromosome, recombination will occur between the two X
chromosomes of female parents when generating their gametes, whereas no recombination will
occur between the X and Y chromosomes of a male. If you are modeling the Y chromosome,
recombination does not occur, since the X chromosome in this case is a null chromosome, and
individuals never possess two Y chromosomes.

When modeling the X chromosome, there are two different ways in which an individual can be
heterozygous for a given mutation: the individual might be XX (i.e., female) and possess the
mutation on just one X chromosome, or the individual might be XY (i.e., male) and possess the
mutation on the one X chromosome present (technically called “hemizygous” rather than
heterozygous). These cases are handled differently by SLiM when it calculates the fitness effect of
a mutation. The first case is handled in the same way as when modeling an autosome: the
dominance coefficient for the mutation type, as supplied to initializeMutationType(), specifies a
multiplicative modifier for the selection coefficient of the mutation (see sections 1.5.2 and 4.1.3).
The second case is handled using a special dominance coefficient, which SLiM calls the haploid
dominance coefficient for lack of a better term; it covers both the haploid case, as we will see later,
and the hemizygous case we see here. This coefficient is 1.0 by default, meaning that an XY
individual possessing an X-linked mutation will experience the same fitness effect from that
mutation as an XX individual that is homozygous for that mutation (a reasonable assumption
because of X inactivation and dosage compensation, perhaps). The haploid dominance coefficient
may be changed by setting its value on the mutation type (either during initialize() or later):

m1.haploidDominanceCoeff = 0.8;

Each mutation type has its own haploid dominance coefficient, allowing some degree of
control, but (as with the regular dominance coefficient) it cannot be varied on a per-mutation

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 153

basis. Of course it would be possible to introduce a more complex fitness calculation scheme to
achieve that using a mutationEffect() or mutation() callback, as discussed in section 10.6.

When modeling the Y chromosome, individuals can only possess zero or one copy of a given
mutation, since males possess one Y and females possess none. For consistency, SLiM also uses
the haploid dominance coefficient in this case. It would be unusual to change the coefficient in
such a model, however, since Y-linked mutations are always hemizygous; you might as well just
select the selection coefficient you want for them and be done with it.

It is worth noting that the way in which the Y chromosome is modeled in SLiM is in some ways
similar to how one might model mitochondrial genomes. If SLiM is used in this way, the XY
“males” are really the females, with a single genome possessed by all of the mitochondria in a
given female. The XX “females” are really the males; they possess mitochondria too, of course, but
they do not pass them down to their offspring, so their mitochondria are an evolutionary dead end
that does not need to be modeled. This equivalence should work unless you need to model the
fitness effects of mitochondrial mutations in males; that should also be possible in SLiM, using an
autosomal model with some tricky scripting. We will not show such a model here, but section
14.5 provides a recipe that illustrates the sort of techniques that would be used.

6.3 Selfing and cloning

6.3.1 Selfing in hermaphroditic populations
Selfing, or self-fertilization, is the mating of an individual with itself: male and female gametes

from one individual combine to form a zygote. Selfing is different from cloning in that gametes are
produced and fertilize, so offspring are not clones of their parent; notably, recombination occurs in
selfing. It is an essentially hermaphroditic phenomenon, since hermaphroditic individuals can
produce both eggs and sperm (i.e., can produce both X and Y gametes). There are probably
counterexamples somewhere in biology, where it sometimes seems that anything that is possible
exists; but in SLiM, at least, selfing is limited to the hermaphroditic case.

Returning to a hermaphroditic model, then, selfing can be turned on with a single call:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 500);
 p1.setSelfingRate(0.8);
}
10000 early() { sim.simulationFinished(); }

The setSelfingRate() method call here on p1 tells SLiM that selfing should be used to generate
80% of the offspring in subpopulation p1. The selfing rate may be anything from 0.0 (the default)
to 1.0. The setSelfingRate() method may be called at any time, so the selfing rate can be varied
over time or in response to other simulation conditions. The current selfing rate for a
subpopulation is shown in SLiMgui’s population table view under the column.

Usually it is not important, but it should be noted that in non-sexual simulations SLiM does not
prevent a parent from being chosen twice, as both parents in a biparental mating event. Even
when the selfing rate is set to 0, therefore, a low background rate of selfing may occur. This can
easily be prevented if necessary; see the recipe in section 12.4.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 154

6.3.2 Cloning
SLiM also supports clonal reproduction, in which an offspring individual is an exact genetic

copy of a single parent (except for new mutations introduced during the copying of the DNA).
Indeed, hermaphroditic simulations may have a combination of biparental mating, self-
fertilization, and cloning. In a hermaphroditic model, setting up clonal reproduction is a single
call:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 500);
 p1.setCloningRate(0.1);
}
10000 early() { sim.simulationFinished(); }

The setCloningRate() call here tells SLiM to generate 10% of the offspring in p1 clonally (the
remaining 90% will be generated biparentally as usual). The cloning rate may be anything from
0.0 (the default) to 1.0. The setCloningRate() method may be called at any time, so the cloning
rate can be varied over time or in response to other simulation conditions. The current cloning
rate for each subpopulation is shown in SLiMgui’s population table view under the and
columns; in the hermaphroditic case the same number will be shown in both columns (the icon
depicts a little Athena budding parthenogenically from the head of Zeus, if that is not immediately
obvious).

Clonal reproduction is also supported in the case of separate sexes. It works in essentially the
same way:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
 initializeSex("A");
}
1 early() {
 sim.addSubpop("p1", 500);
 p1.setCloningRate(c(0.5,0.0));
}
10000 early() { sim.simulationFinished(); }

The only difference is that when separate sexes are enabled by initializeSex(), the
setCloningRate() method can take a vector of two rates, as above. Here the cloning rate is set to
0.5 for females, but 0.0 for males, reflecting a somewhat common situation in some taxa, in which
females can reproduce parthenogenically but males can reproduce only sexually. You may still
pass a singleton value to setCloningRate(); when separate sexes are enabled, that value is then
taken as the cloning rate for both males and females. As before, the current cloning rates for the
females and males in each subpopulation are shown in SLiMgui’s population table view under the

 and columns.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 155

7. Mutation types, genomic elements, and chromosome structure

A number of concepts such as mutation types, genomic element types, genomic elements, and
chromosome structure were already introduced in chapter 4 using a basic neutral simulation.
Here we return to those foundational concepts and explore them in more detail, showing how
simulations might use multiple mutation types, multiple genomic element types, and many
genomic elements to simulate more realistic chromosome structures with mutations of varying
selective effects.

The structure of this chapter will be a bit different from that of previous chapters. In this chapter
each subsection will build upon the recipe introduced by the previous subsection, working
towards making a relatively large final recipe for a full-chromosome simulation.

7.1 Mutation types and fitness effects
In section 4.1.3 the concept of a mutation type was introduced: a category of mutations that

represents some particular subset of the mutations in a simulation. Examples might include
“neutral mutations”, “beneficial mutations introduced by the simulation script in tick 10”, or
“mutations that will be forced to sweep to fixation”. Mutation types are represented in SLiM with
the MutationType class, and each defined mutation type has a unique symbolic identifier of the
form mX, like m1 or m27. If you want to be able to generate or refer to a particular set of mutations
separately from other mutations, you probably want to define a new mutation type. This can be
true even if the mutation types are otherwise identical; you might use distinct but identical
mutation types for “mutations I am tracking” versus “mutations I am not tracking”, for example.

Section 4.1.3 also introduced the function used to create new mutation types at initialization
time, initializeMutationType(). This function can only be called inside an initialize()
callback; in fact, it is not even defined at other times. Mutation types can therefore be set up only
at initialization time; you must set up all of the types that your simulation will need for the entire
run. After initialization, mutation types are typically static entities; however, there is a method,
setDistribution(), that may be used to change a mutation type’s distribution of fitness effects,
affecting new mutations generated from that point onward.

A mutation type is basically defined by two things: its dominance coefficient, and its
distribution of fitness effects (DFE). Both of these properties are important only because they affect
new mutations that are generated from a given mutation type: (1) each mutation of a given
mutation type receives a selection coefficient drawn from the mutation type’s DFE, and (2)
individuals that are heterozygous for a mutation will use a dominance coefficient, obtained from
the mutation type of the mutation, to modify the selection coefficient of the mutation.

For the purposes of this recipe, let’s define four mutation types: two for neutral mutations (non-
coding and synonymous), one for mildly deleterious mutations, and one for strongly beneficial
mutations:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0); // non-coding
 initializeMutationType("m2", 0.5, "f", 0.0); // synonymous
 initializeMutationType("m3", 0.1, "g", -0.03, 0.2); // deleterious
 initializeMutationType("m4", 0.8, "e", 0.1); // beneficial
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 5000); }
10000 early() { sim.simulationFinished(); }

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 156

The neutral mutation types, m1 and m2, are defined with a dominance coefficient of 0.5 (which
does not matter for neutral mutations), and mutations drawn from them receive a fixed selection
coefficient (DFE type "f") of 0.0 as specified by the DFE parameter. Note that they are exactly
identical in their parameters; however, they will be used to represent different conceptual types of
neutral mutations, with m1 representing neutral mutations in non-coding regions and m2
representing synonymous mutations in coding regions. Drawing this distinction will allow us to
distinguish these two classes of mutations later on, when we are observing the simulation running.

The deleterious mutation type, m3, has a dominance coefficient of only 0.1, meaning that
heterozygous individuals feel very little effect from these mutations; they are almost recessive.
These mutations are drawn from a gamma DFE (see section 25.11) with a mean of −0.03, with a
shape parameter (alpha) of 0.2.

Finally, the beneficial mutation type, m4, has a dominance coefficient of 0.8, representing
incomplete dominance. Mutations of this type are drawn from an exponential DFE (again, see
section 25.11) with a mean of 0.1.

All defined mutation types can be viewed in the drawer on the simulation window. If you open
this recipe in SLiMgui, Recycle, and Step, then open the drawer by pressing the button, you can
see the mutation types listed, which can be quite useful if mutation types are manufactured en
masse with a for loop or similar automated construction method:

We are not using the new mutation types yet, just defining them; we’ll make more progress with
this recipe in the next section. Before we move on to that, however, there is one hidden feature
worth mentioning. The mutation type table that is depicted in the screenshot above has a nice
hidden addition: tooltips that show the mutation type’s DFE graphically. If you place the mouse
cursor over the m1 line without moving it for a second or a bit more (often called a “hover” of the
cursor), a “tooltip” – a little informational tab – will appear:

(Ignore the somewhat different appearance of the two screenshots above; they were taken on
different versions of macOS, and Apple changed the standard system font and other aspects of
table appearance from one macOS release to the next.) The tooltip shown above contains a plot of
the mutation type’s distribution of fitness effects; the x-axis is the selection coefficient, and the y-
axis is the distribution’s relative density. In this case, since the mutation type has a fixed selection
coefficient of 0.0, the distribution consists of a single peak at 0.0. Hover over m3, and a more
interesting tooltip appears:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 157

This plot shows the specific gamma distribution specified by the parameters for m3; note that the
x-axis now spans the range −1 to 0 only, since this DFE does not include any positive selection
coefficients. The distribution shown has most of its density very close to zero, but a tail is visible
extending downward perhaps as far as −0.25 (well, it extends to −∞, of course).

Hovering over m4 shows its DFE:

This is a non-negative DFE, so the x-axis spans 0 to 1, and this distribution is much broader.
This visualization capability can prove quite helpful in configuring and debugging DFEs.

7.2 Genomic element types
Now that we have a couple of mutation types defined, we can make some genomic element

types that use these mutation types. Genomic element types were introduced in section 4.1.4;
they represent a type of region in the genome with a particular mutational profile. For this simple
toy model, let’s focus on exons, introns, and non-coding regions:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0); // non-coding
 initializeMutationType("m2", 0.5, "f", 0.0); // synonymous
 initializeMutationType("m3", 0.1, "g", -0.03, 0.2); // deleterious
 initializeMutationType("m4", 0.8, "e", 0.1); // beneficial
 initializeGenomicElementType("g1", c(m2,m3,m4), c(2,8,0.1)); // exon
 initializeGenomicElementType("g2", c(m1,m3), c(9,1)); // intron
 initializeGenomicElementType("g3", c(m1), 1); // non-coding
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 5000); }
10000 early() { sim.simulationFinished(); }

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 158

Genomic element type g1 defines exons, which often suffer deleterious mutations, sometimes
get neutral (synonymous) mutations, and very rarely get beneficial mutations. Type g2 defines
introns, which often get neutral (non-coding) mutations, and occasionally get deleterious
mutations. Type g3 defines non-coding regions, which get neutral (non-coding) mutations only.
Each genomic element type is defined with a call to initializeGenomicElementType(), as
previously discussed in section 4.1.4; its parameters supply the identifier for the new type, a vector
of mutation types, and a vector of relative proportions for those mutation types among the new
mutations that occur in the genomic elements of this type.

Notice that there is not a one-to-one correspondence between mutation types and genomic
element types; this is typical, since the two classes represent quite different objects. A genomic
element type often draws from a variety of different mutation types, with various probabilities. If
this model were expanded to be more biologically realistic, it might have quite a few more
genomic element types (3′ and 5′ UTRs, promoters and enhancers and silencers, various different
types of non-coding regions...) but might have only a couple more mutation types (a strongly
deleterious mutation type, to represent things like premature stop codons and broken promoters,
for example).

Again, this recipe is not yet complete; now that we have defined genomic element types, we
need to make genomic elements that use those types. However, at this point we can Recycle,
Step, and observe the defined genomic element types in the simulation window’s drawer:

Note that each genomic element type is automatically assigned a color by SLiMgui. We will
soon see how these colors are used.

7.3 Chromosome organization
As previously discussed in section 4.1.5, genomic elements are regions of a chromosome that

use a particular genomic element type. The genomic element types define what possibilities exist
in the chromosome; the genomic elements determine what actually does exist, and where. Having
defined genomic element types for exons, introns, and non-coding regions, we now need to create
genomic elements to express how those genomic element types are distributed along the
chromosome.

As has been the case all along with this recipe, the goal here is not biological realism;
nevertheless, it is interesting to try to come up with a recipe that broadly approximates the
structure of a real chromosome, just to show how the problem might be approached. In this
recipe, then, the formulas used for the lengths of exons and introns are very loosely based on
empirical length distributions.

This is by far the longest recipe we’ve seen so far, so a bit of preamble to prepare the way for it
is helpful. We have previously used for loops to iterate over a specified vector. This example uses
two new looping constructs, a do loop and a do–while loop. These both iterate as long as a given
condition remains true; when the condition tests false, the loop terminates. The only difference
between them is that do–while tests its condition at the end of the loop body, and thus the loop
body always executes at least once. The other new thing in this recipe is use of the rlnorm()
function, which draws samples from a lognormal distribution. In addition to the number of

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 159

samples to draw, it takes the mean and standard deviation of the distribution as parameters, on the
log scale. Oh, and the rdunif() function draws samples from a discrete uniform distribution; this
is the same as runif(), which we have seen before, except it only generates discrete (i.e., integer)
values.

With that preface, here is the recipe:

initialize() {
 initializeMutationRate(1e-7);

 initializeMutationType("m1", 0.5, "f", 0.0); // non-coding
 initializeMutationType("m2", 0.5, "f", 0.0); // synonymous
 initializeMutationType("m3", 0.1, "g", -0.03, 0.2); // deleterious
 initializeMutationType("m4", 0.8, "e", 0.1); // beneficial

 initializeGenomicElementType("g1", c(m2,m3,m4), c(2,8,0.1)); // exon
 initializeGenomicElementType("g2", c(m1,m3), c(9,1)); // intron
 initializeGenomicElementType("g3", c(m1), 1); // non-coding

 // Generate random genes along an approximately 100000-base chromosome
 base = 0;

 while (base < 100000) {
 // make a non-coding region
 nc_length = rdunif(1, 100, 5000);
 initializeGenomicElement(g3, base, base + nc_length - 1);
 base = base + nc_length;

 // make first exon
 ex_length = asInteger(rlnorm(1, log(50), log(2))) + 1;
 initializeGenomicElement(g1, base, base + ex_length - 1);
 base = base + ex_length;

 // make additional intron-exon pairs
 do
 {
 in_length = asInteger(rlnorm(1, log(100), log(1.5))) + 10;
 initializeGenomicElement(g2, base, base + in_length - 1);
 base = base + in_length;

 ex_length = asInteger(rlnorm(1, log(50), log(2))) + 1;
 initializeGenomicElement(g1, base, base + ex_length - 1);
 base = base + ex_length;
 }
 while (runif(1) < 0.8); // 20% probability of stopping
 }

 // final non-coding region
 nc_length = rdunif(1, 100, 5000);
 initializeGenomicElement(g3, base, base + nc_length - 1);

 // single recombination rate
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 5000); }
10000 early() { sim.simulationFinished(); }

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 160

This is too much code to examine line by line, but it should be fairly clear what is going on.
The outer loop adds one non-coding region and then one gene each time that it iterates; the inner
loop adds one intron-exon pair with each iteration. The overall algorithm is not targeted to end at
a fixed chromosome length (doing that without biasing the metrics of the final gene generated
would be a bit tricky); instead, genes are added until the chromosome length exceeds 100000 and
then the process is ended with a final non-coding region. Eidos does not have any built-in facility
for graphing, so you can’t directly see the distributions used to generate the lengths of the exons
and introns; however, since the syntax of Eidos is so similar to that of R, it is quite easy to use R to
plot these distributions. If you are so inclined, try running this code in R:

x = as.integer(rlnorm(100000, log(50), log(2))) + 1
hist(x[x < 250], breaks=100)

That will produce a plot of the distribution of exon lengths, which may be compared to the
distribution shown in Deutsch & Long (1999), which was loosely used as a reference for this
model. The distribution of intron lengths may be compared similarly.

If you open this recipe in SLiMgui, Recycle, and Step, you will see the random chromosome
structure that it generated, which might look something like this (after turning on display of
genomic elements with the button, and selecting a subrange in the upper chromosome view to
show some detail in the lower view):

The chromosome structure consists of non-coding regions (dark blue) interspersed with genes
made up of exons (cyan) alternating with introns (green), as intended. It should now be clear, of
course, how SLiMgui uses the colors that it assigns to genomic element types, as seen in the
previous section.

Rather than generating a random chromosome organization, you might wish to read in an
actual chromosome map and generate genomic regions based upon that information, to simulate
the evolution of a particular organism. That is left as an exercise for the reader, but with the recipe
in section 6.1.2 as guidance it should not be too difficult.

7.4 Custom display colors in SLiMgui
The model that we built in the previous three sections uses various default color schemes

supplied by SLiMgui: mutations are colored according to their selection coefficients, genomic
element types are automatically assigned colors from a standard palette, and individuals are
colored according to their fitness. For simple models these default colors generally suffice, but
when constructing a complex model it may be helpful to customize the color scheme used in
SLiMgui to improve the clarity of the model’s visual representation. In this section we will briefly
explore SLiM’s facilities for doing so.

First of all, the colors used for genomic regions, as shown in the figure above in section 7.3, is
perhaps less than ideal. It would be nice if non-coding regions were shown in a distinctive color
suggestive of the unimportance of those regions to the organism, such as black. Similarly, perhaps
exons could be in the brightest color, connoting their importance, whereas introns could be shown
in a more muted fashion. This can be accomplished by simply adding these lines after the calls to
initializeGenomicElementType() have set up the genomic element types:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 161

 g1.color = "cornflowerblue";
 g2.color = "#00009F";
 g3.color = "black";

This produces a chromosome view like this (again, turning on display of genomic elements with
the chromosome view action button, , and selecting a subrange to zoom in on):

It works by setting values for the color property of the genomic element types. By default,
these color properties are the empty string, "", which tells SLiM to use a color from its default
color palette. Here we have instead told SLiM to use a light blue named "cornflowerblue" for the
exons represented by g1, and "black" for non-coding regions represented by g3. These names are
two of the 657 named colors supported by SLiM. The complete list of named colors is identical to
the named color list provided by the R language, for simplicity, and so there are various web
resources available that show all of the names and their corresponding colors (one such resource:
http://research.stowers-institute.org/efg/R/Color/Chart/ColorChart.pdf). You can browse such a list,
and then simply use the name for the color you want in SLiM.

The color used for g2 is not a named color, however; instead, it is the rather cryptic string value
"#00009F". This specifies the color in hexadecimal, or base 16, as two-digit values for the red,
green, and blue components of the color. With values of zero for red and green, and a value of 9F
for blue, this string represents a dark blue that works well for introns here.

The Eidos manual has further discussion of how colors are specified in SLiM (this is actually part
of the Eidos language). Note that setting colors on SLiM objects in this way only has an effect in
SLiMgui, but it is entirely legal even when running SLiM models at the command line; the color
properties still exist, but are unused by SLiM outside of SLiMgui.

Now that the genomic elements are colored nicely, let’s set up new colors for the mutations. By
default, SLiMgui displays neutral mutations in yellow, beneficial mutations in shades of green and
blue, and deleterious mutations in shades of orange and red. Let’s suppose we want to de-
emphasize neutral mutations in this model; we want them to display, but in a less visible color
than the default bright yellow color. We also want all beneficial mutations to be a single shade of
green (the blue doesn’t show up well against the blues we’ve chosen for our genomic elements),
and we want all deleterious mutations to be bright red so we can see them very clearly. This can
be achieved with a few lines placed after the mutation types have been defined:

 m1.color = "gray40";
 m2.color = "gray40";
 m3.color = "red";
 m4.color = "green";

That produces a display like this (with display of the genomic elements turned off now, for
greater clarity):

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 162

http://research.stowers-institute.org/efg/R/Color/Chart/ColorChart.pdf

That looks like what we had in mind. However, if we use the button to turn on display of
fixed mutations (check Display Substitutions) and turn off segregating mutations (uncheck Display
Mutations), we see that those are still being displayed in SLiM’s default color scheme:

This is obviously not what we want. Instead, let’s use darker shades of the same colors used for
the mutations when they are still segregating. This can be done by setting the colorSubstitution
property of the mutation types:

 m1.colorSubstitution = "gray20";
 m2.colorSubstitution = "gray20";
 m3.colorSubstitution = "#550000";
 m4.colorSubstitution = "#005500";

That produces the desired result:

There’s one thing left to tweak. If we turn on display of both segregating and fixed mutations,
SLiMgui displays the fixed mutations using a shade of blue, rather than our custom colors:

This is deliberate, to prevent too much clutter and chaos in the chromosome view. However,
we deliberately chose dark colors above for our fixed mutations with the intention of having them
coexist aesthetically, so we’d like to tell SLiMgui to use our color scheme in all cases. The default
dark blue color SLiMgui uses for fixed mutations when both are being displayed is a property on
the Chromosome object named colorSubstitution. By default, it is set to "#3333FF", the dark blue
color above. We can set it to the empty string, "", instead; this eliminates the use of this default
color. Since the Chromosome object is not available until the simulation has been fully initialized,
we can do this at the beginning of tick 1, by adding a line to the tick 1 event:

 sim.chromosome.colorSubstitution = "";

Now our model displays as intended:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 163

The fixed mutations are now in dark, dimmed colors, whereas the currently segregating
mutations are in bright, clear colors that are easily visible against that background.

We won’t give an example of it here, but the Individual class in SLiM also has a color
property that can be set to override the default fitness-based color scheme for display of
individuals. Setting this property should be done in a late() event, since SLiMgui updates its
display in between ticks; first() events are executed after SLiMgui has already displayed, and so
setting display colors for individuals at that time, or in an early() event, will have no visible effect.
Generally SLiMgui’s fitness-based coloring works well, but in some special cases it might be useful
to give a specific color to individuals that possess some particular property or are in some
particular state. Section 16.11 provides an example of such a model, where individuals are
colored according to their phenotype (as determined by the additive effects of QTL mutations they
possess).

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 164

8. SLiMgui visualizations for polymorphism patterns

The previous chapter developed a model of evolutionary dynamics in a scenario involving
neutral, deleterious, and beneficial mutations. Given the full recipe from section 7.3 (not 7.4) of
the previous chapter, we will look briefly in this chapter at the interplay of selection, drift, and
hitchhiking when it executes, since it’s the most complex model we’ve made thus far. We will start
by looking at how these dynamics can be observed in the chromosome view, and then we will
move on to look at some of the graphs that SLiMgui provides.

First of all, if you Recycle and Play, you should see a fairly complicated dance of mutations,
some fixing quickly, others struggling, but most flickering in and out of existence quickly:

Using the action button to the right, the main chromosome view on the bottom is displaying
only the segregating mutations, while the chromosome overview on top shows the genetic
structure of the model by displaying its genomic elements. Notice that the mutation lines are
distinct colors; neutral mutations are yellow, beneficial are green, and deleterious are orange or
sometimes even red.

A cloud of neutral and deleterious mutations occupies the bottom row of pixels; most mutations
in the model are neutral or deleterious. A handful of beneficial mutations are visible in green,
including several that appear to be on the verge of fixation. The beneficial mutations are all, as
expected, located within the gene regions shown in green in the chromosome overview; beneficial
mutations do not occur in the blue non-coding (g3) regions of the chromosome (see chapter 7 for
discussion of the model design). Two neutral mutations, in yellow, have apparently been dragged
up to high frequency by the beneficial mutations that are sweeping, which they are presumably
linked to. A hundred ticks later, this is the situation:

Several beneficial mutations have fixed, and their linked neutral mutations as well; they are thus
no longer displayed. Several other beneficial mutations that were previously present have still not
managed to fix, such as those near 50000 and 88000. The really interesting thing at this stage,
however, is that a deleterious mutation near 17000 has risen to a frequency of more than 50%.
How has it managed to do that? Let’s switch the chromosome view’s mode by clicking the
action button and choosing Display Haplotypes. This is the result, still at the same tick:

This is a different view on the same genetic data. In this mode, each horizontal row of pixels in
the chromosome view represents one simulated genome, showing all of its mutations along the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 165

chromosome; in other words, we are not looking at frequency bars any more, we are looking at a
set of randomly sampled genomes from the model. These sampled genomes have been sorted by
their genetic similarity, from top to bottom, to provide a more coherent picture; genomes that are
genetically similar have been grouped together vertically. What we can see, then, is that the
deleterious mutation near 17000 is strongly associated with a beneficial mutation very close to the
left edge of the chromosome, around 1200; the correlation between the two mutations (their
linkage disequilibrium) is very high – almost perfect. The deleterious mutation also co-occurs with
several other beneficial mutations, but its fate is not tied tightly to them; it occurs in many
genomes that those beneficial mutations do not occur in, and vice versa, so the linkage
disequilibrium of those pairs is low. If you look back to the very first screenshot above, the
deleterious/beneficial pair that exhibit high linkage disequilibrium were actually already visible
back then; they seem to have originated more or less together, more than a hundred ticks ago, and
they have traveled together since.

Two hundred ticks later, here is the situation (back in frequency mode):

Our deleterious/beneficial pair is back down to low frequency again; they appear to have lost
out in the competition between the various beneficial mutations. Let’s switch back to haplotype
view to see this more clearly:

They have actually become unlinked from each other! The genomes that contain one do not
contain the other any more; the correlation is gone. We could see this even more clearly by
creating an actual haplotype plot in SLiMgui, as shown in section 13.3, 14.4, and 15.9; but
perhaps this digression has gone on long enough. The take-home point here is: the chromosome
view is quite rich in information, and can allow you to follow the fates of individual mutations in
some detail, including their patterns of linkage, particularly if the Display Haplotypes mode is
used.

Incidentally: as the simulation is running, you can watch the colors of the individuals, shown in
the top center view, to see the mix of different fitnesses present. As a beneficial mutation sweeps,
more and more individuals will turn green; once the mutation fixes, they will suddenly revert
toward yellow, since the fitness benefit of that mutation is no longer part of SLiM’s fitness
calculations (discussed further in section 1.5.2).

8.1 Mutation frequency spectra
SLiMgui has a number of graphs it can display to help analyze and understand the simulation.

While running this recipe, for example, if you click the button and select “Graph 1D Population
SFS” you should see something like this:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 166

Remember that m1 and m2 are neutral, m3 is deleterious, and m4 is beneficial. What this plot tells
us is that out of all mutations that are of type m1, for example, the vast majority are at very low
frequency; the same is true of m2 and m3. Out of all mutations that are of type m4, however – the
beneficial mutations – a fairly large proportion are at middle or high frequency, because they are
on their way to fixation.

Note that graph windows in SLiMgui have their own action button; if you click it, you will
see various options for reconfiguring the graph’s appearance and exporting it or its data.

8.2 Mutation frequency trajectories
The next graph in SLiMgui’s graph menu is “Graph Mutation Frequency Trajectories”. Whereas

the previous graph showed us only an analysis of the frequencies of different mutation types at the
present moment in time (try opening it while the simulation is actually playing), this graph shows
us similar information across the whole run of the model so far (here showing 2000 ticks):

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 167

Using the popups at the lower left of the window, you can select a particular subpopulation and
mutation type. The data collected for this graph can be quite large, and quite slow to collect. For
this reason, the data are not normally collected when you run a model; doing so would slow SLiM
down too much. Instead, the data are collected only when the graph window is open, and only
for the subpopulation and mutation type chosen. If you want a plot for an entire simulation run, as
shown above, you should therefore (1) Recycle, (2) Step once to advance to tick 1, (3) open the
graph window, (4) select the mutation type you want from the popup, and (5) press Play to run
your simulation with data collection.

The result at the end of a simulation run might look something like the graph shown above. The
complete trajectory of every mutation of the selected mutation type in the selected subpopulation
is shown with an individual curve in this plot; here we’re looking at beneficial mutations (type m4),
and there is only one subpopulation. The color of each curve indicates whether the mutation was
lost (red), fixed (blue), or is still segregating (black).

SLiMgui provides various options to configure the visual appearance of plots. If you control-
click or right-click on the graph window here, for example, you will get a context menu with
menu items that allow you to show/hide grid lines, show/hide the legend, and so forth. If you’re
following along in SLiMgui, try experimenting with these options; you can’t do any harm. SLiMgui
graph windows also make their data available to you, if you want to regenerate them or perform
further analysis; from the context menu, just select “Copy Data” to copy the underlying data for the
plot to the clipboard, or “Export Data...” to export the data to a text file readable by other programs
such as R. The format of the data should be pretty self-explanatory.

8.3 Times to fixation and loss
Next let’s look at the plots for “Graph Mutation Loss Time Histogram” and “Graph Mutation

Fixation Time Histogram”, side by side:

These plots show an analysis of metrics gathered over the course of an entire run (lengthened to
100,000 ticks, in fact, to get a more stable distribution). The loss time plot, on the left, shows the
distribution of loss times, in ticks (not cycles, although they are the same in this simple model), for
each of the four mutation types. Remember that this is not saying that beneficial mutations are just
as likely to be lost as deleterious mutations, but only that when a beneficial mutation is lost, the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 168

amount of time it takes to be lost is similar to the amount of time it takes a deleterious mutation to
be lost. In other words, this plot is conditional upon mutations being lost; it implies nothing about
the likelihood of loss. The loss profile for all four types is quite similar, but m4, the beneficial
mutation type, appears to be a bit more likely to be lost quickly; if a beneficial mutation is lost at
all, it is perhaps more likely to be lost very early, due to drift when it is still at very low frequency.

The fixation time plot, on the right, similarly shows the distribution of fixation times, in ticks
(again, not cycles), for each of the four mutation types (conditional, similarly, upon the mutations
having fixed). Here we can see that neutral mutations inside exons (mutation type m2) appear to
have a different distribution of fixation times than neutral mutations inside introns and non-coding
regions (mutation type m1), presumably due to linkage with mutations under selection in the exons
(both hitchhiking and background selection). We can also see that beneficial m4 mutations tend to
fix quickly (more skewed towards the left) compared to deleterious m3 mutations (more skewed
towards the right).

8.4 Population fitness over time
The next graph we will examine is “Graph Fitness ~ Time”. At the end of a run of this recipe, to

10,000 ticks, it might look something like this (with a bit of customization of its appearance using
the action button – hiding the grid, adding a box, hiding subpopulation display):

This plot shows the fitness of the population over time (and depending on settings, it might
show the fitness of each subpopulation too). More specifically, it shows mean fitness, and
(following the SLiM engine) it rescales whenever a mutation fixes, dropping the fixed mutation
from the calculation (see section 1.5.2). Without that rescaling, the plot would be nearly a
monotonically rising curve; with the rescaling, a drop in the curve occurs each time that a
beneficial mutation fixes (shown with a vertical blue line). In fact neutral and deleterious
mutations that fix are also shown with a blue line in this plot, but since, in this model, they almost
always fix at the same time as a beneficial mutation, due to hitchhiking, there are only a few
fixation events in the plot that do not correspond to a drop in mean fitness due to that rescaling.

A few things can be observed in this plot. First of all, a bunch of mutations fixed over 10000
ticks; the probability of beneficial mutations arising in this model is probably much higher than the
typical empirical rate. For the same reason, the strong-selection–weak-mutation assumption

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 169

emphatically does not hold here; beneficial mutations are stacking up and competing with each
other, as can be seen from both the complex wiggling of the curve in between fixation events, and
from the fact that fixation events usually do not drop the mean fitness back down to 1.0 (indicating
that at least one other beneficial mutation exists at intermediate frequency in the population at the
same time).

This may be a good moment for a digression about exactly how SLiMgui displays “fitness” to the
user, which is a surprisingly complicated topic. First of all: SLiM calculates fitness multiplicatively.
The fitness of an individual, as calculated by SLiM, is the product of all of the fitness effects
influencing that individual. More specifically, it is the product of the fitness effects of all mutations
possessed by the individual (perhaps influenced by mutationEffect() callbacks), multiplied by
any additional fitness effects from fitnessEffect() callbacks, Individual-level fitnessScaling
values, and Subpopulation-level fitnessScaling values. This is documented at an introductory
level in sections 1.3 and 1.5.2, and in detail in the reference sections 23.6 and 24.3 for WF and
nonWF models respectively; reference documentation for mutationEffect() and fitnessEffect()
callbacks are in sections 26.2 and 26.3, and reference documentation for the fitnessScaling
property is in sections 25.7.1 and 25.16.1 for Individual and Subpopulation respectively. Many
of these sources of fitness effects have not been discussed yet, and will come up in recipes in later
chapters; chapter 10, for example, is all about mutationEffect() callbacks. So we’re getting
ahead of ourselves a bit, but the point is: all of these fitness effects get multiplied together to
produce a final fitness value for each individual, which SLiM usually just calls “fitness”. The mean
of this, across the whole population and also, optionally, across each subpopulation, is essentially
what is displayed in the graph shown above; however, SLiMgui applies a rescaling to those values
prior to display, as described in detail below.

In nonWF models, these fitness values are used directly as each individual’s probability of
survival during the viability/survival tick cycle stage (see section 24.4); they can therefore be
considered to represent “absolute” fitness. In WF models, these fitness values influence the
probability of mating instead, and the absolute fitness value for an individual is unimportant; the
important thing is the magnitude of an individual’s fitness value relative to the fitness of other
individuals in the same subpopulation, since individuals with higher fitness are more likely to be
chosen as mates. In WF models, then, these fitness values represent a non-normalized metric of
“relative” fitness. SLiM internally normalizes them to sum to 1.0 across each subpopulation to
represent mating probabilities; these normalized values are user-visible as the weights vector in
mateChoice() callbacks, but are not otherwise available. See section 1.6 for further discussion of
the meaning of fitness in WF versus nonWF models.

It is worth noting that SLiM’s fitness values may not include everything that a biologist would
consider to be a part of “fitness”; they are simply calculated values that influence viability (in
nonWF models) or mating (in WF models). One could easily write a SLiM model in which other
factors (whether genetic or non-genetic) influenced the probability that an individual would mate,
and those other factors would not be included in SLiM’s fitness values. For example, a WF model
could have a mateChoice() callback that made particular individuals unlikely to mate even though
their fitness was high (due to juvenile exposure to environmental chemicals, say); or a nonWF
model could have a reproduction() callback that decreased individual fecundity based upon
particular mutations (life-history genes influencing the individual’s investment in growth versus
reproduction, say). Such scripted effects would not influence SLiM’s calculated fitness values, but
they would figure into a biologist’s assessment of what “fitness” was doing in the model. SLiMgui
displays only SLiM’s calculated fitness values; it makes no attempt to assess the true biological
fitness of individuals. Biologists sometimes talk about fitness components: conceptual sub-
partitions of the overall fitness of individuals. From this perspective, SLiM’s fitness values can be
thought of as one fitness component, among others that might be present in a model.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 170

Returning to the plot above, we see the y axis is titled “Fitness (rescaled)”. What does that
mean, exactly? This term actually captures two different things that are going on. One, as
discussed above, is the way that fixed mutations get removed by default in the WF model, resulting
in the downward jumps observed in the plot. This is one kind of “rescaling” being applied: once
the population is fixed for a given mutation in the WF model, the fitness effect of that mutation can
be ignored because the WF model depends upon relative fitness, not absolute fitness, as explained
above. Removing the mutation from the simulation and creating a Substitution object for it
therefore “rescales” fitness values in the model to no longer contain that mutation’s fitness effect.

The other sense in which fitness values here are “rescaled” is that they do not include the effects
of density-dependent population regulation in nonWF models – or, to be more precise, they do not
include the effect of the Subpopulation property fitnessScaling. As we will see when we start
working with nonWF models in chapter 15 (see section 1.6 for a quick overview), nonWF models
are responsible for their own population regulation, and typically do so by setting a
subpopulation-wide fitness effect in the fitnessScaling property of the subpopulation. This serves
to decrease the absolute fitness of the whole subpopulation if it is too large, or increase the
absolute fitness of the whole subpopulation if it is too small. Because the subpopulation size is
often fairly stochastic, and might be affected by other factors like variation in migration, fecundity,
etc., variation in this density-dependence term of fitness can introduce a lot of noise that obscures
the signal that the user of SLiMgui is typically interested in: the extent to which individuals are
carrying beneficial or deleterious alleles. To better reflect that signal, then, SLiMgui does not
include the effect of the Subpopulation-level fitnessScaling value in its display. The fitness
values displayed are therefore not the final values used by SLiM to determine survival in the
nonWF model; this may sometimes be confusing, but overall it seems more likely to be useful.
Note that in spatial nonWF models (see section 16.15), density-dependent effects are put into the
Individual fitnessScaling property, not the Subpopulation fitnessScaling property, because
different individuals feel different strengths of density-dependence; SLiMgui has no way to separate
this out from other fitness effects the model might use, since it is embedded into the Individual
fitnessScaling value (along with, perhaps, other individual-level fitness effects), so in this case
SLiMgui’s display does not include this type of rescaling.

All of the above discussion applies to “fitness” as displayed in SLiMgui in other contexts too. In
particular, fitness values that are“rescaled” in the senses defined above are displayed in the
Population Fitness Distribution and Subpopulation Fitness Distribution plots also, and are used to
determine the colors for individuals in the individuals view in SLiMgui. SLiMgui never uses the
final fitness value for individuals, including the Subpopulation-level fitnessScaling value; it
always rescales to remove that scaling factor.

OK, that ends our digression about fitness calculations in SLiM and SLiMgui. Moving on; we
have seen the “Graph Population Visualization” plot before, and it is not interesting here since
there is no population structure in this recipe; so this concludes our tour of SLiMgui’s graphing
facilities (the “Create Haplotype Plot” command is shown in sections 13.3, 14.4, and 16.9). Some
new plots have been added to SLiMgui since this chapter was written, and thus are not described
here at the moment; note that for all of SLiMgui’s plots you can always select “About This Graph”
from the action button in the graph window to get a brief explanation of what the graph
displays.

If you want to graph other things, you can of course generate an output file with the data you
need, read the data into R, and generate your plots there (or you can sublaunch R from within your
model to generate live plots as your model runs in SLiMgui; see section 14.8). Also, don’t forget
that you can copy SLiMgui’s graphs to the clipboard, or save them out as PDF files, using the
“Copy Graph” and “Export Graph...” commands in the action button’s pop-up menu.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 171

9. Selective sweeps

This chapter shows how SLiM can be used to model selective sweeps and various associated
phenomena such as hitchhiking, background selection, and genetic draft. SLiM’s ability to
accurately model such scenarios is the origin of its name, Selection on Linked Mutations. This
chapter will use very simple one-population models; of course these recipes can be combined
with the recipes of previous chapters to model sweeps with complex demography and population
structure, complex genetic architecture, spatiotemporal variation in selection, and so forth.

9.1 Introducing adaptive mutations
The simplest selective sweep scenario is of an explicitly introduced adaptive mutation sweeping

against a background of neutral mutations. We can simulate such a sweep in just a few lines:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 1.0, "f", 0.5); // introduced mutation
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
1000 late() {
 target = sample(p1.genomes, 1);
 target.addNewDrawnMutation(m2, 10000);
}
10000 late() { sim.simulationFinished(); }

The call to initializeMutationType() sets up m2, a new mutation type used to represent the
introduced beneficial mutation. Note that a dominance coefficient of 1.0 (fully dominant) is used
with a selection coefficient of 0.5; these values provide strong selection for the introduced
mutation, making it less likely to be lost due to genetic drift while still at low frequency. This is
useful for illustrative purposes here, but of course in real simulations less favorable values would
likely be needed, making it more probable that the mutation would be lost rather than sweeping.
There are two ways to handle this. One is to simply accept that some runs of the simulation will
fail to sweep – do many runs of the model, and collect statistics only across those runs where the
sweep succeeds. The second way to handle the problem is to write additional Eidos code to make
the simulation run conditional on fixation (see the next section).

The other interesting code here is the Eidos event at tick 1000. The first line of this event selects
a target genome into which the added mutation will be placed. It does this using the sample()
function, by drawing a single sample from subpopulation p1’s vector of genomes. This is
important, because SLiM does not – for reasons of speed – guarantee a random order to the
individuals in a subpopulation. In this simple model all individuals are produced identically, so
this is not an issue, but if features of SLiM are used such as migration, separate sexes, selfing,
cloning, or mateChoice()/modifyChild()/recombination() callbacks, the individuals in the
subpopulation will be produced in a specific and non-random order, and thus whenever a random
individual is desired sample() must be used (rather than just using, e.g., the genome at index 0).

The second line then adds a new mutation to the target genome, drawn from mutation type m2;
the remaining parameter specifies the position of the mutation in the chromosome as 10000 (this
could be drawn randomly as well, if desired, using a function such as rdunif()).

Note that this event is a late() event, specified in its declaration. These were introduced back
in section 4.2.1 as a way to make scripted events happen late in the tick, after offspring generation

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 172

has occurred (see the tick cycle overview in section 1.3). It is important that introducing new
mutations occurs in a late() event, because it makes script-introduced mutations act in exactly
the same way as mutations added by SLiM due to the normal process of mutation during offspring
generation. If this event were an early() event instead, the mutation would be introduced
immediately before offspring generation, and it would have no effect on fitness values since
fitnesses would have been calculated before it was added (toward the end of the preceding tick).
The mutation would therefore be subject to one tick of drift before its correct fitness effect would
be accounted for. This would likely not be the desired behavior, so SLiM will issue a warning if
you add a mutation during an early() event – you can change the late() designation here to
early() to see that.

The introduced mutation in this model typically sweeps quite quickly (or is lost quickly due to
drift), so perhaps the simplest way to see what is going on in SLiMgui is to recycle and then enter
1000 in the tick textfield and press return (as illustrated in section 5.1.2). The simulation will
advance to the beginning of tick 1000, and you can then press Step to single-step forward and
watch the progress of the introduced mutation. Alternatively, you could slow down the simulation
speed using the speed slider (as illustrated in section 5.2.2) to see the simulation play more slowly.
In either case, you should observe that at tick 1000, just before the beneficial mutation is
introduced, there is lots of neutral diversity across the chromosome:

But just before the mutation finishes sweeping (assuming it is not lost – you may need to recycle
and repeat this procedure several times to get a run in which the sweep establishes), most of that
diversity has been lost, and just a few neutral sites have hitchhiked along with the introduced
mutation, producing the characteristic signature of a selective sweep (Smith & Haigh 1974):

Note the green line at position 10000, representing the beneficial mutation itself.
We can automatically halt the model immediately after the introduced mutation has fixed (or

has been lost). This requires just a simple modification of the final line of the model, with the call
to simulationFinished():

1000:10000 late() {
 if (sim.countOfMutationsOfType(m2) == 0)
 sim.simulationFinished();
}

Now simulationFinished() is called immediately when the number of mutations of mutation
type m2 falls to zero, which happens either when the introduced mutation fixes (because SLiM then
converts the mutation into a substitution object), or when it is lost. (See section 9.9 for an
alternative approach that may be better in some situations, based upon remembering the sweep
mutation object itself.) Note the tick range of 1000:10000 on this event; this means that this
termination condition will be checked each tick from 1000 (when the introduced mutation
originates) until 10000 (when the model ends, regardless). Also note that the late() designation
ensures that the simulation ends in the same tick that the m2 mutation is lost or fixed.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 173

It might be nice to have some indication, in the output stream of the simulation, as to whether
the introduced mutation fixed or was lost. One simple way to do this is to check for a
Substitution object of the right mutation type, in a small extension to the event above:

1000:100000 late() {
 if (sim.countOfMutationsOfType(m2) == 0)
 {
 fixed = (sum(sim.substitutions.mutationType == m2) == 1);
 cat(ifelse(fixed, "FIXED\n", "LOST\n"));
 sim.simulationFinished();
 }
}

The variable fixed is assigned a logical value that comes from checking the list of substitutions
for elements with mutation type m2. Each match will produce a value of T in the logical vector
that results from the == operator; and since T is equal to 1 in Eidos, whereas F is equal to 0, the
sum() function then adds up the total number of matches. If the sum is 1, the mutation fixed;
otherwise (when it is 0) the mutation was lost.

The next line calls cat() to concatenate a string to the output stream. The string comes from
the ifelse() function, which looks at the logical value of its first parameter (fixed) and returns its
second parameter ("FIXED\n") if that value is T; otherwise, it returns its third parameter ("LOST\n").
This function is based on the ifelse() function of R; it is vectorized, and can thus perform this
operation across whole vectors at once – a useful tool. An if–else here would be less compact:

if (fixed)
 cat("FIXED\n");
else
 cat("LOST\n");

Another alternative, while we’re on the subject, would be to use the “trinary conditional”
operator of Eidos. This is similar to the ifelse() function, but it is a built-in operator in Eidos, and
it is not vectorized; the Eidos manual has further details about it. Its use would look like this:

cat(fixed ? “FIXED\n" else "LOST\n");

9.2 Making sweeps conditional on fixation
The recipe in the previous section did not guarantee that the introduced mutation would sweep

to fixation. That is not necessarily a flaw; sometimes one is interested in the outcome of a model
both when a sweep completes and when it does not. Sometimes, however, one wishes to make a
model that guarantees that a sweep completes:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 1.0, "f", 0.5); // introduced mutation
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 // save this run's identifier, used to save and restore
 defineConstant("simID", getSeed());

 sim.addSubpop("p1", 500);
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 174

1000 late() {
 // save the state of the simulation
 sim.outputFull(tempdir() + "slim_" + simID + ".txt");

 // introduce the sweep mutation
 target = sample(p1.genomes, 1);
 target.addNewDrawnMutation(m2, 10000);
}
1000:100000 late() {
 if (sim.countOfMutationsOfType(m2) == 0)
 {
 fixed = (sum(sim.substitutions.mutationType == m2) == 1);

 if (fixed)
 {
 cat(simID + ": FIXED\n");
 sim.simulationFinished();
 }
 else
 {
 cat(simID + ": LOST – RESTARTING\n");

 // go back to tick 1000
 sim.readFromPopulationFile(tempdir() + "slim_" + simID + ".txt");

 // start a newly seeded run
 setSeed(rdunif(1, 0, asInteger(2^62) - 1));

 // re-introduce the sweep mutation
 target = sample(p1.genomes, 1);
 target.addNewDrawnMutation(m2, 10000);
 }
 }
}

To make a model that is conditional on fixation, there are some simple “solutions” that don’t
work. You can’t force the introduced mutation to increase in frequency each tick; that would
produce abnormal evolutionary trajectories that would distort the model dynamics. Similarly, you
can’t just reintroduce a new mutation if the previous one is lost; in the process of getting lost, the
previous mutation may have affected the genetic background. What you really want is that if the
introduced mutation has been lost, the simulation gets reset to precisely the same state as it was in
prior to the previous introduction, but with a different random number seed to ensure that events
take a different course. If you do this repeatedly until the mutation fixes, you have a proper
simulation of a selective sweep conditional upon fixation. SLiM provides a convenient solution for
this by allowing the user to save the relevant state of a simulation to disk. Doing this is actually
pretty simple; there are just a few key steps that need to be taken to save the state and then restore
it when we want to try a different trajectory.

First of all, the tick 1 event now stores the initial random number seed, obtained from
getSeed(), as a constant named simID, using the Eidos function defineConstant(). Such
constants persist until the simulation terminates or is recycled; unlike local variables, defined
constants do not disappear at the end of the current event in SLiM, but instead go into the global
scope. This value is thus a unique identifier for the model run; if many model runs were being
done, each would presumably have a different seed, and thus the initial seed identifies the run.

The event in tick 1000 saves the current population state to a file in a temporary directory; on all
Un*x systems (including macOS) this will be /tmp or a subdirectory of it. The filename used is

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 175

generated using string concatenation with the + operator (described in detail in the Eidos manual),
based on the value stored earlier in simID; the temporary file therefore gets named according to
the initial random number seed of the run, with a name like "slim_92631.txt". This event also
adds the new mutation that we want to sweep. Note that this event is designated as a late()
event; this is logical, both because it produces output (the saved simulation state), and because it
adds a mutation to the simulation just before fitness recalculation.

The tick 1000:100000 event checks, each cycle, whether the introduced mutation is still present.
If it has fixed, it prints a message and terminates the simulation. If it has been lost, it prints a
message and reads the saved population state back in (which sets the tick counter back to 1000). It
then changes the random number seed, to start a new evolutionary trajectory (reproducible by
starting again at the new seed – see section 20.1 for discussion), and then re-introduces the sweep
mutation as before. This event is also a late() event; this way if the simulation has to be restored
to the saved state, it picks up exactly where it was saved out (it should also be a late() event
because it adds a new mutation). Finally, note that when we set the tick back to 1000, the tick
1000 event that did our initial setup does not execute again; the events that will run for a given tick
are determined at the beginning of that tick and do not change even if community.tick is changed.
If we were to set community.tick to 999 instead, then the tick 1000 event would execute again, in
the next tick.

If you recycle and run this model, sometimes the introduced mutation will fix on the first
attempt, but sometimes it will take repeated attempts and you will see output like this:

1452090492983: LOST – RESTARTING
1452090492983: LOST – RESTARTING
1452090492983: LOST – RESTARTING
1452090492983: FIXED

This demonstrates that the model is working as intended; three introduced mutations were lost
before the fourth attempt resulted in fixation. You could change the dominance coefficient and
selection coefficient of m2 to be less favorable, which would result in more restarts but should work
fine. You could even make m2 neutral or deleterious, while still making runs conditional on
fixation; we’ll see an example of that in section 9.6.2. Since the probability of a new neutral
mutation drifting to fixation is small, many restarts will be needed, but no harm is done by that.

One major caveat is that outputFull() writes out only a specific set of information: the
subpopulations that exist, the individuals they contain, and the mutations contained by the
genomes of those individuals. When readFromPopulationFile() is called, any other state
associated with the subpopulation, individuals, genomes, and mutations is wiped away. If the
model had set up other properties – setting a cloning rate on a subpopulation, say, or setting up
values with tag or setValue() – that state will be lost, and will need to be set up again.

Given the relative complexity of this recipe, most of the other selective sweep recipes in this
chapter will assume that conditionality on fixation is not desired, so that their different topics are
not obscured by the conditionality machinery. However, the key elements of this recipe can be
combined with any selective sweep strategy – or indeed, can be used to make a simulation that is
conditional upon any outcome you wish. In the next section, we will see how to make a
simulation conditional upon establishment of a mutation, rather than upon fixation.

9.3 Making sweeps conditional on establishment
In the previous section, we saw how to make a model conditional on fixation of the introduced

mutation. Sometimes one may want to relax this condition and require only that the mutation
reaches a certain threshold frequency at which selection outweighs drift, rendering subsequent loss

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 176

unlikely. This threshold frequency is commonly referred to as the establishment frequency, and is a
function of the selection coefficient of the mutation. Making our model conditional on
establishment, rather than fixation, requires just a simple modification to the previous recipe:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 1.0, "f", 0.5); // introduced mutation
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 // save this run's identifier, used to save and restore
 defineConstant("simID", getSeed());

 sim.addSubpop("p1", 500);
}
1000 late() {
 // save the state of the simulation
 sim.outputFull(tempdir() + "slim_" + simID + ".txt");

 // introduce the sweep mutation
 target = sample(p1.genomes, 1);
 target.addNewDrawnMutation(m2, 10000);
}
1000: late() {
 mut = sim.mutationsOfType(m2);

 if (size(mut) == 1)
 {
 if (sim.mutationFrequencies(NULL, mut) > 0.1)
 {
 cat(simID + ": ESTABLISHED\n");
 sim.deregisterScriptBlock(self);
 }
 }
 else
 {
 cat(simID + ": LOST – RESTARTING\n");

 // go back to tick 1000
 sim.readFromPopulationFile(tempdir() + "slim_" + simID + ".txt");

 // start a newly seeded run
 setSeed(rdunif(1, 0, asInteger(2^62) - 1));

 // re-introduce the sweep mutation
 target = sample(p1.genomes, 1);
 target.addNewDrawnMutation(m2, 10000);
 }
}
10000 early() {
 sim.simulationFinished();
}

Much of the machinery here is carried over from the previous recipe; see section 9.2 for
discussion of the way the simulation state is saved and restored. Here, however, the 1000: event

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 177

checks for the existence of the introduced mutation, using size(). If it exists, its frequency is
checked against the threshold frequency 0.1 (an arbitrary choice that can be adjusted to whatever
threshold frequency you wish). If the mutation’s frequency is above that threshold, a message is
printed and the script block deregisters itself so that further checks are not done – once the
mutation has established, the simulation runs freely to its end, whether the mutation is
subsequently fixed or lost. (See section 5.1.2 for discussion of deregisterScriptBlock(), as well
as sections 9.5.3 and 25.13.2). On the other hand, if the introduced mutation no longer exists, the
simulation is reset back to the point of introduction, just as in section 9.2.

When this model is run, you will typically see output like:

1459603349880: LOST – RESTARTING
1459603349880: LOST – RESTARTING
1459603349880: LOST – RESTARTING
1459603349880: ESTABLISHED

9.4 Partial sweeps
Sometimes it is desirable to make a selective sweep stop or change when the sweep mutation

reaches a specific frequency. This recipe will initiate a selective sweep with a beneficial mutation,
which will convert into a neutral mutation when it reaches a frequency of 0.5.

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 1.0, "f", 0.5); // introduced mutation
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
1000 late() {
 target = sample(p1.genomes, 1);
 target.addNewDrawnMutation(m2, 10000);
}
1000:10000 late() {
 mut = sim.mutationsOfType(m2);
 if (size(mut) == 0)
 sim.simulationFinished();
 else if (mut.selectionCoeff != 0.0)
 if (sim.mutationFrequencies(NULL, mut) >= 0.5)
 mut.setSelectionCoeff(0.0);
}

Most of this is similar to previous recipes in this chapter; the difference lies in the 1000:10000
event. This event now uses mutationsOfType() to recover the introduced mutation object (see
section 9.9 for an alternative, and section 28.2 for discussion). If the mutation is no longer present
– if size(mut) is zero – the simulation terminates; this is like the countOfMutationsOfType(m2)
check done in previous recipes. Otherwise, it uses mutationFrequencies() to check the frequency
of the introduced mutation; if it has cleared the 0.5 threshold, it is converted to neutral with
setSelectionCoeff(). That last bit of code is protected by a test that the selection coefficient has
not already been changed; that check is purely for speed, as mutationFrequencies() can be slow.

This recipe could incorporate parts of the previous recipes, in order to determine whether the
introduced mutation was lost or had fixed, or in order to make the simulation conditional on the
mutation reaching the threshold frequency; the basic idea is easily adapted.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 178

9.5 Soft sweeps from de novo mutations
In the previous recipes in this chapter, we’ve seen “hard” selective sweeps originating from a

single new mutation. If, on the other hand, a sweep proceeds from multiple copies of the same
mutation, present in different individuals, it is termed a “soft” sweep, because it preserves a more
diverse genetic background (Messer & Petrov 2013). Soft sweeps can arise from standing genetic
variation (seen in section 9.6), or can occur when multiple copies of the same de novo mutation
arise during a sweep. This section will model the latter scenario, in three different ways.

9.5.1 A soft sweep from recurrent de novo mutations in a large population
In this recipe, we will model a soft sweep by de novo mutations generated by SLiM. In order to

get a soft sweep to occur from recurrent de novo mutations at the same locus, the population
needs to be very large or the mutation rate needs to be very high, so that new copies of the
mutation tend to arise before the previous copy has fixed. In this recipe, unlike most recipes in
this book, we will not model a background of neutral mutations; instead, this is a model of
competing beneficial mutations at a single site. We are, in effect, modeling the sweep of multiple,
separate instances of a particular single-nucleotide change, such as the transition of a particular
nucleotide from G to A (only conceptually; we will see explicitly nucleotide-based models in
chapter 18). The model terminates when the sweep completes: when every individual genome
possesses an instance of the mutation, regardless of where and when this instance arose. With no
further ado, the recipe:

initialize() {
 initializeMutationRate(1e-5);
 initializeMutationType("m1", 0.45, "f", 0.5); // sweep mutation
 m1.convertToSubstitution = F;
 m1.mutationStackPolicy = "f";
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 0);
 initializeRecombinationRate(0);
}
1 early() {
 sim.addSubpop("p1", 100000);
}
1:10000 early() {
 counts = p1.genomes.countOfMutationsOfType(m1);
 freq = mean(counts > 0);

 if (freq == 1.0)
 {
 cat("\nTotal mutations: " + size(sim.mutations) + "\n\n");

 for (mut in sortBy(sim.mutations, "originTick"))
 {
 mutFreq = mean(p1.genomes.containsMutations(mut));
 cat("Origin " + mut.originTick + ": " + mutFreq + "\n");
 }

 sim.simulationFinished();
 }
}

The chromosome is defined as having a single genomic element that spans from position 0 to
position 0 – a single base position. This recipe uses a relatively high mutation rate (1e-5) with a
large population size (100000) so that multiple mutations arise at that single site before the sweep

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 179

completes. An even larger population size could be used with a lower mutation rate (N=1e6 and
u=1e-6, say, or even N=1e7 and u=1e-7), but the model would take somewhat longer to complete.

There is one unusual complication in this model: SLiM, by default, allows multiple mutations of
a given mutation type to occur at the same site in the same individual (“stacked” mutations; see
section 1.5.3). In other words, an individual that has already undergone the G-to-A transition might
nevertheless be given another mutation at the same site, representing the same G-to-A transition.
While this behavior is desirable in many instances, it is inconvenient in this particular model, and
so this recipe tells SLiM to use a different behavior: stacked mutations will not be allowed, and
new mutations that collide with an existing mutation at the same site will be suppressed. This is
achieved by setting the mutationStackPolicy property of m1 to "f", which tells SLiM to prevent
stacking by keeping only the first (thus "f") mutation of type m1 at a given site (see section 1.5.3 for
details). This simplifies the model’s code considerably; without this change in policy, the model
would have to carefully take account of the possibility of stacking and compensate for it. Note
that if this model contained other mutation types as well, those would still be allowed to coexist,
both with each other and with an m1 mutation at the same site; only stacking of m1 mutations with
other m1 mutations is prevented by default.

Second, the dominance coefficient of 0.45 for m1 is actually a special and important value.
SLiM tracks each independent origin of the sweep mutation as a separate Mutation object; those
mutations are all of type m1, but they are distinct mutations as far as SLiM is concerned (see section
1.5.2). If an individual has different versions of the sweep mutation in its two genomes, SLiM will
evaluate the fitness of that individual according to the fact that it contains two different mutations,
each of which is heterozygous, and each of which therefore uses the mutation type’s dominance
coefficient. The value 0.45 makes this work out, because the relative fitness for one heterozygous
mutation is 1.0+0.45*0.5, which is 1.225, and then when the relative fitness values for the two
mutations are multiplied together, 1.225*1.225=1.5 (almost exactly), and 1.5 is the relative fitness
of the sweep mutation when homozygous. In other words, h=(sqrt(1+s)−1)/s, and therefore
(1+hs)2=1+s. This model could be written to use a dominance coefficient that did not satisfy this
relationship, but a mutationEffect() callback would be needed to produce the desired effects.

The 1:10000 event tallies up the overall frequency of the sweep mutation, regardless of which
particular Mutation objects are possessed by each individual. To do this, it first uses the
countOfMutationsOfType() method to produce a vector of the number of mutations in each
genome in the population. Then it tests counts > 0, producing a logical vector that is T if a
genome contains at least one mutation, F otherwise. The mean() function computes the frequency
of the sweep as the average of those values (implicitly converting T to 1 and F to 0, as a
convenience, following Eidos convention; one could call asInteger() to do this explicitly). If the
frequency is equal to 1.0, the sweep has completed and the simulation is stopped.

This model executes and stops, but it is hard to tell what’s going on; there is only a single base
position on the chromosome, so all of the mutations are displayed in a single column in SLiMgui’s
chromosome view. We can sort of see the sweep progressing, but we can’t tell how many
mutations are involved, or what the distribution of their frequencies might be. The model therefore
has some custom output code that processes the final state of the simulation and prints a summary.
Because stacking is prevented by mutationStackPolicy, as described above, this output code is
quite simple; it just loops through all of the mutations in the simulation (sorted by origin tick, using
sortBy()), and calculates the frequency of each mutation as the average of the values returned by
p1.genomes.containsMutations() for that mutation – a very similar strategy to the calculation of
the overall frequency of the sweep, as described above. Typical output might indicate that 25
mutations existed in the population at the end of the run (and thus participated in the soft sweep),
and would then list the final frequencies of those mutations, sorted in ascending order by origin
tick:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 180

Total mutations: 25

Origin 4: 0.22628
Origin 6: 0.04301
Origin 7: 0.18139
Origin 7: 0.215995
Origin 10: 0.10995
Origin 12: 0.0709
...

9.5.2 A soft sweep with a fixed mutation schedule
The previous recipe relied upon SLiM’s standard mutation-generation machinery to generate

new instances of a mutation that executed a soft sweep. Sometimes one might wish to have more
control over the process than that; our next recipe therefore adds the multiple copies of the sweep
mutation at predetermined times during the run, according to a scripted schedule:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 0.45, "f", 0.5); // sweep mutation
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 500);
 p1.tag = 0; // indicate that a mutation has not yet been seen
}
1000:1100 late() {
 if (sim.cycle % 10 == 0) {
 target = sample(p1.genomes, 1);
 if (target.countOfMutationsOfType(m2) == 0)
 target.addNewDrawnMutation(m2, 10000);
 }
}
1:10000 late() {
 if (p1.tag != sim.countOfMutationsOfType(m2)) {
 if (any(sim.substitutions.mutationType == m2)) {
 cat("Hard sweep ended in cycle " + sim.cycle + "\n");
 sim.simulationFinished();
 } else {
 p1.tag = sim.countOfMutationsOfType(m2);
 cat("Cycle " + sim.cycle + ": " + p1.tag + " lineage(s)\n");

 if ((p1.tag == 0) & (sim.cycle > 1100)) {
 cat("Sweep failed to establish.\n");
 sim.simulationFinished();
 }
 }
 }
 if (all(p1.genomes.countOfMutationsOfType(m2) > 0)) {
 cat("Soft sweep ended in cycle " + sim.cycle + "\n");
 cat("Frequencies:\n");
 print(sim.mutationFrequencies(p1, sim.mutationsOfType(m2)));
 sim.simulationFinished();
 }
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 181

There’s a lot going on here; let’s unpack it. First of all, there are a bunch of cat() calls to print
out diagnostic information about the sweep. A run of this model might produce output like:

Cycle 1000: 1 lineage(s)
Cycle 1010: 2 lineage(s)
Cycle 1020: 3 lineage(s)
Cycle 1040: 4 lineage(s)
Cycle 1041: 3 lineage(s)
Cycle 1042: 2 lineage(s)
Soft sweep ended in cycle 1067
Frequencies:
0.638 0.362

Each time a new copy of the sweep mutation is introduced, it produces a new lineage that is
conceptually distinct from other lineages containing the same mutation; although each copy of the
mutation is identical (same position, same selection coefficient, etc.), SLiM tracks each introduced
copy separately, since each is generated with a separate call to addNewDrawnMutation(); see
section 1.5.2 for discussion of this. (If you wanted SLiM to simulate just a single mutation object,
without tracking lineages in this way, you could look up the existing mutation object and add it to
new individuals with the addMutation() method instead, as we will see in the next section.) As in
section 9.5.1, we use a “magic” value for the dominance coefficient h so that (1+hs)2=1+s, so the
calculated fitness values for individuals heterozygous for two different mutational lineages are
correct. In the next section we will see how to collapse mutational lineages together, as another
way of avoiding this issue, but here we are specifically interested in the distinct lineages and do
not wish to collapse them.

As the output shows, the number of lineages increases as new copies get added during the soft
sweep; sometimes the lineage count goes down, though, as particular lineages go extinct due to
genetic drift. The model uses a value stored in p1.tag to track the number of lineages; each time
that the current lineage count differs from that tag value, a new output line is generated. That’s the
function of the first half of the 1:10000 event: to track the number of lineages, produce output
when it changes, and halt the simulation if a hard sweep completes from a single introduced
mutation (indicated by the existence of a substitution of type m2) or if the sweep fails to establish
(indicated by a lack of active sweep mutations, if we’re past the end of the mutation introduction
period).

The second half of the 1:10000 event detects when the soft sweep has completed, and prints a
message giving the cycle at which it completed, along with the frequencies of each of the
mutational lineages that ended up being part of the completed sweep. These frequencies sum to 1,
indicating that every individual in the population possesses mutations from one or another of those
lineages; given that all of the mutational lineages are genetically identical, this means that the
mutation has really fixed, even though it is divided into distinct lineages by the design of the
simulation. The way this event detects completion might need a bit of explanation. First,
p1.genomes gives a vector containing the genomes for all individuals in the subpopulation. The
method countOfMutationsOfType(m2) performs a count on each genome in that vector, and
returns a new vector containing the corresponding counts. The > 0 test then generates a logical
vector containing T for each genome that had a copy of the sweep mutation; if any genome is still
missing the sweep mutation, this vector will have an F in that position. Finally, all() returns T if
all of the elements of that logical vector are T; if any genome failed the test, all() returns F. You
can compare this to the strategy for detecting soft sweep fixation used in the previous section,
which actually computes the frequency of the sweep.

The 1000:1100 event is the engine that generates the new mutational lineages of the soft sweep.
For simplicity, it starts a new lineage every 10 cycles, using the modulo operator, %, to test for

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 182

cycles which are evenly divisible by 10; it would of course be trivial to modify this to generate the
new lineages at whatever fixed ticks or cycles you wished, or to generate a new lineage randomly
with a given probability. In any case, when it is decided that a new lineage should be created this
event adds a new mutation, identical to the previous mutations, to a randomly chosen genome,
much as we have seen before.

The only tricky bit here is that we want to prevent more than one sweep mutation from existing
in the same genome, so before we add the new mutation, we check whether one is already there.
Normally SLiM allows two mutations to occupy exactly the same position in the chromosome (see
section 1.5.3); the check here avoids that possibility, so as to guarantee that the final lineage
frequencies will sum to exactly 1. In the previous section, we used the mutationStackPolicy
property of MutationType to prevent such “stacked” mutations; that solution would work equally
well here, since the mutation type’s stacking policy applies to introduced mutations as well as to
mutations generated by SLiM. A different strategy is employed here simply to show a different
approach to the same issue.

9.5.3 A soft sweep with a random mutation schedule
As mentioned above, the previous recipe could be modified to follow a random schedule quite

easily; for example, the (sim.cycle % 10 == 0) test could be changed to (runif(1) < 0.1) to
provide a new mutational lineage at random times averaging every ten ticks. But perhaps your
model would like to know the mutation schedule ahead of time, for some reason; you would like
to have, at the outset, a list of the ticks in which a new lineage will be created. This would allow
you to prune out schedules that didn’t satisfy some criterion, or run statistics on the schedule in
advance, or other such tasks. Here we look at an alternative recipe, then, that generates a
schedule ahead of time and then uses it to generate lineages.

Sections 9.5.1 and 9.5.2 used a “magic” dominance coefficient to guarantee that (1+hs)2=1+s.
This allowed them to keep the various mutational lineages of the soft sweep distinct, while still
producing the correct fitness value for individuals that were heterozygous for each of two different
mutational lineages (see those sections and section 1.5.2 for further discussion of this problem).
Here we will take a different approach: we will collapse the mutational lineages into one, by
reusing the already existing m2 sweep mutation whenever it is present, rather than creating a new
m2 mutation for each introduction. This guarantees that SLiM will calculate correct fitness values
even though we use a dominance coefficient of 0.1 here (which is far from the “magic” value of
0.45 for the selection coefficient chosen), at the cost of losing the information about each distinct
lineage. As a result, the sweep mutation will be fix and be substituted by SLiM when the sweep
completes, unlike in the previous sections, and we won’t be able to print out the frequencies for
each lineage that comprised the sweep; but in terms of the evolutionary dynamics it is still a soft
sweep model since the same sweep mutation can arise on multiple genetic backgrounds as the
sweep is in progress. To get the best of both worlds – to model the mutational lineages
independently while also getting correct fitness values without using a “magic” dominance
coefficient – we could essentially treat the mutational lineages as being epistatic; see section
10.3.1 for discussion of modeling epistasis in SLiM.

Here’s the complete recipe:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 0.1, "f", 0.5); // sweep mutation
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 183

1 early() {
 sim.addSubpop("p1", 500);

 gens = cumSum(rpois(10, 10)); // make a vector of start gens
 gens = gens + (1000 - min(gens)); // align to start at 1000
 defineConstant("Z", max(gens)); // remember the last gen

 for (gen in gens)
 community.registerLateEvent(NULL, s1.source, gen, gen);

 community.deregisterScriptBlock(s1);
}
s1 1000 late() {
 target = sample(p1.genomes, 1);
 mut = sim.mutationsOfType(m2);
 if (mut.size() > 0)
 target.addMutations(mut);
 else
 target.addNewDrawnMutation(m2, 10000);
}
1:10000 late() {
 if (any(sim.substitutions.mutationType == m2))
 {
 catn("Sweep completed in cycle " + sim.cycle + ".");
 sim.simulationFinished();
 }
 else if ((sim.countOfMutationsOfType(m2) == 0) & (sim.cycle > Z))
 {
 catn("Soft sweep failed to establish.");
 sim.simulationFinished();
 }
}

The 1:10000 event checks for loss or completion of the sweep and reacts accordingly, much as
we have seen previously. More interesting is how the lineage addition works now. There is an
event declared using a syntax that has not been seen up until now:

s1 1000 late() {

This event is named; an Eidos constant, s1, will be defined as referring to the script block for the
event. To some extent this is just a shorthand for convenience; all defined script blocks in a
simulation are available through community.allScriptBlocks, as objects of type SLiMEidosBlock,
and this block could be looked up from that vector using the properties of that class (by looking for
a block running only in tick 1000, for example). Being able to just use the name s1 is obviously
more convenient, and mirrors the syntax of being able to refer to a subpopulation as p1, a genomic
element type as g1, or a mutation type as m1.

Putting that aside, this event schedules the addition of a new lineage in much the same way as
in the previous recipe. Notably, however, the tick 1000 event now schedules a new lineage just
once. The trick behind this recipe is that this block gets re-scheduled by the model to run in an
assortment of other ticks. The code to do this is in the tick 1 event. First, a vector of all the ticks in
which the event will run is constructed by drawing from a Poisson distribution to get waiting times,
using rpois(), and then calculating cumulative sums from that vector of waiting times, using
cumSum(); the Eidos documentation gives details on these functions, of course. This vector is then
realigned so that its smallest element is equal to 1000, giving us the final schedule of lineage
additions that will be followed. The event then loops through that vector, and for each tick in it, it

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 184

calls community.registerLateEvent() to schedule a lineage addition in that tick. It does this by
scheduling the source code from the s1 event over again, obtained simply with s1.source. Finally,
the s1 event itself is deregistered; the loop has already scheduled a lineage addition in tick 1000, so
s1 is not needed. In this way, s1 itself never runs at all, but its source code is used as a template
for ten other events that do run.

The fact that Eidos is an interpreted language gives you the freedom to play all sorts of games
like this with the code of your simulation, even as it runs; you can register new events and
callbacks, deregister existing ones, and even generate code on the fly and then execute it with the
executeLambda() command. These sorts of techniques should be used in moderation, as they can
make the code of a model difficult to understand and maintain; but in some situations, as here,
they can prove exceedingly useful for implementing highly dynamic model behavior.

Incidentally, SLiMgui provides graphical tools for inspecting the event list, which can be useful
for understanding the behavior of models like this. This feature was previously described in
section 5.1.2, in a very different context; you might try opening the window drawer as described in
that section, and then recycling this model and stepping through tick 1. You will see that initially,
the event list contains s1; after tick 1 has executed, s1 has disappeared from the list, because it has
been deregistered, and ten new events have been added programmatically.

So the s1 event performs the introduction of the sweep mutation in a particular tick. It does so
a bit differently than we have seen before, however. After choosing a target genome, it attempts to
look up the existing sweep mutation with mutationsOfType(). If that does find an existing
mutation, that mutation will be added to the target genome with addMutations(), reusing it rather
than creating a new mutational lineage as we did in previous sections. Only if it fails to find an
existing sweep mutation does it create a new mutation with addNewDrawnMutation(). This strategy
avoids the fitness calculation issue with multiple mutational lineages discussed above; it also
avoids any issue with “stacking” of the introduced mutations, so we don’t need to change the
stacking policy here or otherwise worry about stacking. (If the target genome already contains the
existing m2 mutation, addMutations() does nothing, since a given mutation can exist only once in
any one genome.)

9.6 Sweeps from standing genetic variation
The previous section showed recipes for simulating soft selective sweeps with de novo

mutations – either introduced explicitly, or resulting from the normal mutational processes of SLiM.
Soft sweeps can also originate from standing genetic variation, however. In this case, a mutation
that was previously neutral becomes beneficial (presumably due to a change in the environment),
suddenly exposing the mutation to selection. Because the mutation was initially neutral, it will
generally occur in the population against a variety of genetic backgrounds; a soft selective sweep
will therefore generally occur, although a hard sweep is possible if just one of the mutation-
containing lineages happens to eliminate all of the others.

There are several ways that a sweep from standing genetic variation might be modeled. We will
examine two recipes in this section: a sweep from standing variation at a randomly chosen locus,
and a sweep from standing variation at a predetermined locus that is triggered when a mutation at
that locus reaches a threshold frequency.

9.6.1 A sweep from standing variation at a random locus
In this first recipe, a randomly chosen mutation will be picked out of the standing neutral

genetic diversity that has accumulated in the model; the only criterion for the selection of the
mutation will be that it must be above a threshold frequency. The chosen mutation will be

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 185

changed to be beneficial (reflecting an environmental change), and the model will terminate when
the mutation has either been lost or has completed a sweep:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 1.0, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 500);
}
1000 late() {
 muts = sim.mutations;
 muts = muts[sim.mutationFrequencies(p1, muts) > 0.1];

 if (size(muts))
 {
 mut = sample(muts, 1);
 mut.setSelectionCoeff(0.5);
 }
 else
 {
 cat("No contender of sufficient frequency found.\n");
 }
}
1000:10000 late() {
 if (sum(sim.mutations.selectionCoeff) == 0.0)
 {
 if (sum(sim.substitutions.selectionCoeff) == 0.0)
 cat("Sweep mutation lost in cycle " + sim.cycle + "\n");
 else
 cat("Sweep mutation reached fixation.\n");
 sim.simulationFinished();
 }
}

The tick 1000 event chooses the target mutation and transmogrifies it. The muts variable is set
up initially as the full set of mutations in the simulation, and is then whittled down to only those
mutations above a minimum threshold frequency of 0.1. Note that it would be straightforward to
modify this further and also require that the mutation is below a given maximum threshold
frequency; in that case, we would be studying a scenario of a selective sweep from a standing
genetic variant with starting frequency within the interval (min, max). The sample() function is
then used to choose one mutation from that set, at random, and the chosen mutation has its
selection coefficient altered to be beneficial. Note that this event is a late() event; this is for
essentially the same reasons as explicated in section 4.2.1. In short, we are changing the selection
coefficient of an existing mutation; for the fitness effect of that change to be realized immediately,
it must happen in a late() event so that the change occurs after offspring generation but before
fitness recalculation.

The 1000:10000 event just checks for termination conditions: either the chosen mutation has
been lost, or it has fixed. Since a separate mutation type is not used for the sweep mutation in this
model, unlike the other sweep models we have seen, these termination conditions are detected
using the property that the chosen mutation has a non-zero selection coefficient.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 186

This could be tailored in all sorts of ways; for example, the transition from neutral to beneficial
could be made gradual, or the new selection coefficient could be drawn from a distribution rather
than being a fixed value.

9.6.2 A sweep from standing variation at a predetermined locus
In this recipe we want to model a soft sweep from standing genetic variation. Specifically, we

want to assume that a previously neutral mutation suddenly becomes beneficial as a consequence
of an environmental change, and then subsequently sweeps in the population. In this scenario, we
can choose the “starting frequency” of the mutation at the time the environment changes. Our
recipe for this scenario is based on the conditional-on-establishment machinery of section 9.3,
which restarts the simulation if the mutation is lost prior to reaching the chosen starting frequency
(here defined as a frequency of 0.1). If the mutation does manage to drift to this frequency, it is
then converted to be beneficial. After that point, the model runs without conditionality, and
detects whether the mutation fixes or is lost prior to tick 10000.

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 1.0, "f", 0.0); // introduced mutation
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 // save this run's identifier, used to save and restore
 defineConstant("simID", getSeed());

 sim.addSubpop("p1", 500);
}
1000 late() {
 // save the state of the simulation
 sim.outputFull(tempdir() + "slim_" + simID + ".txt");

 // introduce the sweep mutation
 target = sample(p1.genomes, 1);
 target.addNewDrawnMutation(m2, 10000);
}
1000: late() {
 mut = sim.mutationsOfType(m2);

 if (size(mut) == 1)
 {
 if (sim.mutationFrequencies(NULL, mut) > 0.1)
 {
 cat(simID + ": ESTABLISHED – CONVERTING TO BENEFICIAL\n");
 mut.setSelectionCoeff(0.5);
 community.deregisterScriptBlock(self);
 }
 }
 else
 {
 cat(simID + ": LOST BEFORE ESTABLISHMENT – RESTARTING\n");

 // go back to tick 1000
 sim.readFromPopulationFile(tempdir() + "slim_" + simID + ".txt");

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 187

 // start a newly seeded run
 setSeed(rdunif(1, 0, asInteger(2^62) - 1));

 // re-introduce the sweep mutation
 target = sample(p1.genomes, 1);
 target.addNewDrawnMutation(m2, 10000);
 }
}
1000:10000 late() {
 if (sim.countOfMutationsOfType(m2) == 0)
 {
 fixed = (sum(sim.substitutions.mutationType == m2) == 1);
 cat(simID + ifelse(fixed, ": FIXED\n", ": LOST\n"));
 sim.simulationFinished();
 }
}

Most of the code here is identical to the recipe in section 9.3, so please refer to that section for
further discussion. Compared to that recipe, mutation type m2 now has an initial selection
coefficient of 0.0, making it neutral. If the mutation reaches the threshold frequency of 0.1, an
extra line of code calls setSelectionCoeff() to convert the mutation to beneficial. Finally, a
1000:10000 event has been added that checks for fixation or loss. Note that this event runs after
the 1000: event, because it is declared later in the source code; the 1000: event catches cases of
loss prior to establishment and restarts the model before the 1000:10000 event notices the loss.

If you run this model, it will probably emit a long string of restart messages before it fixes, due
to loss of the introduced mutation while it is still neutral. Once it reaches the threshold frequency
and is converted to beneficial, it will usually fix. Typical output is therefore something like:

1460585630465: LOST BEFORE ESTABLISHMENT – RESTARTING
1460585630465: LOST BEFORE ESTABLISHMENT – RESTARTING
...
1460585630465: LOST BEFORE ESTABLISHMENT – RESTARTING
1460585630465: LOST BEFORE ESTABLISHMENT – RESTARTING
1460585630465: ESTABLISHED – CONVERTING TO BENEFICIAL
1460585630465: FIXED

It would be simple to convert the introduced mutation to be initially deleterious; the model
would still work. In that case, however, it would usually take a very long time to complete a run,
because the introduced mutation would frequently be lost unless we chose a very low threshold
frequency or a very small deleterious selection coefficient.

9.7 Adaptive introgression
All of the selective sweep recipes thus far have involved just a single subpopulation. Here we

want to extend this to model adaptive introgression, the progress of an adaptive allele from its
subpopulation of origin into another subpopulation via migration and gene flow. Section 5.3
introduced techniques for setting up structured populations with migration; all we need to do is
add a selective sweep to such a model. Here’s a simple model combining the population structure
of section 5.3.1’s recipe with the hard sweep dynamics of section 9.1 (both slightly modified) to
model adaptive introgression:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 188

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 1.0, "f", 0.5); // introduced mutation
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 subpopCount = 10;
 for (i in 1:subpopCount)
 sim.addSubpop(i, 500);
 for (i in 2:subpopCount)
 sim.subpopulations[i-1].setMigrationRates(i-1, 0.01);
 for (i in 1:(subpopCount-1))
 sim.subpopulations[i-1].setMigrationRates(i+1, 0.2);
}
100 late() {
 target = sample(p1.genomes, 1);
 target.addNewDrawnMutation(m2, 10000);
}
100:100000 late() {
 if (sim.countOfMutationsOfType(m2) == 0)
 {
 fixed = (sum(sim.substitutions.mutationType == m2) == 1);
 cat(ifelse(fixed, "FIXED\n", "LOST\n"));
 sim.simulationFinished();
 }
}

If you run this model and stop the run in the middle, while the adaptive introgression is in
progress (assuming it is not lost by chance early on – you may have to recycle and restart several
times before it catches), the population shown in SLiMgui may look something like this:

Individuals possessing the introgressing allele are colored green; note that there are no
intermediate-colored individuals because m2 is fully dominant. The mutation was introduced into
subpopulation p1, and so it is closest to fixation there, whereas it has only just begun to sweep in
p10. Of course it is not possible to see the connectivity between the subpopulations, and the
migration rates between them, in this view. As described in section 5.1.3, you can open the
population visualization window to see what the population structure looks like:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 189

Here we see that we have a stepping-stone model, with gene flow mostly from p10 toward p1,

opposing the spread of the introduced mutation. Nevertheless, the mutation introgresses quite
rapidly given the parameters for this model; you could play with migration rates, selection
coefficients, etc. to test how they affect the time until completion of the sweep. It would be easy
to introduce spatial variation in selection into this model, too, using the techniques of section 10.2,
in order to allow the introgression to proceed only so far along the chain of subpopulations before
further introgression is blocked by local selection against it. Section 12.3 provides an example of
such spatial variation resisting the spread of an introgressing mutation, and then models a CRISPR
gene drive that allows the introgression to proceed despite the selection against it.

9.8 Fixation probabilities under Hill–Robertson interference
In this final section, we’ll see how a simple sweep model can test the predictions of population

genetic theory. The recipe here will model Hill–Robertson interference, the interference of
beneficial mutations that have arisen in different lineages and thus compete against each other
(Hill & Robertson 1966). The recipe’s code then compares the predicted mean fixation time for a
beneficial allele without such interference to the mean fixation time observed by the simulation.

The design of this recipe is that the first 5000 ticks of the run are a burn-in period during which a
dynamic equilibrium is reached, and then the final 1000 ticks are measured. The formulas for the
probability of fixation of a beneficial mutation without interference and the expected number of
fixed mutations are calculated according to standard population genetic theory (Kimura 1962).
The actual number of fixed mutations is obtained from the information stored in SLiM’s substitution
objects, which record the tick of fixation of all mutations; the number of fixed mutations with a
tick of fixation after the end of the burn-in can then be counted. As we shall see below, the actual
count is much lower than the expected count; fixation is being highly suppressed in this model
compared to the expectations without Hill–Robertson interference.

Without further ado, the recipe:

initialize() {
 initializeMutationRate(1e-6);
 initializeMutationType("m1", 0.5, "f", 0.05);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 190

 sim.addSubpop("p1", 1000);
}
6000 late() {
 // Calculate the fixation probability for a beneficial mutation
 s = 0.05;
 N = 1000;
 p_fix = (1 - exp(-2 * s)) / (1 - exp(-4 * N * s));

 // Calculate the expected number of fixed mutations
 n_gens = 1000; // first 5000 ticks were burn-in
 mu = 1e-6;
 locus_size = 100000;
 expected = mu * locus_size * n_gens * 2 * N * p_fix;

 // Figure out the actual number of fixations after burn-in
 subs = sim.substitutions;
 actual = sum(subs.fixationTick >= 5000);

 // Print a summary of our findings
 cat("P(fix) = " + p_fix + "\n");
 cat("Expected fixations: " + expected + "\n");
 cat("Actual fixations: " + actual + "\n");
 cat("Ratio, actual/expected: " + (actual/expected) + "\n");
}

Running this produces output like this (a typical result):

P(fix) = 0.0951626
Expected fixations: 19032.5
Actual fixations: 302
Ratio, actual/expected: 0.0158676

This is obviously a very simple model; the point is just to demonstrate that it is straightforward
to make models that test theoretical predictions like this – and that Hill–Robertson interference can
make a large difference to dynamics! If you run the model in SLiMgui, the way that the
competition of different lineages slows progress towards fixation is quite apparent. Of course if the
mutational input is constant, and the time to fixation increases, that has to mean (assuming
equilibrium) that fewer mutations are fixing. That can also be observed with this model in
SLiMgui; you can see many substantial bars, representing beneficial mutations at reasonably high
frequencies, getting pushed down to zero by the rise of a competing haplotype. Far fewer
beneficial mutations would be lost if they were not competing with each other. Recombination
occasionally resolves these conflicts by bringing competing mutations together onto the same
chromosome.

A very simple way to check this model is to decrease the mutation rate. The lower the mutation
rate, the less competition there should be between different mutations existing simultaneously in
the population (to the limiting case of a single extant mutation at any given time, which would
experience no Hill–Robertson interference at all). This is very easy to test; just change the
mutation rate to 1e-7, both where it is set with initializeMutationRate() and where it is assigned
to the variable mu for the calculations at the end. With both of those set to 1e-7, typical output is
something like:

P(fix) = 0.0951626
Expected fixations: 1903.25
Actual fixations: 88
Ratio, actual/expected: 0.0462367

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 191

And if we change the rate to 1e-8, again in both places, we get:

P(fix) = 0.0951626
Expected fixations: 190.325
Actual fixations: 16
Ratio, actual/expected: 0.0840667

With 1e-9, we get something like this (with a lot of stochasticity in the result, at this point –
1000 ticks post-burn-in is not nearly long enough to get an accurate estimate of the model’s
behavior when the mutation rate is so low):

P(fix) = 0.0951626
Expected fixations: 19.0325
Actual fixations: 6
Ratio, actual/expected: 0.31525

So as predicted, the lower the mutation rate, the less Hill–Robertson interference influences the
dynamics, and the more closely the model approximates the theoretical ideal of independent
mutations without interference. And indeed, if you run the model with the mutation rate of 1e-9 in
SLiMgui, you will see that sometimes multiple mutations still interfere, but fairly often, too, single
mutations arise and fix individually. Of course a rigorous analysis would want to use a longer
burn-in, a longer post-burn-in runtime, multiple runs averaged together for each mutation rate,
calculation of a standard error of the mean across each set of multiple runs, statistical tests for
significance of differences, and so forth; but even this very simple analysis is sufficient to make the
trend quite clear.

9.9 Keeping a reference to a sweep mutation
Throughout this chapter, we have followed the technique of looking up the sweep mutation

when we need it. In section 9.1, for example, we used sim.countOfMutationsOfType(m2) to
determine whether the sweep mutation was still segregating (if so, the count would be 1), and we
used sum(sim.substitutions.mutationType == m2) to determine whether the sweep mutation
had fixed or been lost, if it was no longer segregating. Other sections used somewhat different
techniques, but always followed the general approach of looking up the sweep mutation(s). In this
section we’ll look at an alternative technique: keeping a reference to a sweep mutation.

The general idea here is very straightforward: when we introduce the sweep mutation, we will
just store the mutation object itself for future reference, using defineConstant(). We could
remember it inside the dictionary of an object like sim, instead, with setValue() / getValue(); that
also works fine. Let’s look at this with a straightforward re-implementation of the recipe from
section 9.1:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 1.0, "f", 0.5); // introduced mutation
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
1000 late() {
 target = sample(p1.genomes, 1);
 mut = target.addNewDrawnMutation(m2, 10000);
 defineConstant("SWEEP", mut);
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 192

1000:100000 late() {
 if (!SWEEP.isSegregating)
 {
 cat(ifelse(SWEEP.isFixed, "FIXED\n", "LOST\n"));
 sim.simulationFinished();
 }
}

The first thing to notice is the new call to defineConstant(), which sets up a new constant
named SWEEP that references the newly generated sweep mutation. When the sweep mutation
eventually fixes or is lost, the mutation will be removed from the simulation, but SWEEP will
continue to be defined; it will continue to refer to the sweep mutation, allowing us to work with it.

The second thing to notice is how convenient this makes the remainder of the recipe. We can
now find out whether the sweep mutation is still segregating in the simulation by simply asking it,
with the isSegregating property of Mutation. If it isn’t, we can find out whether it has fixed with
the isFixed property; if that is F, the the mutation must have been lost. Not only is this more
convenient, it is also faster; we no longer have to do time-consuming lookups to find the sweep
mutation, or the Substitution object derived from it, because we have the mutation object itself
readily at hand.

You might wonder why we haven’t been using this technique throughout the chapter. One
reason, in truth, is because the ability to do this is new, as of SLiM 3.5. Previously,
defineConstant() and setValue() would not accept a value of type object; now they do
(although only Chromosome, Mutation, and Substitution objects are presently legal; other classes
will still cause an error). In general, SLiM objects have a lifetime that is defined by the dynamics of
the model; when an individual dies, or a mutation is lost, those objects are removed from the
simulation and cease to exist, and so allowing permanent references to objects to be kept presents
difficulties (see section 28.2). But with version 3.5, SLiM has been specifically redesigned to make
this possible for Mutation (and for Chromosome and Substitution), because it’s so useful.

But there are other reasons we haven’t been using this technique, too. In particular, it’s a bit
tricky to use with models that restart the simulation from a saved point, as used in section 9.2 and
9.3 to enforce “conditionality”, for example. The defined constant SWEEP would live on past the
reload of the model, and would then refer to a mutation that used to exist in an “alternate
timeline”. This poses no real problems, but it’s unlikely to be what you want. To work around this
difficulty, you would need to fix the constant each time the model restarts, probably by
remembering it with defineGlobal() instead of defineConstant(), and then calling
defineGlobal() again when it changes. This is probably a good approach in many cases; but it
was deemed too conceptually complex for the introductory selective sweep models in this chapter.

With those caveats, though, it’s a very useful technique! You can remember whole vectors of
mutations; for example, it’s trivial to write a model that remembers every mutation that exists in
one tick X, with defineConstant(), and then checks in a later tick Y to see which of those
mutations have fixed, which have been lost, and which are still segregating (see the next section).
You can track all of the sweep mutations you’ve introduced, or use this facility to track other
important mutations in your model without having to look them up from their id or their mutation
type. This would be useful for tracking a “marker mutation”, such as the chromosomal inversion
marker used in section 14.4.

9.10 Tracking the fate of background mutations
In section 9.9 we introduced the technique of keeping a reference to a mutation such as the

sweep mutation. Here we will extend this technique to keep references to all of the mutations that

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 193

comprise the background of a hard selective sweep, to see what happens to them all. This turns
out to be quite straightforward. The complete recipe:

initialize() {
 defineConstant("L", 3e6);
 initializeMutationRate(1e-6);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 0.8, "f", 0.5);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, L-1);
 initializeRecombinationRate(1e-7);
}
1 early() {
 sim.addSubpop("p1", 500);
}
1000 late() {
 target = sample(p1.genomes, 1);
 defineConstant("BACKGROUND", target.mutations);
 mut = target.addNewDrawnMutation(m2, asInteger(L/2));
 defineConstant("SWEEP", mut);
}
1000: late() {
 if (!SWEEP.isSegregating & !SWEEP.isFixed)
 stop("LOST");
}
1500 late() {
 nonSeg = BACKGROUND[!BACKGROUND.isSegregating];
 fixed = nonSeg[nonSeg.isFixed];
 lost = nonSeg[!nonSeg.isFixed];
 writeFile("fixed.txt", paste(fixed.position, sep=", "));
 writeFile("lost.txt", paste(lost.position, sep=", "));
}

We let neutral diversity build up for 1000 ticks, and then introduce a sweep mutation of type m2
in tick 1000. In the 1000 late() event, we first choose a single genome as the target, and then we
define a new constant, BACKGROUND, that contains the entire vector of mutations that target
currently contains – the genetic background into which the sweep mutation will be introduced.
Then we introduce the sweep mutation with addNewDrawnMutation(), and we remember it as the
defined constant SWEEP. With this setup, we’re now ready to track the fate of the sweep itself, as
well as all of the background mutations.

We monitor the sweep itself in the 1000: late() event, by just watching for the sweep mutation
switching to a state that indicates it has been lost (not segregating and not fixed), in which case we
stop with an error. You may therefore need to run the model several times to get a sweep that
completes; we could make this model run conditionally on fixation, using the technique of section
9.2, but we would have to be careful that SWEEP and BACKGROUND represented the correct mutations
after restarting the sweep (further discussed in section 9.9).

Once we have a run where the sweep mutation is not lost, we stop in tick 1500 and assess the
fates of the background mutations. We start by pruning the BACKGROUND vector down to those
mutations that are no longer segregating, using the isSegregating property of Mutation. Then we
subdivide that vector into those mutations that fixed, versus those that were lost, using the isFixed
property. Finally, we write out the positions of the mutations in those two categories to two
separate text files.

With a little bit of R code to read in the text files and generate a plot, we end up with this
visualization of the background mutation fates:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 194

The x axis is position along the chromosome, with the blue line at the center showing the
position of the sweep mutation. The y axis represents just the two outcomes, lost or fixed, with the
points (representing individual mutations) shown in corresponding colors of red and green; the
vertical spread of the points is just jitter to make the individual points, and thus the density of
mutations in different regions, more apparent.

This visualization makes it very clear that the central portion of the chromosome has been
carried along to fixation by the hard sweep, while recombination has led the regions further away
from the sweep mutation to fix much less often. This is just a snapshot at one instant in time, some
ticks after the sweep mutation has fixed; one could use the same technique to look at the pattern of
fixation and loss throughout the sweep and then onward in time, as regions that hitchhiked along
with the sweep but didn’t quite fix drift toward fixation or loss in later ticks. One could also look
at the mutations within BACKGROUND that are still segregating, to see their distribution along the
chromosome and monitor the length of time it takes for them to either fix or be lost, as a function
of their distance from the sweep mutation.

The same sort of analysis could be done using tree-sequence recording; sections 17.3, 17.4,
and 17.7 illustrate some of the techniques one would use, although a complete example is beyond
the scope of this manual. If the ancestry trees are not needed, however, and one just wishes to
track mutations directly, the technique shown here may prove simpler. The two approaches can
also be used jointly; you could track mutations in SLiM directly, write out the mutation id values of
mutations of interest, and then use those id values to look up the mutations in the tree sequence in
Python during your downstream analysis.

This technique could also be applied to many other situations. For example, if your model
involves a single migrant moving from one subpopulation to another, and you want to track the
fate of all of the mutations carried by that migrant, you could remember the migrant’s mutations
with defineConstant() and then monitor them. You could similarly watch mutations from one
region in a continuous-space model, to see how they spread across space and the spatial pattern in
which they fix or are lost.

Finally, it’s worth mentioning again that although we have been using defineConstant() to
remember mutations, setValue() also works, and lets you associate a vector of remembered
mutations with a particular SLiM object in your simulation; each subpopulation could remember
its own vector of mutations of interest, for example.

9.11 Effective population size versus census population size
A key concept in population genetics is the effective population size, usually represented with

the symbol Ne. We will explore that concept in this section with a simple model that shows the
difference between Ne and the census population size, usually symbolized as N. Conceptually,
this exploration might have fit better in chapter 5, since that chapter dealt with demography, but it
is in this chapter instead because we will use a selective sweep to show how Ne and N can
diverge, and how that divergence can be measured.

Let’s start at the conceptual level. The census population size, N, is the actual number of
individuals in a population: in empirical terms, it is how many organisms you would count, for

position
ou
tc
om
e

0 1.5e6 3e6

lo
st

fix
ed

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 195

your species of interest, if you went out into the real world and counted every single one. This is
the population size we have been using in our models thus far, because these are the terms that
SLiM generally thinks in. SLiM is an individual-based simulation framework (see section 1.1);
since that means that it explicitly models each individual in a population, the census population
size is its natural metric. In Wright–Fisher models, such as we have been working with, the census
population size is directly specified to SLiM as a model parameter, such as with the initial
population size passed to addSubpop(). In non-Wright–Fisher models, which we have not
encountered yet in any detail (but see the conceptual overview in section 1.6), the census
population size is emergent from the birth–death dynamics of the model, rather than being a fixed
parameter, but still, SLiM always thinks in terms of explicitly modeled individuals, and so it knows
the exact census population size at all times.

The effective population size, Ne, is quite different. It is never specified as a parameter to SLiM;
even in Wright–Fisher models it is an emergent property of the model, a metric, something that
you measure rather than something that you dictate. It is not usually equal to N, and indeed, it
can depart from N quite substantially. What it represents is a bit subtle: Ne is the census
population size that an abstract, idealized population would need to have in order to match a
given value of a particular metric. That given metric value is typically measured in, or estimated
from, an actual population – in SLiM, the simulated population.

There are two key concepts here. One is that Ne involves an abstract, idealized population.
This population embodies a bunch of assumptions: random mating, constant size, equal numbers
of children per parent, no selection, and so forth. These assumptions need not be true of the actual
population you are simulating in SLiM; rather, the point of Ne is to say “If these assumptions were
true, what would we estimate the population size to be, given this particular metric of interest?”
And that brings us to the second key point: Ne depends upon the choice of a particular metric of
interest. Ne is not a single quantity; you can estimate Ne based upon coalescence time, or the
amount of inbreeding in a population, or the amount of genetic variation present, or lots of other
things. Estimating Ne in several different ways, using different metrics, will often produce different
answers – sometimes very different! – and that is absolutely fine; different Ne estimates are not
supposed to agree, in general, because each Ne estimate is an answer to a different question:
“What size would an idealized population be if it had a given value of this particular metric?”

To make this a bit more concrete: in an idealized population, population genetics tells us that
the expected heterozygosity, π, is equal to 4Nµ, where N is the census size of the idealized
population and µ is the mutation rate (note that this formula is an approximation, based upon the
assumption that π ≪ 1). Suppose we measure the heterozygosity π of our simulated population,
and we know the mutation rate; this equation then allows us to estimate the population size N,
and this estimate would be Ne; in other words, Ne = π / 4µ. This estimate is based upon the
assumptions of the idealized population; the formula π = 4Nµ depends upon those assumptions,
and so it is sometimes written instead as π = 4Ne µ to emphasize that fact. We will call this Ne
estimate the “heterozygosity Ne”, in the discussion that follows; estimating Ne from heterozygosity
is also sometimes called the “coalescence Ne”, because π is four times the expected time to
pairwise coalescence in an idealized diploid population, but there is some complexity surrounding
this terminology (see Sjödin et al. 2005), so we will avoid it here.

Why is estimating Ne useful? After all, in a SLiM simulation you know what the actual census
population size, N, is; why would you care what the size of some idealized population, involving
a bunch of assumptions, would hypothetically be? There are several reasons. One is that many
analytical models are based upon Ne rather than N; if you want to parameterize such a model to
compare it to the results of your simulation, you will therefore need to have an Ne estimate – if
your simulation substantially departs from analytical assumptions, using N instead of Ne would

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 196

incorrectly parameterize the analytical model. Another is that in many empirical systems you
don’t know N; populations are often too large to comprehensively survey, and estimating the true
census population size using mark-recapture methods, etc., can be difficult and time-consuming,
whereas estimating Ne from other data can be relatively straightforward. To make a simulation
model of your empirical system, for which N is unknown, you will then want to model the biology
of your system in SLiM, and try to parameterize your model (both N and perhaps other parameters)
such that the Ne measured on your simulation matches the Ne that you estimated from your
empirical data. This might even allow you to estimate the true value of N for your system, from the
simulated N that produces the observed empirical Ne; you could use a technique like ABC to
converge upon a best estimate for N using simulations (see section 14.6).

That’s enough of a digression into effective population size; it is a very complex topic, and the
aim here is not to be a population genetics textbook. Reviews of the topic can be found in Wang,
Santiago, & Caballero (2016) and Sjödin et al. (2005), for those who want to delve deeper. We
now have the conceptual background we need to understand the recipe for this section. Here is
the core of the model, which is fairly straightforward:

initialize() {
 defineGlobal("N", 1000);
 defineGlobal("L", 1e7);
 defineGlobal("MU", 1e-7);
 defineGlobal("R", 1e-8);
 defineGlobal("S", 2.0);
 initializeSLiMOptions(keepPedigrees=T);
 initializeMutationRate(MU);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "f", S); // sweep
 m2.convertToSubstitution = F;
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, L-1);
 initializeRecombinationRate(R);
}
1 late() {
 sim.addSubpop("p1", N);
 p1.setValue("previous_N", p1.individualCount);

 defineConstant("LOG", community.createLogFile("Ne_log.csv"));
 LOG.addCycle();
 LOG.addCustomColumn("N(t-1)", "p1.getValue('previous_N');");
 LOG.addCustomColumn("N(t)", "p1.individualCount;");
 LOG.addCustomColumn("freq", "mutTypeFrequency(m2);");
 LOG.addCustomColumn("Ne_heterozygosity", "estimateNe_Heterozygosity(p1);");
 LOG.addCustomColumn("Ne_inbreeding", "estimateNe_Inbreeding(p1);");
}
2: late() {
 LOG.logRow();
 p1.setValue("previous_N", p1.individualCount);
}
10000 late() {
 target = sample(p1.genomes, 1);
 target.addNewDrawnMutation(m2, integerDiv(L, 2));
}
20000 late() {
 sim.simulationFinished();
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 197

This recipe performs a trivial selective sweep by introducing a beneficial mutation; see section
9.1 for discussion of this techniques. It also uses the LogFile class to log out information about
about the simulation as it progresses; see section 4.2.5 for an introduction to LogFile. It does not
condition upon fixation of the sweep mutation (see section 9.2), because that would write the
same ticks to the LogFile more than once, which would slightly complicate the analysis; it may
therefore be necessary to run the model more than once to get a good sweep. (As of this writing,
calling setSeed(1683065704505) at the start of initialize() provides a good run.)

Missing from the script shown above are a handful of user-defined functions, used by LogFile
to calculate the sweep frequency and two different flavors of Ne in each tick as configured by the 1
late() event. Here are those functions:

function (float)mutTypeFrequency(o<MutationType>$ mutType)
{
 muts = sim.mutationsOfType(mutType);
 if (muts.size() > 0)
 return sim.mutationFrequencies(NULL, muts);
 return NULL;
}

function (float)estimateNe_Heterozygosity(o<Subpopulation>$ subpop)
{
 pi = calcHeterozygosity(p1.genomes);
 return pi / (4 * MU);
}

function (integer)tabulateFecundity(o<Subpopulation>$ subpop, i$ previous_N)
{
 parentIDs = subpop.individuals.pedigreeParentIDs;
 rescaledParentIDs = parentIDs - min(parentIDs);
 return tabulate(rescaledParentIDs, previous_N - 1);
}

function (float)estimateNe_Inbreeding(o<Subpopulation>$ subpop)
{
 previous_N = subpop.getValue("previous_N");
 k = tabulateFecundity(subpop, previous_N);
 return (previous_N * mean(k) - 2) / (mean(k) - 1 + var(k) / mean(k));
}

We haven't seen user-defined Eidos functions previously, but they are fairly straightforward as
you can see above; you declare the function using the same function signature syntax that Eidos
uses for its own built-in functions, with a return value type, a name for the function, and a list of
typed parameters, and then you implement the function (see the Eidos manual for details).

The mutTypeFrequency() function just wraps SLiM’s mutationFrequencies() method; it looks
up the sweep mutation with mutationsOfType() given the mutation type passed to it in mutType,
and then returns its frequency if it exists, or NULL if it doesn’t. (LogFile writes out NA when a logger
produces a value of NULL, which dovetails nicely with plotting in R.)

The estimateNe_Heterozygosity() function estimates Ne based upon the observed
heterozygosity, π, in a given subpopulation, using exactly the formula that we discussed above. It
uses SLiM’s built-in calcHeterozygosity() function to obtain π; this implementation uses all of the
genomes in the subpopulation for that estimation, but of course you could use sample() to obtain
just a subset of genomes if you wanted to mirror an empirical sampling procedure.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 198

Next we have a helper function, tabulateFecundity(). This function is used by the other Ne
estimator; it has been split out into its own function since it might have broader utility. It looks up
the parent pedigree IDs for all individuals in the given subpopulation; these are integer identifiers
that uniquely identify every individual in the simulation. This is the reason for the call to
initializeSLiMOptions(keepPedigrees=T) in initialize(); that turns on this “pedigree tracking”
feature so that we can obtain these pedigree IDs (see sections 14.1 and 25.1 for further discussion;
since this is just an incidental feature of this model, we won't focus on it here). So now we have a
vector containing everybody’s parental pedigree IDs, and that vector might have many duplicates;
every time that a parental individual with a pedigree ID of 17, for example, had an offspring, 17
would appear again in this vector. Pedigree IDs start at 0, at the start of a run, and count upwards;
after a little while they can get rather large. We are only interested in the parental pedigree IDs
presently in use, so we want to rebase our vector to have a minimum value of 0; that is the purpose
of the next line. Finally, we use the tabulate() function of Eidos to tabulate the number of
occurrences of each value in the vector; this counts the number of times that each parent
produced an offspring, and produces a new vector containing those counts. This is the raw
material from which the next Ne estimator does its work.

And then we have the functions estimateNe_Inbreeding(); this is the remaining Ne estimator.
We will not discuss the mathematics upon which it is based, except to say that it uses the fecundity
tabulation to estimate Ne from the amount of inbreeding present, which is related to the
distribution of fecundity among the parental generation. It was kindly provided by Miguel
Navascués for this recipe; he says it is based upon a formula in a book chapter by Waples, in a
book titled “Population Viability Analysis” from 2002. Note that its implementation in a nonWF
model would need to be adjusted, particularly with overlapping generations.

Rather than dwelling further upon the two particular Ne estimators that we have provided in this
recipe, we will just say: there are many estimators for Ne, and little agreement upon them. As far
as we know these estimators are correct, in the sense of not containing mathematical errors, but
we have no doubt that there are those who would disagree with their methodology, their
philosophy, or their implementation. Such debate may be useful, but it is not our focus here.
Again, please consult the reviews cited above for further depth on this topic.

So, let's get to results! First of all, we can look at the LogFile output in SLiMgui, as in section
4.2.5, by clicking the debugging output viewer button and choosing the LogFile’s tab at the top
of the output viewer. The beginning of it looks like this, for one run of the model:

So far so good; all of our custom logging functions appear to be working. (The freq column is
NA because the sweep mutation has not yet been introduced.) We can easily plot this CSV output
in R; the script for doing so is not shown here, but the resulting plot looks like this:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 199

The x-axis here spans 20,000 generations, so the sweep here is just a vertical red line at
generation 10,000. The inbreeding Ne fluctuates around the true value of N, 1000, due to
stochasticity during reproduction, since it is based upon the distribution of fecundity in each
generation; it shows no visible effect from the sweep here (but see below). The heterozygosity Ne,
on the other hand, depends upon the level of genetic variation in the population, which rises from
zero rather slowly; this is why we have a burn-in period of 10,000 generations in this model before
the sweep mutation is introduced. This implies, of course, that estimating Ne from heterozygosity,
or any metric of genetic variation, may be problematic when a model has not yet completed its
burn-in and attained an equilibrium level of variation; but the estimator is not wrong, it is simply
telling us that during the burn-in period an idealized population with the same amount of genetic
variation at equilibrium would be relatively small, and that is true. This estimator is also rather
stochastic, since the genetic variation rises and falls as new mutations arise and old mutations fix
or are lost. When the sweep occurs, however, the heterozygosity Ne estimator drops very sharply,
to approximately 400, and then rises again to equilibrium. This reflects the temporary loss of
genetic diversity in the population due to this rather strong hard sweep.

Let’s zoom in on the sweep itself, with another plot of the same dataset using a much narrower
x-axis range:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 200

The sweep’s frequency over time is now resolved into a red sigmoid curve; the gray vertical
lines demarcate the time period during which the sweep mutation was segregating. It can now be
seen that the inbreeding Ne does, in fact, dip down in response to the sweep, reflecting the fact
that individuals carrying the sweep mutation had higher reproductive success than individuals that
didn’t, which generates elevated inbreeding in the population that is detected by the estimator.
This dip is only down to perhaps 850 or so, however – much shallower than the dip in the
heterozygosity Ne. Our inbreeding Ne estimator here underestimates the extent of inbreeding,
since it only looks at the distribution of fecundity among the parental generation; once the sweep
is underway, the parental generation is itself inbred, which could be taken into account with a
more accurate formula. For example, one could perhaps use SLiM’s relatedness() function to
calculate the mean pairwise consanguinity in the population; it uses the grandparental pedigree
IDs, so it would observe a higher degree of inbreeding, producing a lower Ne estimate. As we said
above, there are a great many ways to calculate Ne, and little agreement. There is nothing
necessarily wrong with our inbreeding Ne estimator here; if you were trying to match this model
up with empirical data that consisted only of parental identifications, with no data on the
grandparents, this estimator might be the one you would use, since it would match your available
empirical data and the empirical estimate of Ne that you derived from that data.

One other concept to note is that although the estimators shown here estimate Ne from a metric
taken in a single tick, to get a less noisy estimation of Ne it can be useful to smooth out the
estimate by, e.g., taking the harmonic mean of Ne estimates across multiple ticks. Of course such
smoothing may hide transient changes in Ne that are actually important, such as the transient dip
in the inbreeding Ne shown above; this is always a trade-off with smoothing of time series data,
and so this technique must be used with care.

That just about wraps up this section. It got more deeply into details of population genetics
than most of the recipes in this manual, but the difference between N and Ne is a common source
of confusion, so that seemed worthwhile. The key points to remember from all of this are: (1) SLiM
thinks in terms of the census population size, N, since it is an individual-based simulation
framework; (2) analytical models typically think in terms of the effective population size, Ne; (3)
empirical work also often involves estimation of Ne, since determining N for real populations can
be very difficult; (4) to bring these different worlds together, estimating Ne from your SLiM
simulation data is often useful for a variety of purposes; and (5) there are many ways to estimate
Ne, and they mean different things and produce different numbers, so think carefully about your
choice of estimator and the assumptions upon which it is based. Do not just use the Ne estimators
given in this recipe; they may be inappropriate for your research problem, or it may simply be that
their implementation here (based, as it is, upon a WF model) does not dovetail well with the
mechanics of your SLiM model.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 201

10. Context-dependent selection using mutationEffect() callbacks

In this and following chapters, we will show how Eidos callbacks can be used to modify SLiM’s
standard behavior. You have seen one Eidos callback already, the initialize() callbacks that are
called by SLiM at initialization time to modify the default initialization behavior (which sets up
only the Species object). At least one initialize() callback is required, since SLiM’s default
initialization is insufficient to produce a working simulation. Other Eidos callbacks are optional,
because SLiM’s default behavior is sufficient. In this chapter we will look at one particular Eidos
callback, the mutationEffect() callback, used to modify SLiM’s default evaluation of the fitness of
individuals as a function of the mutations present in the individuals’ genomes.

There are just a few conceptual points to discuss before the first recipe. First of all,
mutationEffect() callbacks return a relative fitness value for a focal mutation in a focal
individual. Neutrality is indicated by a relative fitness of 1.0; fitness uses a different scale than
selection coefficients, for which 0.0 indicates neutrality. A mutationEffect() callback is called
once for each mutation possessed by each individual; the callback can therefore assign a different
fitness value to the same mutation depending upon the focal individual possessing the mutation. If
a given individual is homozygous for a mutation, the mutationEffect() callback is still called only
once; a flag provided to the callback indicates whether the focal mutation is homozygous or
heterozygous in the focal individual. This is because mutationEffect() callbacks return a relative
fitness rather than a selection coefficient: they take all of the information regarding the focal
mutation in the focal individual – selection coefficient, dominance coefficient, homozygosity
versus heterozygosity, genetic background, subpopulation, sex, etc. – and condense all of it into a
determination of the fitness effect of the focal mutation. Each mutation in the focal individual is
evaluated separately – by one or more mutationEffect() callbacks if any apply, otherwise by
SLiM’s standard fitness equation – to produce a set of relative fitness values, one for each mutation.
SLiM then multiplies these relative fitness values to determine the final fitness of the individual.
This process is repeated for each individual in the simulation. This is just a quick summary; see
sections 23.6, 24.3, and 26.2 for a fuller explanation.

10.1 Temporally varying selection
One way to model temporally varying selection in SLiM is to use the setSelectionCoeff()

method of Mutation; you can find the mutation(s) whose selection coefficient you want to change,
and then use that method to make the change at a specific point in time. However, there are
several disadvantages to this approach in general. First of all, the change is permanent; it would
require additional bookkeeping to later restore the original selection coefficient (if the modified
selection regime ends, for example). Second, each mutation that you wish to modify must be
changed individually. (To be fair, there are also advantages to this method; the change is done
once and then is finished with, and subsequently you pay no speed penalty for the change.)

Here we will examine another solution to this problem, a mutationEffect() callback:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "f", 0.1); // beneficial
 initializeGenomicElementType("g1", c(m1,m2), c(0.995,0.005));
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
2000:3999 mutationEffect(m2) { return 1.0; }
10000 early() { sim.simulationFinished(); }

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 202

The initialize() callback sets up two mutation types: a very common neutral mutation type
(m1), and an uncommon beneficial mutation type (m2). This produces distinctive simulation
dynamics in which occasional beneficial mutations arise and sweep quickly.

However, from tick 2000 to 3999, the simulation switches to pure neutral dynamics, because
mutation type m2 reverts to neutrality for that period of time due to the mutationEffect() callback
that is defined. This change in dynamics can be seen quite clearly in SLiMgui when the model is
run. Let’s look at the callback in more detail:

2000:3999 mutationEffect(m2) { return 1.0; }

The tick range used, 2000:3999, is expressed in the usual syntax. Following that comes the
declaration that this block is a mutationEffect() callback, rather than an ordinary Eidos event:
mutationEffect(m2). A mutationEffect() callback must be declared as applying to one specific
mutation type – in this case, m2; the callback modifies the fitness effect only of mutations belonging
to that mutation type. (This is both for conceptual clarity and for efficiency.) The rest of the
callback definition is a compound statement that returns a float value, used by SLiM as the fitness
effect of the mutation. Here the value 1.0 is returned, which represents neutrality. (Remember
that a neutral mutation has a selection coefficient of 0.0 but a multiplicative fitness effect of 1.0).
This is the first time we have seen the Eidos keyword return; it simply causes the executing script
block to return immediately, passing the returned value out to the caller of the block, which in this
case is the SLiM engine itself. It can be used in Eidos events too, although a value may not be
returned; when no return value is expected, one can simply “return;”.

This recipe is trivially simple, but of course the code in the mutationEffect() callback could do
anything, so the potential power of this mechanism should be apparent. In the context of
temporally varying selection, you could make the fitness effect vary sinusoidally through time
using an expression based on sin(sim.cycle), or make it be random in each tick with rnorm(), or
any other effect you wish.

10.2 Spatially varying selection
The previous example showed a simple recipe implementing temporally varying selection. In

this section we will see how to make selection vary spatially between subpopulations. More
specifically, we will examine a model in which mutations have beneficial effects in one
subpopulation, but deleterious effects in another subpopulation. Whether such mutations fix or
not depends on the strength of the fitness effects, the migration rates between the subpopulations,
and various other factors. The recipe:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "e", 0.1); // deleterious in p2
 initializeGenomicElementType("g1", c(m1,m2), c(0.99,0.01));
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 500);
 sim.addSubpop("p2", 500);
 p1.setMigrationRates(p2, 0.1); // weak migration p2 -> p1
 p2.setMigrationRates(p1, 0.5); // strong migration p1 -> p2
}
mutationEffect(m2, p2) { return 1/effect; }
10000 early() { sim.simulationFinished(); }

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 203

Here we set up two subpopulations of equal size, with weak migration from p2 to p1, but with
strong migration from p1 to p2 (remember that you can use the population visualization graph in
SLiMgui to see a graphical depiction of the population structure, after you Recycle and then Step
through the initialization). Mutations are mostly neutral, but occasionally beneficial mutations are
drawn from an exponential distribution with mean 0.1. This is all review; the interesting part is the
mutationEffect() callback:

mutationEffect(m2, p2) { return 1/effect; }

Here no tick range is specified; this mutationEffect() callback is therefore active in every tick.
Subpopulation p2 is given as a parameter to the callback definition; this restricts the operation of
the callback to only the specified subpopulation, producing spatial variation in selection. The
body of the callback returns 1/effect as the modified fitness effect of each m2 mutation.

We haven’t seen effect before; it is a variable defined by SLiM when a mutationEffect()
callback is called, and it contains the mutational effect – the fitness value – that SLiM would
normally use for the mutation. By returning 1/effect, we are telling SLiM to invert the normal
fitness effect of all m2 mutations in p2; if they are of high fitness in p1 (2.0, say) they become low
fitness in p2 (1/2.0 == 0.5), and vice versa. Of course there is nothing magical about 1/effect in
particular; it is just a convenient, simple expression. One could write the mutationEffect()
callback script to calculate and return whatever fitness effect one wished.

There is a point worth clarifying here. Mutation type m2 draws selection coefficients from an
exponential DFE; each mutation of type m2 thus has a different selection coefficient. Because of
this, the mutationEffect() callback here is not called just once per tick, to calculate a modified
fitness effect for all mutations of type m2; it is called once per individual per m2 mutation, and it
calculates a modified fitness effect for that mutation in that individual. These calculations can
therefore depend upon both the focal mutation and the focal individual. In addition to the effect
variable that contains the default relative fitness effect for the mutation, SLiM also defines mut, the
mutation being assessed; subpop, the subpopulation containing the individual possessing the
mutation; homozygous, a flag which is T (true) if the individual is homozygous for the mutation, F
(false) otherwise; and a few others as well that we will see in the next sections. The code in a
mutationEffect() callback can use all of these variables, and any other model state, to calculate
its modified fitness effect.

Because mutationEffect() callbacks might be called thousands or even millions of times every
tick, SLiM and Eidos are highly optimized to make those calls as fast as possible. You should do
your part by making your Eidos code as tight as possible; writing an inefficient mutationEffect()
callback is an excellent way to make your simulation slow to a crawl. See section 21.1 for some
tips on how to write fast Eidos code.

If you open this recipe in SLiMgui, Recycle, and Play, you will see the spatial dynamics very
clearly; mutations will spread that are beneficial in p1, turning that subpopulation’s individuals
green, but deleterious in p2, turning that subpopulation’s individuals red. With the recipe as
written, these mutations will often fix; the strong migration from p1 versus the weak migration from
p2 gives p1 an advantage, allowing it to force p2 to fix mutations that are deleterious in that
context. If you reverse the migration bias, that will no longer happen; instead p2 will be able to
force p1 to lose mutations that are beneficial in that context. One could easily use this model to
explore this scenario in detail, with questions such as the effect of subpopulation size, migration
rate, selection strength, and so forth. Since neutral mutations are also in the model, one could also
ask questions about how these sorts of dynamics affect neutral diversity and divergence. Not bad
for sixteen lines of code!

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 204

10.3 Fitness as a function of genomic background

10.3.1 Epistasis
The mutationEffect() callback mechanism can also make the fitness effect of a mutation

depend upon the genetic background of the individual that possesses the mutation. One example
of this is the phenomenon of epistasis, in which two loci interact to produce a non-additive fitness
effect (Philipps 2008). The recipe here is a bit contrived – a more realistic model would probably
use introduced epistatic mutations rather than random mutations – but it serves to illustrate the
concept:

initialize() {
 initializeMutationRate(1e-8);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "f", 0.1); // epistatic mut 1
 initializeMutationType("m3", 0.5, "f", 0.1); // epistatic mut 2
 initializeGenomicElementType("g1", m1, 1);
 initializeGenomicElementType("g2", m2, 1); // epistatic locus 1
 initializeGenomicElementType("g3", m3, 1); // epistatic locus 2
 initializeGenomicElement(g1, 0, 10000);
 initializeGenomicElement(g2, 10001, 13000);
 initializeGenomicElement(g1, 13001, 70000);
 initializeGenomicElement(g3, 70001, 73000);
 initializeGenomicElement(g1, 73001, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
10000 early() { sim.simulationFinished(); }
mutationEffect(m3) {
 if (individual.genome1.countOfMutationsOfType(m2))
 return 0.5;
 else if (individual.genome2.countOfMutationsOfType(m2))
 return 0.5;
 else
 return effect;
}

The initialize() callback sets the stage by making three mutation types, three genomic
element types, and five genomic elements. Over the majority of the chromosome, genomic
element type g1 is used; it generates only neutral mutations. In a locus spanning 10001:13000,
genomic element type g2 is used, which generates mutations of type m2, which are beneficial with
a selection coefficient of 0.1. In a second locus spanning 70001:73000, genomic element type g3
is used, which generates mutations of type m3, which are similarly beneficial. If you turn on
display of genomic elements in SLiMgui, using the action button to the right of the chromosome
view and choosing the Display Genomic Elements item, the resulting chromosomal setup looks
like this:

The twist, however, comes in the mutationEffect(m3) callback, which makes mutations of
types m2 and m3 interact epistatically. Any mutation of type m3 has a fitness effect of 0.5 – strongly
deleterious – if it is in the same genome as any mutation of type m2. This is achieved in several
steps. First of all, individual is defined by SLiM for mutationEffect() callbacks; it is the focal
individual for which the fitness of the focal mutation is being evaluated, and individual.genome1

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 205

and individual.genome2 are the two genomes (the two homologous chromosomes) of that focal
individual. The call to individual.genome1.countOfMutationsOfType() counts the mutations of
type m2 in the first genome; if that count is non-zero, the if statement evaluates it as true (T), and
0.5 is returned, making the focal mutation deleterious. The next two lines perform the same check
for individual.genome2 (these two if conditions could be combined into a single test using the
“logical or” operator, |, but the line of code would then be too long to fit without wrapping here).
If neither Genome object contains a mutation of type m2, the final else clause will execute and
effect will be returned, keeping the normal fitness effect of the focal mutation without
modification (see section 26.2 for discussion of effect). There are some new concepts here, and
this manual is not going to explain them all in detail; for full discussions of the logical type, the
behavior of true and false values in Eidos, and so forth, please refer to the Eidos manual, which
explains these ideas thoroughly.

Note that mutations of type m2 suffer no direct fitness penalty from sharing an individual with an
m3 mutation; the mutationEffect() callback affects only m3 mutations. Since the fitness of the
carrying individual will be severely compromised, however, the net effect is that m2 and m3
mutations are rarely found together; collocation harms m2 mutations too, although indirectly.

This produces some interesting dynamics. Type m2 and m3 mutations arise fairly often, and
quickly sweep to fixation; however, they never sweep together, so if a mutation at one of the two
epistatic loci is sweeping, the other locus will have no active mutations. The two loci thus “take
turns” sweeping new mutations to fixation. Since new beneficial loci sweep so often, neutral loci
generally fix only if they are linked to a beneficial mutation. Because of recombination, that is
most likely to happen close to one of the two epistatic loci, so if we run the full simulation and
then turn on display of fixed mutations (“substitutions”) by clicking the button to the right of the
chromosome view and choosing Display Substitutions, we see a pattern of clustering near the
epistatic loci:

All of the fixed mutations within the loci are beneficial epistatic mutations, since the two loci
generate only those mutation types. All of the bands for fixed mutations outside of those loci,
however, are for neutral mutations that hitchhiked.

The astute reader will have noticed a problem with all this. Biologically, this dynamic of
“taking turns” sweeping at one or the other locus makes no sense. If a mutation of type m2 sweeps
to fixation at the g2 locus, that mutation still exists in the genome, and the epistatic interaction
between m2 and m3 mutations should prevent an m3 mutation from sweeping, forever after. That
objection is correct, and points out a very important issue.

The reason that this recipe behaves in this manner has to do with the way that SLiM handles
fixed mutations (see sections 1.5.2 and 23.3). When a mutation fixes, SLiM normally removes it
from the simulation, replacing it with a Substitution object that provides a permanent record of
the fixed mutation. The assumption is that since every individual possesses the fixed mutation, it
has the same fitness effect in every individual, and therefore can be ignored. However, epistasis
violates that assumption, since the fixed mutation causes a differential fitness effect among
individuals based upon the genetic background in which it is found. SLiM’s replacement of fixed
m2 and m3 mutations in this model thus produces incorrect behavior.

What to do? Happily, SLiM provides a way to handle this situation. The MutationType class has
a logical property named convertToSubstitution; by default it is T, indicating to SLiM that fixed
mutations of that type should be replaced by Substitution objects. We can set it to F instead,

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 206

telling SLiM to keep all mutations of that type active in the simulation even once fixed. (See
sections 23.3 and 25.11.1 for further discussion of this property). The new recipe:

initialize() {
 initializeMutationRate(1e-8);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "f", 0.1); // epistatic mut 1
 m2.convertToSubstitution = F;
 initializeMutationType("m3", 0.5, "f", 0.1); // epistatic mut 2
 m3.convertToSubstitution = F;
 initializeGenomicElementType("g1", m1, 1);
 initializeGenomicElementType("g2", m2, 1); // epistatic locus 1
 initializeGenomicElementType("g3", m3, 1); // epistatic locus 2
 initializeGenomicElement(g1, 0, 10000);
 initializeGenomicElement(g2, 10001, 13000);
 initializeGenomicElement(g1, 13001, 70000);
 initializeGenomicElement(g3, 70001, 73000);
 initializeGenomicElement(g1, 73001, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
10000 early() { sim.simulationFinished(); }
mutationEffect(m3) {
 if (individual.genome1.countOfMutationsOfType(m2))
 return 0.5;
 else if (individual.genome2.countOfMutationsOfType(m2))
 return 0.5;
 else
 return effect;
}

This will now produce the correct epistatic dynamics. If you run this model in SLiMgui, you
will see that one or the other epistatic locus wins an initial contest by fixing a mutation. Once that
happens, mutations at the other locus will never manage to establish.

The convertToSubstitution property should be used to prevent fixed mutation substitution
whenever the assumption of equal effects in all individuals would be violated, whether by a
mutationEffect() callback introducing a mechanism like epistasis, or by differential effects of the
mutation type on mate choice or other dynamics. SLiM is not able to guess when substitution
should be turned off, so you must keep this caveat in mind. However, also keep in mind that
turning off substitution will make your models run more slowly, especially if there are many
mutations of that type in the model.

10.4 Fitness as a function of population composition

10.4.1 Frequency-dependent selection
In previous sections we have seen how we can use a mutationEffect() callback to modify the

fitness effects of mutations in order to model scenarios such as epistasis, polygenic selection, and
spatiotemporal variation in selection. Now we will shift to making the fitness of mutations be a
function of population composition. First we’ll look at frequency-dependent selection, in which
the fitness effect of a mutation depends upon the frequency of the mutation in the population
(Ayala & Campbell 1974). Let’s start with a simple recipe for negative frequency-dependence, in
which the fitness of a mutation is inversely correlated with its frequency:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 207

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "f", 0.1); // balanced
 initializeGenomicElementType("g1", c(m1,m2), c(999,1));
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
10000 early() { sim.simulationFinished(); }
mutationEffect(m2) {
 return 1.5 - sim.mutationFrequencies(p1, mut);
}

The idea here should be pretty clear; if the mutationFrequencies() method tells us that mut is
rare in p1, then the mutation will be highly beneficial, but if it tells us that mut is common, the
mutation will be deleterious. These dynamics prevent the mutation from either fixing or being lost;
instead we have what is called “balancing selection”, in which selection favors keeping mutations
of that type at an intermediate frequency. (See section 10.5 for an adaptation of this recipe using
setSelectionCoeff() instead; and see section 11.3 for a very different model of balancing
selection, using a modifyChild() callback instead of a mutationEffect() callback.) Running this
for a while in SLiMgui gives us a picture something like this (where the yellow lines are neutral
mutations and the green lines are the mutations under balancing selection):

There are seven m2 mutations under balancing selection, all at frequency ~0.5 since that is the
point at which the fitness effect changes from beneficial to deleterious according to the callback.

Next let’s look at a model of positive frequency-dependence:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "f", 0.1); // positive freq. dep.
 initializeGenomicElementType("g1", c(m1,m2), c(999,1));
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
10000 early() { sim.simulationFinished(); }
mutationEffect(m2) {
 return 1.0 + sim.mutationFrequencies(p1, mut);
}

The way this works is probably pretty obvious at this point; at low frequencies (as calculated by
mutationFrequencies()) mutations of type m2 are close to neutral, but at higher frequencies they
become strongly beneficial. Note that these mutations still do not sweep to fixation as quickly as
one might expect. This is because mutationEffect() callbacks get called only once per mutation
per individual. If an individual carries one copy of a mutation (i.e., is a heterozygote), the
mutationEffect() callback is called once. If an individual carries two copies (i.e., is a
homozygote), the mutationEffect() callback is still called only once. This means that the
mutationEffect() function effectively defines the fitness effect as involving complete dominance.
To differentiate between these cases, moving away from complete dominance, a

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 208

mutationEffect() callback may consult a flag named homozygous that is defined by SLiM to
indicate whether the focal mutation is homozygous or not (see section 26.2):

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "f", 0.1); // positive freq. dep.
 initializeGenomicElementType("g1", c(m1,m2), c(999,1));
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
10000 early() { sim.simulationFinished(); }
mutationEffect(m2) {
 dominance = asInteger(homozygous) * 0.5 + 0.5;
 return 1.0 + sim.mutationFrequencies(p1, mut) * dominance;
}

10.4.2 Cultural effects on fitness
Sometimes fitness might be influenced by environmental factors as well as genetic factors. In

some cases, these environmental factors would be associated with the subpopulation in which an
individual resides; in that case, they can be modeled as spatial variation in selection (see section
10.2). In other cases, however, the environmental factors might be a matter of individual variation
that is not correlated with the subpopulation; that possibility is what we will explore in this recipe.

In particular, we will make a simple model of cultural differences between individuals. Each
individual will be assigned to one of two cultural groups at birth. If an individual belongs to one
cultural group, a particular type of mutation will be beneficial; if the individual belongs to the
other cultural group, those mutations will be neutral. An analogue to this in human history, which
we will loosely follow here, would be the allele conferring the ability to digest lactose as an adult;
if an individual belongs to a cultural group that drinks milk in adulthood, mutations promoting the
retention of the lactase enzyme into adulthood are beneficial, whereas if the individual belongs to
a cultural group that does not drink milk in adulthood, such mutations are neutral (or perhaps
slightly deleterious, due to the energetic investment of producing an unneeded enzyme, but we
will model it as neutral).

For the initial version of this model, the cultural group into which an individual is assigned will
be entirely random. The cultural group of an individual will be tracked using the tagL0 property of
Individual, a logical property that is not used at all by SLiM, and is thus free for you to use as
you wish. We will use a tagL0 value of T to indicate a milk-drinker, and a value of F to indicate a
non-milk-drinker. The tagL0 value will be set up in a late() event that runs after offspring are
generated but before fitness values are calculated.

The recipe:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "f", 0.1); // lactase-promoting
 m2.convertToSubstitution = F;
 initializeGenomicElementType("g1", c(m1,m2), c(0.99,0.01));
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 1000); }
10000 early() { sim.simulationFinished(); }

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 209

late() {
 // Assign a cultural group: milk-drinker == T, non-milk-drinker == F
 p1.individuals.tagL0 = (runif(1000) < 0.5);
}
mutationEffect(m2) {
 if (individual.tagL0)
 return effect; // beneficial for milk-drinkers
 else
 return 1.0; // neutral for non-milk-drinkers
}

When run, the occasional mutations of type m2 sweep to fixation, as you might expect, but even
when they are close to fixation only about half of the population – the milk-drinkers – are
experiencing a fitness benefit from the mutation. This can be seen easily in the pattern of
individual fitness values displayed in SLiMgui when an m2 mutation was at a frequency of 0.95:

The m2 mutations are prevented from being removed at fixation, by setting the
convertToSubstitution property of m2 to F. As the model runs, m2 mutations accumulate, and the
fitness benefits of being a milk-drinker become larger and larger. Since that status is assigned
randomly, however, this does not affect the frequency of milk-drinking; a randomly chosen half of
the population is less likely to pass on its genes to the next generation, but milk-drinking remains a
random choice.

The late() event assigns cultural tagL0 values to all of the individuals in the new offspring
generation. We first generate 1000 random logical values, either T or F, using runif() to draw
from a uniform distribution and then comparing to a threshold probability. The resulting vector is
assigned directly into p1.individuals.tagL0 using the multiplexed assignment semantics of Eidos
to put each value in the vector into the tagL0 property of the corresponding individual in
subpopulation p1 (see the Eidos manual for further discussion of multiplexed property assignment).

Given those tagL0 values, the mutationEffect() callback is then trivial: for the lactase-
promoting mutations of type m2, the fitness is neutral if the tagL0 value of a given individual
carrying the mutation is F, indicating a non-milk-drinker, whereas for milk-drinkers, with a tagL0
value of T, effect is returned to accept SLiM’s default calculated fitness for the mutation (which
uses both the selection coefficient of 0.1 and the dominance coefficient of 0.5 defined for m2).
This could be modified to make the mutations slightly deleterious in non-milk-drinkers, if one
wished, of course.

In this model, the cultural group of an individual is assigned randomly. In many cases one
would wish this trait to have some degree of heritability, even though it is not genetically based; in
humans and some other species, individuals can inherit cultural traits from their parents through
social learning. To implement that, a modifyChild() callback is needed; we will therefore take this
model up again in section 12.1. For the time being, then, this model simply shows how to make
the fitness effect of a particular type of mutations depend upon the non-genetic state of the
individual.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 210

10.4.3 Kin selection and the green-beard effect
According to the theory of kin selection and inclusive fitness (Hamilton 1964ab; Dawkins

1976), a gene that promotes altruism towards kin can spread even if its direct fitness effect on its
carrier is negative (due to altruistic self-sacrifice), as long as the altruistic behavior of the carrier
produces sufficiently large indirect benefits for other individuals that carry the same gene. In other
words, one cannot look at things solely from the perspective of the individual; one must look from
the perspective of the gene, to see whether the average indirect benefits that accrue to carriers of
that gene outweigh the direct costs of possessing the gene. In the extreme case, it can make
evolutionary sense for the carrier of an altruism gene to sacrifice its own life, even before reaching
reproductive age, in order to benefit its kin that carry the same gene. Famously, J.B.S. Haldane
declared (perhaps apocryphally) that he was “prepared to lay down his life for eight cousins or two
brothers”, because of the degree of kinship they would share with him.

We would like to test whether inclusive fitness theory is really correct that kin-directed altruism
can evolve even when the individuals committing the altruistic acts (at a cost to themselves) do not
necessarily receive any benefit from altruistic acts by others. Using the tag property of the
Individual class (similar to the tagL0 property shown in the previous section, but of type integer
instead of logical), we can develop a model to answer that question. Here we will explore this
question in a closely related evolutionary problem, the modeling of green-beard alleles (Hamilton
1964ab; Dawkins 1976). A green-beard allele causes three pleiotropic effects: (1) a phenotypic
trait of some kind (the “green beard”), (2) the ability to recognize other individuals possessing this
phenotypic trait, and (3) a tendency to direct altruistic acts toward other individuals possessing this
phenotypic trait (at some cost to the altruistic individual, and some benefit to the receiving
individual). The green-beard allele therefore rolls up kin recognition and altruism towards kin into
a single package, making it a straightforward concept to test in a model.

The idea for this recipe is, in effect, to add a new stage to SLiM's default generational life cycle
by adding an event to the model. In this new life cycle stage, a finite number of one-on-one
interactions between randomly chosen individuals in the population are modeled. If the
individuals both have the green-beard allele, an altruistic act occurs and one receives a benefit and
the other receives a cost; if either individual does not have the green-beard allele, no altruistic act
occurs and the interaction is neutral. The benefits and costs incurred by each individual are tallied
up separately, and are taken into account in a mutationEffect() callback that models the fitness
effect of the green-beard allele for each individual based upon its particular interaction tally. Some
individuals with the green-beard allele will, by chance, incur nothing but costs from their
interactions, harming themselves to the point where they are unlikely to reproduce. Other
individuals with the green-beard allele will, by chance, incur a mixture of costs and benefits, or if
they’re lucky, nothing but benefits; their outcome will thus be neutral or positive.

Let’s get to the recipe. We’ll build it one step at a time; the first step is just to set up a single
subpopulation with two mutation types:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "f", 0.0); // green-beard
 m2.convertToSubstitution = F;
 m2.color = "red";
 initializeGenomicElementType("g1", m1, 1);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
10000 early() { sim.simulationFinished(); }

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 211

Mutation type m2 will be used for green-beard alleles, but is not used yet. It is set to not convert
into a Substitution object upon fixation, using the convertToSubstitution property of
MutationType, so that we can easily see whether or not it has fixed at the end of a model run. We
also set it to display in red, but in any case m2 is not used yet; as it stands, then, this is just a model
of neutral drift using only m1.

Now let’s add a system for tagging individuals with costs and benefits:

1: late() {
 p1.individuals.tag = 0;
}
mutationEffect(m2) { return 1.0 + individual.tag / 10; }

Every individual in SLiM has a tag property that can be set to any integer value. As explained
in the previous section, tag values are not used by SLiM; they’re just scratch space for models to
use as they please. In this recipe, we use tag to hold the cost/benefit tallies for individuals. The
mutationEffect() callback then adds the tag value for the individual it is evaluating to a neutral
relative fitness of 1.0. The tag value is an integer, so we divide it by 10 in the callback; each
increment or decrement of tag will represent a change to its relative fitness of 0.1 or -0.1.

Let’s introduce a green-beard allele into the population. It won’t be very interesting if it just gets
lost due to drift in the first generation or two, as green-beard alleles at low frequency generally drift
freely since interactions between the rare green-beards are unlikely – so we’ll introduce several
copies of it to give it an initial boost. The concept of introducing a mutation is covered in depth in
section 9.1, but it should be pretty clear what’s going on here:

1 late() {
 target = sample(p1.genomes, 100);
 target.addNewDrawnMutation(m2, 10000);
}

This code draws 100 target genomes from the population using the sample() function (which
samples without replacement, by default). It then adds a new mutation of type m2 to those target
genomes with a single call to addNewDrawnMutation(). This call adds the same new mutation to all
of the target genomes, rather than a different new mutation to each genome, because the
addNewDrawnMutation() method is a class method of Genome, not an instance method, and it is
therefore called just once, rather than being multicast out to each instance. This is conceptually
similar to writing a static member function in C++ (which is like a class method in Eidos) to
perform an operation across a vector of objects. That static member function would take a vector
of objects as one of its parameters; in Eidos, you instead call the class method on the target vector,
as seen here, just like calling an instance method. If this is not clear, don’t worry; it is not an
essential point, since the syntax for calling class methods and instance methods is identical in
Eidos. You can consult the Eidos manual for more details on class versus instance methods.

Some individuals might receive two copies of the green-beard mutation (one in each of their
genomes), and end up being homozygous, but there is no harm in that, and most of the individuals
targeted by this code will end up heterozygous for the new green-beard allele. (You could
guarantee heterozygosity by sampling individuals instead of genomes, and then getting just one
genome from each sampled individual; conversely, you could guarantee homozygosity by
sampling individuals and then adding to both of the genomes of each sampled individual.) Again,
it should be emphasized that adding 100 copies is in no way “cheating”; this is just a model of
whether a green-beard allele can rise from low frequency to fixation, rather than a model of
whether a single copy of a green-beard allele can rise all the way to fixation. It would be easy to
construct the latter model in SLiM using the tools introduced in section 9.2.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 212

Now we need to make our green-beards interact! We’ll do this with an extension to our
previous 1: late() event:

1: late() {
 p1.individuals.tag = 0;

 for (rep in 1:50) {
 individuals = sample(p1.individuals, 2);
 i0 = individuals[0];
 i1 = individuals[1];
 i0greenbeards = i0.countOfMutationsOfType(m2);
 i1greenbeards = i1.countOfMutationsOfType(m2);

 if (i0greenbeards & i1greenbeards) {
 alleleSum = i0greenbeards + i1greenbeards;
 i0.tag = i0.tag - alleleSum; // cost to i0
 i1.tag = i1.tag + alleleSum * 2; // benefit to i1
 }
 }
}

This bears some explaining. First, we zero out all of the individual tag values, as before. Then
we run a loop 50 times, to produce 50 interactions between pairs of individuals (which might or
might not possess green beards). Each time through the loop, we draw two individuals from the
population using sample(), giving us a vector individuals containing two objects of class
Individual which we extract into i0 and i1.

The next two lines count the number of m2 mutations contained in the two genomes belonging
to each individual. The value of i0greenbeards and i1greenbeards, then, is 0 if the corresponding
individual does not have the green-beard mutation at all, 1 if it is heterozygous, or 2 if it is
homozygous. This is equivalent to, but more concise than, writing:

i0greenbeards = i0.genomes[0].countOfMutationsOfType(m2)
 + i0.genomes[1].countOfMutationsOfType(m2);

(and the same for i1greenbeards).
Next comes an if statement that will execute if both i0greenbeards and i1greenbeards are

non-zero (since in Eidos, as in many languages, 0 is considered false and any non-0 value is
considered true). So this executes if and only if both of the interacting individuals are at least
heterozygous for the green-beard allele. In that case, alleleSum is computed as the total number
of green-beard alleles between the two individuals; this makes the green-beard effect stronger
when homozygotes are involved, weaker when heterozygotes are involved. Finally, the tag values
of the two interacting individuals are modified to reflect the interaction; individual i0 acts
altruistically and incurs a cost, whereas individual i1 receives the altruistic act and gets a benefit.
The costs and benefits are added to the tag value of each individual. Note that the benefit is larger
than the cost; this makes the inclusive fitness effect of the green-beard allele positive, and thus
means that the green-beard allele is selected for, on average, in each generation. But as promised,
the benefit and the cost are incurred by different individuals in this model. Indeed, the altruistic
individual feels a nearly lethal fitness effect, if both interacting individuals are homozygous. From
the perspective of the individual, it is a truly selfless altruistic sacrifice. From the perspective of the
green-beard allele, it is an entirely selfish act, however – which is why the “selfish gene”
perspective has so much explanatory power.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 213

For the record, here is the full recipe for our green-beard model:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "f", 0.0); // green-beard
 m2.convertToSubstitution = F;
 m2.color = "red";
 initializeGenomicElementType("g1", m1, 1);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
1 late() {
 target = sample(p1.genomes, 100);
 target.addNewDrawnMutation(m2, 10000);
}
1: late() {
 p1.individuals.tag = 0;

 for (rep in 1:50) {
 individuals = sample(p1.individuals, 2);
 i0 = individuals[0];
 i1 = individuals[1];
 i0greenbeards = i0.countOfMutationsOfType(m2);
 i1greenbeards = i1.countOfMutationsOfType(m2);

 if (i0greenbeards & i1greenbeards) {
 alleleSum = i0greenbeards + i1greenbeards;
 i0.tag = i0.tag - alleleSum; // cost to i0
 i1.tag = i1.tag + alleleSum * 2; // benefit to i1
 }
 }
}
mutationEffect(m2) { return 1.0 + individual.tag / 10; }
10000 early() { sim.simulationFinished(); }

If you Recycle and run this recipe in SLiMgui, it may take several tries before the green-beard
mutation “catches” and rises to fixation. Again, this is because its fitness effect is close to neutral
when it is at low frequency; early on, it is quite liable to be lost simply due to drift. Once the
mutation “catches”, though, the population view will show something like this:

This display, of the model when the green-beard allele is at a frequency of around 0.3, shows
the result of the individual interactions between green-beards. Some benefit from those
interactions, and are colored in a shade of green or blue (depending on the magnitude of the
benefit); some are harmed, and are colored in a shade of orange or red, shading down to black
(depending on the magnitude of the harm).

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 214

Even once the green-beard mutation has fixed, the majority of individuals will be yellow
(indicating neutrality – a relative fitness of exactly 1.0), because only 50 pairs of individuals are
chosen to interact in each tick:

The larger the number of interactions, relative to the population size, the stronger the selection
will be in favor of the green-beard allele. If you increase the number of interactions from 50 to
5000, for example, there will be so many interactions relative to the population size that the green-
beard allele will rise to fixation almost deterministically. In this case, each individual is likely to
participate in several interactions, and thus to both benefit from and be harmed by its interactions
– and the benefit will, on average, outweigh the harm, even at the level of a single individual.
With only 50 interactions, however, some individuals will benefit while others will self-sacrifice
and die, as seen above – the individuals colored black have sacrificed themselves for no personal
benefit, whereas the green individuals have received a large benefit with no self-sacrifice. With
this few interactions the model is quite stochastic in its behavior, and the green-beard allele will
sometimes be lost even when it has risen as high as a frequency of 0.5.

This recipe is, from a rather sidelong angle, basically a model of a selective sweep, and as such,
it showed how to introduce a new mutation into a population and watch it sweep to fixation. In
the next chapter, that subject will be treated comprehensively.

10.5 Changing selection coefficients with setSelectionCoeff()
The preceding recipes have demonstrated the use of mutationEffect() callbacks to implement

a wide variety of different types of selection in SLiM. It is worth noting, however, that it is also
possible to simply change the selection coefficient of a mutation using the setSelectionCoeff()
method of Mutation (see section 25.10.2). Indeed, this can have large performance advantages,
since executing Eidos callbacks is relatively slow. However, this strategy can only be applied in
very limited cases.

First of all, if you want the fitness effect of a mutation to vary from individual to individual –
whether because of the genetic background of the individual, or the subpopulation the individual
is in, or any other individual-specific model state – then a mutationEffect() callback is necessary.
This is because changing the selection coefficient of a mutation using setSelectionCoeff()
changes that mutation’s selection coefficient for all individuals, in all subpopulations. The recipes
in sections 10.2 (spatially varying selection) and 10.3 (genomic background effects) could
therefore not be implemented using setSelectionCoeff(), nor could those of sections 10.4.2
(cultural effects on fitness) or 10.4.3 (green-beard alleles).

Second, if you want a temporary fitness effect it is often best to use mutationEffect(), because
when the callback is no longer active mutations will automatically revert to their original effect. To
take the recipe in section 10.1 (temporally varying selection) as an example, when the callback
expires the m2 mutations revert back to their original selection coefficient of 0.1 without needing to
be re-set to 0.1; indeed, their selection coefficients are 0.1 the entire time, the mutationEffect()
callback just overrides that with its own effect. If this recipe used setSelectionCoeff() instead,

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 215

the original selection coefficients would need to be restored when the altered fitness regime
expired. In this case that would be straightforward – just set them all to 0.1 with another call to
setSelectionCoeff() – but if the m2 mutations were drawn from a distribution of fitness effects,
and thus all had different selection coefficients, this would be more complicated.

The recipes in section 10.4.1, on the other hand, can in fact be improved by rewriting them to
use setSelectionCoeff(). Here is a modified version of the first recipe from that section, which
used a mutationEffect() callback to model a dominant frequency-dependent mutation type:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 1.0, "f", 0.1); // balanced
 initializeGenomicElementType("g1", c(m1,m2), c(999,1));
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
late() {
 m2muts = sim.mutationsOfType(m2);
 freqs = sim.mutationFrequencies(NULL, m2muts);
 for (index in seqAlong(m2muts))
 m2muts[index].setSelectionCoeff(0.5 - freqs[index]);
}
10000 early() { sim.simulationFinished(); }

Note that this recipe uses a dominance coefficient of 1.0, to match the behavior caused by the
mutationEffect() callback in the section 10.4.1’s first recipe; any dominance coefficient could be
used here, however. The late() event here calculates the frequency of each m2 mutation, and then
uses a loop to set the selection coefficient of each mutation accordingly. The recipe in section
10.4.1 used a fitness formula of 1.5-frequency in its callback, but here we use 0.5-frequency; this
is because mutationEffect() callbacks return relative fitness values, where 1.0 is neutral, whereas
with selection coefficients – the currency in which the present recipe trades – 0.0 is neutral
instead. As always, this distinction should be treated with care; it is a common cause of errors.

This recipe runs about two orders of magnitude faster than the original recipe – not a small
difference. It might not produce exactly identical results, because of the aggregated effects of tiny
differences in floating-point roundoff error due to the different way in which fitness values are
juggled in the two models, but it is effectively identical for all practical purposes.

However, this recipe’s strategy using setSelectionCoeff() only works because this is a single-
subpopulation model; with multiple subpopulations, one would presumably want the frequency-
dependent effect to be different in each subpopulation, and to depend upon the frequency within
that subpopulation. Such a model could no longer be achieved using setSelectionCoeff().
Section 10.4.1 thus presented a more generally applicable recipe, albeit a slower one.

10.6 Varying the dominance coefficient among mutations
The dominance coefficient is a property of the mutation type, not the mutation (see sections

1.5.3 and 7.1), meaning that all mutations of a given mutation type have the same dominance
coefficient. Usually this is fine, but occasionally it proves inconvenient – occasionally one would
like dominance coefficients to depend upon some other state, or to be drawn from a distribution
the way selection coefficients are, or other such variable behaviors. This is possible to model in
SLiM using a mutationEffect() callback. In this section we will look at a very simple recipe in
which the dominance coefficients for one mutation type are drawn from a uniform distribution.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 216

The recipe, in full:

initialize() {
 initializeMutationRate(1e-8);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 0.5, "f", 0.05);
 initializeGenomicElementType("g1", c(m1,m2), c(1.0,0.01));
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 500);
}
mutation(m2) {
 mut.setValue("dom", runif(1));
 return T;
}
mutationEffect(m2) {
 if (homozygous)
 return 1.0 + mut.selectionCoeff;
 else
 return 1.0 + mut.getValue("dom") * mut.selectionCoeff;
}
100000 late() { sim.outputFixedMutations(); }

The initialize() callback sets up a uniform chromosome composed of a single genomic
element type, g1, that draws from two mutation types: m1, representing neutral mutations, and m2,
representing beneficial mutations. In tick 1 we create a new subpopulation with 500 individuals,
and in tick 100000 the model terminates with a little output. The interesting bits are in between.

First of all, we have a new type of callback, a mutation() callback. This callback type, which
was added in SLiM 3.3, is used fairly infrequently in SLiM models, so it will not get its own
dedicated chapter of recipes; instead we will just discuss it here and elsewhere as it come up.
SLiM calls mutation() callbacks whenever a new mutation is created by SLiM, providing the script
with an opportunity to modify the new mutation or even to veto its creation altogether (this is
strongly parallel to the modifyChild() callbacks we will see in chapter 12, but those allow
modification or vetoing of proposed offspring, rather than proposed mutations). Section 26.9
provides detailed reference documentation for mutation() callbacks, but they are really quite
simple. The declaration of the callback here specifies that it applies only to m2 mutations (just as
mutationEffect() callbacks specify their focal mutation type). The focal mutation is passed to the
callback through the pseudo-parameter mut, as in mutationEffect() callbacks; that is the mutation
that has just been created, to which we will assign a random dominance coefficient. The callback
draws a random dominance coefficient in [0,1] using runif(), and assigns that into the named key
"dom" on the focal mutation using setValue(); this method provides a dictionary-like mechanism
for remembering arbitrary values by name (see the Eidos manual). Finally, the callback returns T to
confirm to SLiM that the proposed mutation should actually be created.

Of course SLiM doesn’t know that that stored value is a dominance coefficient; it will continue
to use the dominance coefficient stored by the m2 mutation type. The next step is therefore to
redefine how the fitness of m2 mutations is evaluated, with the mutationEffect(m2) callback
shown above. This defines fitness in the standard way in SLiM, as (1+s) when homozygous and
(1+hs) when heterozygous (see section 26.2), looking up the selection coefficient s from the
selectionCoeff property of the focal mutation, mut. The twist is that instead of fetching the
dominance coefficient h from mut.mutationType.dominanceCoeff, as would be standard (see

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 217

section 26.2), it uses mut.getValue() to fetch the dominance coefficient from the focal mutation
using the key "dom" where it was previously stored.

The end result is that each beneficial mutation has its own independent dominance coefficient.
The effect of this can be seen easily in SLiMgui, in the different sweep dynamics of different
beneficial mutations; those with a dominance coefficient close to 0.0 take off slowly but sweep
rapidly when they grow near fixation, whereas those with a dominance coefficient close to 1.0
take off quickly but often fluctuate uncertainly before managing to fix, as expected from theory.

In this recipe the dominance coefficients are drawn from a uniform distribution, but of course
any distribution could be used. More generally, the dominance coefficient used by the
mutationEffect() callback could come from anywhere; it could depend upon other genetic state
within the focal individual, and could even vary over time, making it straightforward to model
phenomena such as the evolution of dominance. This recipe assigns the dominance coefficients in
the mutation() callback at the point when each new m2 mutation is created, but the
mutationEffect() callback could instead calculate the dominance coefficient from other state.

There are two lessons here, then. First of all, built-in support for variable dominance
coefficients is not provided by SLiM, but dominance can easily be varied or determined in script.
Second, a mutation() callback provides a convenient place to modify new mutations, add state to
them, or even control whether or not they are created at all.

The recipe above has a disadvantage, however: mutationEffect() callbacks can be slow, since
they are called for every mutation in every individual in every tick. If mutations that require these
customized dominance coefficients are relatively uncommon, as they are in the recipe above, then
it may not be too painful; but if such mutations are common, performance may be a problem. In
that event, there is an alternative approach to modeling variable dominance coefficients: use
multiple mutation types. Suppose, for example, that you wish to model a scenario in which the
dominance coefficient depends upon the selection coefficient: we want to draw selection
coefficients from a normal DFE, and neutral mutations should be completely recessive, while
strongly beneficial or strongly deleterious mutations should be completely dominant, with
gradations in between those extremes. If you need the spectrum of dominance coefficients to be
continuously gradated, the approach above would be necessary. If, however, you can accept some
discrete quantization of the gradations, then you can represent the discrete dominance levels with
different mutation types. Here’s a recipe demonstrating this approach:

initialize() {
 initializeMutationRate(1e-7);
 for (i in 0:10)
 initializeMutationType(i, i * 0.1, "n", 0.0, 0.02);
 initializeGenomicElementType("g1", m0, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 500);
}
mutation(m0) {
 s = mut.selectionCoeff;
 d = asInteger(min(floor(abs(s) * 100.0), 10.0));
 mut.setMutationType(d);
 return T;
}
100000 late() { }

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 218

This uses a loop to set up eleven mutation types, m0 to m10, with dominance coefficients of 0.0,
0.1, …, 1.0. (Note that you can pass an integer value to initializeMutationType() instead of a
string; passing, e.g., 5 is equivalent to passing "m5".) They are all set up with the same normal
DFE, with a mean of 0.0 and standard deviation of 0.02, but in fact each will be used for a
different subrange of that DFE. The initializeGenomicElementType() call defines the g1 genomic
element type as using only m0; that mutation type is responsible for drawing all selection
coefficients in the model. (The other ten mutation types could just as easily be defined as type "f"
with a selection coefficient of 0.0; it would make no difference, since SLiM never draws selection
coefficients from them.)

The other necessary component of the recipe is the mutation(m0) callback, which gets called
whenever a new m0 mutation has been created by SLiM and is about to be added to a gamete
during offspring generation. The callback here gets the selection coefficient that has been assigned
to the mutation (from the normal DFE defined for m0), and does a little math to get its absolute
value, scale it as desired, round it down to the nearest integer, clip it to a maximum of 10.0, and
then convert it from float to integer. The end result is an integer in [0, 10] that represents the
mutation type we want to use for the mutation – the mutation type that will provide the dominance
coefficient we want. We then call setMutationType() on the new mutation to set that mutation
type on it (passing an integer, like 5 to present m5, as we did to initializeMutationType()). By
changing the mutation type, we change the dominance coefficient, achieving the desired effect.

The number of mutation types defined determines the degree of granularity in the gradations of
the dominance coefficients; if finer gradations are needed, simply use more mutation types. Since
they are set up with a loop, this requires no additional code at all. The number of mutation types
also has no impact on performance; you could use 1001 mutation types instead of 11 without any
significant speed penalty.

This recipe runs in about 15 seconds on my machine (in SLiMgui), while the equivalent model
using the technique of the previous recipe runs in about 160 seconds, so this change makes a very
large difference – more than a 10x speedup. The reason is that a mutationEffect() callback is no
longer needed, and all fitness calculations can be done in SLiM’s core; the only overhead of this
model beyond a vanilla SLiM model is the mutation() callback. That callback runs only once per
mutation, when each mutation is first created, so its overhead is fairly negligible – about 6% of
total runtime, according to SLiMgui’s profiler (see section 21.5).

The final lesson for this chapter on mutationEffect() callbacks, then, is that although
mutationEffect() callbacks are extremely flexible, they can also be quite slow if they have to be
called frequently. Alternative designs that avoid their use are often preferable.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 219

11. Complex mating schemes

Since SLiM is based on the Wright–Fisher model, biparental mating in SLiM is normally
random; for each offspring individual to be generated in a subpopulation, two parents are chosen
at random from the appropriate subpopulation (which may not be the same subpopulation as the
offspring’s subpopulation, if migration is involved). It is possible to modify this default behavior,
however, by writing a special type of Eidos script block called a mateChoice() callback. These
callbacks are documented comprehensively in the SLiM reference, in section 26.4. Here we will
explore recipes that illustrate the use of mateChoice() callbacks to implement two different types
of non-random mating: assortative mating, and sequential mate search.

Some mating schemes are actually better modeled using a different type of callback, a
modifyChild() callback. Mostly, modifyChild() callbacks are used for purposes other than mating
schemes; recipes using them are mostly in chapter 12 (and they are documented in the SLiM
reference in section 26.5). However, the last recipe in this chapter will implement an interesting
type of non-random mating, gametophytic self-incompatibility based on an S-locus, using a
modifyChild() callback. See section 15.10 for another type of non-random mating, forcing SLiM
to execute a specified pedigree, done by explicitly specifying mating pairs in a nonWF model.

11.1 Assortative mating
Assortative mating is the preference of an individual for mates that resemble the individual itself

in some way. A species could exhibit assortative mating by size, for example, which would mean
that smaller individuals tend to prefer other smaller individuals as mates, whereas larger
individuals tend to prefer other larger individuals. Assortative mating is an important topic in
evolutionary biology because it is thought to be important to the process of speciation: a
population can diverge into genetically distinct lineages if assortative mating becomes strong
enough to reproductively isolate phenotypically distinct subsets of the population from each other.
Indeed, this mechanism can be so effective that if a single gene provides both adaptive phenotypic
divergence and assortative mating based upon the diverging trait, the trait governed by the gene is
called a “magic trait” because of its power to facilitate speciation (Servedio et al. 2011).

In this section we’ll look at a simple magic-trait model in SLiM (see sections 13.3 and 16.8 for
further investigations of this topic). Since this is a relatively complex model, let’s put it together
one piece at a time. The first piece is to set up the genetic and population structure:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 1.0, "f", 0.5); // introduced mutation
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 500);
 sim.addSubpop("p2", 500);
 p1.setMigrationRates(p2, 0.1);
 p2.setMigrationRates(p1, 0.1);
}
1000 late() {
 target = sample(p1.genomes, 1);
 target.addNewDrawnMutation(m2, 10000);
}
19999 late() { sim.simulationFinished(); }

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 220

This is very similar to the “introduced adaptive mutation” recipe of section 9.1: we have two
mutation types, one neutral (m1) and the other adaptive (m2), and after running a burn-in period of
1000 ticks using only type m1, we introduce a single mutation of type m2 into a randomly chosen
genome. The main difference between section 9.1’s recipe and this model is that here we have
two subpopulations connected by migration; the gene flow introduced by the migration rate of 0.1
in both directions between the subpopulations is substantial.

When run, this model provides sweep dynamics similar to those seen in some recipes in the
previous chapter. In the snapshot below, most of the neutral diversity has been swept away by the
beneficial mutation introduced at position 10000, which is about to fix and is carrying a few
neutral mutations along with it:

We can also examine the behavior of this model in SLiMgui using the Mutation Frequency
Trajectories graph. First recycle the simulation, then click the Show Graph popup button and
open the Mutation Frequency Trajectories graph window from that menu. At this point, the
simulation is not yet initialized, and so the graph is empty. Step forward one tick, over the
initialize() callback; now the mutation types have been defined, and so you can choose
mutation type m2 from the popup in the graph window. Play the simulation forward, and you
should end up with a plot something like this, if the introduced mutation is not lost (if it is lost, you
can just recycle and try again):

This plot illustrates that from the point at which the mutation was introduced, in tick 1000, it
swept very rapidly to fixation.

For our magic-trait model we need divergent ecological selection between the subpopulations,
which we introduce by adding a mutationEffect() callback that flips the fitness effect of the
introduced mutation in subpopulation p2:

mutationEffect(m2, p2) { return 0.2; }

That’s all it takes. For simplicity, we are modeling a dominant mutation here, but we could
easily use a scheme such as that in section 10.4.1 if the mutation were not dominant.

A little while after the introduced mutation arose, this looks like:

0 1000 2000
0.0

0.5

1.0

Generation

Fr
eq
ue
nc
y

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 221

The introduced mutation is not fixing in this version of the model; indeed, it is stuck fluctuating
around a frequency of 0.5, unable to increase further because it is deleterious in p2. Note that
there is lots of neutral variation in this run, in contrast to the previous version of the model.

If we look at the Mutation Frequency Trajectories graph now, we see a very different pattern,
illustrating how the spatial variation in selection is preventing the introduced mutation from fixing:

Finally, for a magic-trait model we need assortative mating based upon the same locus that is
under divergent selection. In this model, that will be provided by a mateChoice() callback:

2000: mateChoice() {
 parent1HasMut = (individual.countOfMutationsOfType(m2) > 0);
 parent2HasMut = (sourceSubpop.individuals.countOfMutationsOfType(m2)
 > 0);
 if (parent1HasMut)
 return weights * ifelse(parent2HasMut, 2.0, 1.0);
 else
 return weights * ifelse(parent2HasMut, 0.5, 1.0);
}

This callback is a bit complicated, so let’s walk through it. The first line determines whether the
parent that is choosing a mate possesses the magic-trait mutation. The choosing parent is provided
to the callback as an object named individual, of class Individual; this class is essentially a bag
containing the two Genome objects belonging to the individual. The countOfMutationsOfType()
method of Individual counts all occurrences of mutations of the given type in both of the
individual’s genomes; in other words, if the individual is homozygous for a given m2 mutation, that
mutation is represented twice in the count. Comparing the total count to 0 yields a single logical
truth value indicating whether any mutation of that type is present in the individual. Note that the
use of > 0 means that we are ignoring dominance; for purposes of mate choice, we are treating the
mutation as dominant. If we wanted heterozygotes to prefer heterozygotes and homozygotes to
prefer homozygotes, or some such mating scheme, we could use the actual count instead; with a
little change to the following logic that would work fine too.

Similarly, we can assess whether the other individuals in the subpopulation – the potential
mates – possess the mutation using countOfMutationsOfType(m2) for all the individuals in the
subpopulation. As previously, we use a > 0 comparison to get a vector of logical values,
parent2HasMut, indicating whether each individual in the subpopulation possesses the magic-trait
mutation in either of its genomes.

Finally, we have a little logic at the end to determine the mating preferences we want to return.
The standard fitness-based mating weights are supplied to the mateChoice() callback in the
weights variable, and we don’t want to ignore that; if we didn’t use that vector at all, we would be
entirely overriding SLiM’s built-in fitness calculations, based on the selection coefficients of

0 1000 2000
0.0

0.5

1.0

Generation

Fr
eq
ue
nc
y

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 222

mutations (which you may do if you wish, but is usually not desirable). Here, we combine
weights multiplicatively with an assortative-mating term computed with ifelse(). The ifelse()
function looks at each element of its first parameter (here, parent2HasMut) and chooses a
corresponding element for the result; if the element from the first parameter is T, the element from
the second parameter is chosen, whereas if the element from the first parameter is F, the element
from the third parameter is chosen. The second and third parameters may be non-singleton
vectors, too; ifelse() is a very powerful vectorized comparison function (see the Eidos
documentation). Here, if the parent choosing a mate possesses the magic-trait mutation, candidate
mates that also possess it get a multiplier of 2.0, expressing the preference of carriers for other
carriers. If the parent choosing a mate does not possess the magic-trait mutation, then candidate
mates that possess it get a multiplier of 0.5, expressing the dislike of non-carriers for carriers.

That version of the mateChoice() callback makes the logic clear, but unfortunately it is quite
slow; for each individual choosing a mate, it calls countOfMutationsOfType(m2) on every
individual in the source subpopulation. The countOfMutationsOfType(m2) method is slow,
because it has to scan through the genomes of the target individual checking the type of each
mutation. Furthermore, this work is almost entirely unnecessary, because the number of m2
mutations possessed by each individual in a given tick doesn’t change – we keep counting the
same thing over and over even though we get the same answer every time. We can do much
better, by replacing that version of the callback with this new logic:

2000: early() {
 // tag all individuals with their m2 mutation count
 inds = sim.subpopulations.individuals;
 inds.tag = inds.countOfMutationsOfType(m2);

 // precalculate mating weights vectors
 for (subpop in c(p1,p2))
 {
 has_m2 = (subpop.individuals.tag > 0);
 subpop.setValue("weights1", ifelse(has_m2, 2.0, 1.0));
 subpop.setValue("weights2", ifelse(has_m2, 0.5, 1.0));
 }
}
2000: mateChoice() {
 if (individual.tag > 0)
 return weights * sourceSubpop.getValue("weights1");
 else
 return weights * sourceSubpop.getValue("weights2");
}

The new 2000: early() event, which runs before offspring generation, calls
countOfMutationsOfType() on every individual and caches the result in the tag field of the
individuals; accessing these stored values will be much faster. Then it loops over the two
subpopulations in the model and caches precalculated mating-weight vectors for each of them.
Two vectors are cached: weights1 is for use when the choosing parent has an m2 mutation,
weights2 is for when it does not. The mateChoice() callback now uses those cached values; it
checks individual.tag to find out whether the focal individual has an m2 mutation, and uses either
weights1 or weights2 from the source subpopulation accordingly.

The weights are kept by the subpopulations using a dictionary-like getValue() / setValue()
mechanism (provided by Dictionary; see the Eidos manual). This getValue() / setValue() facility
provides a way to attach named state to SLiM objects; it is similar to the tag property we have used
in various other recipes, but is more flexible (allowing us to keep track of state of whole vectors of
type float here, for example, whereas tag is limited to singleton integer values).

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 223

This type of optimization – moving the calculation of constant values out of callbacks into
caches constructed in a previously run event – is very important for achieving maximal
performance in SLiM models that use mateChoice() callbacks. It is also very useful for optimizing
mutationEffect() callbacks, since they are often called a very large number of times.

If we recycle and run, and then look at the Mutation Frequency Trajectories graph, we can see
the effects of this callback kick in at tick 2000, when the callback becomes active:

At tick 2000, when the mateChoice() callback becomes active, the frequency of the magic-trait
allele jumps upward. If the two subpopulations were able to reach complete reproductive
isolation through this mechanism, we would expect the frequency plotted here to equilibrate at
1.0 (because this graph shows the frequencies in subpopulation p1 only). In practice, full
divergence is not possible, because WF models in SLiM are based upon juvenile dispersal, and
fitness acts during mating (as opposed to causing mortality earlier in the generational life cycle).
Given the migration rates declared in the model, approximately 10% of the individuals in each
subpopulation will come from matings in the other population, every tick. Those migrants are also
mating assortatively – they might be maladapted, but they will nevertheless preferentially mate and
produce offspring that are also maladapted. Given the very high migration rate, adaptive
divergence is helped only a little by the addition of assortative mating (but see below).

The rest of the chromosome, outside the magic-trait locus, is subject only to neutral mutations
in this simple model. These neutral mutations can provide a means of monitoring the degree of
divergence between the subpopulations; if the subpopulations become fully reproductively
isolated, divergence at neutral sites should be observed, whereas without reproductive isolation
divergence at neutral sites should be small or absent. This is often measured with a metric called
FST: higher FST indicates greater genetic divergence among subpopulations. We can add code to
start calculating the mean FST between p1 and p2 at tick 3000:

10000: late() {
 FST = calcFST(p1.genomes, p2.genomes);
 sim.setValue("FST", sim.getValue("FST") + FST);
}
19999 late() {
 cat("Mean FST at equilibrium: " + (sim.getValue("FST") / 500));
 sim.simulationFinished();
}

This uses a SLiM function named calcFST() that calculates the FST between two Genome vectors
(see section 25.18.2; if you want to see the Eidos implementation of that function, just type
functionSource("calcFST") in the Eidos console). The events above just call that function, record
the results, and print out a summary at the end of the run (discussed below).

0 1000 2000 3000
0.0

0.5

1.0

Generation

Fr
eq
ue
nc
y

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 224

The mean FST for the tick is added to a value kept by the simulation using the same getValue() /
setValue() mechanism we saw above, to keep a running total; that total is then used in tick 3499
to calculate the average FST over the ticks 3000:3499.

We also need to add a line to the tick 1 event, to zero out the running FST total:

sim.setValue("FST", 0.0);

If we run the model with the mateChoice() callback commented out, we get this output at the
end of the run (for a run in which the focal mutation is not lost):

Mean FST at equilibrium: 0.0656018

Running it with the mateChoice() callback active, on the other hand, produces this output at
the end of the run:

Mean FST at equilibrium: 0.107475

The magic trait therefore appears to have increased the level of divergence between the
subpopulations at neutral loci, relative to the divergence for the same trait under natural selection
but without the “magic” effect on mate choice, due to a decrease in gene flow. Single runs are of
course not sufficient to show this convincingly; in practice, you would want to do many
replications of both models, and do some statistics to show that the difference between the
outcomes of the two models is significant. You might also wish to run for more ticks before starting
to gather the FST statistics, and to gather them for a longer period of time, to assure that equilibrium
had been reached and that transient dynamics did not weigh too heavily in the FST measurement.
You might verify that the magic trait was not lost from the simulation; that happens occasionally,
which of course defeats the purpose of the model. Finally, you might look separately at the FST at
different positions along the chromosome, since it might be much higher near the magic trait locus
than at more distant locations, due to linkage.

For the record, the complete model with all of the above components is:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 1.0, "f", 0.5); // introduced mutation
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.setValue("FST", 0.0);
 sim.addSubpop("p1", 500);
 sim.addSubpop("p2", 500);
 p1.setMigrationRates(p2, 0.1);
 p2.setMigrationRates(p1, 0.1);
}
1000 late() {
 target = sample(p1.genomes, 1);
 target.addNewDrawnMutation(m2, 10000);
}
mutationEffect(m2, p2) { return 0.2; }
2000: early() {
 // tag all individuals with their m2 mutation count
 inds = sim.subpopulations.individuals;
 inds.tag = inds.countOfMutationsOfType(m2);

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 225

 // precalculate the mating weights vectors
 for (subpop in c(p1,p2))
 {
 has_m2 = (subpop.individuals.tag > 0);
 subpop.setValue("weights1", ifelse(has_m2, 2.0, 1.0));
 subpop.setValue("weights2", ifelse(has_m2, 0.5, 1.0));
 }
}
2000: mateChoice() {
 if (individual.tag > 0)
 return weights * sourceSubpop.getValue("weights1");
 else
 return weights * sourceSubpop.getValue("weights2");
}
10000: late() {
 FST = calcFST(p1.genomes, p2.genomes);
 sim.setValue("FST", sim.getValue("FST") + FST);
}
19999 late() {
 cat("Mean FST at equilibrium: " + (sim.getValue("FST") / 10000));
 sim.simulationFinished();
}

11.2 Sequential mate search
In the previous section we saw how to implement assortative mating with a mateChoice()

callback that modified the standard mating weights vector, weights, by multiplying it with an
additional term derived from the genetic match between the focal individual and the other
individuals in the subpopulation. In other words, the ultimate choice of mate was left to SLiM’s
machinery; the mateChoice() callback just modified the mating weights.

In this section we will explore a completely different kind of mateChoice() callback, one which
makes the mate choice determination itself and tells SLiM’s machinery which mate was chosen (if
any). The standard weights vector will be used internally, within the mateChoice() callback; but
the callback will simply return the chosen mate (as a singleton object vector of class Individual).
In certain circumstances, it will instead return a zero-length vector as a signal to SLiM that no
suitable mate could be found, initiating a new mate search with a new choosing parent.

The biological scenario here has to do with sequential mate search, the search for a mate by
examining candidates sequentially until a suitable candidate is found or the breeding season ends.
Conceptually, we will model a species like peacocks, in which the choosy parent is looking for a
mate with a large ornament that is attractive but costly in fitness; however, to keep the model
simple we will model hermaphrodites: all individuals can play both the chooser and the chosen.

Let’s build the model one step at a time, first constructing the genetic and population structure:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "f", -0.025); // ornamental
 initializeGenomicElementType("g1", c(m1, m2), c(1.0, 0.01));
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
10001 early() {
 sim.simulationFinished();
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 226

This is straightforward: one population of 500 individuals, and a genetic structure that allows
both neutral mutations (m1) and mutations that influence the ornament size of the individuals (m2).
The ornamental mutations occur only about 1% as often as the neutral mutations, but may occur
anywhere in the genome; this could be thought of as a “many genes of small effect”, quantitative-
genetics sort of scenario. These ornamental mutations are all slightly deleterious, as genes that
increase the size of a peacock’s tail presumably would be (apart from their positive effect on
mating). If run, this model behaves as you might expect: neutral mutations accumulate, but no
ornamental mutations fix, or even reach appreciable frequency, because of their deleterious effect.

Now we want to introduce the effect of the ornamental mutations on mating; to do so, we add a
mateChoice() callback. This callback should implement sequential choosy mate choice by
searching for a mate, preferring potential mates with more ornamental mutations:

mateChoice() {
 fixedMuts = sum(sim.substitutions.mutationType == m2);
 for (attempt in 1:5)
 {
 mate = sample(p1.individuals, 1, T, weights);
 osize = fixedMuts * 2 + mate.countOfMutationsOfType(m2);

 if (runif(1) < log(osize + 1) * 0.1 + attempt * 0.1)
 return mate;
 }
 return float(0);
}

The first line of this callback just totals up the number of ornamental mutations that have fixed.
Once a mutation fixes, SLiM removes it from the active simulation, and from fitness calculations;
since all individuals possess the fixed mutation, it has no differential effect on fitness or dynamics,
in general. In this model, however, we want such fixed mutations to continue to influence mate
choice, as described below. This could also be done by setting the convertToSubstitution
property of m2 to F, as we have seen in some previous recipes; we’re using a different strategy here
just to show a different angle on this common issue.

Next, the callback uses a for loop to make up to five attempts at finding a mate. Each attempt
is a little less picky than the previous attempt, reflecting declining standards as breeding season
proceeds. If all five attempts fail, float(0) is returned to indicate that the individual failed to find
a mate. Within each attempt, a candidate mate is chosen using the sample() function, using the
standard fitness-based weights vector as the weights for sampling; the deleterious effect of the
ornamental mutations is thus still taken into account, reducing the likelihood that highly
ornamented individuals will be chosen as mates for survival- or growth-based reasons. The total
ornament size of the candidate mate is calculated, using both fixed and unfixed ornamental
mutations. Finally, runif() generates a random uniform draw (between 0 and 1, by default), and
that drawn value is compared to a threshold value determined by the candidate mate’s ornament
size as well as the attempt number; if the candidate gets sufficiently lucky, it ends up as the chosen
mate. When a mate is chosen, it is simply returned. It would be possible instead to construct a
new weights vector, with 1.0 for the chosen mate and 0.0 for all other entries, and return that to
force SLiM to choose that individual; simply returning the individual is a shorthand that can be
handled by SLiM far more efficiently than can a returned weights vector (see section 26.4).

If you run this model, you can now see the ornamental mutations increasing in frequency and
fixing despite their deleterious fitness effect, because they are favored by sexual selection. We
might be interested in the final ornament size attained, so we can flesh out the final event:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 227

1:10001 early() {
 if (sim.cycle % 1000 == 1) {
 fixedMuts = sum(sim.substitutions.mutationType == m2);
 osize = fixedMuts * 2 + p1.individuals.countOfMutationsOfType(m2);
 catn(sim.cycle + ": Mean ornament size == " + osize);
 }
}

This prints the mean ornament size in the population every thousand cycles. A typical run of
the model would produce output like:

1: Mean ornament size == 0
1001: Mean ornament size == 4.642
2001: Mean ornament size == 7.086
3001: Mean ornament size == 7.932
4001: Mean ornament size == 8.004
5001: Mean ornament size == 8.036
6001: Mean ornament size == 8.048
7001: Mean ornament size == 8.654
8001: Mean ornament size == 8.234
9001: Mean ornament size == 8.408
10001: Mean ornament size == 8

Individuals have evolved to possess, on average, about eight ornamental mutations. It looks like
an equilibrium has been reached at that point; if increasing ornament size any further would
provide a fitness advantage, the advantage is clearly not large.

The equilibrium ornament size is a result of a balance between the direct deleterious fitness
effect of a large ornament and the indirect beneficial fitness effect due to being chosen more
frequently as a mate. The indirect benefit from mate choice is governed by the expression for the
threshold probability of being chosen as a mate:

log(osize + 1) * 0.1 + attempt * 0.1

This function is designed to provide diminishing returns; as the ornament size increases, the
marginal benefit of increasing ornament size diminishes. Meanwhile, the marginal deleterious
effect of increasing ornament size remains constant. At some point – around an ornament size of
8, apparently – the benefit is no longer worth the cost. The model therefore reaches an
equilibrium ornament size, just as happens in reality with ornamented species subject to both
natural selection against the ornament and sexual selection for the ornament, such as peacocks.

The decreasing choosiness over the course of the five mate-choice trials perhaps influences the
equilibrium point, although the direction of this influence is not entirely clear; perhaps decreasing
choosiness means that one can afford to have a smaller ornament size and just wait to be chosen
in a later choice round, or perhaps it means that one needs to have a larger ornament so as to try
to guarantee that one is chosen in the first round, before one’s competitors become more viable
choices due to decreased choosiness in the later rounds.

One point worth noting is the fact that log(osize + 1) is used, rather than log(osize). At the
beginning of the run, every individual has an ornament size of zero, and so log(osize) would be
−INF. If we allowed that to occur, SLiM would be unable to find any mates at all in the first
generation; it would try a large number of times, and then would terminate with an error. There
are lots of ways one could prevent that from happening; using log(osize + 1) was the strategy
chosen here.

Here is the full model with all of the above components:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 228

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "f", -0.025); // ornamental
 initializeGenomicElementType("g1", c(m1, m2), c(1.0, 0.01));
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
1:10001 early() {
 if (sim.cycle % 1000 == 1) {
 fixedMuts = sum(sim.substitutions.mutationType == m2);
 osize = fixedMuts * 2 + p1.individuals.countOfMutationsOfType(m2);
 catn(sim.cycle + ": Mean ornament size == " + mean(osize));
 }
}
mateChoice() {
 fixedMuts = sum(sim.substitutions.mutationType == m2);
 for (attempt in 1:5)
 {
 mate = sample(p1.individuals, 1, T, weights);
 osize = fixedMuts * 2 + mate.countOfMutationsOfType(m2);

 if (runif(1) < log(osize + 1) * 0.1 + attempt * 0.1)
 return mate;
 }
 return float(0);
}

This recipe is perhaps a good case study for how to optimize callbacks in SLiM, since the large
majority of runtime is spent in the mateChoice() callback – about 90%, according to SLiMgui’s
built-in profiling feature (see section 21.5). We can redesign the 1:10001 early() event and the
mateChoice() callback (leaving the initialize() callback and the subpopulation creation event
the same) to achieve about a one-third speedup:

1:10001 early() {
 fixedMuts = sum(sim.substitutions.mutationType == m2);
 inds = p1.individuals;
 osize = fixedMuts * 2 + inds.countOfMutationsOfType(m2);
 inds.tagF = log(osize + 1) * 0.1;

 if (sim.cycle % 1000 == 1)
 catn(sim.cycle + ": Mean ornament size == " + mean(osize));
}
mateChoice() {
 for (attempt in 1:5)
 {
 mate = sample(p1.individuals, 1, T, weights);

 if (runif(1) < mate.tagF + attempt * 0.1)
 return mate;
 }
 return float(0);
}

The difference is that the early() event now precalculates the base mating appeal of every
individual, with a vectorized method call and some other vectorized calculations, and puts the
results into the tagF property of the individuals with a vectorized property assignment (see the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 229

Eidos manual for review of these vectorized features of the language). The mateChoice() callback
can then be much simpler, using the saved tagF values instead of doing individual, non-vectorized
calculations. This design is faster in part because vectorized operations are intrinsically faster than
doing the same calculations one at a time (see section 21.1). It is also faster because the mating
appeal of every individual is calculated just once; given the sequential-search design of this model,
the mating appeal of many individuals might be used more than once. With the first design of the
mateChoice() callback, each such use of a given individual’s mating appeal would require it to be
recalculated; with the second design, the precalculated value merely needs to be re-fetched from
tagF. The model is still not terribly fast – the sample() function is intrinsically slow when passed a
vector of weights, which we still have to do at least once for every mateChoice() callback – but a
one-third speedup is not bad.

Since the sample() calls are the large majority of the time spent in this revised recipe,
optimizing that aspect of the code would be the next step if more speed were needed. The strategy
would be similar to what we have already done: vectorize the sample() calls, rather than sampling
just one mate at a time. This would be simplest to do in a nonWF model (see section 1.6); we
could draw all the first parents with a single sample() call, then draw all of their first mate choices
with another single sample() call, then assess which mates were deemed acceptable with a single
vectorized runif() call and a vectorized comparison, and so forth. This design works much better
in a nonWF model because the reproduction() callback of a nonWF model can handle all mating
events in a single call, potentially in a vectorized fashion (see, e.g., section 15.13), whereas
mateChoice() callbacks in WF models are fundamentally and irredeemably unvectorized – they
are called once per first parent, and the only way to vectorize them is to move calculations out of
them entirely (as we did above with tagF). Switching to a nonWF design would also get rid of the
need to use a weights vector with sample(), since the deleterious fitness effects of ornament size
would then be taken care of by mortality rather than reduced mating success – some individuals
would die as a result of selection against their ornament, and then the survivors would mate
influenced only by the positive effects of ornament size on mating appeal. This seems closer to the
typical biological reality, for species like peacocks, while also providing a large performance
benefit by eliminating the need for the sampling weights. We will not show such an optimized
nonWF model here, since we won’t even get to nonWF models until chapter 15; but it ought to be
reasonably straightforward to implement, and would likely be significantly faster than even the
optimized design shown above.

11.3 Gametophytic self-incompatibility
In the previous sections we have seen the use of mateChoice() callbacks to implement

assortative mating and sequential mate choice, two types of non-random mating. In this section,
we will see the use of a different type of callback, a modifyChild() callback, to model an
interesting type of non-random mating, gametophytic self-incompatibility based on S-locus alleles.

Gametophytic self-incompatibility is quite a common mating scheme in plants (Newbigin et al.,
1993). In a nutshell, the pollen grain (the male gamete, which is haploid) expresses the particular
allele that it possesses at a special locus called the S-locus. When a pollen grain lands on the
stigma of a female flower and begins to grow a pollen tube down the style towards the ovaries of
the flower, the pollen tube expresses the S-locus allele of the pollen grain as it grows. Female
flowers, in their styles, do some sort of check of the S-locus allele being expressed by the pollen
tube, and if it exactly matches an S-locus allele possessed by the female plant (on either of its two
copies of that locus, since the female flower is part of a diploid plant), it halts the growth of the
pollen tube, preventing fertilization. The reasons why this mechanism might be beneficial are
thought to be related to promotion of outcrossing and prevention of selfing.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 230

Why use a modifyChild() callback instead of a mateChoice() callback to model a mate choice
scheme such as gametophytic self-incompatibility? There are several considerations.
Conceptually, a mateChoice() callback allows control over how likely every possible mating pair
in a population is to form, whereas a modifyChild() callback is about controlling the outcome of a
specific mating – governing whether that mating is fertile and what the genetic outcome of the
mating is. Gametophytic self-incompatibility is not really about the choice of mates across the
population (pollen lands indiscriminately on all female flowers, at least without complications
such as heterostyly or enantiostyly); instead, it is about whether the combination of a specific
pollen grain and a specific flower is fertile or infertile, making modifyChild() a natural choice.

Another consideration is that mateChoice() callbacks are about pre-mating reproductive
isolation, whereas modifyChild() callbacks are about post-mating reproductive isolation (among
other uses). Gametophytic self-incompatibility depends upon the S-locus allele expressed by the
haploid pollen grain; that information is simply not available in a mateChoice() callback, since
gametes have not yet been produced at that stage. From this perspective, then, modifyChild() is
actually a forced choice for this recipe.

A third consideration is that if a mateChoice() callback rejects a first parent completely, SLiM’s
mating algorithm goes back to try a different first parent within the same source subpopulation,
whereas if a modifyChild() callback suppresses a child completely, SLiM’s mating algorithm re-
chooses the source subpopulation as well, based upon the migration rates set for the target
subpopulation (see section 23.2). This difference reflects the pre-mating versus post-mating
semantics of the two callbacks, and makes good sense here; if a particular source subpopulation’s
pollen grains have a high probability of being incompatible with the female flowers of the target
subpopulation, that source subpopulation should be underrepresented in gene flow into the target
subpopulation, compared to the expected gene flow based upon pollen flow alone.

A final consideration, if none of the previous issues decides the question, might be speed.
Unfortunately, mateChoice() callbacks tend to be quite slow. In computer science parlance, they
are generally O(N), meaning that the computation time taken by a mateChoice() callback is
proportional to the number of individuals in the subpopulation; this is because each individual
must be evaluated to produce a mating weight. On the other hand, modifyChild() callbacks are
generally O(1), meaning they take a constant amount of time regardless of population size; this is
because only the product of one mating event is considered by the callback. In practice, this
algorithmic speed difference can result in a very large difference to the running speed of a model.
Usually, however, the previous considerations will dictate the choice of implementation.

Let’s build the model in two steps, beginning without the modifyChild() callback:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 0.5, "f", 0.0); // S-locus mutations
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElementType("g2", m2, 1.0);
 initializeGenomicElement(g1, 0, 20000);
 initializeGenomicElement(g2, 20001, 21000);
 initializeGenomicElement(g1, 21001, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
10000 late() {
 cat("m1 mutation count: " + sim.countOfMutationsOfType(m1) + "\n");
 cat("m2 mutation count: " + sim.countOfMutationsOfType(m2) + "\n");
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 231

We have two mutation types, both neutral, and a chromosome that uses mutation type m1 over
most of its length (with g1) but mutation type m2 within a small (1000-bp) locus (with g2). That
small locus is of course the S-locus, but without the mateChoice() callback it acts identically to the
rest of the chromosome. Since there is not yet any code to enforce a difference between the S-
locus and the rest of the chromosome, this recipe is, at this point, simply a model of neutral drift.

In the tick 10000 event, it outputs two metrics prior to termination: the number of mutations of
type m1 and of type m2. These serve as a quick-and-dirty measure of genetic diversity, both across
the bulk of the chromosome (the m1 count) and within the S-locus (the m2 count). A typical test
run of this recipe produces something like:

m1 mutation count: 124
m2 mutation count: 1

You can run the model a bunch of times and confirm that there is not a whole lot of variation
around these numbers; the m1 count is typically 100–200, the m2 count typically 0–5.

It is also interesting to look at the graphical representation of the chromosome in SLiMgui.
Selecting a subrange of the chromosome, so as to zoom in on just one section, a typical run of the
recipe so far looks like:

This view has display of genomic elements turned on, using the action button, so that the
location of the S-locus is clear. The two things to note here are that the distribution of neutral
mutations is fairly sparse, and that the distribution of neutral mutations inside versus outside the S-
locus is comparable.

Now let’s add in the modifyChild() callback that implements the gametophytic self-
incompatibility system:

modifyChild(p1) {
 pollenSMuts = child.genome2.mutationsOfType(m2);
 styleSMuts1 = parent1.genome1.mutationsOfType(m2);
 styleSMuts2 = parent1.genome2.mutationsOfType(m2);
 if (identical(pollenSMuts, styleSMuts1))
 if (runif(1) < 0.99)
 return F;
 if (identical(pollenSMuts, styleSMuts2))
 if (runif(1) < 0.99)
 return F;
 return T;
}

First, the callback gets a vector of all of the S-locus mutations present in the pollen grain. The
child variable is defined by SLiM within modifyChild() callbacks, and child.genome2 represents
the gamete produced by the second parent in the mating; see section 26.5 for details. The result,
pollenSMuts, represents the S-locus allele expressed by the pollen grain. All mutations at the S-
locus are considered, in this model, to change the expressed S-allele; it would be trivial to add in
the possibility of neutral mutations at the S-locus as well, by adding in a probability of type m1
mutations in genomic element type g2.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 232

Next, the callback gets the two S-locus alleles of the female flower by fetching the vector of
mutations of type m2 from parent1.genome1 and parent1.genome2, the two homologous genomes
of the first parent (again, parent1 being defined by SLiM in these callbacks; see section 26.5).

Next comes the crucial step at which the growth of the pollen tube is stopped if there is an
incompatibility between the S-allele of the pollen and either of the S-alleles of the female flower.
This is checked using the Eidos function identical(), which checks whether its two arguments are
exactly identical. We don’t need to worry about non-identicality due to mutations being listed in a
different order in the vectors, because Genome keeps its list of mutations in sorted order, and
mutationsOfType() returns a sorted subset of that list.

If the pollen S-allele is identical to either of the female flower’s S-alleles, there is a 99%
probability (in this model) of the pollen tube being blocked, as implemented by the test
(runif(1) < 0.99). Returning F in these cases tells SLiM to suppress generation of the proposed
child altogether; this is, conceptually, the stoppage of the pollen tube. It is important to guarantee
that a modifyChild() callback will never suppress 100% of all proposed children, for any state that
your model might reach; if that ever happens, SLiM will get stuck generating an infinite succession
of proposed children that all get suppressed (and will eventually detect this condition and
terminate with an error message). In this case, the model would not quite hang without the
runif() test, since eventually SLiM would manage to generate pollen grains that all happened to
have a mutation within the S-locus that made them compatible with the available female flowers;
but it would take an awfully long time. Indeed, even at 99% the first generation can take a while
to finish, and many of the individuals in the second generation will have an S-locus mutation
because of the effective imposition of gametophytic self-incompatibility in a single generation. A
more realistic model might perhaps “phase in” the gametophytic self-incompatibility slowly over
some thousands of generations, reflecting the gradual evolution of an increasingly strong
mechanism, by making the threshold against which runif() is compared depend upon sim.cycle.
This is left as an exercise for the reader; it should not change the final state of the model at
equilibrium (although equilibrium might take a lot more than the 10000 ticks we use here).

The final line simply returns T, indicating that since the pollen grain was compatible with the
female flower, the proposed child can be generated.

The full recipe, for the record:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 0.5, "f", 0.0); // S-locus mutations
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElementType("g2", m2, 1.0);
 initializeGenomicElement(g1, 0, 20000);
 initializeGenomicElement(g2, 20001, 21000);
 initializeGenomicElement(g1, 21001, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
10000 late() {
 cat("m1 mutation count: " + sim.countOfMutationsOfType(m1) + "\n");
 cat("m2 mutation count: " + sim.countOfMutationsOfType(m2) + "\n");
}
modifyChild(p1) {
 pollenSMuts = child.genome2.mutationsOfType(m2);
 styleSMuts1 = parent1.genome1.mutationsOfType(m2);
 styleSMuts2 = parent1.genome2.mutationsOfType(m2);
 if (identical(pollenSMuts, styleSMuts1))

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 233

 if (runif(1) < 0.99)
 return F;
 if (identical(pollenSMuts, styleSMuts2))
 if (runif(1) < 0.99)
 return F;
 return T;
}

If you run the full recipe, you should get output something like:

m1 mutation count: 582
m2 mutation count: 55

There is vastly more genetic diversity now, both within the S-locus (mutation type m2) and across
the whole chromosome (type m1). Gametophytic self-incompatibility basically imposes a regime of
balancing selection (i.e., negative frequency-dependent selection) at the S-locus, and that regime
tends to preserve allelic diversity at the locus (see section 10.4.1 for a different model of negative
frequency-dependent selection). It also increases the outcrossing rate in the population,
particularly when there are relatively few S-alleles (when there are many S-alleles, it would mostly
tend to diminish selfing, since most non-selfing mating pairs would possess different S-alleles
anyway; it would be trivial, of course, to add selfing to this model to experiment with that
additional nuance, as seen in section 6.3.1).

Examining the same subsection of the chromosome as before, in SLiMgui, it now looks like this:

Compared to the previous snapshot, the increase in genetic diversity across the chromosome is
immediately apparent. It is also striking how much more diversity is contained within the S-locus
itself (due to the balancing selection there) compared to the rest of the chromosome. Note that in
the implementation of this model, the number of S-alleles is not just the number of different
mutations within the S-locus that are circulating in the population. Instead, every unique
haplotype within the S-locus as a whole represents a different S-allele, and new S-alleles can be
generated in this model by recombination as well as by mutation. Other schemes for evaluating
what an S-allele “really” is, based upon the mutations present at the S-locus, could be
implemented using a different test than identical() in the modifyChild() callback.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 234

12. Direct child modifications

Thus far we have seen two ways of modifying SLiM’s basic Wright–Fisher model:
mutationEffect() callbacks that modify the default fitness effect of mutations (chapter 10), and
mateChoice() callbacks that alter the default behavior of random mating (chapter 11). In this
chapter we will look at a third type of modification, modifyChild() callbacks. These allow you to
modify children generated by SLiM (by adding or removing mutations, for example), or to suppress
particular children entirely (see section 26.5 for a full technical discussion). Here, we will use
modifyChild() callbacks to solve a variety of problems, from social learning of cultural traits to
simulation of a “gene drive” based upon CRISPR/Cas9. Note that section 11.3 also used a
modifyChild() callback, to implement a gametophytic self-incompatibility system.

12.1 Social learning of cultural traits
In section 10.4.2 we explored a simple model of a cultural trait; the tagL0 value of Individual

was used to track whether each individual was a milk-drinker or not, and a mutationEffect()
callback was used to make mutations promoting the production of lactase into adulthood
beneficial for milk-drinkers but neutral for non-milk-drinkers. In that model, whether a given
individual was a milk-drinker or not was determined at random, in a late() callback that tagged
all offspring with their assigned cultural group. We will now extend that model to include social
learning: individuals will tend to inherit milk-drinking from their parents, although a substantial
random factor in the cultural assignment will be retained. To achieve this, instead of assigning the
cultural group in a late() event, we will do it in a modifyChild() callback, so that we have the
information we need regarding the culture of the parents. The recipe:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "f", 0.1); // lactase-promoting
 m2.convertToSubstitution = F;
 initializeGenomicElementType("g1", c(m1,m2), c(0.99,0.01));
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 1000);
 p1.individuals.tagL0 = (runif(1000) < 0.5);
}
modifyChild() {
 parentCulture = mean(c(parent1,parent2).tagL0);
 childCulture = (runif(1) < 0.1 + 0.8 * parentCulture);
 child.tagL0 = childCulture;
 return T;
}
mutationEffect(m2) {
 if (individual.tagL0)
 return effect; // beneficial for milk-drinkers
 else
 return 1.0; // neutral for non-milk-drinkers
}
10000 early() { sim.simulationFinished(); }

The setup of the model is similar to its predecessor in section 10.4.2: mutation type m2 is used to
represent alleles that promote retention of lactase production (and removal of fixed m2 mutations is
prevented with convertToSubstitution), tagL0 values of T are used to indicate milk-drinkers, and

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 235

the same mutationEffect() callback as in section 10.4.2 produces a differential fitness effect of m2
mutations depending upon the culture of the individual. What has changed is the way that the tag
values are maintained. The late() event has been removed. We now assign initial tagL0 values
in tick 1, immediately after creating subpopulation p1. Thenceforth, the tagL0 values of new
individuals are assigned in the modifyChild() callback:

modifyChild() {
 parentCulture = mean(c(parent1.tagL0, parent2.tagL0));
 childCulture = (runif(1) < 0.1 + 0.8 * parentCulture);
 child.tagL0 = childCulture;
 return T;
}

This callback is called once for every new offspring individual created, throughout the run of
the model. Its first line gets the tagL0 values of the two parents (using parent1 and parent2
variables that are set up for all modifyChild() callbacks; see section 26.5 for a complete list of
these variables), and averages them to get a parentCulture value that will be 0, 0.5, or 1 (note that
Eidos functions commonly treat T as 1 and F as 0, for purposes such as mean() and sum()). The
next line determines what the child’s culture will be (T or F) by comparing a draw from runif()
against a threshold probability that depends on parentCulture in such a way as to make children
tend to follow the culture of their parents, but with a 10% chance of deviating even if the parents
share the same culture. To make this cultural determination take effect, childCulture is assigned
into the tagL0 property of the child (using the child variable defined for the callback by SLiM).
Finally, a value of T is returned to indicate that the child should be generated; it is possible for a
modifyChild() callback to suppress the generation of some children by returning F.

In the original model of section 10.4.2, the fraction of milk-drinkers remained about 0.5,
because assignment into a cultural group was random. In this model, in contrast, the fraction of
milk-drinkers can increase over time as individuals learn milk-drinking from their parents; the
fitness benefit of milk-drinking increases as more m2 mutations sweep. It is easy to observe this in
SLiMgui by adding a custom output event:

late() {
 if (sim.cycle % 100 == 0)
 cat(sim.cycle + ": " + mean(p1.individuals.tagL0) + "\n");
}

This prints the fraction of milk-drinkers in the population, every 100 generations. Running this
model produces output that shows the progressive increase in milk-drinking:

100: 0.465
200: 0.567
300: 0.552
400: 0.681
500: 0.735
...

However, there will always be a minimum of about 10% non-milk-drinkers in the population,
because of the element of chance provided by the binomial draw in the modifyChild() callback.
It would be possible to modify that to allow a specific culture to fix in the population. On the
other hand, one could also model the fact that milk-drinkers who do not retain lactase production
into adulthood will typically suffer from symptoms of lactose intolerance, making milk-drinking
disadvantageous in some circumstances. One could also model a slight deleterious effect of
lactase retention genes among non-milk-drinkers, since they are devoting energy to producing an
enzyme that they do not use. There is always more complexity to be added; but as it stands, this

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 236

model shows the coevolution of both genetic and cultural factors related to milk-drinking, using
tagL0 values in combination with a modifyChild() callback to model social learning in SLiM.

12.2 Lethal epistasis
In section 10.3.1 we saw a model of epistasis that influenced the fitness of the epistatic alleles

using a mutationEffect() callback. Sometimes the situation is simpler than the scenario
presented in that model: sometimes the fitness of individuals carrying both epistatic alleles is zero,
making the epistatic interaction lethal. In this case, a modifyChild() callback is well-suited to the
task, since it can suppress the generation of particular offspring depending upon their genetics (or
other factors). In this case, we will model two introduced mutations, A and B, which are normally
beneficial, but are lethal when they occur in the same offspring:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 0.5, "f", 0.5); // mutation A
 m2.convertToSubstitution = F;
 initializeMutationType("m3", 0.5, "f", 0.5); // mutation B
 m3.convertToSubstitution = F;
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 500);
}
1 late() {
 sample(p1.genomes, 20).addNewDrawnMutation(m2, 10000); // add A
 sample(p1.genomes, 20).addNewDrawnMutation(m3, 20000); // add B
}
modifyChild() {
 hasMutA = any(child.genomes.countOfMutationsOfType(m2) > 0);
 hasMutB = any(child.genomes.countOfMutationsOfType(m3) > 0);
 if (hasMutA & hasMutB)
 return F;
 return T;
}
10000 early() { sim.simulationFinished(); }

The mechanics here for the introduction of mutations A and B follow the pattern we have seen
in other recipes: a target vector of genomes is chosen with sample(), and then a mutation is added
to the target genomes with addNewDrawnMutation(). Unlike most previous recipes, however, here
we sample 20 genomes, not just one, in order to add the new mutation to multiple individuals.
Because addNewDrawnMutation() is a class method of Genome, not an instance method, a single
new mutation is added to all of the target genomes, rather than a different new mutation being
added to each target genome as a result of multicasting; see section 10.4.3 for discussion of the
mechanics of this. No effort is made here to avoid adding A and B to the same individuals, but that
would be trivial to add by refining the choice of targets for B. The mutation types for A and B, m2
and m3, are set not to convert fixed mutations to substitutions, so that their epistatic interaction
persists even after fixation; see section 10.3.1 for extensive discussion of this.

The new and interesting behavior is in the modifyChild() callback. First it determines whether
the proposed child possesses mutation A and mutation B, setting up logical flags hasMutA and
hasMutB by checking whether the count of mutations of the relevant type is greater than zero in

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 237

either of the child’s genomes. Then, if the child has both A and B, it returns F, indicating that this
child should be suppressed. New parents will be chosen and a new child will be generated
instead (also subject to the approval of the modifyChild() callback). Otherwise it returns T,
indicating the generation of the child should proceed.

When this model is run, either A or B quickly “wins”, fixing while its epistatic competitor is lost.
If the modifyChild() callback is removed, on the other hand, both A and B will typically fix. We
can try an interesting variant by making the epistatic interaction lethal only if A and B are both
homozygous, by replacing the previous modifyChild() callback with a new version:

modifyChild() {
 mutACount = sum(child.genomes.countOfMutationsOfType(m2));
 mutBCount = sum(child.genomes.countOfMutationsOfType(m3));
 if ((mutACount == 2) & (mutBCount == 2))
 return F;
 return T;
}

This results in a form of balancing selection between A and B, since now homozygosity is
disadvantageous but heterozygosity is advantageous. Both will tend to fluctuate around a
frequency of 0.5, although one may stochastically manage to fix eventually (in which case the
other will almost immediately be lost).

This type of model could also be used to represent an epistatic interaction during development
that is lethal in some fraction of cases, but is otherwise harmless – either the epistatic interaction
causes a lethal anomaly during development, or it doesn’t, in which case the offspring is normal.
This could be modeled simply by adding a random factor to the if statement in the modifyChild()
callback.

12.3 Simulating gene drive
There has recently been a lot of buzz about a new genetic-engineering technology called

CRISPR/Cas9 that allows genetic modifications to be performed much more quickly and easily
than previous methods (Doudna & Charpentier 2014). One potential application of the CRISPR/
Cas9 machinery is to use it for the construction of a so-called gene drive, which can quickly drive
genetically modified alleles to high frequency in a population even if they carry a fitness cost. We
will here refer to a CRISPR/Cas9-based gene drive with the term mutagenic chain reaction, or
MCR.

The basic idea of MCR is that the CRISPR/Cas9 machinery embedded into the organism’s
genome could cause the machinery itself to be spliced into any homologous chromosome that
does not already contain it. If a fertilized egg ends up with one copy of the MCR machinery,
inherited from one parent, the machinery could then splice itself into the homologous
chromosome in the egg, changing the egg from being heterozygous to homozygous for the MCR
locus. This is in some ways similar to the idea of meiotic drive (see section 15.15) and related
concepts in evolutionary biology, and it clearly underlines the fundamental truth of the “selfish
gene” perspective: an MCR gene of this type could, as we shall see, spread to fixation in a
population even if it has a deleterious fitness effect at the level of the individual organism. Such
selfish genes can even drive a species to extinction, in extreme cases.

Just for fun, we’re going to make this model relatively complex in terms of population structure,
and we’re going to introduce spatial variation in selection using a mutationEffect() callback as
well. We’ll build this model one step at a time, starting with the demographic structure:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 238

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "f", -0.1); // MCR complex
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 for (i in 0:5)
 sim.addSubpop(i, 500);
 for (i in 1:5)
 sim.subpopulations[i].setMigrationRates(i-1, 0.001);
 for (i in 0:4)
 sim.subpopulations[i].setMigrationRates(i+1, 0.1);
}
10000 late() { sim.simulationFinished(); }

This sets up a six-subpopulation stepping-stone model, similar to that previously discussed in
section 5.3.1. Note that migration in this model is primarily from p5 down to p0; the migration
rate in that direction is a hundred times higher than in the direction from p0 up to p5:

The code above sets up a mutation type m2 for the MCR complex, but doesn’t use it, so at
present this is just a simulation of neutral drift in a stepping-stone model. Let’s start using mutation
type m2, although not yet with its planned MCR capabilities, by adding a little code to introduce an
m2 mutation and track its fate (replacing the final script block in the previous model):

100 late() {
 p0.genomes[0:49].addNewDrawnMutation(m2, 10000);
}
100:10000 late() {
 if (sim.countOfMutationsOfType(m2) == 0)
 {
 fixed = any(sim.substitutions.mutationType == m2);
 cat(ifelse(fixed, "FIXED\n", "LOST\n"));
 sim.simulationFinished();
 }
}

The introduction code here simply introduces the mutation into the first 50 genomes of
subpopulation p0, without bothering to randomly select target individuals using sample().
Introducing the mutation into many genomes at once is a quick-and-dirty trick to help an
introduced mutation avoid being lost due to genetic drift at the earliest stages of establishment,
without putting in the machinery to make the simulation truly conditional on establishment as we
did in section 9.3. Biologically, it could be viewed as a large-scale immigration event, or as a

p0

p1

p2

p3

p4

p5

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 239

planned introduction of mutant individuals orchestrated by humans. See section 10.4.3 for
discussion of the Eidos mechanics underlying this mutation introduction code.

This model will generally terminate, perhaps around tick 140, with the message "LOST". This is
because mutation type m2 is strongly deleterious, as presently defined, and so gets eliminated by
selection fairly quickly even though it is initially introduced in fifty copies. Since this is not very
interesting, let’s move on to the next step: making mutation type m2 strongly beneficial in
subpopulation p0 and strongly deleterious in subpopulation p5, with gradations in between, using
a mutationEffect() callback:

mutationEffect(m2) {
 return 1.5 - subpop.id * 0.15;
}

This mutationEffect() callback uses subpop.id, the identifier of the subpopulation in which
the mutation is presently being evaluated, to generate a fitness of 1.5 for p0, but a fitness of 0.75
for p5. If we run the model now, we see that it soon reaches an equilibrium state of migration-
selection balance:

It is at high frequency in p0 – nearly fixed, but prevented from fixing completely by gene flow
from p1. It is essentially absent from p5, on the other hand, since it is weeded out by selection,
and since gene flow in the p0 to p5 direction is so weak. The model will tend to maintain this
dynamic equilibrium.

Let’s add the modifyChild() callback that implements the MCR behavior of m2:

100:10000 modifyChild() {
 mut = sim.mutationsOfType(m2);
 if (size(mut) == 1)
 {
 hasMutOnChromosome1 = child.genome1.containsMutations(mut);
 hasMutOnChromosome2 = child.genome2.containsMutations(mut);
 if (hasMutOnChromosome1 & !hasMutOnChromosome2)
 child.genome2.addMutations(mut);
 else if (hasMutOnChromosome2 & !hasMutOnChromosome1)
 child.genome1.addMutations(mut);
 }
 return T;
}

The first line just finds the introduced mutation by searching for it in the list of mutations kept by
the simulation; we could have instead kept a reference to the mutation, following the strategy of
section 9.9 (see section 28.2 for further discussion). The if statement tests whether we found the
MCR mutation; in the final tick of the simulation, when the mutation has either fixed or been lost,
we won’t find it.

p0

p1

p2

p3

p4

p5

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 240

Assuming we do find the MCR mutation, we then check whether the particular child that we are
working with – the target of this modifyChild() operation – has the MCR mutation in either of its
genomes, using the containsMutations() method of Genome. With that information, the rest is
simple: if it is in one genome but not the other, we add the MCR mutation to the genome that
doesn’t already contain it, just as the CRISPR/Cas9 gene drive machinery for MCR would do in an
actual organism. If neither genome of the target contains the MCR gene, or if both genomes do,
we leave the child as it is. Finally, we return T, indicating that the child in question should in fact
be generated (a return of F would suppress generation; we saw an example of this in section 12.2).

If we recycle and run this model, it shows a consistent behavior of rapid fixation, even in the
subpopulations where it is deleterious, and even despite having to “swim upstream” against the
predominant direction of gene flow. At the moment just prior to complete fixation, the model
looks something like this (note that once the mutation actually fixes, it is removed from the
simulation and replaced by a substitution object, so the populations revert to yellow):

Incidentally, in snapshots like the one above, we’ve been using the Population Visualization
graph to see the state of the model, because it is a bit more informative than the default population
view, which doesn’t show population connectivity:

This display shows every individual in the model, colored according to its fitness, but it lacks
the connectivity arrows in the Population Visualization plot.

For reference, here is the full gene drive model with all of the components introduced above:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "f", -0.1); // MCR complex
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}

p0

p1

p2

p3

p4

p5

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 241

1 early() {
 for (i in 0:5)
 sim.addSubpop(i, 500);
 for (i in 1:5)
 sim.subpopulations[i].setMigrationRates(i-1, 0.001);
 for (i in 0:4)
 sim.subpopulations[i].setMigrationRates(i+1, 0.1);
}
100 late() {
 p0.genomes[0:49].addNewDrawnMutation(m2, 10000);
}
100:10000 late() {
 if (sim.countOfMutationsOfType(m2) == 0) {
 fixed = any(sim.substitutions.mutationType == m2);
 cat(ifelse(fixed, "FIXED\n", "LOST\n"));
 sim.simulationFinished();
 }
}
mutationEffect(m2) {
 return 1.5 - subpop.id * 0.15;
}
100:10000 modifyChild() {
 mut = sim.mutationsOfType(m2);
 if (size(mut) == 1) {
 hasMutOnChromosome1 = child.genome1.containsMutations(mut);
 hasMutOnChromosome2 = child.genome2.containsMutations(mut);
 if (hasMutOnChromosome1 & !hasMutOnChromosome2)
 child.genome2.addMutations(mut);
 else if (hasMutOnChromosome2 & !hasMutOnChromosome1)
 child.genome1.addMutations(mut);
 }
 return T;
}

It has been proposed that MCR could have many compelling applications, such as driving
particular mosquito species – those that carry important human diseases such as malaria – toward
extinction, or at least driving a potentially deleterious gene for resistance to diseases like malaria
toward fixation in those mosquito species. To know whether such proposals are realistic, however,
we need to model them. In this section we developed a simple toy model of MCR; a model useful
for real-world prediction would need many additional ramifications, of course, but this is a starting
point for further exploration.

12.4 Suppressing hermaphroditic selfing
In section 6.3.1, it was noted that a low rate of selfing will normally be observed in SLiM in

hermaphroditic models, even when the selfing rate is explicitly set to zero. This occurs because
SLiM chooses each of the parents in a biparental mating randomly (weighted according to fitness),
and does not explicitly prevent the same individual from being chosen as both parents. Normally
this does not present a problem; it is typically a very small effect, and indeed it is sometimes
desirable since the model will then better match the predictions from some simple analytical
models. Sometimes, however, this selfing does prove to be an issue (particularly with small
effective population sizes or high variance in fitness). In such cases, it can be prevented with a
call at the beginning of the initialize() callback of your script:

initializeSLiMOptions(preventIncidentalSelfing=T);

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 242

Before this option was added to SLiM, preventing incidental selfing required a simple
modifyChild() callback. This recipe is probably mainly of historical interest, since it has been
superseded by the configuration flag shown above; but it has been retained in the cookbook as an
illustration of how modifyChild() callbacks can be used to perform simple changes to mating
behavior of this sort. The original, now-obsolete recipe used this callback:

modifyChild()
{
 // prevent hermaphroditic selfing
 if (parent1 == parent2)
 return F;
 return T;
}

This can simply be dropped in to more or less any hermaphroditic model, such as this:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
2000 late() { sim.outputFixedMutations(); }

It will then suppress the selfing events, by returning F (and thus suppressing the proposed child)
whenever the two parents of the proposed child are the same. This could be implemented as a
mateChoice() callback instead, by changing the weight for the already-chosen first parent to 0, but
that would be much slower since a modified mating-weights vector would have to be built for
each mating event. Often, as here, suppressing specific mating combinations is most easily and
efficiently done with a modifyChild() callback instead.

There are two caveats. The first is that if you turn selfing on in your model this modifyChild()
callback will then cause your model to hang, because SLiM will keep trying to satisfy your
requested selfing rate, whereas the callback will keep preventing it from doing so. If you need to
attain exactly the requested selfing rate, however, while suppressing the background selfing events
generated randomly by SLiM, you can just add a check of the isSelfing flag provided to the
modifyChild() callback (see section 26.5). For selfing events that are intended by SLiM to satisfy
the requested selfing rate, this flag will be T; for any additional background selfing events caused
by random mate choice, this flag will be F. Suppressing only the selfing events in which
isSelfing is F ought to produce the desired effect. (You could also do a bit of math and set an
adjusted selfing rate that accounts for the background selfing rate, but that is more error-prone.)

The other caveat is that if you define other modifyChild() callbacks as well, you might want to
think about how the multiple callbacks will stack together. Typically you would want this selfing-
suppression callback to occur first in the chain, and thus you would want to define it earliest in
your script. See section 26.11 for discussion of this issue.

12.5 Tracking separate sexes in script
SLiM can model separate sexes automatically, and can even model sex chromosomes rather

than autosomes, as shown in sections 6.2.1–6.2.3. Sometimes, however, it proves useful to track
the sex of individuals yourself in script, rather than using SLiM’s built-in facility for this. This can
come up when modeling unusual mating systems, or unusual patterns of inheritance, for example.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 243

In general, if you are trying to develop a sexual model in SLiM and you are running into
limitations, consider whether tracking the sex of individuals yourself in script could provide the
additional flexibility needed.

The basic technique is extremely simple:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 500);
 p1.individuals.tagL0 = repEach(c(F,T), 250); // f==F, m==T
}
modifyChild() {
 if (parent1.tagL0 == parent2.tagL0)
 return F;
 child.tagL0 = (runif(1) <= 0.5);
 return T;
}
1: late() {
 catn("Sex ratio (M:M+F): " + mean(p1.individuals.tagL0));
}
2000 late() { sim.outputFixedMutations(); }

The initialize() callback is boilerplate; there is nothing to discuss there.
After creating subpopulation p1, we initialize p1.individuals.tagL0 with values of F for

females and T for males using a vectorized property assignment; the 500 values generated by
repEach() are assigned, one-to-one, into the tagL0 properties of the 500 individuals in p1 (see the
Eidos value for further discussion of vectorized property assignment). The tagL0 property is a
scratch space of type logical provided by SLiM that models can use for any purpose; here we will
use it to store the sex of individuals. The first 250 individuals are female, the second 250 are male,
as set up with repEach(); this particular configuration is of no consequence in this model, but it's
good to start with an even sex ratio, at least. The meanings of T and F in this model are purely
conventional, but they make it very easy to calculate the sex ratio with the standard meaning of
M:M+F, using mean(), because Eidos functions such as mean() and sum() commonly treat F as 0
and T as 1; the mean of a logical vector is thus the fraction of T values in that vector, and so here
it is the population’s male fraction. We leverage this to print the sex ratio every tick in the
1: late() event.

The heart of this recipe is the modifyChild() callback:

modifyChild() {
 if (parent1.tagL0 == parent2.tagL0)
 return F;
 child.tagL0 = (runif(1) <= 0.5);
 return T;
}

This does two things. First, it enforces that one parent must be female and one must be male; if
both parents are the same sex it returns F, which rejects the proposed child and draws new
parents. Second, it draws the sex of the offspring by comparing runif() to a threshold probability

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 244

of 0.5, and assigns it into the child's tagL0 property, and then returns T to accept the proposed
child.

When SLiM is managing sexes for you, it always ensures that the first parent is the female and
the second parent is the male. If you want to do the same, you can replace the if() test above
with a more stringent test:

 if (parent1.tagL0 == T)
 return F;
 if (parent2.tagL0 == F)
 return F;

That doesn’t matter in this model, but when doing more complex things it can be convenient to
know which parent is which.

When run, this model prints the sex ratio in every tick, to ensure that things are going smoothly.
The ratio will fluctuate around 0.5 stochastically, since the sex of every offspring is determined by
rdunif():

Sex ratio (M:M+F): 0.468
Sex ratio (M:M+F): 0.434
Sex ratio (M:M+F): 0.496
Sex ratio (M:M+F): 0.512
Sex ratio (M:M+F): 0.48
...

If an exact sex ratio is desired, one could simply set p1.individuals.tagL0 to repEach(c(F,T),
250) in a late() event in every tick, as we did here for the initial subpopulation; or one could
modify the logic of the modifyChild() callback, probably using an externally initialized counter.

This is the whole model; tracking sex in script is really quite trivial. The greater flexibility of this
approach should be apparent: all of the rules governing sex are explicitly written in the script, such
as (1) the initial configuration of sex in the population, (2) the rules for who can mate with whom,
and (3) the rules for how the sex of the offspring is determined. Modeling a system like Wolbachia
infection, which has various effects upon the sex of its host, would be a straightforward extension.

This section’s recipe is a WF model, but to fully utilize the additional flexibility provided by
tracking sex yourself in script, a nonWF model is often best; section 15.20 provides an example.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 245

13. Phenotypes, fitness functions, quantitative traits, and QTLs

Thus far we have focused on models in which the fitness effect of a mutation depends upon its
selection coefficient. The fitness effect might vary depending on time, or on the subpopulation in
which it is found; but still, a mutation’s effect on the fitness of its carrier could be expressed in the
form of a selection coefficient (at a given time, in a given environment). This idea of a “selection
coefficient” assumes that a locus directly determines a discrete Mendelian trait (like peas that are
wrinkled or smooth, yellow or green), and that a given mutation at that locus therefore has a
predictable fitness effect – beneficial, neutral, or deleterious – in a given environment.

In section 10.3.1, however, we looked at a model of epistasis that violated this simple
assumption. A mutation subject to epistasis has different fitness effects depending upon the
genetic background in which it is found – sometimes beneficial on one genetic background, but
deleterious on a different background. Epistasis is a special case of quantitative genetics. In this
chapter we will explore how to build quantitative genetics models in SLiM.

Quantitative genetics is concerned with phenotypic traits that are polygenic: governed by
multiple loci, called quantitative trait loci or QTLs. Quantitative genetics partitions the effects of
QTLs into additive and non-additive effects. The effects of QTLs are additive if the phenotypic
effects of the QTLs can be added together to predict the final phenotype. For example, suppose
SNP A increases human height by 2 cm, SNP B by 6.5 cm, and SNP C by 0.3 cm (these SNPs
being located in different QTLs, in different areas of the chromosome). If these effect sizes are
additive, an individual possessing all three SNPs would be expected to be 8.8 cm taller than an
individual possessing none of them. We will focus upon additive effects here, for simplicity, but
non-additive effects can also be modeled in SLiM (as, indeed, we saw in section 10.3.1).

Continuous-valued phenotypic traits like height, lifespan, fertility, intelligence, dispersal
distance, and elevational preference are likely to be quantitative traits – they are probably
governed by many QTLs of relatively small effect size, rather than just one Mendelian locus. Such
phenotypes may also be influenced by other factors, such as the environment (through phenotypic
plasticity), random chance (often called “environmental variance” or “developmental noise”),
maternal effects, and so forth; the degree to which they are determined by the additive effects of
QTLs is, roughly speaking, the heritability of the trait. (A good textbook on quantitative genetics
would, of course, clarify many of these concepts, which are being defined rather loosely here.)
Heritability and non-genetic effects can also be modeled in SLiM, as we will see in later sections.

In short, then: in this chapter we will model quantitative phenotypic traits that are governed by
multiple QTLs. Selection will act upon the phenotype, not upon the individual QTLs; we will
therefore deal not with selection coefficients, but with QTL effect sizes. These effect sizes will
additively determine the phenotypic trait value, expressed as a number (like height, expressed in
cm). The fitness of a particular phenotypic trait value will then be determined by a fitness function
that expresses the relationship between phenotype and fitness. A particular QTL mutation might
be beneficial against one genetic background (if, added together with all other QTL effect sizes, it
produces a fitter phenotype), but deleterious against a different genetic background (if, added
together with all other QTL effect sizes, it produces a less-fit phenotype). This is epistasis writ
large; but as long as we focus on additive effects the models will remain quite simple.

The recipes we will look at in this chapter will use a variety of strategies to implement
quantitative traits, but a common element across all of them is that the effect size of each QTL
mutation will need to be kept somewhere; each QTL mutation will have a particular additive effect
size that will be determined when the mutation is created, and will be fixed thereafter. Since these
QTL mutations have no meaningful selection coefficient, we will often re-purpose the
selectionCoeff property of Mutation as a convenient place to store the effect size, as we will first
see in section 13.2. However, there is nothing magical about using the selectionCoeff property

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 246

for this purpose, and the recipe of section 13.5 will store mutation effect sizes using the
setValue() / getValue() mechanism of Dictionary instead (see the Eidos manual for details).

Another common element is that the fitness function will need to be implemented in script, and
will need to influence the fitness of individuals somehow. There are two good ways to do this in
SLiM, neither of which we have seen before now (since fitness has generally been based upon
selection coefficients): fitnessEffect() callbacks, and the fitnessScaling property.

A fitnessEffect() callback is not specific to a particular mutation type like a normal
mutationEffect() callback (see chapter 10), and it is not called on a per-mutation basis. Instead,
fitnessEffect() callbacks are called once per individual per cycle, and can provide a per-
individual fitness effect that gets multiplied together with all of the other fitness effects in the
model to produce the fitness of an individual (see section 26.3). In section 13.1, we will use a
fitnessEffect() callback to implement the fitness function for a simple polygenic trait.

The fitnessScaling property is actually quite similar, but it is a property of Individual rather
than being a callback. This property has a default value of 1.0, and it is reset to 1.0 in every cycle,
but script can set it to whatever fitness effect is desired for an individual. It value will be
multiplied together with all of the other fitness effects in the model, just like the result of a
fitnessEffect() callback, to produce the fitness of an individual. Using fitnessScaling can be
faster and more convenient than a fitnessEffect() callback because it can be used in a
vectorized fashion, allowing fitness effects to be determined across whole subpopulations with a
single vectorized assignment. We will use fitnessScaling in most of the recipes in this chapter.

Sections 15.7 and 15.9 provide QTL-based nonWF models, and chapter 16 provides QTL-based
continuous-space models, building upon the conceptual foundation established here.

13.1 Polygenic selection
Our first quantitative trait model will be a model of polygenic selection in which QTLs of fixed

effect size produce a phenotypic trait value that depends simply upon the total number of QTL
mutations that exist in an individual’s genomes. Since QTLs need to continue to affect phenotype
even after they fix, we will need to use the convertToSubstitution property of MutationType to
suppress the substitution of the QTL mutations, as in the epistasis example of section 10.3.1. Here
is the complete model, which is quite short:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "f", 0.0); // QTLs
 m2.convertToSubstitution = F;
 m2.color = "red";
 initializeGenomicElementType("g1", m1, 1);
 initializeGenomicElementType("g2", m2, 1);
 initializeGenomicElement(g1, 0, 20000);
 initializeGenomicElement(g2, 20001, 30000);
 initializeGenomicElement(g1, 30001, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
fitnessEffect() {
 phenotype = sum(individual.genomes.countOfMutationsOfType(m2));
 return 1.5 - (phenotype - 10.0)^2 * 0.005;
}
5000 late() {
 print(sim.mutationFrequencies(NULL, sim.mutationsOfType(m2)));
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 247

The initialize() callback here sets up a chromosome with a genomic element of type g2 in a
central locus, generating QTL mutations of mutation type m2 that are under polygenic selection;
the rest of the chromosome uses g1 and m1, generating neutral mutations. We set m2 mutations not
to convert to substitutions when it fixes, and to display in red in SLiMgui.

The fitnessEffect() callback sets up the conditions for polygenic selection. It is called once
per individual per cycle, and implements the fitness function that converts individual phenotypic
trait values into fitness effects. Since m1 and m2 mutations are intrinsically neutral in this model
(i.e., have a fixed selection coefficient of 0.0), the fitnessEffect() callback is the sole
determinant of individual fitness here. It implements a quadratic fitness function, with fitness
being highest when exactly ten m2 mutations are possessed, falling away for counts of m2 mutations
both lower and higher than that optimum. With this particular fitness function the initial fitness,
with no m2 mutations, is 1.0; at the optimum, with ten m2 mutations, it is 1.5.

Let’s look more closely at how this fitnessEffect() callback works. First it counts the total
number of mutations of type m2 on both chromosomes of the focal individual, using the
countOfMutationsOfType() method we saw in the previous section, and assigns that value to the
variable phenotype. To do this, it first gets individual.genomes, which is a vector containing both
of the focal individual’s genomes, then calls countOfMutationsOfType() on that vector to produce
a result vector with the counts for each of the two genomes, and then uses sum() to add the two
values together to get the phenotypic trait value, phenotype. (As with mutationEffect() callbacks,
individual is a pseudo-parameter to the callback, automatically set up by SLiM to refer to the
focal individual for which the callback is being called.) Then the callback does a little arithmetic
to compute a fitness effect from phenotype, and returns the result. SLiM will multiply this together
with any other fitness effects in the model to produce the fitness of the focal individual. The fitness
function itself is a simple quadratic function; the distance of phenotype from the phenotypic
optimum, 10.0, is squared and scaled, and then subtracted from 1.5. The result is that an
individual at the phenotypic optimum has a scaled squared deviation of 0.0 and thus a fitness of
1.5, whereas an individual with a phenotype of 0.0 has a scaled squared deviation of 0.5 and thus
a fitness of 1.0.

Running this recipe in SLiMgui shows the expected dynamics: within the QTL (the genomic
element where m2 mutations are generated), five m2 mutations arise and drive to fixation fairly
rapidly, and the model then stabilizes at equilibrium. Many new m2 mutations continue to flicker
in and out of existence in that locus, but once five have fixed (producing a phenotype value of
10.0 for homozygous individuals), further m2 mutations will produce a lower fitness value, and will
therefore be very unlikely to fix. The final state:

The 5000 late() event produces a line of output at the end of the model run. First it fetches a
vector of the m2 mutations present in the model (including any fixed mutations, since
m2.convertToSubstitution is F). Then it calls the Species method mutationFrequencies() to get
the frequency of each mutation as a new float vector, which it prints. (The NULL value passed to
mutationFrequencies() indicates that population-wide frequencies are desired, rather than
frequencies within a particular subpopulation.) The result, for the run shown above, is:

1 0.08 1 1 1 1 0.001

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 248

This shows that five m2 mutations have reached fixation (a frequency of 1), producing the
optimum phenotype value of 10, while two other m2 mutations are segregating at low frequencies.

It is important to understand why this model used a fitnessEffect() callback instead of a
mutationEffect(m2) callback. In essence, a mutationEffect(m2) callback would tell SLiM the
fitness effect of a particular focal m2 mutation – but that is a bit complicated, in this model. As
explained at the beginning of this chapter, QTL mutations don’t have a well-defined selection
coefficient or fitness effect; their fitness effect is only well-defined when they are considered in
aggregate, because their relationship to fitness is fundamentally epistatic. It would be possible, of
course, for each m2 mutation to calculate a de facto fitness effect, by counting the number of other
m2 mutations present in the focal individual’s genomes, calculating the resulting overall fitness
effect, and then allocating a proportional share of that overall fitness effect back to itself; but that
would be both slow and roundabout. Conceptually, the fitness of each individual depends, with a
simple formula, upon the number of m2 mutations it possesses, and so it makes sense to implement
the model that way.

13.2 A simple model of variable QTL effect sizes
The previous section’s recipe was based upon the simplifying assumption of a fixed effect size

for all of the QTL mutations. In this model we remove that assumption: different QTL mutations
will now have different effect sizes, drawn from a normal distribution. These effect sizes will be
kept, for convenience, in the selectionCoeff property of the QTL mutations, but they will not be
used as selection coefficients. We will also abandon the fitnessEffect() callback that we used
in section 13.1, and instead use the fitnessScaling property of Individual to impose fitness
effects upon the individuals in the model, as discussed in the chapter introduction. The full model:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "n", 0.0, 0.5); // QTLs
 m2.convertToSubstitution = F;
 initializeGenomicElementType("g1", m1, 1);
 initializeGenomicElementType("g2", m2, 1);
 initializeGenomicElement(g1, 0, 20000);
 initializeGenomicElement(g2, 20001, 30000);
 initializeGenomicElement(g1, 30001, 99999);
 initializeRecombinationRate(1e-8);
}
mutationEffect(m2) { return 1.0; }
1 early() { sim.addSubpop("p1", 500); }
1: late() {
 inds = sim.subpopulations.individuals;
 phenotypes = inds.sumOfMutationsOfType(m2);
 inds.fitnessScaling = 1.5 - (phenotypes - 10.0)^2 * 0.005;

 if (sim.cycle % 100 == 0)
 catn(sim.cycle + ": Mean phenotype == " + mean(phenotypes));
}
5000 late() {
 m2muts = sim.mutationsOfType(m2);
 freqs = sim.mutationFrequencies(NULL, m2muts);
 effects = m2muts.selectionCoeff;
 catn();
 print(cbind(freqs, effects));
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 249

Many aspects of this model, such as the genetic structure and the fitness function, have been
kept the same as in the previous section so that the aspects of the design that have changed can be
seen more clearly. The initialize() callback is the same except that mutation type m2 is now
configured to draw its selection coefficients from a normal distribution with mean 0.0 and
standard deviation 0.5 (and m2 is no longer colored red).

SLiM will not use these selection coefficient values; m2 mutations will be neutral as far as SLiM
is concerned, because of the new mutationEffect(m2) callback we defined above:

mutationEffect(m2) { return 1.0; }

This tells SLiM, in a nutshell, “pay no attention to the selection coefficients for m2; m2 mutations
are always neutral, period.” So now the selectionCoeff property on the m2 mutations is ours to
play with, but it is conveniently pre-filled by SLiM with values drawn from the normal distribution
we specified in initializeMutationType(). (Sneaky, eh?) We will use these values as effect sizes
when we calculate phenotypic trait values in the 1: late() event we defined above. Let’s review
that event’s code:

1: late() {
 inds = sim.subpopulations.individuals;
 phenotypes = inds.sumOfMutationsOfType(m2);
 inds.fitnessScaling = 1.5 - (phenotypes - 10.0)^2 * 0.005;

 if (sim.cycle % 100 == 0)
 catn(sim.cycle + ": Mean phenotype == " + mean(phenotypes));
}

We set up inds to be a vector of all the individuals. Next, inds.sumOfMutationsOfType(m2)
calculates, for each individual in inds, the sum of the selection coefficients of all m2 mutations in
the individual’s genomes. This method is tailor-made for QTL-based models where selection
coefficients are actually effect sizes; the sum of the selection coefficients is then the phenotypic
trait value (or more precisely, the additive component of it; we are ignoring non-additive effects for
now). So this line computes the phenotypic trait values of all of the individuals in the model, and
stores that vector in phenotypes. The next line calculates the fitness effects for those phenotypes,
again in a single vectorized calculation. It is the same fitness function equation as in section 13.1,
but here phenotypes is a vector, and so the result is a vector. That result is assigned back into
inds.fitnessScaling; this is a vectorized property assignment, in which each element of the result
is assigned into the fitnessScaling property of the corresponding element of inds. This line,
then, calculates the fitness effect of each individual’s phenotype and puts the result into that
individual’s fitnessScaling property. (See the Eidos manual for further discussion of vectorized
method calls, calculations, and assignments.) These fitnessScaling property values will have a
multiplicative effect upon the fitness of the individuals, as desired, similarly to how the
fitnessEffect() callbacks influenced individual fitness in section 13.1’s model.

The last two lines of the event just produce output; every 100 ticks the model prints a summary
line that gives the cycle number and the mean phenotypic trait value, such as:

100: Mean phenotype == 0.0533152
200: Mean phenotype == 1.05143
300: Mean phenotype == 1.59688
...
4800: Mean phenotype == 10.0042
4900: Mean phenotype == 10.014
5000: Mean phenotype == 9.94105

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 250

The phenotypic optimum at 10.0 is reached by tick 3100 or so, in fact; after that the model just
wobbles around on the peak of the fitness function. At the end of the model run, the 5000 late()
event produces some final output, in the form of a table of frequencies and effect sizes:

 [,0] [,1]
 [0,] 0.001 0.767606
 [1,] 1 0.477175
 [2,] 1 0.906239
 [3,] 0.034 -0.0489351
 [4,] 1 0.884906
 [5,] 1 0.433817
 [6,] 0.359 -0.1595
 [7,] 1 0.348028
 [8,] 0.004 0.440343
 [9,] 1 0.165444
[10,] 1 0.561426
[11,] 1 0.231208
[12,] 0.002 0.0837105
[13,] 0.007 0.787386
[14,] 1 0.472853
[15,] 1 0.541729
[16,] 0.022 0.524584
[17,] 0.359 -0.0856977
[18,] 0.115 -0.531236
[19,] 0.006 0.300258
[20,] 0.006 -0.0756474
[21,] 0.039 -0.167648
[22,] 0.359 0.238666
[23,] 0.045 -0.00518997
[24,] 0.017 -0.433331
[25,] 0.068 0.0859256

This is a two-column matrix, constructed by cbind(); we haven’t used matrices much in this
manual, but they are supported by Eidos and work similarly to how they work in R (see the Eidos
manual for details). Here it is just a convenient way to produce the two-column output we want,
with frequencies of m2 mutations in the left column and effect sizes in the right column. Ten of
the m2 mutations have a frequency of 1 (i.e., have fixed). The sum of the effect sizes of these ten
mutations is 5.022825; when present in two copies (since these are diploid individuals), the
additive phenotypic effect of these mutations is 10.04565. These mutations, then, get the
population almost exactly to the fitness peak. The remaining mutations are mostly segregating at
low frequencies; probably most of them will not fix, since most of them would take population
further away from the fitness peak, but a few of them are either slightly beneficial (on the
background of fixed mutations) or are only very slightly deleterious; those mutations have chances.

This recipe has two main points. One is to introduce the idea of keeping QTL effect sizes in the
selectionCoeff property of the mutations, while rendering those mutations neutral despite their
non-zero selection coefficients by writing a mutationEffect() callback that declares them neutral.
There are other places we could keep these effect size values, but using selectionCoeff for this
purpose is immensely convenient. The other main point here is to introduce the use of
fitnessScaling as a way to modify the fitness of individuals. The fitnessScaling property can be
used for all sorts of purposes besides implementing QTL models, as we will see in later chapters;
but it is a very good way to handle QTL-based fitness effects because it enables extremely efficient
vectorized fitness calculations, as we saw in this recipe.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 251

13.3 A model of discrete QTL effects with a structured chromosome
This recipe is an extension of the recipe in section 13.2. Like that recipe, it models a

phenotypic trait based upon multiple loci with additive effects. However, rather than just having a
genomic element within which new QTL mutations can arise at random, this recipe will model
exactly 10 QTLs, each spanning a single base position, and each of which can have an effect size
of either −1 or +1. Such a design, with a fixed number of loci of discrete effect sizes, is common
for models of quantitative traits, so it is worthwhile to explore how to simulate them in SLiM.

There are several other extensions in this recipe, compared to section 13.2; we will discuss
them as they arise. For now, we will start with the initialization portion of the recipe:

initialize() {
 initializeMutationRate(1e-6);

 // neutral mutations in non-coding regions
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);

 // mutations representing alleles in QTLs
 scriptForQTLs = "if (runif(1) < 0.5) -1; else 1;";
 initializeMutationType("m2", 0.5, "s", scriptForQTLs);
 initializeGenomicElementType("g2", m2, 1.0);
 m2.convertToSubstitution = F;
 m2.mutationStackPolicy = "l";

 // set up our chromosome: 10 QTLs, surrounded by neutral regions
 defineConstant("C", 10); // number of QTLs
 defineConstant("W", 1000); // size of neutral buffer on each side
 pos = 0;
 q = NULL;

 for (i in 1:C)
 {
 initializeGenomicElement(g1, pos, pos + W-1);
 pos = pos + W;

 initializeGenomicElement(g2, pos, pos);
 q = c(q, pos);
 pos = pos + 1;

 initializeGenomicElement(g1, pos, pos + W-1);
 pos = pos + W;
 }

 defineConstant("Q", q); // remember our QTL positions

 // we want the QTLs to be unlinked; build a recombination map for that
 rates = c(rep(c(1e-8, 0.5), C-1), 1e-8);
 ends = (repEach(Q + W, 2) + rep(c(0,1), C))[0:(C*2 - 2)];
 initializeRecombinationRate(rates, ends);
}

This sets up two mutation types: m1, representing neutral mutations, and m2, representing
mutations at QTLs. The m2 mutation type draws its mutational effects from a user-specified
distribution, rather than from one of SLiM’s built-in mutational distributions. It does this by
specifying the mutation type as "s", for “script”, and then supplying a short Eidos snippet as a
string parameter. That snippet is run as a lambda (see section 20.5) by SLiM whenever it needs to

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 252

draw a new selection coefficient. The m2 mutation type is also set not to be removed when it fixes,
because QTLs should continue to influence phenotype even after fixation (see section 1.5.2).
Finally, it is set to use a “last mutation” stacking policy, so that when a new mutation occurs at a
given QTL it replaces the allele that was previously at that site, rather than “stacking” with it as is
SLiM’s default behavior (see section 1.5.3).

Two genomic element types are also set up by this code: g1, representing neutral buffer zones
around the QTLs, and g2, representing the QTLs themselves. The rest of this initialize()
callback sets up the chromosome by tiling these two genomic element types. The genetic structure
used here simulates ten separate chromosomes, with one QTL on each, using a recombination rate
of 0.5 between specific pairs of bases to subdivide the chromosome object into separate “effective
chromosomes” that have no linkage between them (see section 6.1.4, which introduced this
technique). This model places each QTL at the center of its effective chromosome, with 1000 bases
on each side experiencing neutral mutations, but those choices are easily changed.

This model makes somewhat liberal use of the defineConstant() function of Eidos to set up
constants related to the genomic structure of the simulation. Defined constants are much like
variables, except that they cannot be redefined (except by removing them with rm() first), and they
persist for the lifetime of the simulation rather than disappearing at the end of the callback in
which they are defined. They are thus very useful for symbolically representing model parameters;
this model also defines a constant Q to remember the positions of all of the QTLs being simulated.

After this initialization() callback has run, the genetic structure of the simulation looks like
this in SLiMgui (with display of genomic elements and recombination rates enabled):

This shows the pattern of non-coding regions and QTLs (bottom), and the recombination
breakpoints that define the breaks between effective chromosomes in the model (top).

Next we will set up the initial population state:

1 late() {
 sim.addSubpop("p1", 500);
 sim.addSubpop("p2", 500);

 // set up migration; comment these out for zero gene flow
 p1.setMigrationRates(p2, 0.01);
 p2.setMigrationRates(p1, 0.01);

 // replicate the s1 event to output in tick 2 also
 community.registerEarlyEvent("s2", s1.source, 2, 2);

 // optional: give m2 mutations to everyone, as standing variation
 g = sim.subpopulations.genomes;

 for (q in Q)
 {
 isPlus = asLogical(rbinom(size(g), 1, 0.5));
 g[isPlus].addNewMutation(m2, 1.0, q);
 g[!isPlus].addNewMutation(m2, -1.0, q);
 }
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 253

This model incorporates a two-subpopulation structure, with limited gene flow between the
subpopulations. The two subpopulations will experience different environments that are selecting
for different optima; unlike the “spatially varying selection” model of section 10.2, however, the
two environments are selecting for different phenotypes, as determined by the additive effects of
the underlying QTLs, rather than just exerting differential selection on each individual locus. That
differential selection will be implemented below; for now we just set up the subpopulations and
migration rates. This event also contains a call to registerEarlyEvent() that will not run right
now; if you want to run the model at this stage you will need to comment that out. It will be
explained below.

The latter half of the event is optional; it sets up the initial state of the QTLs in the model by
placing initial mutations in them. It does this by looping over all of the QTL positions (as stored in
Q). For each QTL, it decides whether each genome in the simulation will start with a + or a −
allele, by drawing from a binomial distribution. It then distributes the + and − alleles to all of the
genomes by calling addNewMutation() to add a + or − allele to each genome. For a given QTL,
this code results in just two mutation objects being created, by calling addNewMutation() just once
for the + allele and once for the − allele (rather than once per genome), using vectorized method
calls; section 10.4.3 discusses this distinction further. Here this is a non-essential detail, but it
improves the efficiency of the model since fewer mutation objects need to be tracked by SLiM.
This whole initialization loop can be removed, in which case the model starts with no QTL
mutations, producing an initial value of zero for each QTL until new mutations arise. That would
be a model of emerging genetic diversity from a clonal population, rather than this model of
selection beginning with a high degree of random standing genetic variation.

Next comes some script to implement the quantitative trait machinery:

mutationEffect(m2) { return 1.0; }
1: late() {
 // evaluate and save the additive effects of QTLs
 for (subpop in c(p1,p2))
 {
 inds = subpop.individuals;
 phenotype = inds.sumOfMutationsOfType(m2);
 optimum = (subpop == p1 ? 10.0 else -10.0);
 inds.fitnessScaling = 1.0 + dnorm(optimum - phenotype, 0.0, 5.0);
 inds.tagF = phenotype;
 }
}

The single-line mutationEffect() callback just renders m2 mutations neutral, since we are using
their selectionCoeff property to hold an additive effect size instead of a selection coefficient (see
section 13.2, which introduced this technique).

The 1: late() callback is more interesting. As in section 13.2, this event calculates the
phenotype of every individual using sumOfMutationsOfType(m2), but here we do it one
subpopulation at a time. That way, in the next line, we can select a different phenotypic optimum
value for p1 versus p2. We use the “trinary conditional” operator of Eidos, ?else, which is
essentially a compact if–else statement within a single expression; in short, optimum is set to 10.0
if we are presently handling p1 in the loop, or -10.0 if we’re on p2. The next line, as in section
13.2, encapsulates the fitness function; here we have switched to a vectorized call to dnorm(),
providing us with a Gaussian fitness function instead of a quadratic. This change is of no great
importance; Gaussian fitness functions are more common in the literature, but the quadratic fitness
function was perhaps conceptually simpler. Note that a baseline of 1.0 is added to the Gaussian
value; this decreases the fitness difference between the most-fit and least-fit individuals.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 254

Finally, we save the phenotypes of all the individuals in their tagF property for future reference,
since we will want to use them for various purposes later on. The tagF property is very similar to
the tag property that we have seen in previous models, except that it stores a float value instead
of an integer. One could also use the getValue() and setValue() methods of Individual to
keep this phenotype state (provided by Eidos class Dictionary; see the Eidos manual), rather than
tagF; that would, however, be substantially slower than using tagF.

There is one more element we would like this model to contain: assortative mating. Unlike the
model of section 11.1, where mating was assortative based upon possession of a single introduced
mutation, here we want mating to be assortative based upon the phenotype produced by the
additive effects of the underlying QTLs; in other words, we want individuals to prefer to mate with
other phenotypically similar individuals, regardless of their underlying genetics. This means that
mating can actually be disassortative at the genetic level, because individuals with the same
phenotype might achieve that phenotype through entirely different QTL alleles. We implement
this with a simple mateChoice() callback (see chapter 11):

mateChoice() {
 phenotype = individual.tagF;
 others = sourceSubpop.individuals.tagF;
 return weights * dnorm(others, phenotype, 5.0);
}

This looks up the phenotype of the focal individual and all other individuals from the tagF
property where it was stored, and uses dnorm() to implement a Gaussian mating preference
function. This mating preference is combined multiplicatively with SLiM’s default fitness-based
mating weight vector, weights, to produce final mating weights. This means that individuals with a
low fitness (due to being maladapted to their environment) will be less likely to be chosen as
mates, but that individuals phenotypically similar to the focal individual that is choosing a mate
will be preferred. Any particular relative weighting of these different priorities could be expressed
by modifying the fitness function and/or the mating weight function in the script; every aspect of
fitness evaluation and mate choice is under complete script control here.

Incidentally, it might be of interest to note that the quantitative trait is now something like a
magic trait, since it is under divergent ecological selection and also influences mate choice.
However, according to the technical definition (Servedio et al. 2011) it is not actually a magic trait,
I think, since it is based upon multiple loci. The individual QTLs might be considered “magic
genes” since they perhaps satisfy the criteria of the formal definition, but since there is epistasis
between them (because of the way they combine additively to determine the quantitative trait that
is actually under selection, as discussed at the beginning of this chapter), it is not entirely clear
how they relate to the usual intuitive meaning of “magic trait”.

In any case, we now end the model with some custom output by tallying up fitnesses,
phenotypes, and frequencies:

s1 2001 early() {
 cat("-------------------------------\n");
 cat("Output for end of cycle " + (sim.cycle - 1) + ":\n\n");

 // Output population fitness values
 cat("p1 mean fitness = " + mean(p1.cachedFitness(NULL)) + "\n");
 cat("p2 mean fitness = " + mean(p2.cachedFitness(NULL)) + "\n");

 // Output population additive QTL-based phenotypes
 cat("p1 mean phenotype = " + mean(p1.individuals.tagF) + "\n");
 cat("p2 mean phenotype = " + mean(p2.individuals.tagF) + "\n");

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 255

 // Output frequencies of +1/-1 alleles at the QTLs
 muts = sim.mutationsOfType(m2);
 plus = muts[muts.selectionCoeff == 1.0];
 minus = muts[muts.selectionCoeff == -1.0];

 cat("\nOverall frequencies:\n\n");
 for (q in Q)
 {
 qPlus = plus[plus.position == q];
 qMinus = minus[minus.position == q];
 pf = sum(sim.mutationFrequencies(NULL, qPlus));
 mf = sum(sim.mutationFrequencies(NULL, qMinus));
 pf1 = sum(sim.mutationFrequencies(p1, qPlus));
 mf1 = sum(sim.mutationFrequencies(p1, qMinus));
 pf2 = sum(sim.mutationFrequencies(p2, qPlus));
 mf2 = sum(sim.mutationFrequencies(p2, qMinus));

 cat(" QTL " + q + ": f(+) == " + pf + ", f(-) == " + mf + "\n");
 cat(" in p1: f(+) == " + pf1 + ", f(-) == " + mf1 + "\n");
 cat(" in p2: f(+) == " + pf2 + ", f(-) == " + mf2 + "\n\n");
 }
}

This relatively complex output code assesses and prints information about the genetic structure
and fitness of each subpopulation at the beginning and end of the simulation; this is a good
illustration of how SLiM’s output can be customized in Eidos. This code runs at the beginning of
tick 2001, so as to produce output regarding the very end of tick 2000, after fitness values have
been calculated; calling cachedFitness() in a late() event in tick 2000 would raise an error, since
fitness values would not yet be available.

Note that the purpose is now clear of the line we saw before:

community.registerEarlyEvent("s2", s1.source, 2, 2);

The output callback is named as script block s1; that line of code replicates it as an early()
event in tick 2, so that it produces output at both the beginning and the end of the run. If SLiM’s
syntax for specifying the ticks in which a callback runs were more general, this trick would not be
needed; at present, however, this is a simple way to achieve what we want.

Running this model produces a bunch of output. Let’s look first at this block of output produced
at the beginning of the run:

Output for end of cycle 1:

p1 mean fitness = 1.02079
p2 mean fitness = 1.02007
p1 mean phenotype = 0.244
p2 mean phenotype = -0.2

and this corresponding block produced at the end of the run:

Output for end of cycle 2000:

p1 mean fitness = 1.06187
p2 mean fitness = 1.06732
p1 mean phenotype = 8.16
p2 mean phenotype = -9.936

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 256

The initial output shows us that the individuals in p1 and p2 began fairly maladapted, with a
mean phenotype near 0.0 and a fitness just over 1.0. They ended quite a bit better adapted; p2 is
almost smack on the optimum of -10.0, and p1 is much closer to its optimum of 10.0 than it was.
The resulting fitness values are also higher, at approximately 1.06; the difference is not large, but
apparently it is enough, in combination with assortative mating, to drive this local adaptation.

There is also output about “Overall frequencies”; for the initial setup, it generally looks
something like this:

 QTL 1000: f(+) == 0.489, f(-) == 0.511
 in p1: f(+) == 0.508, f(-) == 0.492
 in p2: f(+) == 0.47, f(-) == 0.53

This shows that the QTL at position 1000 started at a frequency of close to 0.5, both in the
population as a whole and in p1 and p2 individually. The other QTLs start in a similar state, thanks
to the random initialization they receive in this model. This provides lots of standing genetic
variation at each QTL, but one could use a different initial state if desired.

The situation at the end of the run looks quite different, with some QTL states like this:

 QTL 1000: f(+) == 0.463, f(-) == 0.537
 in p1: f(+) == 0.84, f(-) == 0.16
 in p2: f(+) == 0.086, f(-) == 0.914

This QTL has clearly been selected toward the + allele in p1 and toward the - allele in p2, and is
therefore contributing to the local adaptation achieved by the population.

On the other hand, some other QTLs look quite different:

 QTL 3001: f(+) == 0, f(-) == 1
 in p1: f(+) == 0, f(-) == 1
 in p2: f(+) == 0, f(-) == 1

This QTL has fixed for the - state in both populations. The particular “solution” found by the
model, with some QTLs fixing and some divergent, might be of interest; of even more interest,
perhaps, would be the degree of repeatability of these results across many runs, and whether that
is driven by the particular QTL effect sizes allowed, and so forth. The solution space might be
constrained by the particular genetic configuration we modeled here; it may not be possible for
both subpopulations to reach their optima, for example, because of the constraints imposed by
having exactly ten QTLs with only simple +/- effects.

In SLiMgui, the command Create Haplotype Plot, accessible from the Simulation menu or the
Show Graph pop-up menu button, provides an interesting view of the final state for such a run:

The population has diverged into two very different overall haplotype states, not only at the
QTLs (the thin red and blue vertical lines), but also at neutral sites across the genome (the yellow
vertical lines). The color strip on the left edge shows the population to which each individual
belongs; the two overall haplotype states clearly correspond to the two subpopulations, although
there is a small community of migrants and descendants of migrants that have carried each

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 257

subpopulation’s haplotypes over to the opposite subpopulation. They will tend to mate only
among themselves, which apparently prevents the migration from resulting in very much actual
gene flow. (See section 14.4 for a more extensive discussion of haplotype plots.)

Following up on that observation, assortative mating does appear to be helping divergence
considerably; a sample run with the mateChoice() callback commented out results in considerably
less divergence:

p1 mean fitness = 1.0394
p2 mean fitness = 1.04998
p1 mean phenotype = 3.796
p2 mean phenotype = -5.624

This is true even if the model is run for much longer; indeed, without assortative mating, long
runs of this model can result in all ten QTLs fixing, allowing one population to become fixed near
its optimum while the other population has been dragged to a highly maladapted position. The
model may show various behaviors depending upon the strength of assortative mating and other
details of the formula with which the final mating weights are calculated.

This model includes neutral diversity at loci surrounding each QTL; no attempt has been made
to analyze that here, apart from the superficial haplotype analysis above, but presumably there
might be interesting patterns there related to gene flow, hitchhiking, and so forth. Increasing the
length of the neutral buffers around the QTLs (with the defined constant W), and/or increasing the
recombination rate, would probably be helpful for making these patterns more clear.

13.4 A quantitative genetics model with heritability
In previous sections in this chapter we have seen recipes for quantitative genetics models in

which phenotype was calculated as the additive effect of a set of QTLs, and fitness was determined
by the phenotypic trait value of individuals compared to an environmental phenotypic optimum.
In this section we will extend this type of quantitative genetics model to incorporate heritability,
simulated by adding random deviations (representing “environmental variance” or “developmental
noise” or similar non-heritable effects) to the additive genetic variation of the QTLs. This model is
based much more upon section 13.2 than 13.3; it utilizes QTLs with effect sizes drawn from a
Gaussian distribution, rather than the discrete effect size distribution of section 13.3, and it allows
new QTL mutations to arise spontaneously at any location. Also, like section 13.2, this recipe has
only a single subpopulation, and does not contain assortative mating; we are keeping things simple
here.

The mechanics of this model are quite simple. Here is the entire model except the final output
event and the implementation of heritability:

initialize() {
 initializeMutationRate(1e-6);

 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "n", 0.0, 1.0); // QTL
 m2.convertToSubstitution = F;

 initializeGenomicElementType("g1", c(m1, m2), c(1, 0.01));
 initializeGenomicElement(g1, 0, 1e5 - 1);
 initializeRecombinationRate(1e-8);
}
1 late() {
 sim.addSubpop("p1", 1000);
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 258

1: late() {
 // evaluate QTLs to get phenotypes and fitness
 inds = sim.subpopulations.individuals;
 phenotypes = inds.sumOfMutationsOfType(m2);
 inds.fitnessScaling = 1.0 + dnorm(10.0 - phenotypes, 0.0, 5.0);
 inds.tagF = phenotypes;
}
mutationEffect(m2) {
 return 1.0; // QTLs are neutral; fitness effects are handled below
}

We have seen this sort of QTL-based mechanics before. In brief, QTLs are here represented by
mutation type m2, and the selection coefficient of m2 mutations is used as their additive effect size.
A mutationEffect(m2) callback makes all m2 mutations be neutral regardless of these selection
coefficients. A late() event computes phenotypes using sumOfMutationsOfType(), and then
computes fitness values using a Gaussian fitness function based upon the deviation of phenotypes
of the optimum. The computed phenotypes are also stored in the tagF property for later use.

Note that, as in section 13.3, a baseline value of 1.0 is added to the Gaussian function value
returned by dnorm(). Section 13.3 didn’t really discuss that choice in any detail, however; let’s
embark on that digression now. Fundamentally, the problem is that of trying to choose a function
that provides a reasonable phenotype-to-fitness map. There is not a lot of empirical data to guide
this choice in most systems, so it is a difficult and somewhat arbitrary decision. In a hard selection
model, where low mean population fitness results in a decrease in population size, an appropriate
fitness function might have a minimum value of zero, allowing the modeling of phenomena such
as lethal mutations and population extinction. In such a model, if most individuals have a fitness
of 0.001 and one has a fitness of 0.1 (having just received a beneficial mutation, for example),
most of the individuals will produce no offspring at all, while the individual with fitness of 0.1
might produce just one or two, leading to a very small population in the next generation. This
seems quite reasonable. The same situation in a soft selection model, where population size does
not depend upon mean population fitness, makes considerably less sense, however. In this
scenario, the child generation must be filled with the requisite number of individuals, so the
individual with fitness 0.1 will end up generating most of the offspring – perhaps hundreds or even
thousands of offspring – while all the rest of the individuals survive but generate few or no
offspring. For some organisms this might be realistic, but for many it would be nonsensical – no
matter how much more fit one elephant is than all of the other elephants in Africa, it is not going
to generate thousands of offspring all across Africa all by itself! In short, fitness in soft selection
models works differently than in hard selection models, and is often modeled more appropriately
with a fitness function that does not allow such large differences in relative fitness to exist, so that
one individual does not completely dominate the reproductive output of the population. Adding a
constant value to a Gaussian function is a simple way to achieve this; the larger the constant
added, the more the relative fitness values in the population are effectively homogenized. Using a
constant of 1.0 makes some superficial sense, since 1.0 represents neutrality and the Gaussian
fitness function can then be thought of as representing some marginal increase in fitness beyond
neutrality. However, this constant is actually arbitrary; after the rescaling that is implicit in the
concept of relative fitness, 1.0 will not be neutral anyway. The constant added should probably
therefore be considered to be a free parameter of the model, if a fitness function of this form is
used.

To continue this digression a bit longer, it is also worth noting that if large differences in relative
fitness are allowed in a model, as with the situation above where most individuals have fitness
0.001 and one has fitness 0.1, this can lead to undesirable mate-choice dynamics, too. By default,
SLiM models are hermaphroditic, and while they employ biparental mating by default, they do not

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 259

prevent the same parent from being chosen as both parents in a biparental mating event, resulting
in hermaphroditic selfing. Normally this is not a problem, since for typical population sizes it is
unlikely to occur often enough to make a significant difference to the model’s results. In some
sense it is even desirable, since this behavior means that SLiM’s default configuration mirrors
simple analytical population genetics models more closely; this is the reason why SLiM does not
prevent it by default. However, when there is large variance in fitness or when the effective
population size is very small, the chance of hermaphroditic selfing can become quite high; the
fitness 0.1 individual may be quite likely to be chosen as both parents of a given offspring, and it
may therefore generate most of its offspring through selfing. In that case it may be desirable to
suppress it. See section 12.4 for further discussion of this issue and how to deal with it in SLiM.

QTLs are about 1% of all new mutations, and thus new QTLs arise spontaneously throughout
the run. If they tend to improve the phenotypes of individuals in the population, then they tend to
be retained; if not, they tend to be lost. The population as a whole begins with a mean phenotype
of 0.0, since no QTLs exist. Over the model run, the population will execute an adaptive walk
towards the fitness peak at +10.0. The only other component we need for the base model is an
event that checks for the termination condition (arrival at the fitness peak) and prints output:

1:100000 late() {
 if (sim.cycle == 1)
 cat("Mean phenotype:\n");

 meanPhenotype = mean(p1.individuals.tagF);
 cat(format("%.2f", meanPhenotype));

 // Run until we reach the fitness peak
 if (abs(meanPhenotype - 10.0) > 0.1)
 {
 cat(", ");
 return;
 }

 cat("\n\n-------------------------------\n");
 cat("QTLs at cycle " + sim.cycle + ":\n\n");

 qtls = sim.mutationsOfType(m2);
 f = sim.mutationFrequencies(NULL, qtls);
 s = qtls.selectionCoeff;
 p = qtls.position;
 o = qtls.originTick;
 indices = order(f, F);

 for (i in indices)
 cat(" " + p[i] + ": s = " + s[i] + ", f == " + f[i] +
 ", o == " + o[i] + "\n");

 sim.simulationFinished();
}

This event runs in every tick. It prints the mean phenotype in each tick, forming a comma-
separated list that can be easily copied into an environment such as R for plotting. When the
fitness peak is reached, within a small tolerance, it prints a list of all of the QTLs in the population
and terminates. The QTL list contains the position, effect size, frequency, and origin tick of each
QTL, and is sorted by frequency using the order() function (see the Eidos manual for
documentation on order(), of course).

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 260

A run of the model produces output like this:

Mean phenotype:
0.00, -0.00, -0.00, -0.01, -0.00, -0.00, -0.01, -0.01, -0.01, -0.01, ...,
9.77, 9.77, 9.82, 9.81, 9.83, 9.83, 9.84, 9.85, 9.85, 9.82, 9.89, 9.91

QTLs at cycle 1793:

 45907: s = 1.28919, f == 1, o == 489
 98721: s = 2.78947, f == 1, o == 257
 53961: s = 1.59969, f == 0.592, o == 1274
 21414: s = -1.09245, f == 0.0515, o == 1639
 93840: s = -0.338536, f == 0.0345, o == 1657
 74095: s = 1.35625, f == 0.026, o == 1762
 ...

Plotting the mean phenotype time series in R produces a visualization of the adaptive walk:

The black curve shows the mean phenotype over time; the three red lines show the ticks of
origin of the three high-frequency QTLs listed in the output above. This visualization shows that
the adaptive walk involved a joint sweep by the first two QTLs, followed by a second sweep by the
third QTL, which arose later. At the end of the run, the population has reached the adaptive peak
only on average, since the third QTL is present at a frequency of only 0.592. Individuals that do
not possess this QTL at all have a phenotype of ~8.16; those with only one copy have a phenotype
of ~9.76; and those with two copies have a phenotype of ~11.36. In the final state of the model,
heterozygote advantage thus produces balancing selection upon the third QTL, an interesting state
of affairs that would presumably resolve eventually, when a QTL of a more convenient effect size
arose and displaced the QTL under balancing selection by allowing the entire population to sit
close to the adaptive peak.

So far so good; but earlier it was promised that this model would incorporate heritability as
well. Let’s add that now, beginning with the addition of a line at the top of the initialize()
callback that sets up a constant representing the desired heritability, h2:

 defineConstant("h2", 0.1);

0 500 1000 1500 2000

0
2

4
6

8
10

Generation

M
ea

n
ph

en
ot

yp
e

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 261

And then, here is a complete replacement for the 1: late() event that calculates phenotypes
and fitness effects:

1: late() {
 // sum the additive effects of QTLs
 inds = sim.subpopulations.individuals;
 additive = inds.sumOfMutationsOfType(m2);

 // model environmental variance, according to the target heritability
 V_A = sd(additive)^2;
 V_E = (V_A - h2 * V_A) / h2; // from h2 == V_A / (V_A + V_E)
 env = rnorm(size(inds), 0.0, sqrt(V_E));

 // set fitness effects and remember phenotypes
 phenotypes = additive + env;
 inds.fitnessScaling = 1.0 + dnorm(10.0 - phenotypes, 0.0, 5.0);
 inds.tagF = phenotypes;
}

This replacement event calculates phenotypes in much the same way as the original, but with
the addition of random noise representing environmental variance. The desired variance is
calculated based upon the additive genetic variance and the heritability, following standard
quantitative genetics, and rnorm() generates random values with (approximately) that variance.
Note that a built-in function exists, calcVA(), that calculates the additive genetic variance for a
quantitative trait, but since the calculation is very simple and we already have the additive effects
summed up, we don’t bother to use that function here.

The model above produces somewhat different results than the original model without
heritability. The most obvious difference is that the plot of mean phenotype over time is noisier,
because the mean phenotype itself is noisier. Other effects of the heritability on the evolutionary
trajectory are more difficult to see in a single run; statistical analysis of a large number of runs
would be needed to draw firm conclusions.

We have often used the term “phenotype” here, rather than just referring to, e.g., the breeding
value of the quantitative trait. This is deliberate, because this model really is a model of selection
on the organism phenotype, including the effects of environmental noise; the variable above
named additive represents the breeding value, if I have got my quantitative genetics right. Here
the phenotype is determined by just a single quantitative trait, but it would be quite simple to
extend the model to encompass multiple traits that all influenced the organism’s phenotype in
different ways. The 1: late() event here encapsulates both the genotype-to-phenotype map and
the fitness function, and can be broadened to any such functions desired, for any number of traits.

It should be noted that this model demonstrates just one possible way of adding environmental
variance to influence heritability. The method used here does not change the magnitude of the
additive genetic variance, and so the overall phenotypic variance will be larger with lower
heritability. Alternatively, one could scale the additive genetic variance down so that the
phenotypic variance remains constant regardless of the heritability value chosen. Both methods
would achieve the same target heritability value, but with different overall phenotypic variance.

In fact, trying to attain a target heritability value, as done here, is rather artificial to begin with; it
is common in analytical quantitative genetics models, but from an individual-based perspective
such as that of SLiM, the heritability is properly regarded as an emergent property of the model,
not a value the model ought to impose. From that perspective, the better approach would be to
simply add in environmental variation of a particular magnitude (determined from empirical data,
perhaps). The magnitude of the environmental variance, rather than the heritability, would be the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 262

model parameter, and the heritability would be a consequence of the model’s dynamics. The code
above can of course be easily modified to implement such a scheme instead.

It should also be noted that in this model the heritability being modeled is both the narrow-
sense heritability h2 and the broad-sense heritability H2; they are the same here, because VA is
equal to VG, which is true because the only source of genetic variance is the additive effects of the
QTLs. If that were no longer the case (due to epistasis, maternal effects, dominance, etc.), then the
model might need to be modified to correctly implement the particular type of heritability desired;
that gets into quantitative genetics theory that we will not explore further here.

The heritability algorithm used in this recipe is adapted from code kindly provided by Mikhail
Matz.

13.5 A QTL-based model with two quantitative phenotypic traits and pleiotropy
We have now seen a variety of quantitative trait models. All of these models shared their basic

approach: QTL mutations are intrinsically neutral (enforced with a mutationEffect() callback),
but have an additive effect upon a phenotypic trait value possessed by each individual. Individual
fitness is then modeled using some form of fitness function (often Gaussian), based upon the
deviation of the individual’s phenotype from the optimum phenotype in its environment. All of
these recipes model a single phenotypic trait, however, with the QTL mutations influencing only
that one trait. In this section we will look at an extension of the same basic approach, modeling
two phenotypic traits. QTL mutations in this model will influence both phenotypic traits,
pleiotropically, with effect sizes drawn from a multivariate normal distribution (thus allowing the
effects on the phenotypic traits to be either independent or correlated). This recipe can be trivially
extended to encompass any number of QTL-based phenotypic traits, with any type of pleiotropy.
Finally, at the end, we will add in live R-based plotting (introduced more comprehensively in
section 14.8), to plot the adaptive trajectory of the population.

Let’s begin with the initialize() callback as usual:

initialize() {
 initializeMutationRate(1e-7);

 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "f", 0.0); // QTLs
 m2.convertToSubstitution = F;
 m2.color = "red";

 // g1 is a neutral region, g2 is a QTL
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElementType("g2", c(m1,m2), c(1.0, 0.1));

 // chromosome of length 100 kb with two QTL regions
 initializeGenomicElement(g1, 0, 39999);
 initializeGenomicElement(g2, 40000, 49999);
 initializeGenomicElement(g1, 50000, 79999);
 initializeGenomicElement(g2, 80000, 89999);
 initializeGenomicElement(g1, 90000, 99999);
 initializeRecombinationRate(1e-8);

 // QTL-related constants used below
 defineConstant("QTL_mu", c(0, 0));
 defineConstant("QTL_cov", 0.25);
 defineConstant("QTL_sigma", matrix(c(1,QTL_cov,QTL_cov,1), nrow=2));
 defineConstant("QTL_optima", c(20, -20));

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 263

 catn("\nQTL DFE means: ");
 print(QTL_mu);
 catn("\nQTL DFE variance-covariance matrix: ");
 print(QTL_sigma);

 // find Rscript
 if (fileExists("/usr/bin/Rscript"))
 defineConstant("RSCRIPT", "/usr/bin/Rscript");
 else if (fileExists("/usr/local/bin/Rscript"))
 defineConstant("RSCRIPT", "/usr/local/bin/Rscript");
 else
 stop("Couldn't find Rscript.");
}

QTLs will be represented by m2; it is declared to be neutral here, so a mutationEffect(m2)
callback making it neutral will not be needed. In other QTL recipes the selectionCoeff property
of the mutations was used to store the additive effect of each QTL mutation, but we will take a
different approach here. The m2 mutations are colored red in SLiMgui, and are not converted to
substitutions when they fix, since their phenotypic effect will continue to be important. The
chromosome is a mixture of g1 neutral regions and g2 regions that can give rise to QTL mutations.
Next, we define some QTL-related constants: QTL_mu gives the mean effect of new QTL mutations
on the two phenotypes, QTL_cov gives the covariance between the two effects, and QTL_sigma is a
variance-covariance matrix derived from QTL_cov that will govern new mutational effects (this
matrix is sometimes called an M-matrix). QTL_optima gives the optimal phenotypic values for the
two quantitative traits; note that the optima have different signs, but the M-matrix encodes a
positive mutational correlation, so adaptation in this model will be contrary to the pleiotropically
preferred direction of evolution. The means and M-matrix are printed out; the M-matrix looks like
this:

QTL DFE variance-covariance matrix:
 [,0] [,1]
[0,] 1 0.25
[1,] 0.25 1

Support for matrices was added to Eidos in SLiM 2.6, so the matrix() function and other
aspects of working with matrices in Eidos are relatively new; see the Eidos manual.

The last thing the initialize() callback does is find the location of the Rscript command-line
tool, part of the standard R installation, which we will use later to run our R script; it is commonly
found in one of two locations. If it is somewhere else on your system, you will need to fix this
code to provide the correct location. You can execute which Rscript in a terminal window to find
out the path on your system; if that does not find Rscript, you might need to install R on your
system first.

Next we start a new subpopulation:

1 late() {
 sim.addSubpop("p1", 500);
}

Then we draw the effects of new mutations in each tick. In previous recipes this was done for
us automatically by SLiM, by drawing a new “selection coefficient” (which was actually an effect
size) from the DFE of the QTL mutation type. Here we do it ourselves instead, in a mutation()
callback:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 264

mutation(m2) {
 // draw mutational effects for the new m2 mutation
 effects = rmvnorm(1, QTL_mu, QTL_sigma);
 mut.setValue("e0", effects[0]);
 mut.setValue("e1", effects[1]);

 // remember all drawn effects, for our final output
 old_effects = sim.getValue("all_effects");
 sim.setValue("all_effects", rbind(old_effects, effects));

 return T;
}

This type of callback was added in SLiM 3.3; we saw it previously in section 10.6 (where we
used it to attach a dominance coefficient to every new mutation). Section 26.9 provides the
reference documentation on mutation() callbacks, but they are really quite straightforward. The
callback here is called by SLiM whenever a new mutation of type m2 is created (the declaration of
it as a mutation(m2) callback specifies that focus). The callback can modify that focal mutation
(passed to it as a pseudo-parameter named mut), or can log information about it, or can even veto
its creation by SLiM altogether (by returning F rather than T). In many ways this is similar to a
mutationEffect() callback, but whereas mutationEffect() callbacks are called to evaluate the
fitness effect of a mutation in every tick, mutation() callbacks are called just once for a given
mutation, at the moment it is created by SLiM.

Here, we call rmvnorm() to draw the effect sizes for the new mutation. This function draws from
the multivariate normal distribution defined by QTL_mu and QTL_sigma; we ask it to generate one
multivariate draw for the new mutation, and it returns a matrix with two columns, one for each
effect size. Those effect sizes are placed into keys named "e0" and "e1" on the new mutation, for
later reference. The callback also keeps a record of all drawn effect sizes in the "all_effects" key
of the simulation object, for purposes of output. Finally, it returns T to tell SLiM to proceed with
creating the proposed mutation.

Now that mutations have effect sizes assigned to them, we can add code to calculate the
phenotype and fitness of each individual as the sum of those additive effects:

late() {
 for (ind in sim.subpopulations.individuals)
 {
 // construct phenotypes from additive effects of QTL mutations
 muts = ind.genomes.mutationsOfType(m2);
 phenotype0 = size(muts) ? sum(muts.getValue("e0")) else 0.0;
 phenotype1 = size(muts) ? sum(muts.getValue("e1")) else 0.0;
 ind.setValue("phenotype0", phenotype0);
 ind.setValue("phenotype1", phenotype1);

 // calculate fitness effects
 effect0 = 1.0 + dnorm(QTL_optima[0] - phenotype0, 0.0, 20.0) * 10.0;
 effect1 = 1.0 + dnorm(QTL_optima[1] - phenotype1, 0.0, 20.0) * 10.0;
 ind.fitnessScaling = effect0 * effect1;
 }
}

This event loops through the individuals in the simulation, and for each individual it gets all of
the m2 mutations possessed in both genomes, adds up their effects, and stores the result as a
phenotypic trait value. Then it calculates the fitness effect for each of the two phenotypes, and
fitnessScaling gets the multiplicative combination of these fitness effects.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 265

There are only two important differences between this and previous QTL recipes. First, this
recipe gets the mutational effect sizes from the "e0" and "e1" keys of the mutations, rather than
from the selectionCoeff property (via sumOfMutationsOfType()). Second, it stores the
phenotypes in "phenotype0" and "phenotype1" keys on the individuals, rather than in the tagF
property. Using tagF works well when you have only a single value to store; it is simple to use,
and is fast to get and set. Using key-value pairs as in this recipe is a bit more complex, and a bit
slower, but more general and extensible; any number of keys can be defined on an object, and so
this recipe can be easily extended to any number of phenotypic traits, each influenced by separate
mutational effects. (Note that the only reason this recipe bothers to store the individual phenotype
values at all is for output; however, other recipes have used them for purposes such as assortative
mating.)

The fitness effect of each phenotypic trait is drawn here from a Gaussian function based on the
difference between the phenotype and the optimum, as we have seen before. If one wished the
two traits to be subject to a single multivariate Gaussian fitness function, instead of having
independent fitness effects, a dmvnorm() function is available in Eidos to facilitate such scenarios,
but we shall not do that here. A width of 20.0 is hard-coded here for the fitness functions, but the
optima are taken from the constant we defined earlier. The 10.0 multiplier makes it so an
individual precisely at the phenotypic optimum has a fitness of 10.0 relative to an individual
infinitely far from the optimum; strong selection, but perhaps not unrealistically so.

All that remains is output and a termination condition. For this model, this is quite complex,
since we have a bunch of things that we want to look at:

1:1000000 late() {
 // output, run every 1000 cycles
 if (sim.cycle % 1000 != 0)
 return;

 // print final phenotypes versus their optima
 inds = sim.subpopulations.individuals;
 p0_mean = mean(inds.getValue("phenotype0"));
 p1_mean = mean(inds.getValue("phenotype1"));

 catn();
 catn("Cycle: " + sim.cycle);
 catn("Mean phenotype 0: " + p0_mean + " (" + QTL_optima[0] + ")");
 catn("Mean phenotype 1: " + p1_mean + " (" + QTL_optima[1] + ")");

 // keep running until we get within 10% of both optima
 if ((abs(p0_mean - QTL_optima[0]) > abs(0.1 * QTL_optima[0])) |
 (abs(p1_mean - QTL_optima[1]) > abs(0.1 * QTL_optima[1])))
 return;

 // we are done with the main adaptive walk; print final output

 // get the QTL mutations and their frequencies
 m2muts = sim.mutationsOfType(m2);
 m2freqs = sim.mutationFrequencies(NULL, m2muts);

 // sort those vectors by frequency
 o = order(m2freqs, ascending=F);
 m2muts = m2muts[o];
 m2freqs = m2freqs[o];

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 266

 // get the effect sizes
 m2e0 = m2muts.getValue("e0");
 m2e1 = m2muts.getValue("e1");

 // now output a list of the QTL mutations and their effect sizes
 catn("\nQTL mutations (f: e0, e1):");
 for (i in seqAlong(m2muts))
 catn(m2freqs[i] + ": " + m2e0[i] + ", " + m2e1[i]);

 // output covariances
 fixed_m2 = m2muts[m2freqs == 1.0];
 cov_fixed = cov(fixed_m2.getValue("e0"), fixed_m2.getValue("e1"));
 effects = sim.getValue("all_effects");
 cov_drawn = cov(drop(effects[,0]), drop(effects[,1]));

 catn("\nCovariance of effects among fixed QTLs: " + cov_fixed);
 catn("\nCovariance of effects specified by the QTL DFE: " + QTL_cov);
 catn("\nCovariance of effects across all QTL draws: " + cov_drawn);

 sim.simulationFinished();
}

This should be fairly self-explanatory, so we won’t go through it in any great detail. Every
thousand cycles this 1:1000000 late() event prints a summary of the adaptation so far, like this:

Cycle: 1000
Mean phenotype 0: 0 (20)
Mean phenotype 1: 0 (-20)

Cycle: 2000
Mean phenotype 0: 2.89204 (20)
Mean phenotype 1: -3.42491 (-20)

Cycle: 3000
Mean phenotype 0: 2.95127 (20)
Mean phenotype 1: -5.91266 (-20)

...

The mean trait value is printed for each phenotypic trait, with the optimum in parentheses; the
population didn’t manage to adapt at all by tick 1000 (no QTL mutations had arisen without being
lost), but by tick 3000 things are moving along better, especially for the second trait. The model
continues running until both phenotypic means get within 10% of their optima. That can take a
while, since evolution has to run counter to the M-matrix, and since selection gets weaker as the
optima are approached. When it gets the peak, the model produces some final output:

...

Cycle: 31000
Mean phenotype 0: 21.2388 (20)
Mean phenotype 1: -17.9747 (-20)

Cycle: 32000
Mean phenotype 0: 20.7437 (20)
Mean phenotype 1: -18.6298 (-20)

QTL mutations (f: e0, e1):
1: 2.70148, -0.0621418

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 267

1: -0.291556, -1.16253
1: 0.923384, -1.24329
1: -0.431645, 0.170891
1: 1.82426, 0.911538
1: 0.0652766, -1.76526
1: 0.444558, -1.22771
1: 1.62655, -1.33047
1: 1.47864, -0.957393
1: 1.44353, -1.7145
1: 0.496692, -0.441125
1: 1.25745, 1.08043
1: -0.707134, -1.06546
0.801: -0.566786, -0.611955
0.017: -0.308758, -1.02767
0.001: -0.408555, -0.222152

Covariance of effects among fixed QTLs: 0.26061

Covariance of effects specified by the QTL DFE: 0.25

Covariance of effects across all QTL draws: 0.236848

After the output of the mean phenotypes, we get a dump of all of the segregating QTL mutations
in the population, sorted by frequency. Most of the QTLs have fixed, one is approaching fixation,
and two are at very low frequency. Their effect sizes on the two phenotypic traits are shown in the
next two columns. Finally, we get a summary of the observed covariance in effects among the
QTL mutations that fixed, the requested covariance, and the observed covariance across all effects
drawn during the run (including many QTL mutations that were lost). You might expect that the
covariance among the fixed QTLs would have to be negative, in order for adaptation to reach the
two optima with different signs, but that is not the case; often it is true, but sometimes, as in this
run, the optima can be reached even with a positive covariance among the mutational effects.

So we have a two-trait QTL-based adaptive walk model with pleiotropy and correlated
mutational effects! As an aside, for advanced users planning to implement QTL models of their
own: it is not, in fact, necessary to prevent the QTL mutations from fixing by setting
convertToSubstitution=F. Instead, you can allow them to fix, and then add in the effects of the
Substitution objects on the calculated phenotypes. This will be faster, if implemented carefully
(tip: add newly fixed substitutions to an accumulator total), since the SLiM core won’t get bogged
down managing the bookkeeping on an ever-growing set of QTL mutations.

Now let’s add a little extra code to plot the trajectory of the adaptive walk in SLiMgui, using the
live R plotting technique of section 14.8. First let’s open a PNG-based plot window in SLiMgui:

1 late() {
 sim.setValue("history", matrix(c(0.0, 0.0), nrow=1));
 defineConstant("pngPath", writeTempFile("plot_", ".png", ""));

 // If we're running in SLiMgui, open a plot window
 if (exists("slimgui"))
 slimgui.openDocument(pngPath);
}

This starts a history of the population’s adaptive walk in a new key named "history" on the
simulation object. It also makes a temporary PNG file with writeTempFile(), and tells SLiMgui to
open that file; see section 14.8 for details.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 268

Now we just need to update that plot with periodic callouts to R. To do so, insert the following
code inside the 1:1000000 final output event, immediately above the comment “keep running until
we get within 10% of both optima”:

 // update our plot
 history = sim.getValue("history");
 history = rbind(history, c(p0_mean, p1_mean));
 sim.setValue("history", history);

 rstr = paste('{',
 'x <- c(' + paste(history[,0], sep=", ") + ')',
 'y <- c(' + paste(history[,1], sep=", ") + ')',
 'png(width=4, height=4, units="in", res=72, file="' + pngPath + '")',
 'par(mar=c(4.0, 4.0, 1.5, 1.5))',
 'plot(x=c(-10,30), y=c(-30,10), type="n", xlab="x", ylab="y")',
 'points(x=0,y=0,col="red", pch=19, cex=2)',
 'points(x=20,y=-20,col="green", pch=19, cex=2)',
 'points(x=x, y=y, col="black", pch=19, cex=0.5)',
 'lines(x=x, y=y)',
 'dev.off()',
 '}', sep="\n");

 scriptPath = writeTempFile("plot_", ".R", rstr);
 system(RSCRIPT, args=scriptPath);

This updates the "history" key with the latest data, and then generates a string contain R
plotting code and sends that code to R to run. The path to Rscript was looked up earlier, by code
in our initialize() callback. The R code uses the png() function of R to open a new plotting
device, generating a PNG file from the plot data when the device is closed.

When run in SLiMgui, a plot window will open and update every 1000 ticks to show the
adaptive trajectory thus far. For the same run of the model as shown in the output above, the
resulting plot looks like this (the walk begins at the red disc, and the green disc is the optimum):

This sort of live visualization of model dynamics can be extremely helpful for both model
design and graphical debugging, and is quite simple to set up, as we have seen here.

In closing, it is perhaps worth emphasizing once more that although this recipe models two
phenotypic traits, it is designed to be extensible. It uses key-value pairs set on the mutations and
individuals to track the QTL mutational effects and phenotypic trait values; any number of such
key-value pairs can be maintained. The rmvnorm() function can also draw from a multivariate
normal distribution of any dimensionality, with any (positive-definite) M-matrix.

-10 0 10 20 30

-3
0

-2
0

-1
0

0
10

x

y

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 269

13.6 A variety of fitness functions
In previous recipes we have looked at successively more complex QTL-based models,

introducing possibilities such as heritability, multiple phenotypic traits, and pleiotropy. However,
the preceding models have all had one thing in common: they have all entailed a stabilizing fitness
function, in which some particular phenotypic trait value is optimal (producing the highest fitness
possible in the model), and as phenotype diverges from that optimum, fitness falls to progressively
lower values. There are, however, many other fitness functions that one might wish to employ, and
we will look at several here, including stabilizing selection (revisited as our starting point),
directional selection, disruptive selection, truncation selection, and “squashed stabilizing
selection”, a combination of stabilizing selection and negative frequency-dependent selection
(Haller & Hendry, 2013).

As a baseline, let’s start with stabilizing selection. For simplicity, we will mostly follow the
recipe of section 13.2: randomly arising QTL mutations across the chromosome with effect sizes
drawn from a normal distribution, influencing a single phenotypic trait through purely additive
effects, using the fitnessScaling property of Individual to implement the effect of phenotype on
fitness. However, rather than using the quadratic fitness function of recipe 13.2, let’s use the
dnorm() function that we used in the later recipes of this chapter, since it is a bit more standard.
Our baseline model looks like this:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "n", 0.0, 0.15); // QTLs
 m2.convertToSubstitution = F;
 initializeGenomicElementType("g1", c(m1, m2), c(1.0, 0.1));
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
mutationEffect(m2) { return 1.0; }
1 early() {
 sim.addSubpop("p1", 500);
 cat("Phenotypes: 0");
}
1: late() {
 inds = sim.subpopulations.individuals;
 phenotypes = inds.sumOfMutationsOfType(m2);
 scale = dnorm(5.0, 5.0, 2.0);
 inds.fitnessScaling = 1.0 + dnorm(phenotypes, 5.0, 2.0) / scale;

 if (sim.cycle % 10 == 0)
 cat(", " + mean(phenotypes));
}
5000 late() {
 m2muts = sim.mutationsOfType(m2);
 freqs = sim.mutationFrequencies(NULL, m2muts);
 effects = m2muts.selectionCoeff;
 catn();
 print(cbind(freqs, effects));
}

We rescale the result of dnorm() by dividing by the value of dnorm() at the optimum, making
the optimum phenotype have a fitness of 2.0; this is an arbitrary choice, of course, and for a more
realistic model would depend upon empirical measurements of the fitness surface governing the
organisms of interest. This fitness function looks like this:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 270

The blue line represents the fitness optimum, at a phenotypic trait value of 5.0. The red curve
shows the fitness function itself: fitness as a function of phenotypic trait value. Since this is a
model of stabilizing selection, fitness falls off as phenotype diverges from the optimum.

The model logs mean phenotypic trait values every tenth tick as it runs, and plotting those
values allows us to see the effect of this fitness function. Note this in order to keep the same x-axis
scale as the previous plot, for comparison, time (the independent variable) is shown here on the y-
axis; apologies if that is confusing. We can very clearly see evolution toward the optimum
phenotype over time, from the initial phenotypic trait value of 0.0:

So far so good; this is all essentially review. Now let’s look at directional selection, in which
there is no optimum phenotype; instead, there is a linear relationship between phenotype and
fitness, such that fitness increases (or decreases) monotonically as phenotype increases. To
implement directional selection, let’s replace the first four lines of the 1: late() event (while
preserving the final two lines, which log out the mean phenotypes) with the following code:

 inds = sim.subpopulations.individuals;
 phenotypes = inds.sumOfMutationsOfType(m2);
 inds.fitnessScaling = 1.0 + phenotypes * 0.12;

These lines implement the directional selection desired, with a linear relationship between
phenotype and fitness. The constant 0.12 is the slope of that linear relationship; again, this is
arbitrary, and would come from empirical data in a more realistic model. This produces the
following fitness function:

-10 -5 0 5 10

0.
0

1.
0

2.
0

phenotypic trait value

fit
ne
ss

-10 -5 0 5 10

mean phenotypic trait value

tim
e

1
10
00
0

-10 -5 0 5 10

0.
0

1.
0

2.
0

phenotypic trait value

fit
ne
ss

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 271

Fitness increases without bound with increasing phenotypic trait value, and so we would expect
phenotype to evolve toward ever-higher values as the model runs, and indeed, that is what we see
when the phenotype history is plotted:

Next let’s look at disruptive selection. This type of selection is, in a sense, the opposite of
stabilizing selection: instead of a phenotypic optimum, there is what one might call a phenotypic
dysoptimum – the phenotypic trait value that produces the lowest fitness possible. As phenotype
diverges from that dysoptimum, fitness increases, both for phenotypic trait values higher than the
dysoptimum, and for those lower than the dysoptimum. We can implement this by replacing the
same lines in the 1: late() event with the following code:

 inds = sim.subpopulations.individuals;
 phenotypes = inds.sumOfMutationsOfType(m2);
 scale = dnorm(0.0, 0.0, 2.0);
 inds.fitnessScaling = 1.5 - dnorm(phenotypes, 0.0, 2.0) / scale;

This provides a fitness dysoptimum at 0.0, the initial phenotypic trait value for the population,
with increasing fitness both below and above. Here is the resulting fitness function:

The dysoptimum is shown with the blue line. How will the population evolve in response to
this fitness function? Let's answer that empirically, by plotting results from ten separate runs:

The population escapes the dysoptimum in either direction. If speciation were possible in the
model, then perhaps the population might manage to diverge in both directions, separating into
two distinct and reproductively isolated phenotypes; but since this model is panmictic, the

-10 -5 0 5 10

mean phenotypic trait value

tim
e

1
10
00
0

-10 -5 0 5 10

0.
0

1.
0

2.
0

phenotypic trait value

fit
ne
ss

-10 -5 0 5 10

mean phenotypic trait value

tim
e

1
10
00
0

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 272

population “chooses” one direction or the other to evolve in, based upon the QTLs that happen to
randomly arise early in the run. The population then runs in the chosen direction, slowing down
as it reaches one of the flatter regions of the fitness function where selection for further directional
change is weak.

Now let's look at truncation selection. With this type of selection, there is a threshold
phenotypic trait value, on one side of which fitness is zero – having a phenotype beyond the
threshold is lethal. On the other side of the threshold, the fitness might be constant, or some other
type of selection might operate within that regime. To implement simple truncation selection, let’s
make all phenotypic trait values lower than 0.0 lethal with the following code, which again
replaces the same lines of our baseline recipe:

 inds = sim.subpopulations.individuals;
 phenotypes = inds.sumOfMutationsOfType(m2);
 inds.fitnessScaling = ifelse(phenotypes < 0.0, 0.0, 1.0);

To make this interesting, we need to build up some genetic diversity in QTLs first, so let's run
for 10000 ticks under neutral conditions first, with a population size of 5000, and then impose
truncation selection for the next 5000 ticks. The output code needs to be tweaked a bit also. Since
several modifications were needed, here is the complete model except for the initialize()
callback, which remains unchanged from the baseline recipe:

mutationEffect(m2) { return 1.0; }
1 early() { sim.addSubpop("p1", 5000); }
10000 late() {
 inds = sim.subpopulations.individuals;
 phenotypes = inds.sumOfMutationsOfType(m2);
 cat("Phenotypes: " + mean(phenotypes));
}
10001: late() {
 inds = sim.subpopulations.individuals;
 phenotypes = inds.sumOfMutationsOfType(m2);
 inds.fitnessScaling = ifelse(phenotypes < 0.0, 0.0, 1.0);

 if (sim.cycle % 10 == 0)
 cat(", " + mean(phenotypes));
}
15000 late() {
 m2muts = sim.mutationsOfType(m2);
 freqs = sim.mutationFrequencies(NULL, m2muts);
 effects = m2muts.selectionCoeff;
 catn();
 print(cbind(freqs, effects));
}

The fitness function is now a simple step function:

-10 -5 0 5 10

0.
0

1.
0

2.
0

phenotypic trait value

fit
ne
ss

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 273

And here is the pattern of evolution in response to this fitness function:

This plots only the post-burnin period when truncation selection is operating. The initial
phenotypic trait value is close to zero, although not exactly zero due to drift, but there would be
considerable variance around that mean since the QTL mutations are neutral at that point. Then
truncation selection kicks in, and the mean phenotype immediately jumps to the right; every
individual with a phenotypic trait value less than 0.0 is being killed, so QTL mutations with a large
negative effect size are weeded out very rapidly. After that initial jump, the population evolves
more slowly to the right. One reason for this might be ongoing selection against any remaining
QTL mutations with small negative effect sizes. A second reason might be that the truncation
selection introduces a bias for new mutations; in effect, the DFE for new mutations excludes all
new mutations with effect sizes that are sufficiently negative that their carrier’s phenotype is less
than 0.0. A third reason, of course, is that drift might happen to push the mean rightward in this
particular run. Further investigation would be needed to tease apart the relative effects of these
three mechanisms.

The last type of selection we’ll look at here is squashed stabilizing selection, a term coined by
Haller & Hendry (2013) to refer to a combination of stabilizing selection and negative frequency-
dependent selection, which, they argue, there is reason to believe are commonly found together in
nature due to ecological effects such as competition that disadvantage common phenotypes. We
have seen negative frequency-dependent selection before at the level of individual mutations, as in
sections 10.4.1 and 11.3, where the fitness effect of a mutation depends upon its frequency in the
population, leading to effects such as balancing selection. Here, we are instead talking about
negative frequency-dependent selection at the phenotypic level, where common phenotypes
receive a fitness penalty compared to rare phenotypes. This frequency-dependent effect is
combined multiplicatively with the standard effect of stabilizing selection.

The code for this recipe is based upon the baseline recipe (for stabilizing selection) given at the
beginning of this section, with the usual lines in the 1: late() event replaced by this code:

 inds = sim.subpopulations.individuals;
 phenotypes = inds.sumOfMutationsOfType(m2);
 competition = sapply(phenotypes,
 "sum(dnorm(phenotypes, applyValue, 0.3));");
 competition = (competition / size(inds)) / dnorm(0.0, 0.0, 0.3);
 scale = dnorm(5.0, 5.0, 2.0);
 inds.fitnessScaling = 1.0 +
 (dnorm(phenotypes, 5.0, 2.0) / scale) * (1.0 - competition);

This is by far the most complex fitness function we've seen, so let's tease it apart step by step.
First of all, we calculate phenotypes from additive QTL effects as usual, yielding the phenotypes
variable. Next, we want to know how much competition each individual is feeling from other
individuals due to their similarity in phenotype; if many other individuals have similar phenotypes,
the competitive effect felt will be strong, if few, it will be weak. We calculate this for each

-10 -5 0 5 10

mean phenotypic trait value
tim
e

1
10
00
0

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 274

individual using sapply() to loop over all of the phenotypes present in the population, and for
each phenotype present, the lambda "sum(dnorm(phenotypes, applyValue, 0.3));" calculates
the sum of the competitive effects from all individuals, using a Gaussian competition function with
a width of 0.3. The result of the sapply() call is therefore a vector of the strength of competition
felt by each individual. The next line normalizes those competition strengths by the number of
individuals in the model and the maximum competition strength possible, yielding final
competition strengths usable in calculating fitness.

The last two lines then calculate fitness values. This follows the fitness calculation code for
stabilizing selection, except that for each individual the increase in fitness due to proximity to the
fitness optimum is scaled downward by the strength of competition felt by that individual.
Individuals close to the optimum might nevertheless have a low fitness (close to neutral), if there
are many other individuals with similar phenotype. This implements a type of squashed stabilizing
selection where competition only decreases the benefits of proximity to the optimum, but never
decreases individual fitness below 1.0; of course other types of fitness function would also be
possible, and the choice of model should depend upon the biology of the system being modeled.

For one particular run of the model, here is the fitness function at the end of the run:

It is now clear where the term “squashed stabilizing selection” comes from; the fitness peak at
the optimum (shown with the blue line) has been squashed downward into a dimpled shape due
to the effects of competition. The shape of this fitness function is dynamic, and changes in every
tick based upon the distribution of phenotypes in the population. In effect, the population is under
a stable sort of disruptive selection: in every tick, selection disfavors individuals near the mean and
favors evolution away from the mean, and yet, because of the underlying stabilizing fitness
function, that disruptive selection never causes the population to evolve very far away from the
optimum. This state of affairs will persist indefinitely, unless speciation allows the population to
split into two or more separate lineages that can pursue independent evolutionary trajectories.

The phenotypic history for this run of the model looks like this:

It is instructive to compare this plot to the earlier plot for the simple stabilizing selection model.
Both models move toward the phenotypic optimum in very similar ways initially. Once they have
arrived at the optimum, however, the squashed stabilizing selection model fluctuates around the
optimum much more rapidly, and perhaps travels further from the optimum than the stabilizing

-10 -5 0 5 10

0.
0

1.
0

2.
0

phenotypic trait value

fit
ne
ss

-10 -5 0 5 10

mean phenotypic trait value

tim
e

1
10
00
0

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 275

selection model does; it is under constant pressure, in every tick, to try to move away from the
position in presently occupies, while simultaneously being constrained to stay within the vicinity
of the optimum. This produces various interesting effects and dynamics as explored in Haller &
Hendry (2013); that paper also provides a video of the squashed stabilizing fitness function over
time, showing how its shape fluctuates in response to the changing phenotypic distribution. We
will see squashed stabilizing selection again in sections 16.6 and 16.7, where the strength of
competition will be evaluated for us by SLiM’s InteractionType facility.

The recipes in this section have really provided just a taste of the variety of possible fitness
functions; one can delve into multi-peak fitness functions, multidimensional fitness functions, and
so forth, but that is beyond the scope of this manual. The approach shown here is general,
however: map phenotype to fitness according to the environment and mechanisms present in your
system, and use the fitnessScaling property to impose those fitness effects upon individuals.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 276

14. Advanced WF models

This chapter will present some advanced models that draw upon many of the concepts covered
in previous chapters, while also using relatively advanced features of Eidos and SLiM that may not
have been covered in previous recipes. A knowledge of the topics covered in previous chapters
will be assumed, and simple details will not be explained in depth, to keep things short.

14.1 Relatedness, inbreeding, and heterozygosity
Inbreeding is an important concept in evolutionary biology, but it is not very precisely defined.

It can result from a variety of processes, from small population size to assortative mating, and it
can manifest in a variety of genetic patterns, such as decreased heterozygosity, loss of genetic
diversity, and a decreased time to the most recent common ancestor of pairs of individuals. The
particular effects of inbreeding observed in a system may depend on the process generating the
inbreeding. So before embarking on a study of inbreeding, one should define one’s terms clearly.

Here, we will construct a model of inbreeding that results from a tendency of individuals to
mate with their close kin, as defined by their pedigree-based relatedness. SLiM (beginning in
version 2.1) has a built-in facility for tracking this type of relatedness, which can be turned on with
the call initializeSLiMOptions(keepPedigrees=T) in the initialize() callback of a script (see
section 25.1). When this call is made, individuals in a simulation will keep track of the identities
of their parents and grandparents, and the relatedness between individuals can then be assessed
using the relatedness() method of Individual (see section 25.7.2, and the sharedParentCount()
method). The pedigree information is also available through properties on the Individual class
(section 25.7.1), for purposes such as locating “trios” (two parents and an offspring that they
generated) for analysis.

It should be emphasized that the relatedness metric available through this mechanism is purely
pedigree-based. This can be quite different from genetic relatedness, which depends not only on
pedigree but also on factors such as assortment and recombination (see sections 1.7 and 14.7).
The inbreeding generated by this model will be based upon this relatedness metric.

With that as preamble, here is the first stage of the model:

initialize() {
 initializeSLiMOptions(keepPedigrees = T);
 initializeMutationRate(1e-5);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-7);
}
1 early() {
 sim.addSubpop("p1", 100);
}
1000 late() {
 // Print mean heterozygosity across the population
 heterozygosity = calcHeterozygosity(p1.genomes);
 cat("Mean heterozygosity = " + heterozygosity + "\n");
}

This is a simple neutral model, similar to those we have seen before. It turns on pedigree
tracking in its initialize() callback, and then runs for 1000 ticks. At the end of the run, a late()
callback computes the mean heterozygosity across the population, using the built-in function
calcHeterozygosity(). That function was added to SLiM in version 3.5, and is actually written in
Eidos under the hood; you can see its source code with the functionSource() function if you’re

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 277

curious, by executing functionSource("calcHeterozygosity") in the Eidos console. Various
population-genetics utility functions like this are now available; see section 25.18.2.

So now we have a baseline model that has only whatever inbreeding results from its small
population size of 100 individuals. Now let’s add a mateChoice() callback that uses the pedigree
tracking information to create a mating preference for kin:

mateChoice() {
 // Prefer relatives as mates
 return weights * (individual.relatedness(sourceSubpop.individuals) +
 0.01);
}

This uses the relatedness() method of Individual to calculate the relatedness between the
focal individual that is choosing a mate (individual) and all of its potential mates
(sourceSubpop.individuals). A constant of 0.01 is added to those values to guard against the
possibility that all of the values would be exactly zero; that would result in a weights vector of all
zeros being returned to SLiM, which would reject the proposed mating (see the discussion in
section 26.4), which we don't want to happen. In fact, this particular model is safe from that
problem, because the relatedness of an individual to itself is 1.0, and so individuals will always be
able to mate with themselves (since individuals here are hermaphroditic); but the safeguard is
shown here to raise awareness of the issue, since in many other types of models this issue will
need to be considered – sexual models, models with multiple subpopulations and migration, etc.
Finally, the relatedness values are multiplied by weights, the vector of default mating weights
supplied to the callback by SLiM. Again, this is not important for this model (as a neutral, non-
sexual model, weights will be a vector of all 1 values), but it is important for models more
generally, so that the fitness-based mating weights are taken into account even when a
mateChoice() callback is implemented. Without this, the fitness-based mating weights computed
by SLiM would be completely replaced by the mateChoice() callback, making all selection
coefficients and mutationEffect() callbacks irrelevant – rarely what is wanted.

This particular callback makes the mating weights be (almost) proportional to relatedness.
Individuals that share no grandparents will have a mating weight of only 0.01, whereas full siblings
will have a weight of 0.51 and an individual will have a weight of 1.01 for hermaphroditic selfing.
This should generate fairly strong inbreeding. Of course a mateChoice() callback could rescale or
otherwise modify these values to produce whatever mating preferences are desired.

That’s all of the code needed for the model; the relatedness-based mating preference requires
just a one-line mateChoice() callback. If we run this model ten times with the mateChoice()
callback, the average of the reported heterozygosity values across those runs is 0.001638, whereas
the average across ten runs without the mate choice callback is 0.002827. Clearly the
mateChoice() callback is having a pronounced effect on the heterozygosity observed in the model,
as intended (with a two-sample independent t-test p-value of 0.002, if you’re skeptical).

Incidentally, it would also be possible to implement the tendency towards mating with kin using
a modifyChild() callback instead. That callback would evaluate the relatedness of the two parents
of the proposed child, and would tell SLiM to short-circuit generation of the child, with some
probability, if the relatedness of the parents was not sufficiently high. If only a weak inbreeding
effect is desired, this might be much faster than the mateChoice() scheme shown above, since for
the generation of a typical child only one or a few relatedness values would need to be calculated,
and the relatively large overhead of running the mateChoice() callback would be avoided. This
should be very simple, so it is left as an exercise for the reader.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 278

14.2 Mortality-based fitness
Normally, in WF models, SLiM uses fitness values as mating weights: high-fitness individuals are

more likely to be chosen as mates than low-fitness individuals (see section 23.2.2). By default,
SLiM does not model mortality; there is no concept of individuals dying before reaching
reproductive age (except for the suppression of child generation with a modifyChild() callback,
which can be viewed as a type of mortality-based fitness; see chapter 12). However, it is
straightforward to add mortality to a model: if model mechanics dictate that an individual dies,
then it can be given a fitness of zero, which means that it cannot possibly be chosen as a mate;
effectively, it has been removed from the population (although it will remain as an individual in the
population until the next generation starts; there is no way to actually remove dead individuals
from the population in WF models).

(Note that this section is aimed primarily towards WF models; in nonWF models, as discussed
in section 1.6, fitness translates into mortality anyway, rather than influencing mating, so every
nonWF model is a model of mortality-based fitness. However, in nonWF models it can still be
useful to explicitly kill off a specific individual, either by making its fitness zero or by calling the
nonWF-only method killIndividuals(); see discussion in section 15.5.)

Here we will look at three different models of how mortality might be implemented in WF
models. The first model converts the fitness effects of mutations directly into mortality using a
mutationEffect() callback. This might be a good way to model death due to deleterious genetic
factors. The second model is a tag-based model; if individuals die, their tagL0 value is set to zero,
and then a special mutationEffect() callback is used to reduce the fitness of tagged individuals to
zero. This might be a good way to model death due to non-genetic factors, such as predation. The
third model uses the fitnessScaling property of Individual, introduced in SLiM 3.0.

One question regarding mortality-based fitness might be: what difference does this make? Why
would one wish to model mortality-based fitness rather than (or in addition to) mating-based
fitness? The answer is that the two types of fitness have different effects on the distribution of the
number of offspring generated by individuals. With mating-based fitness, all individuals of a given
low fitness value are equal in the offspring-production game; the expected number of offspring is
the same for all, and is lower than the expected number of offspring for a high-fitness individual.
With mortality-based fitness, however, all individuals of a given low fitness value are not equal, by
the time mating season arrives: some are alive, and some are dead. Those that are alive have an
expected number of offspring that is just as high as a high-fitness individual; they survived to
mating season, and now the playing field is even. Those that are dead, on the other hand, have an
expected number of offspring of zero. What the evolutionary consequences of this difference
might be is not the focus here; but there clearly is a difference, and so we want to be able to
model mortality-based fitness.

So, with no further ado, let’s look at our first model:

initialize() {
 initializeMutationRate(1e-7);

 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 0.5, "f", -0.005); // deleterious
 m2.convertToSubstitution = F;

 initializeGenomicElementType("g1", c(m1,m2), c(1.0,0.1));
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 279

1 early() {
 sim.addSubpop("p1", 500);
}
mutationEffect(m2)
{
 // convert fecundity-based selection to survival-based selection
 if (runif(1) < effect)
 return 1.0;
 else
 return 0.0;
}
10000 late() {
 sim.outputMutations(sim.mutationsOfType(m2));
}

Mutations are mostly neutral (m1) but occasionally slightly deleterious (m2), and the deleterious
mutations are not converted to substitutions when they fix (using m2.convertToSubstitution = F),
since we want them to continue to cause mortality. At the end of a run, the model uses
outputMutations() to print information about all of the m2 mutations existing in the population
(include those that have fixed, since they do not get substituted).

The interesting part of the model is the mutationEffect() callback. It converts a fitness effect
for an m2 mutation (which will be 0.995 if homozygous and 0.9975 if heterozygous, given the
dominance coefficient of 0.5 used for m2) into either 0 or 1, with the probability of a fitness of 1
being equal to the fitness effect of the focal mutation in the individual. If the new fitness value is 0,
the focal m2 mutation has resulted in mortality; the individual will not mate, and is effectively
dead. If the new fitness is 1, on the other hand, the individual has survived the deleterious effects
of the focal m2 mutation, and that mutation will have no further deleterious effect; it will not
influence the individual’s expected number of offspring, since its fitness effect is now 1.

There are a couple of things to note here. First of all, the mortality effects of multiple m2
mutations in a single individual will combine multiplicatively, just as their non-mortality-based
fitness effects would combine multiplicatively in SLiM without the mutationEffect() callback.
This is because the mutationEffect() callback will be called for each m2 mutation, and the
probabilities of mortality that these callbacks cause will combine multiplicatively (as independent
probabilities generally do).

Second, the way that this mutationEffect() callback works depends on the m2 mutations being
deleterious, not beneficial. This is because for a beneficial mutation, effect would be greater than
1, and so the comparison with runif(1) would always be T. On a more conceptual level, you
can’t be more likely to survive than a survival probability of 1. If you wish to model beneficial
mutations with a mortality-based effect, you would need to provide some baseline probability of
mortality in the model, such that an individual with no mutations would still have, say, a
probability of 0.5 of dying before reaching reproductive age. The presence of beneficial mutations
could then reduce this probability of dying, down to the limit of a probability of 0.0. (Section 15.4
discusses this in depth, in the context of nonWF models.)

Third, there is no obstacle to combining this sort of mortality-based fitness effect with the usual
mating-based fitness effects of SLiM, using other mutation types. There is nothing magical about
this model; the mutationEffect() callback here is just another mutationEffect() callback, albeit
one that (somewhat unusually) models a stochastic fitness effect that varies from individual to
individual.

Now let’s look at the second recipe for mortality-based fitness, this one driven by tags:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 280

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 500);
}
late() {
 // initially, everybody lives
 sim.subpopulations.individuals.tagL0 = F;

 // here be dragons
 sample(sim.subpopulations.individuals, 100).tagL0 = T;
}
fitnessEffect() {
 // individuals tagged for death die here
 if (individual.tagL0)
 return 0.0;
 else
 return 1.0;
}
10000 late() { sim.outputFull(); }

This model involves only neutral m1 mutations. It has a fitnessEffect() callback that
evaluates phenotypic fitness (in this case, mortality) that is called once per individual per cycle,
without reference to any focal mutation, allowing a fitness effect to be generated that depends
upon the overall state of each individual. This technique was previously used in section 13.1,
where it was used to define the phenotypic fitness effect of additive QTLs.

In this case, the “overall state” that the fitnessEffect() callback models is mortality due to
having previously been tagged as dead. The fitnessEffect() callback simply returns 0.0 (dead)
for individuals with a tagL0 value of T, and 1.0 (neutral) for a tagL0 of F; a T tag thus marks an
individual for death (an arbitrary choice that could be reversed). The tagL0 values are assigned in
a late() event that runs near the end of every tick. In this model, 100 individuals out of the 500 in
the population are chosen for death at random using the sample() function, but that is just an
arbitrary placeholder for whatever sort of mortality-generating logic you might wish to implement
in your model – predation, social interactions, developmental disorders, or anything else. Indeed,
the logic could depend on the genetics of individuals in some way, combining the approach of this
recipe with that of the previous recipe.

One note here is that the tagging logic occurs in a late() event. That is because tagL0 values
for newly generated offspring need to be assigned before fitness values for the new offspring
generation are calculated, and a late() event is the right time to do that (see the tick cycle
diagram in chapter 23). This has the side effect that mortality does not occur in the first generation
at all; fitness does not get evaluated until after the late() event, on the offspring generation, and in
any case tagL0 values are not set on the parental generation. This might seem unfortunate, but in
fact it is the way the previous recipe worked as well, and indeed it is the way that models in SLiM
generally work: since the first parental generation starts out with empty chromosomes, and since
new mutations are added to genomes during offspring generation, the first generation generally is
not subject to any selection. If the initial population were created in a 1 late() event instead of a
1 early() event – which is perhaps better practice, in fact – this issue goes away, since the initial
generation will then be treated like every other generation. This is thus a design choice.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 281

OK, with that discussion out of the way it is time for the third and final recipe for mortality-
based fitness:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 500);
}
late() {
 // here be dragons
 sample(sim.subpopulations.individuals, 100).fitnessScaling = 0;
}
10000 late() { sim.outputFull(); }

This is equivalent to the second recipe, but is much simpler and runs faster. In this recipe, we
use the fitnessScaling property of Individual, which was added in SLiM 3.0, to directly kill off
individuals in the late() event, rather than using tag values and a fitnessEffect() callback that
translates those tag values into fitness effects. The fitnessScaling values get multiplied into each
individual’s calculated fitness value by SLiM, just as the value returned by the fitnessEffect()
callback did in the second recipe. Note that it is not necessary to initialize the fitnessScaling
values to 1.0 in each new generation; SLiM does that automatically.

The second recipe, then, is generally inferior, but is included for a couple of reasons. One is
simply the historical reason that, prior to SLiM 3.0, it was a good way to implement mortality-
based fitness, and might still be of interest for that reason alone. It also illustrates the use of tag
values in a very simple model, which is perhaps useful. Finally, since it is strictly equivalent to the
third recipe, it might expose the underlying logic of the third recipe more clearly; using the
fitnessScaling property is a bit “magical”, with a lot of what is happening hidden behind the
scenes, whereas the second recipe shows the mechanism more explicitly.

Note that something like the first recipe could also be implemented using fitnessScaling, in
fact. To achieve this, you would make the selection coefficient of the m2 mutations be 0.0, rather
than -0.005, so that they are neutral as far as SLiM’s fitness-calculation machinery is concerned.
Then, you would loop through individuals in a late() event, and for each individual you would
count m2 mutations, determine a survival probability based on that count (0.995^(count/2),
perhaps), draw a random number to determine survival, and set fitnessScaling to 0 for the
individuals that did not survive. This would not be quite the same as the first recipe, though, since
it would not account for homozygosity versus heterozygosity (i.e., dominance effects) in the same
way. Which strategy is preferable would depend upon the biology you were trying to model.

14.3 Reading initial simulation state from an MS file
At the beginning of execution of a SLiM model, the genomes of all individuals are empty; they

contain no mutations (see discussion in section 1.5.1). Mutations can be introduced explicitly in
script (see section 9.1), or the saved state of a SLiM simulation can be read in to provide a non-
empty initial state (see section 25.15.2, and section 9.2 for an example). Sometimes, however,
information about the desired initial state of the model will be in a file that is in a non-SLiM
format, and you will want to read that file in and create that initial state in the model. In this
section, we will examine a recipe for reading in a file that is in the popular “MS” format. This can

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 282

be useful, since MS uses a very fast coalescent method to generate genetic diversity in a neutral
model; it can be used to generate an initial “burn-in” state, saved in MS format, that a SLiM model
can then use as a starting state simulations.

This recipe is probably of mainly historical interest. One reason is that a readFromMS()
method on Genome is available in SLiM 3.3 and later, which does what this recipe does except
much faster (see section 25.4.2). A second reason is that nowadays, if one wishes to start a
simulation using “burn-in” state from a coalescent simulation, one probably wants to use tree-
sequence recording (see section 1.7). In particular, the msprime coalescent simulator can be used
to run the burn-in and save the result as a .trees file that SLiM can read directly (see sections 17.8
and 17.9); or even better, msprime can be used to “recapitate” a SLiM simulation with a coalescent
burn-in after the fact (see section 17.10). Nevertheless, we’ll keep this recipe since it provides a
good illustration of how to create initial mutations in a model based upon data from a file.

As a first step, we need a file in MS format to read in. We could use MS to generate that, of
course, but instead, for illustration purposes here, we will use a simple neutral SLiM model:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 1000);
}
20000 late() {
 p1.outputMSSample(2000, replace=F, filePath="ms.txt");
}

Notice that the outputMSSample() call samples without replacement, using replace=F, and it
requests 2000 samples – twice the size of the population, because there are two genomes per
diploid individual. This means that the call will output not just a sample, but the full state of the
entire population. The result of this model is a standard MS-format file, saved out to ms.txt:

//
segsites: 345
positions: 0.0047300 0.0048000 0.0053201 0.0063001 0.0068701 0.0072201
0.0078301 0.0098501 0.0140401 0.0144601 0.0162002 0.0196102 0.0236902...
00100000000010000000000000001000100100101100000000100001010000000000000000
00000000000000000001000000010011000100000000111000100000000000000000001100
10000001111000100000000000000001001000001001000000101100100000001000010001
00100000000000000000000000001000000000010000000000000000000000010000000000
0000000000000000100000000000000000000000000000100
01100000000000000000000000000000100001000001100001000010101000001000000010
00000000000010000000000000000000000000001010000000000000100010000000000001
00000100000000000000000000000000000010000000010000000100100000000000010000
00000000001100000000000000001000000000010000000000000000001000010000000000
0000000000000000100000000000000000000000000000000
...

Ellipses have been used here to abbreviate the lengthy content of the file. It begins with a //
line that marks the beginning of a sample block. A segsites: line then gives the number of
segregating sites per sample, and a positions: line gives the positions, in the interval [0,1], of
each segregating site. The remainder is a series of samples, one per line, with 1 and 0 values
indicating whether each corresponding mutation is (1) or is not (0) present in that genome.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 283

Now let’s look at a recipe for reading this file back in and instantiating it into neutral mutations.
Here we use the same chromosome length, population size, and other parameters, so that the
loaded state corresponds to the model’s defined dynamics. This is not required, but be careful that
what you are doing makes sense. Here is the recipe:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 late() {
 sim.addSubpop("p1", 1000);

 // READ MS FORMAT INITIAL STATE
 lines = readFile("ms.txt");
 index = 0;

 // skip lines until reaching the // line, then skip that line
 while (lines[index] != "//")
 index = index + 1;
 index = index + 1;

 if (index + 2 + p1.individualCount * 2 > size(lines))
 stop("File is too short; terminating.");

 // next line should be segsites:
 segsitesLine = lines[index];
 index = index + 1;
 parts = strsplit(segsitesLine);
 if (size(parts) != 2) stop("Malformed segsites.");
 if (parts[0] != "segsites:") stop("Missing segsites.");
 segsites = asInteger(parts[1]);

 // and next is positions:
 positionsLine = lines[index];
 index = index + 1;
 parts = strsplit(positionsLine);
 if (size(parts) != segsites + 1) stop("Malformed positions.");
 if (parts[0] != "positions:") stop("Missing positions.");
 positions = asFloat(parts[1:(size(parts)-1)]);

 // create all mutations in a genome in a dummy subpopulation
 sim.addSubpop("p2", 1);
 g = p2.genomes[0];
 L = sim.chromosome.lastPosition;
 intPositions = asInteger(round(positions * L));
 muts = g.addNewMutation(m1, 0.0, intPositions);

 // add the appropriate mutations to each genome
 for (g in p1.genomes)
 {
 f = asLogical(asInteger(strsplit(lines[index], "")));
 index = index + 1;
 g.addMutations(muts[f]);
 }

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 284

 // remove the dummy subpopulation
 p2.setSubpopulationSize(0);

 // (optional) set the tick and cycle to match the save point
 community.tick = 20000;
 sim.cycle = 20000;
}
30000 late() { sim.outputFixedMutations(); }

We will focus on a few salient points in the tick 1 late() event, which first creates the p1
subpopulation and then reads in the MS file and adds mutations to the individuals in p1 as needed.

First of all, the readFile() function is used to read in the MS data. This function returns a
string vector, with one string element per line in the file. The rest of the code then processes
these lines. First, a scan through the lines is conducted to find the // line that indicates the start of
the actual sample data; MS files can have various information above that point that this code does
not attempt to parse. Below that line should be a segsites: line and then a positions: line, as
shown in the snippet above; the code scans for those lines and does some minimal error-checking.

Next, the recipe creates all of the mutations referenced by the MS data. This recipe assumes
that these mutations are all neutral, since that is how MS would typically be used as input to a
SLiM script. One twist here is that mutations cannot be created in isolation; according to SLiM’s
design, mutations must always reside in a Genome object. This recipe therefore creates a dummy
subpopulation with a single individual, and throws all of the MS mutations into the first genome of
that individual. This design may seem a bit odd, but it is harmless. Also, note that MS positions in
[0,1] are converted to discrete base positions by multiplying by the last base position (L) and
rounding; this is the opposite of what outputMSSample() does, so it recovers the original base
positions. For MS positions that do not originate in SLiM, however, this formula results in half as
much “density” at positions 0 and L as at other base positions; floor(positions * (L+1)) might
be better in that case, but note that a position of exactly 1.0 would then produce L+1, which is out
of range, so that edge case would need to be checked for and clamped down to L.

Having created all of the mutations, the recipe then returns to processing input lines, which
now are each a representation of one genome, as explained above. The strsplit() function is
used to separate the 0 and 1 values into separate string elements, which are then converted to
integer and then to logical. This results in a logical vector that indicates whether each
corresponding mutation is or is not referenced by the focal genome. A call to addMutations()
adds the selected mutations to the focal genome, and then the code moves to the next input line.

At the end, the dummy p2 subpopulation is removed. Finally, the tick and cycle are set to
20000, to dovetail with the fact that the simulation that generated the MS data ended at tick 20000.

A similar strategy could be used for other purposes, such as to read in empirical SNP data (but
see readFromVCF(), section 25.4.2, which may provide a better solution).

14.4 Modeling chromosomal inversions with a recombination() callback
In previous chapters we have seen five types of callbacks: initialize(), mutationEffect(),

fitnessEffect(), mateChoice(), and modifyChild(). There are actually a few other callback
types that are less commonly used; here we will focus on recombination() callbacks (see section
26.6). This type of callback allows the script to modify the recombination breakpoints used by
SLiM when generating a gamete to produce an offspring individual. In most models, the standard
recombination map set by initializeRecombinationRate() suffices, since usually all individuals
use the same map (or perhaps different maps for males and females, which is supported by that
call as well). In some cases, however, recombination behavior needs to vary at the individual
level. That would be true in a model of the evolution of recombination itself, for example; one

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 285

would want individual-level variation in recombination, controlled by the genetics of individuals,
to evolve in response to natural selection. It is also true in the model we will explore here: a
model of chromosomal inversions.

We’ll build this model in two steps. Here’s our starting point:

initialize() {
 defineConstant("L", 1000000);
 defineConstant("INV_LENGTH", 500000);
 defineConstant("INV_START", asInteger(L/2 - INV_LENGTH/2));
 defineConstant("INV_END", INV_START + INV_LENGTH - 1);
 defineConstant("N", 500);

 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral sites
 initializeMutationType("m2", 0.5, "f", 0.0); // start marker
 initializeMutationType("m3", 0.5, "f", 0.0); // end marker
 c(m2,m3).convertToSubstitution = T;
 c(m2,m3).color = "red";

 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, L-1);
 initializeRecombinationRate(1e-8);
}
1 late() {
 sim.addSubpop("p1", N);

 // give some genomes an inversion
 inverted = sample(p1.genomes, 100);
 inverted.addNewDrawnMutation(m2, INV_START);
 inverted.addNewDrawnMutation(m3, INV_END);
}
mutationEffect(m2) {
 // fitness of the inversion is frequency-dependent
 f = sim.mutationFrequencies(NULL, mut);
 return 1.0 - (f - 0.5) * 0.2;
}
5000 late() {
 sim.outputFixedMutations();

 // Assess fixation inside vs. outside the inversion
 pos = sim.substitutions.position;
 catn(sum((pos >= INV_START) & (pos <= INV_END)) + " inside.");
 catn(sum((pos < INV_START) | (pos > INV_END)) + " outside.");
}

This initial model is just a model of neutral background mutations with balancing selection on
an introduced mutation. The tick 1 late() event gives some genomes “marker mutations”, of types
m2 and m3, that indicate the presence of an inversion; however, the machinery to implement the
inversion behavior is not yet present. The first base position inside the inversion will be located at
INV_START; the last will be located at INV_END.

In this model we want the m2 inversion marker to be subject to balancing selection strong
enough to keep the inversion near intermediate frequency. (The m3 inversion marker will be
subject to the same dynamics, since it will always travel with the m2 marker; if it doesn’t, that
would be a bug in the model. The m3 marker is actually just present for visualization in SLiMgui; it
is unused in the model.) This is a proxy for the inversion itself (or more realistically, an unmodeled
mutation within the inversion) having a phenotypic effect that is under balancing selection in the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 286

environment. The mutationEffect() callback in the code above provides this functionality (see
section 10.4.1 for more discussion of modeling frequency-dependent selection).

The tick 5000 late() event produces final output for the model. First it prints a list of the fixed
mutations using outputFixedMutations(). Then it looks at all of the mutations that have fixed
during the simulation (kept by the sim object in its substitutions property), and extracts their
positions. Finally, it tallies and prints the number of fixed mutations that occurred inside versus
outside the inversion region. If we run this model now, we’ll see final output like this:

79 inside.
101 outside.

Or this:

219 inside.
129 outside.

Or this:

58 inside.
94 outside.

The point being that the number of fixed mutations inside versus outside the inversion are
comparable (since those regions are equal in length), albeit with a lot of variation. This makes
sense, because so far our marker mutations are still just ordinary mutations under balancing
selection; we have no machinery to make them model a chromosomal inversion in particular.
Now we will add the core of this recipe – a recombination() callback that modifies recombination
when an inversion is present, to reflect how inversions work biologically.

At this point, however, we need to go on a little digression. Prior to SLiM 3.7, this recipe
implemented the effect of the inversion with the following recombination() callback (modified
slightly to update it to the current recipe framework used here). The code below is not the final
recipe, and the implementation here is seriously flawed, as we will discuss below, but it is useful
to understand it as a first step to understanding the final recipe:

recombination() {
 // THIS CODE DOES NOT CORRECTLY MODEL INVERSIONS!
 if (genome1.containsMarkerMutation(m2, INV_START) ==
 genome2.containsMarkerMutation(m2, INV_START))
 return F;

 inInv = (breakpoints > INV_START) & (breakpoints <= INV_END);
 if (!any(inInv))
 return F;

 breakpoints = breakpoints[!inInv];
 return T;
}

Let’s walk through this in some detail. First, the callback determines whether the parent
individual that is generating the focal gamete is heterozygous for the inversion. The inversion, as
modeled here, only affects recombination if the parent is heterozygous, so in other cases the
callback returns F immediately. A return of F is a flag value indicating that no change to the
proposed breakpoints is needed, allowing SLiM to handle this case very efficiently.

Next – handling the heterozygous case – a logical vector, inInv, is constructed that has T for
proposed breakpoints that are within the inversion region, F otherwise. The positions of proposed

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 287

breakpoints are supplied to the callback by SLiM in the breakpoints variable; that variable can
also be set by the callback to change the proposed breakpoints as we will see momentarily. The
inversion region is defined by the code here to stretch from base position INV_START to INV_END
inclusive. Recombination positions fall immediately to the left of the given base position; in other
words, crossover occurs between the specified base and the preceding base. For this reason, the
logic here considers a breakpoint exactly at position INV_START to be outside the inversion, while a
breakpoint exactly at position INV_END is inside the inversion.

If there are no proposed breakpoints inside the inversion region, the callback returns F
immediately; it does not modify the breakpoints in that case. Otherwise – now we are handling
the case of a parent that is heterozygous for the inversion and drew breakpoint positions inside the
inversion – the callback removes all proposed breakpoints inside the inversion by subsetting
breakpoints with the negation of inInv, and then it returns T to indicate that the proposed
breakpoints were changed. This achieves the desired goal of suppressing all recombination within
the inversion region for gametes generated by heterozygote parents.

With this recombination() callback active, the results are very different from before:

0 inside inversion.
43 outside inversion.

This can be seen graphically in SLiMgui. If display of fixed mutations is turned on with the
button to the right of the chromosome view, this is what things look like at the end of the run:

The red marker mutations at INV_START and INV_END (250000 and 749999, as parameterized
here) are visible if you look closely. Many mutations outside the inversion have drifted to fixation.
Inside the inversion, however, there are two major haplotypes, and mutations within the inversion
can’t fix because they can’t cross from one haplotype to the other. This is the result of suppression
of recombination within the inversion; chromosomes containing the inversion accumulate one set
of mutations through drift, while chromosomes not containing the inversion accumulate a different
set of mutations.

So far, so good – except that this model is wrong. The problems were kindly pointed out and
rectified by Sara Schaal, Vince Buffalo, Peter Ralph, and Andy Kern; the issue posted on GitHub at
https://github.com/MesserLab/SLiM/issues/203 might be of interest to those who wish to dig further
into this. The SLiM-Extras repository at https://github.com/MesserLab/SLiM-Extras now has a
subfolder named inversions that contains their model and results. Their model uses tree-
sequence recording, which is beyond the scope of this chapter (see section 1.7 and chapter 17),
but I have integrated their changes into this recipe without using tree-sequence recording, and will
summarize both the problems they found and how they fixed them.

There are two problems with the recombination() callback above. To understand the first
problem, consider what an inversion actually looks like biologically:

A B C D
standard:

A C B D
inverted:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 288

https://github.com/MesserLab/SLiM/issues/203
https://github.com/MesserLab/SLiM-Extras

Here A is a point just to the left of INV_START, B is a point just to the right of it, etc. Since SLiM
does not actually understand inversions, the genome is laid out ABCD in SLiM for both inverted
and uninverted individuals, however; it is up to the script to make recombination in SLiM do what
is biologically correct given the conceptual picture above.

Consider what happens, with the recombination() callback above, for an individual that is
homozygous for the inversion, when a single breakpoint is drawn inside the inversion. Since the
individual is homozygous for the inversion, the callback simply returns F and recombination
proceeds as usual; since the genome in SLiM is laid out ABCD, this will mean that the crossover
somewhere between B and C will result in AB being inherited together from one parental genome,
and CD being inherited together from the other parental genome. Looking at the diagrams above,
however, this is clearly incorrect; with a crossover somewhere between C and B, AC should have
traveled together, and BD should have traveled together.

So that is one problem. The other problem involves individuals that are heterozygous for the
inversion. In such individuals, the recombination() callback above forces exactly zero
recombination breakpoints to occur inside the inversion, by simply removing all breakpoints that
fall inside the inversion. This is, again, not biologically correct. In fact, for heterozygous
individuals any even number of recombination breakpoints is permitted (see Guerrero, Rousset &
Kirkpatrick 2012).

How can these problems be fixed? Here is a better recombination() callback, from Schaal,
Buffalo, Ralph & Kern:

recombination() {
 gm1 = genome1.containsMarkerMutation(m2, INV_START);
 gm2 = genome2.containsMarkerMutation(m2, INV_START);
 if (!(gm1 | gm2)) {
 // homozygote non-inverted
 return F;
 }
 inInv = (breakpoints > INV_START) & (breakpoints <= INV_END);
 if (sum(inInv) % 2 == 0) {
 return F;
 }
 if (gm1 & gm2) {
 // homozygote inverted
 left = (breakpoints == INV_START);
 right = (breakpoints == INV_END + 1);
 breakpoints = sort(c(breakpoints[!(left | right)],
 c(INV_START, INV_END + 1)[c(sum(left) == 0, sum(right) == 0)]));
 return T;
 } else {
 // heterozygote inverted: resample to get an even # of breakpoints
 // this is *recursive*: it calls this recombination callback again!
 breakpoints = sim.chromosome.drawBreakpoints(individual);
 }
 return T;
}

As before, if the parent is homozygous non-inverted the callback simply returns F; but if the
parent is homozygous inverted it no longer does that since that case needs to be treated more
carefully. Next we get the breakpoints that are inside the inversion, as before, and if there is an
even number of them we again return F (fixing the second problem described above).

Third, we handle the case of a parent that is homozygous inverted; the logic here is a bit tricky
in order to correctly handle breakpoints that fall exactly at the ends of the inversion (at INV_START

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 289

or at INV_END + 1), but essentially this code adds new breakpoints at INV_START and INV_END + 1
to the breakpoints vector. This makes AC and BD travel together as they should (fixing the first
problem described above). It then returns T, telling SLiM that the breakpoints vector has been
changed. To see how this works for inheritance in homozygous inverted individuals, notice that A
and C will be inherited together if there are an even number of breakpoints between the two; the
same goes for B and D. We ensure that this is the case here by adding breakpoints to both ends of
the inversion, since we know that an odd number of breakpoints have been drawn within in the
inversion. And, as long as A and C are inherited together correctly, and similarly for B and D, then
we are guaranteed that the remainder of the chromosome will be as well.

Finally, we handle the case of the parent being heterozygous inverted. If the number of
breakpoints inside the inversion is even, we already returned T above, so here the number of
breakpoints inside the inversion must be odd, and that is not permitted, biologically. What we
want to do is to simply redraw breakpoints from scratch until we get an even number instead. This
adopts a “no-cost infinite gamete assumption”, which seems reasonable biologically. This strategy
is implemented by simply calling the Chromosome method drawBreakpoints() to generate a new
set of breakpoints for us. That works because drawBreakpoints() calls our recombination()
callback to vet the breakpoints again; this recombination() callback is therefore called recursively,
meaning that it calls itself (indirectly, in this case, as a side effect of calling drawBreakpoints()). If
this recursive call to the recombination() callback again sees an odd number of breakpoints inside
the inversion, it will again call drawBreakpoints(), which will again call the recombination()
callback, and the recursion will go another level deeper. In principle this recursion could go
arbitrarily deep, drawing an odd number of breakpoints inside the inversion again and again, but
in practice that is so unlikely that we don’t need to worry about it. When an even number of
breakpoints inside the inversion is obtained, the recursion unwinds and the correct breakpoint
vector is returned to SLiM.

Remarkably, this model will even correctly handle variation in the recombination rate along the
chromosome (i.e., a recombination rate map as in section 6.1.1), as long as one does not wish the
inversion to actually change the recombination rate map (to have a different pattern of hotspots
versus coldspots when the inversion is present). This works because breakpoints are drawn and
executed according to SLiM’s ABCD conception of the genome, whether the inversion is present
or not.

In this way, all the cases are handled correctly and the recipe models inversions in a way that is
much closer to the biological reality. Here’s the result of a run in SLiMgui:

The appearance is much the same; recombination is still being suppressed quite effectively
inside the inversion, and so fixation occurs primarily outside the inversion, and two distinct
haplotypes segregate inside the inversion region, as before. This is true because the recombination
rate of 1e-8 is low enough that getting two (or four, or six…) recombination breakpoints inside the
inversion is highly unlikely; with a higher recombination rate (or a longer inversion), that would
occur more often and recombination would be more likely to act inside the inversion (fixing the
second problem above). Also (although it is also not readily visible in SLiMgui), linkage patterns at
the boundary of the inversion will now be correct; mutations just outside and just inside the
inversion should tend to travel together correctly (fixing the first problem above). Results showing
the effects of these improvements are in the SLiM-Extras repository linked to above.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 290

While we’re on the subject of haplotypes, this model is a particularly good testbed for looking
at some advanced features of SLiMgui that facilitate the examination of haplotypes and linkage
disequilibrium in SLIM (also discussed in chapter 8). Let’s control-click on the chromosome view
to get a context menu that allows us to configure its display:

Select “Display Haplotypes” from the context menu, and the chromosome view changes to
show the haplotypes that are in the population, clustered according to their genetic similarity:

Here the effect of the inversion is even clearer; outside of the inversion there are few mutations
at high frequency and not much consistent population structure, but inside the inversion the
population has clearly differentiated into two completely different haplotypes with little or no
admixture. The marker mutation at the start of the inversion can be seen, associated with one of
the two haplotypes; the one at the end of the inversion is lost amid the noise here.

This alternate display mode for the chromosome view is based upon just a small sample of the
genomes from the selected subpopulation(s), allowing genetic clustering and display to be done in
real time. It can also be useful to get a more comprehensive haplotype plot, based upon a larger
sample or upon the entire population. To obtain that, choose Create Haplotype Plot from the
Show Graph button’s pop-up menu (or from the Simulation menu). This shows a panel that allows
us to choose plot options; we can use the default options here, so click OK. After a progress panel
(since the analysis can be quite lengthy with a large sample), a new plot window opens:

This shows essentially the same information as the chromosome view did above, but it is based
upon all 1000 genomes in the population, and thus provides some additional detail – both
inversion markers are visible, and the linkage between regions just outside versus just inside the
inversion is much more readily apparent. A context menu on the plot window, obtained by
control-clicking or right-clicking within the window, allows the appearance of the plot to be

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 291

adjusted, and also allows the plot’s image to be copied or saved as a file. Note that section 13.3
also used a haplotype plot, to look at genome-wide divergence due to assortative mating, and
section 16.9 uses one to look at speciation in a spatial model.

That completes this model of chromosomal inversions using a recombination() callback, but as
usual there is much more that could be done. Rather than using balancing selection, for example,
spatially varying selection among subpopulations could allow adaptive ecological divergence
between subpopulations to arise as a result of the protection from recombination afforded by the
inversion, thereby preserving the inversion as a result of divergent selection and local adaptation.
It would also be interesting to model the rise of an inversion to high local frequency, in a model
like that, to explore how inversions can facilitate divergence and speciation.

Thanks to Sara, Vince, Peter, and Andy for contributing this new and improved recipe.

14.5 Modeling both X and Y Chromosomes with a Pseudo-Autosomal Region (PAR)
SLiM has built-in support for modeling either the X or Y chromosome when sex is enabled (see

section 6.2.3). However, some models need to go beyond this built-in support. You might wish to
model both the X and Y chromosomes, and you might even wish to model a pseudo-autosomal
region (PAR) – a region in which recombination between the X and Y occurs freely, giving the
region evolutionary dynamics similar to those of an autosome. Both males and females are diploid
for genes in the PAR; females have two copies of the PAR on their two X chromosomes, whereas
males have the same PAR on their X, and a homologous PAR on their Y. Because crossing over
occurs freely between the X and Y within the PAR, genes in the PAR exhibit an autosomal pattern
of inheritance rather than sex-linked inheritance.

Modeling this in SLiM is possible by implementing your own sex-chromosome mechanics,
which is fairly straightforward. In this section we’ll explore a simple model of neutral X and Y
chromosome evolution with a single PAR connecting them. This model was provided by Melissa
Jane Hubisz, and has been adapted for publication as a recipe here. The recipe:

initialize()
{
 initializeMutationRate(1.5e-8);
 initializeMutationType("m1", 0.5, "f", 0.0); // PAR
 initializeMutationType("m2", 0.5, "f", 0.0); // non-PAR
 initializeMutationType("m3", 1.0, "f", 0.0); // Y marker

 // 6 Mb chromosome; the PAR is 2.7 Mb at the start
 initializeGenomicElementType("g1", m1, 1.0); // PAR: m1 only
 initializeGenomicElementType("g2", m2, 1.0); // non-PAR: m2 only
 initializeGenomicElement(g1, 0, 2699999); // PAR
 initializeGenomicElement(g2, 2700000, 5999999); // non-PAR

 // turn on sex and model as an autosome
 initializeSex("A");

 // no recombination in males outside PAR
 initializeRecombinationRate(c(1e-8, 0), c(2699999, 5999999), sex="M");
 initializeRecombinationRate(1e-8, sex="F");
}
1 late() {
 // initialize the pop, with a Y marker for each male
 sim.addSubpop("p1", 1000);
 i = p1.individuals;
 i[i.sex == "M"].genome2.addNewMutation(m3, 0.0, 5999999);
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 292

modifyChild() {
 numY = sum(child.genomes.containsMarkerMutation(m3, 5999999));

 // no individual should have more than one Y
 if (numY > 1)
 stop("### ERROR: got too many Ys");

 // females should have 0 Y's
 if (child.sex == "F" & numY > 0)
 return F;

 // males should have 1 Y
 if (child.sex == "M" & numY == 0)
 return F;

 return T;
}
10000 late() {
 p1.outputMSSample(10, replace=F, requestedSex="F");
}

The initialize() callback sets up the genetic structure. This model turns on sex, because we
want SLiM to track males and females for us, but it requests modeling of an autosome with
initializeSex("A"); we will handle the tracking of the X versus Y chromosomes ourselves. To do
that, we set up a special “marker” mutation type, m3, that will be used to tag Y chromosomes, as
we will see shortly. We set up a 6 Mb chromosome with a 2.7 Mb PAR at the beginning; the PAR
uses mutation type m1 (through genomic element type g1), while the rest of the chromosome uses
mutation type m2 (through genomic element type g2), so that we can easily tell sex-linked
mutations from pseudo-autosomal mutations later on. The only wrinkle during initialization is that
we set up a recombination map in males that prevents recombination outside the PAR; females,
which have two X chromosomes, are allowed to recombine freely.

Next we have a tick 1 late() event that sets up the initial population. After making a new
subpopulation in the usual way with addSubpop(), it gets the male individuals, selects only their
second Genome objects using the genome2 property, and adds an m3 mutation to them to mark them
as Y chromosomes. These marker mutations will be handled in the usual way by SLiM, so they will
be inherited and will continue to mark Y chromosomes in future generations. Because
recombination is prevented in males outside the PAR, they will stay associated with the non-PAR Y
chromosome genetic information.

There is one problem with this scheme, however. When SLiM generates offspring, it has its own
ideas about whether a given child ought to be male or female. We need to follow SLiM’s guidance
on this, otherwise our model will end up with individuals that SLiM considers female but that
possess a Y chromosome, and individuals SLiM thinks are male but that have no Y. This is the
purpose of the modifyChild() callback. It simply compares what SLiM expects for the sex of the
child (child.sex) with the genetics that SLiM is proposing that the child will inherit
(child.genomes). If they don’t match, then it returns F to indicate that SLiM needs to choose new
parents and try again. Note the containsMarkerMutation() method; this just checks for a
mutation of a given type at a given position, which can be done quite quickly by SLiM. It is thus
optimal when the position of a mutation (if it exists) is already known, as it is here.

Because modifyChild() callbacks get called quite frequently (once for each new offspring
generated by SLiM, or even more in this case since the callback rejects some proposed children),
the speed of callback code is essential. The callback above has very clear logic, but it is slow in
several ways. It does a safety check that is never, in fact, hit (since the model works properly); it

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 293

assigns a value into a variable, numY, which is relatively slow because it requires Eidos to set up a
symbol table entry; and it performs some unnecessary logical operations and tests (if child.sex is
not "F" then it must be "M", for example). Worst of all, it calls containsMarkerMutation() for both
child genomes, but this is completely unnecessary because SLiM always guarantees (unless you
change it in script somehow) that an individual’s first genome is inherited from the maternal parent
and its second genome is inherited from the paternal parent. If a Y chromosome is present, it will
therefore always be in the second genome; there is no need to check the first chromosome for
having a Y chromosome. With an optimized version of the callback, the model runs about twice
as fast, a very significant difference. The optimized callback:

modifyChild() {
 // females should not have a Y, males should have a Y
 if (child.sex == "F")
 return !child.genome2.containsMarkerMutation(m3, 5999999);
 else
 return child.genome2.containsMarkerMutation(m3, 5999999);
}

This will produce the same result in all cases (unless the model has already broken, such as by
an individual having two Y chromosomes, or by a Y chromosome being present in the first genome
of a proposed child somehow).

Finally, we have a late() event that outputs an MS-format sample from the females in the
population; among other things, this establishes the end of the model as tick 10000.

There is one remaining issue. Addressing it is optional, in a sense, but if we don’t address it the
model will run slower and slower until it grinds nearly to a halt. The problem is that while PAR
mutations will fix and be converted into Substitution objects automatically by SLiM as usual,
non-PAR mutations will not. This is because their threshold for fixation is lower than SLiM
realizes; only a quarter of Genome objects are Y chromosomes, and only three-quarters are X
chromosomes, so sex-linked mutations need to fix when they reach those frequencies, not a
frequency of 1.0 as SLiM expects. Fixing this is not difficult, but it does require a bit of code:

1:10000 late() {
 // periodically remove m2 (non-PAR) mutations that are fixed in X or Y
 // m1 (PAR) mutations will be automatically removed when fixed
 if (sim.cycle % 1000 == 0) {
 numY = sum(p1.individuals.sex == "M");
 numX = 2 * size(p1.individuals) - numY;

 // look at the mutations in a single Y chromosome
 // to find mutations that are fixed in all Y's
 firstMale = p1.individuals[p1.individuals.sex == "M"][0];
 fMG = firstMale.genomes;

 if (fMG[0].containsMarkerMutation(m3, 5999999)) {
 firstY = fMG[0];
 firstX = fMG[1];
 } else if (fMG[1].containsMarkerMutation(m3, 5999999)) {
 firstY = fMG[1];
 firstX = fMG[0];
 } else
 stop("### ERROR: no Ys in first male");

 ymuts = firstY.mutationsOfType(m2);
 ycounts = sim.mutationCounts(NULL, ymuts);
 removeY = ymuts[ycounts == numY];

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 294

 // now do the same for the X
 xmuts = firstX.mutationsOfType(m2);
 xcounts = sim.mutationCounts(NULL, xmuts);
 removeX = xmuts[xcounts == numX];

 cat("Cycle " + sim.cycle + ": Removing ");
 cat(removeX.size() + "/" + removeY.size() + " on X/Y\n");

 removes = c(removeY, removeX);
 sim.subpopulations.genomes.removeMutations(removes, T);
 }
}

This event should ideally be inserted before the tick 10000 late() event that produces final
output. It runs every 1000 ticks, since the operation it performs is somewhat time-consuming;
doing it every tick would be wasteful. It finds a male individual, and uses that individual as a
template for finding and removing fixed sex-linked mutations. Any mutation that has fixed must be
possessed by the template male (by the definition of “fixation”), so the code just gets all the
mutations of type m2 (non-PAR mutations) from the male’s X and Y and checks them all for fixation.
The fixation check itself is done using mutationCounts(), which returns the number of occurrences
of the mutations – population-wide, in this case, because of the NULL passed for the first parameter.
The event prints the number of X-linked and Y-linked mutations that it intends to remove, and then
it removes them with removeMutations(). The optional T value passed for the second argument to
removeMutations() (which is named substitute) indicates that SLiM should create Substitution
objects for the removed mutations; we are notifying SLiM that those mutations are in fact fixed,
even though SLiM doesn’t realize it. If you don’t care about that record-keeping, you can omit that
optional T value, and the mutations will simply be removed.

And that’s it. We’ve implemented tracking of Y chromosomes with marker mutations, we’ve
guaranteed that those markers stay correctly synchronized with offspring sex, and we’ve added
machinery to detect fixed sex-linked mutations and turn them into Substitutions just as SLiM does
for autosomal mutations. If we run this model in SLiMgui with display of fixed mutations turned
on (with the button to the right), the behavior of the PAR versus the non-PAR regions is easy to
see as soon as the first pass of the fixation check has run in tick 1000:

The PAR, on the left, behaves as an autosome, so it takes a while for mutations to fix; one is
close to fixation, but none has made it there yet. The non-PAR region, on the right, behaves as
separate sex chromosomes that cannot recombine, and each sex chromosome is present in fewer
copies than the PAR; mutations in that region thus have a smaller effective population size, and fix
more rapidly. The Y, present in only a quarter as many copies as the PAR, fixes particularly quickly;
all 20 of the fixations here are in fact on the Y. After tick 3000, the situation is similar:

There have now been 19 fixations on the X, 120 on the Y, and only 11 in the PAR. The trend is
clear, and it appears that our model of a pseudo-autosomal region is functioning as expected.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 295

14.6 Estimating model parameters with ABC
One major use of simulation models is to try to better understand an empirical system by

comparing simulated results with empirical data. For example, one might have an observation
from an empirical system, and have a guess as to a model that approximates that empirical system
well; one might then want to know the value of a particular parameter of that model that produces
the best possible fit of the model to the data. In this recipe we’ll explore doing this using a
technique called Approximate Bayesian Computation (ABC). This is quite a complex topic, and we
will not attempt to provide a thorough introduction to it here; please use the internet to inform
yourself further regarding the assumptions, limitations, and caveats involved in this method, as
well as about the underlying theoretical framework upon which it rests.

In this recipe we’re going to branch out a bit and present R code as well as Eidos code. The R
code will run the ABC process, while the Eidos code will run the SLiM simulation that provides the
ABC process with the information it needs. Let’s start with the Eidos code:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 999999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 100); }
1000 late() { cat(sim.mutations.size() + "\n"); }

This is a trivial model, obviously. We start with a population of size 100, and model neutral
mutations in that population. The model is allowed to equilibrate until tick 1000, at which point
the number of segregating mutations detected in the population is printed. Simple and fast, which
is important since ABC is going to run it a whole bunch of times; the drawback of ABC-based
methods is that they can be quite computationally expensive.

To tie this back to an empirical question, this model would be a reasonable starting place if you
said: “I have a population of size 100 that I have sampled comprehensively, and the analysis I’ve
done tells me there are 262 segregating mutations in the population. I think the population has
been about size 100 for a long time, so it’s at equilibrium (to the extent that a small population
evolving under drift is ever at equilibrium). I know the recombination rate and the chromosome
length, but I don't know the mutation rate. What’s my best guess, and what’s the posterior
distribution around that guess?” So now we’ve got a SLiM model of that scenario, with a guess of
1e-7 hard-coded into it. Let’s tweak the model by replacing the mutation rate with a symbolic
constant:

 initializeMutationRate(mu);

We could define the constant mu at initialization time with a call to the Eidos function
defineConstant(), like:

 defineConstant("mu", 1e-7);

But let’s not do that; instead, we will pass a value for it in to the simulation on the command
line. To do this, let’s first save the model to a file called “abc.slim” in our home directory (we will
assume that the file is then at the path ~/abc.slim, as it is on most Unix systems including
macOS). If we run this model at the command line, we get an error regarding the undefined
constant:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 296

darwin:~ bhaller $ slim ~/abc.slim
...
ERROR (EidosSymbolTable::_GetValue): undefined identifier mu.

Error on script line 2, character 24:

 initializeMutationRate(mu);
 ^^

But we can pass a value for the constant in, using the -d (-define) command-line option (see
section 20.2):

darwin:~ bhaller $ slim -d mu=1e-7 ~/abc.slim
...
262

This defines mu to be 1e-7 at the very beginning of the model, before the first initialize()
callback is called. This run of SLiM is actually where the value of 262 came from, above; it’s the
value from our “empirical system” (i.e., this first run of our model), for which we’re going to try to
recover an estimate of mu using ABC. In practice, such observed values would probably come
from field or lab data.

So now we have a working model at ~/abc.slim that expects a value for a constant mu to be
supplied to it on the command line, and the last line of the output it generates is the outcome of
the model – the number of segregating mutations observed in the population at equilibrium. The
next step is to write an R function to run our model, given a random number seed and a mutation
rate mu. This function can use the system2() function of R to run SLiM with the desired command-
line arguments:

runSLiM <- function(x)
{
 seed <- x[1]
 mu <- x[2]
 #cat("Running SLiM with seed ", seed, ", mu = ", mu, "\n");
 output <- system2("/usr/local/bin/slim", c("-d", paste0("mu=", mu),
 "-s", seed, " ~/abc.slim"), stdout=T)
 as.numeric(output[length(output)])
}

The output is collected as a character vector of output lines. Note that this function takes the
seed and mu values as a single vector, x; this is because of the design of the R package we will use
to run the ABC in a moment. First, let’s test this function:

> runSLiM(c(100030, 1e-7))
[1] 281

We get a different result than before, since a different random number seed was used, but it
seems to work fine. So now we have R running our SLiM model for us.

The next step is to actually run an ABC analysis. For this, we will use the package EasyABC,
available through CRAN:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 297

library(EasyABC)

Set up and run our ABC
prior <- list(c("unif", 1e-9, 1e-6))
observed <- 262

ABC_SLiM <- ABC_sequential(method="Lenormand", use_seed=TRUE,
 model=runSLiM, prior=prior, summary_stat_target=observed,
 nb_simul=1000)

The EasyABC package has many different options for running ABC analyses, including several
“sequential” ABC methods that try to arrive at an answer more quickly through successive rounds
of ABC, and several ways of running the ABC inside an MCMC (Markov Chain Monte Carlo)
process, a particularly powerful way of converging rapidly on the posterior distribution of the ABC.
We have chosen the “Lenormand” method, since it is simple to set up, is happy to run with only
one unknown parameter (which some of the other methods don’t seem to be, strangely), and
converges fairly quickly. Since ABC is a Bayesian method, we also need a prior for mu; we have
chosen a uniform prior from 1e-9 to 1e-6, since that encompasses the range of mutation rates we
think would be likely in our empirical system, and since we have no information about which
values within this range are more or less likely. We also need to tell EasyABC how many runs we
want to perform; the nb_simul parameter does that (sort of – see the documentation), and the value
of 1000 here should give us quite a good posterior distribution at the expense of longer runtime (a
value of 100 actually works pretty well already).

The final line, which actually runs the ABC analysis, will probably take several minutes,
depending upon the speed of your machine. When it finishes, ABC_SLiM contains information
about the ABC run. Details about that information can be found in EasyABC’s documentation; we
will not explain it here, but we will use it to extract the results we want. First of all, to get the best
fit estimate from a one-parameter ABC like this, one typically wants the sum of the weighted values
chosen by the ABC:

> sum(ABC_SLiM$param * ABC_SLiM$weights)
[1] 0.0000001134854

The ABC did quite a good job of recovering the actual value of mu, 1e-7, that was used to
generate the target value of 262. We can also plot the posterior distribution for mu that was arrived
at by the ABC analysis, using this R code:

log_param <- log(ABC_SLiM$param, 10)
breaks <- seq(from=min(log_param), to=max(log_param), length.out=8)

quartz(width=4, height=4)
hist(log_param, xlim=c(-9, -6), breaks=breaks, col="gray",
 main="Posterior distribution of mu", xlab="Estimate of mu", xaxt="n")
axis(side=1, at=-6:-9, labels=c("1e-6", "1e-7", "1e-8", "1e-9"))

This code converts the posterior distribution data to a log scale manually and plots it on that
scale, for clarity; there are probably better ways to do that. The quartz() call just opens a graphics
device on macOS; if you’re on a different platform you will probably have to change that to your
platform-specific graphics device call. Apart from those details, the code is pretty standard. The
resulting plot looks like this:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 298

We started with a uniform prior from 1e-9 through to 1e-6, providing the ABC analysis with no
information as to which values within that range were more likely. By doing quite a few runs of
SLiM (12500, as it happens), the ABC narrowed that range down considerably, effectively ruling
out a large part of it completely, and it gave us a posterior distribution showing which values of mu
would be most likely to produce the observed number of segregating mutations, 262, that was
observed empirically. All in just a few lines of Eidos and a few lines of R; not bad!

This completes our foray into Approximate Bayesian Computation in SLiM and R. This topic can
be pursued much further: estimation of the joint distribution of multiple parameters, usage of a
Markov Chain Monte Carlo (MCMC) method for running the ABC (which is also supported by the
EasyABC package), delving into the often difficult problem of priors, and so forth. But this recipe
should provide a starting point for such explorations.

14.7 Tracking true local ancestry along the chromosome
Ancestry, relatedness, pedigree, and similar concepts are often important in forward genetic

simulations such as those run by SLiM. Depending upon exactly what you need, there are several
different approaches to these sorts of questions in SLiM:

• The subpopID property of mutations (section 25.10.1) keeps track of the
subpopulation in which a given mutation originated. In an admixture model in
which you want to determine whether a given mutation originally arose in one
subpopulation or another, this is often all you need. Note also that if you are
adding mutations yourself using addNewMutation() or addNewDrawnMutation(),
you can set the subpopID in those calls to whatever value you wish. The
subpopID property is writeable, so you can also change it later to any integer
value (including some type of ancestry information).

• Mutation types can also be useful for tracking ancestry information. If different
mutation types are used for mutations with different origins in your model, they
can then be used to determine the origin of each mutation later, and SLiM’s
methods for retrieving and counting the mutations of a given mutation type can

Posterior distribution of mu

Estimate of mu

Fr
eq

ue
nc

y

0
50

10
0

15
0

1e-9 1e-8 1e-7 1e-6

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 299

be used to separate out mutations of different origins. This approach will work
even in non-admixture models in which all mutations originate in a single
subpopulation, as long as you can classify mutations according to their ancestry
at the point when they originate (in a modifyChild() callback that looks at the
parents to determine an ancestry group, for example). The mutation type of
mutations can be changed with the setMutationType() method.

• By enabling an optional feature, SLiM can do pedigree-based tracking of the
ancestry of individuals for the purposes of calculating relatedness, finding “trios”
of parents and an associated offspring, and so forth (see section 14.1). This
provides information about relatedness and ancestry at the level of individuals,
rather than the level of mutations. Pedigree-based arranged matings can also be
implemented (see section 15.10).

• If tree-sequence recording is turned on (see section 1.7 and chapter 17, and
section 17.5 in particular), it provides a type of true local ancestry tracking for
every position along the chromosome. This is similar in some ways to this
recipe, but much more efficient, and was added in SLiM 3.

Sometimes it is desirable to track relatedness not at the individual level with a pedigree, or at a
mutational level with subpopID or mutation types, but instead at the level of chromosomal regions
– perhaps down to the ancestry of each individual base position along the chromosome. In this
way, the ways that assortment, recombination, selection, and drift determine the ancestry at each
position can be analyzed. This type of relatedness tracking is also possible in SLiM, even when not
using tree-sequence recording; we will explore an example in this section.

Models can implement “true local ancestry” tracking themselves using marker mutations –
mutations which have no selective effect, and are not meant to represent actual mutational
changes to genomes, but instead simply mark particular positions on particular genomes for future
reference. The recipe in section 14.4 used a marker mutation to track individuals possessing a
chromosomal inversion, for example, and in section 14.5 a marker mutation was used to mark Y
chromosomes in a model of a pseudo-autosomal region shared between sex chromosomes. Here
marker mutations will be used at every position, to indicate ancestry. At the end, the model will
assess the average ancestry, across the subpopulation, at every chromosome position.

Here is the complete recipe:

initialize() {
 defineConstant("L", 1e4); // chromosome length

 initializeMutationRate(0);
 initializeMutationType("m1", 0.5, "f", 0.1); // beneficial
 initializeMutationType("m2", 0.5, "f", 0.0); // p1 marker
 m2.convertToSubstitution = F;
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, L-1);
 initializeRecombinationRate(1e-7);
}
1 early() {
 sim.addSubpop("p1", 500);
 sim.addSubpop("p2", 500);
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 300

1 late() {
 // p1 and p2 are each fixed for one beneficial mutation
 p1.genomes.addNewDrawnMutation(m1, asInteger(L * 0.2));
 p2.genomes.addNewDrawnMutation(m1, asInteger(L * 0.8));

 // p1 has marker mutations at every position, to track ancestry
 p1.genomes.addNewMutation(m2, 0.0, 0:(L-1));

 // make p3 be an admixture of p1 and p2 in the next cycle
 sim.addSubpop("p3", 1000);
 p3.setMigrationRates(c(p1, p2), c(0.5, 0.5));
}
2 late() {
 // get rid of p1 and p2
 p3.setMigrationRates(c(p1, p2), c(0.0, 0.0));
 p1.setSubpopulationSize(0);
 p2.setSubpopulationSize(0);
}
2: late() {
 if (sim.mutationsOfType(m1).size() == 0)
 {
 p3g = p3.genomes;

 p1Total = sum(p3g.countOfMutationsOfType(m2));
 maxTotal = p3g.size() * L;
 p1TotalFraction = p1Total / maxTotal;
 catn("Fraction with p1 ancestry: " + p1TotalFraction);

 p1Counts = integer(L);
 for (g in p3g)
 p1Counts = p1Counts + integer(L, 0, 1,
 g.positionsOfMutationsOfType(m2));
 maxCount = p3g.size();
 p1Fractions = p1Counts / maxCount;
 catn("Fraction with p1 ancestry, by position:");
 catn(format("%.3f", p1Fractions));

 sim.simulationFinished();
 }
}
100000 late() {
 stop("Did not reach fixation of beneficial alleles.");
}

The broad outline here is straightforward. We model two subpopulations, p1 and p2, which are
created in the tick 1 event and configured in the tick 1 late() event. That late() event also sets
up a new subpopulation, p3, that will be produced by admixing migrants from p1 and p2 in tick 2.
At the end of tick 2, p1 and p2 are removed, and p3 is allowed to evolve thenceforth until the
termination of the model. This model is therefore a very simple model of the admixture of two
subpopulations; more complex population dynamics could easily be used with the same ancestry-
tracking mechanism shown here.

When p1 and p2 were configured, they were each set up to contain a beneficial mutation of
type m1, fixed within the respective subpopulation. The new p3 subpopulation therefore contains
some genomes that originated in p1 and contain that subpopulation’s beneficial mutation (located
at L * 0.2 on the chromosome), and some genomes that originated in p2 and contain that
subpopulation’s beneficial mutation (located at L * 0.8 on the chromosome). The expectation is

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 301

that recombination between those points will eventually produce at least one new genome that
contains both beneficial mutations, and that subsequently both beneficial mutations will sweep to
fixation in p3. The question we wish to investigate is the precise pattern of true local ancestry
along the chromosome at the point when fixation of both beneficial mutations has just occurred.

To do this, the model adds a marker mutation of type m2 at every position along every genome
in p1, in the 1 late() event. This is done using a single vectorized call to addNewMutation(), for
greater efficiency; adding the mutations one by one would take a very long time, especially with a
longer chromosome. These added markers indicate that a given chromosome position traces its
ancestry to p1. In models with more complex demography involving more than two “parental”
subpopulations, additional mutation types could be employed to indicate derivation from each of
the possible ancestral subpopulations. An important point to understand is that because mutations
in SLiM “stack” by default, these marker mutations have no effect whatsoever on the other
mutations that might occur during a simulation; they are simply carried along, almost as if they
were epigenetic marks of some sort on the genomes being simulated. For simplicity, this model
does not include neutral mutations along the chromosome, and indeed it uses a mutation rate of 0;
but the ancestry-tracking mechanism shown here is compatible with any other model dynamics.

Thus configured, the model runs until both beneficial mutations either fix or are lost. This
termination condition is checked in the 2: late() event. When there are no longer any circulating
m1 mutations, the model outputs some final analysis and terminates. The final analysis here is in
two parts. The first part simply calculates the fraction of all chromosome positions in all genomes
that derives from p1. In one run of this model, the output happens to be:

Fraction with p1 ancestry: 0.398137

The second part calculates the fraction of all genomes derived from p1 at each individual
position along the chromosome, and outputs those fractions as a big vector:

Fraction with p1 ancestry at each chromosome position:
0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946...

It does that by looping through the genomes of p3, and for each genome getting the positions at
which m2 mutations exist using positionsOfMutationsOfType(). Those vectors of positions can be
converted into integer vectors that have a 1 at the positions where m2 mutations occurred (and a 0
everywhere else), using the integer() function of Eidos. Summing those vectors across all of the
p3 genomes gives a count of the number of m2 mutations at each position; dividing that by the
maximum possible count gives a frequency, which indicates the pattern of ancestry.

This pattern can also be seen in SLiMgui, with the neutral marker mutations shown in yellow:

This indicates that the left-hand half of the chromosome mostly derives from p1 – albeit with
some variation due to multiple recombination events that created some haplotype variation –
whereas the right-hand half of the chromosome derives from p2 in all individuals.

The recipe here tracks true local ancestry down to the level of individual base positions. This
does involve some overhead, in terms of both memory usage and processor power, so if this level
of granularity is not needed, it would be much more efficient to place marker mutations every 10,
100, or even 1000 positions along the chromosome. This could be done with a few trivial
modifications to the recipe presented here. However, this recipe can be scaled up to L = 1 Mbp
and still run in only a couple of minutes, so the overhead is really not too bad. For even larger

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 302

models, however, both the runtime and the memory usage of this recipe can become prohibitive;
at L = 108, the memory usage of this recipe is estimated to be over 8 TB (that is not a typo).

A final note: having done one run of the recipe and seen the pattern of ancestry in SLiMgui, it
would be natural to wonder what the average pattern of ancestry would be across many runs. That
is straightforward to do, by simply running the model many times, collecting the data from each
run, and averaging the ancestry pattern across the runs. A simple R script to do this is provided in
the online SLiM-Extras repository, in the “sublaunching” folder since it illustrates how to sublaunch
runs of SLiM from a script (in this case, an R script). The script is named aggregateLocalAncestry.R
(https://github.com/MesserLab/SLiM-Extras/blob/master/sublaunching/aggregateLocalAncestry.R). If
you have R installed you should be able to run it easily, after modifying the file paths in the script
to point to your installed slim and your copy of this recipe. If you do that, you will get a plot:

The locations where the beneficial mutations were placed in p1 and p2 are shown with red
lines. The mean true local ancestry (the fraction of the genomes in p3 that derive from p1 at a
given chromosome position) is exactly 1.0 at the first beneficial mutation’s location, and exactly
0.0 at the second’s; this makes sense, since the model did not terminate until both beneficial
mutations had fixed, which would imply pure p1 or p2 ancestry at those positions. In between, the
local ancestry changes linearly from p1 to p2; it might seem plausible that the pattern would be
sigmoid instead, but apparently it is not. Toward the ends of the chromosomes, outside the
beneficial mutations, the ancestry falls toward 0.5; it’s hard to see here, but that fall-off is not
linear, in fact. This pattern presumably recapitulates known results from population genetics, but a
modified version of this model could explore much more complex scenarios.

This recipe is interesting from a historical perspective, and the approach it shows might prove
useful in some circumstances, but it has largely been eclipsed by tree-sequence recording. Section
17.5 gives a recipe to solve essentially the same problem, using the ancestry information provided
by the recorded tree sequence. As that section shows, assessing the true local ancestry for a
chromosome of length 1e8, which would take this section’s recipe over 7.2 days to complete, can
be done in slightly over one minute with tree-sequence recording.

14.8 Live plotting with R using system()
The previous section presented a final analysis of the results from its recipe using a plot

generated in R after the model had finished. SLiMgui provides some built-in plots, as we saw in

0 9999

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

chromosome position

fra
ct

io
na

l a
nc

es
try

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 303

https://github.com/MesserLab/SLiM-Extras/blob/master/sublaunching/aggregateLocalAncestry.R

chapter 8, but it would be awfully nice to be able to make custom plots through R’s extensive
plotting facilities within a running SLiM model – and even better, to have those plots update live as
the model runs in SLiMgui. That is the goal of this section’s recipe. (This technique is so useful,
however, that we already used it in section 13.5; here we will introduce it more thoroughly.)

To achieve this goal, we will use several tools we haven’t encountered before now. Most
important is the Eidos system() function, which allows any Un*x command to be executed; we
will use it to sublaunch R processes that will generate plots for us. We will also use the Eidos
writeTempFile() function, which generates a temporary file with a unique, non-colliding
filename; we will use it to create the R script we will execute and the PNG plot file we will
display. (Note that the version of the model provided in SLiMguiLegacy generates a PDF plot file
instead, since the SLiMguiLegacy app can display PDF files but not PNG files.)

Let’s launch into it:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);

 if (fileExists("/usr/bin/Rscript"))
 defineConstant("RSCRIPT", "/usr/bin/Rscript");
 else if (fileExists("/usr/local/bin/Rscript"))
 defineConstant("RSCRIPT", "/usr/local/bin/Rscript");
 else
 stop("Couldn't find Rscript.");
}

The first part is just a vanilla neutral model setup, nothing surprising. The second part looks up
the location of the Rscript utility, which is a command-line tool that executes a given R script; it is
typically part of a standard install of R. We will use this tool later on, so here we figure out where
it is, by just looking at two likely locations. If Rscript is located somewhere else, you can tailor
this code as needed. Executing which Rscript in a terminal window will probably tell you where
Rscript is located for you. If it seems to be missing, you probably need to install R on your
machine. On macOS you can download a double-click installer from CRAN; on Linux, depending
on your distro, executing sudo apt-get install r-base-core might install it for you.

Next is the tick 1 setup:

1 early() {
 sim.addSubpop("p1", 5000);
 sim.setValue("fixed", NULL);

 defineConstant("pngPath", writeTempFile("plot_", ".png", ""));

 // If we're running in SLiMgui, open a plot window
 if (exists("slimgui"))
 slimgui.openDocument(pngPath);
}
50000 late() { sim.outputFixedMutations(); }

In tick 1, we create a new subpopulation as usual. We also start a new value kept by the
simulation, named fixed; this will keep a record of the number of fixed mutations over time as the
simulation runs, and that is what we will plot.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 304

Next we call writeTempFile() to make a temporary file with a filename that begins with
"plot_" and ends with ".png"; several characters in between will be randomly generated by
writeTempFile() to create a unique filename that is not presently used in the temporary directory
where the file will be placed (/tmp or a subdirectory thereof, on all Unix platforms including
macOS). This call returns the filesystem path to the file it creates, and we define that as a constant
named pngPath for future use.

The last couple of lines execute only if the model is running in SLiMgui; when running at the
command line, the slimgui object does not exist. When running in SLiMgui, on the other hand,
slimgui is a global singleton object (of Eidos class SLiMgui) that represents the SLiMgui application
itself, and can be used to control SLiMgui from a model’s script (see section 25.13). If the slimgui
object exists, as tested by the Eidos function exists(), then we are indeed running in SLiMgui, in
which case we call the openDocument() method of slimgui with the path to the PNG file we have
just created. A new window should open in SLiMgui as a result; initially it will be blank since the
PNG file is empty, but it will update automatically whenever the PNG file changes.

Since we are running in SLiMgui, we can rely upon it for the automatically updating PNG
display facility used here. When running SLiM at the command line, you can do something very
similar to open the plot file in the PNG preview app of your choice, and get live plotting even
without running SLiMgui. However, many image display programs do not notice changes to the
file they are displaying, and will not automatically redisplay it. Graham Gower, a SLiM user on
Linux, has kindly supplied two modified versions of this recipe that demonstrate approaches to this
on Linux (based on PDF rather than PNG, for historical reasons); they are available in the SLiM-
Extras repository on GitHub (https://github.com/MesserLab/SLiM-Extras). One of his recipes uses
xdg-open to open the plot image in the user’s preferred viewer (which may or may not handle the
redisplay issue). The other opens the plot image in a specific viewer app called mupdf, and sends it
HUP signals to cause it to redisplay with each replot in SLiM. Their code should be fairly self-
explanatory.

Finally, we have a tick 50000 event that ends the simulation. All we need in addition to that
code is an event to tabulate results and generate plots:

1: early() {
 if (sim.cycle % 10 == 0)
 {
 count = sim.substitutions.size();
 sim.setValue("fixed", c(sim.getValue("fixed"), count));
 }

 if (sim.cycle % 1000 != 0)
 return;

 y = sim.getValue("fixed");

 rstr = paste('{',
 'x <- (1:' + size(y) + ') * 10',
 'y <- c(' + paste(y, sep=", ") + ')',
 'png(width=4, height=4, units="in", res=72, file="' + pngPath + '")',
 'par(mar=c(4.0, 4.0, 1.5, 1.5))',
 'plot(x=x, y=y, xlim=c(0, 50000), ylim=c(0, 500), type="l",',
 'xlab="Generation", ylab="Fixed mutations", cex.axis=0.95,',
 'cex.lab=1.2, mgp=c(2.5, 0.7, 0), col="red", lwd=2,',
 'xaxp=c(0, 50000, 2))',
 'box()',
 'dev.off()',
 '}', sep="\n");

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 305

https://github.com/MesserLab/SLiM-Extras

 scriptPath = writeTempFile("plot_", ".R", rstr);
 system(RSCRIPT, args=scriptPath);
 deleteFile(scriptPath);
}

First of all, in the event code above, every tenth cycle we add the current count of fixed
mutations to the value we’re using to tabulate those results, using getValue() and setValue() to
update the saved value.

Second, every 1000th cycle we generate a new plot. First, we get the current tabulation of
counts using getValue(). Then we assemble an R script into rstr using a rather complicated
command that spans twelve lines. (Note that if there is any typo in that code, the Rscript call will
fail silently and no plot will be produced; retyping this code by hand is not recommended, use
copy/paste or simply open this recipe from the Open Recipe submenu in SLiMgui.) A call to c() is
used to piece together a vector of script lines, some of which are simple strings, others of which
are themselves assembled using the + operator to concatenate strings and so forth. The vector of
script lines is then pasted together using a newline character as the separator, to make a more or
less readable R script (you could add a print() call to see the final result if you wish). We write
that script to a temporary file using writeTempFile(), and then we call system() to request that
Rscript should run our script. Once Rscript is done we clean up the script file.

That is all that is needed. SLiMgui will automatically notice that the PNG file has been
overwritten with new data, and will redisplay it more or less continuously (there is a short lag
because of delays involved in filesystem notifications and other factors, but typically less than a
second). At the end of a typical run, the plot window in SLiMgui shows something like this:

The plotting code that we sent to R included niceties like axis labels, font sizes, and line colors,
so the final plot is reasonably nice-looking. Beyond aesthetics, we can see a few interesting things
in this plot. First of all, there is a long delay – perhaps 15000 generations – before any mutations
fix at all. This is because the chromosome starts empty, in this model, and it takes some time to
accumulate neutral diversity and have it drift to fixation. This is why it is usually important to run
models for a burn-in period before collecting data; the early state of a model is usually far from
equilibrium. Second, even after mutations start to fix the line is quite jagged; there are long
periods without any fixation, and then sudden jumps when many mutations fix simultaneously.
This is because whole haplotypes representing many individual mutations often fix as a single unit,
followed by periods in which competing haplotypes are drifting up and down in frequency without
fixation; these evolutionary dynamics are also very visible in SLiMgui’s chromosome view.

0 25000 50000

0
10

0
20

0
30

0
40

0
50

0

Generation

Fi
xe

d
m

ut
at

io
ns

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 306

Apart from a little bit of hassle involved in assembling an R script as an Eidos string, this recipe
is quite short and simple considering that it is continuously writing new script files and then
sublaunching R processes to generate PNG plots! This example is quite straightforward, but there
is no limit to the complexity possible here; arbitrary plots could be made, multiple plots could be
generated simultaneously, and other processing, such as statistical analysis, could also be done in
R while a SLiM simulation is still running. Of course this model could also be adapted to
sublaunch Python instead, for those who prefer it. Sublaunching is very general and powerful.

14.9 Modeling haploid organisms
SLiM models diploid individuals that contain two haploid genomes; this is, at present, a design

constraint in SLiM that cannot be modified. However, it is still possible to model haploids in SLiM
quite easily with scripting, by effectively suppressing one of the two haploid genomes of each
diploid individual. Section 14.5’s recipe, which shows how to model X and Y chromosomes with
a pseudo-autosomal region, shares some aspects of its design with the recipe shown here, but
modeling haploids is actually much simpler. Similar techniques could be used to model
mitochondrial DNA, or alternative mating systems (but nonWF models provide better methods; see
section 15.14 and 16.25 for nonWF models of haplodiploidy and alternation of generations).

In any case, here we will stick with a simple model of haploids that reproduce clonally. This
model is short enough that we will just present it in its entirety:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 1.0, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(0);
}
1 early() {
 sim.addSubpop("p1", 500);
 p1.setCloningRate(1.0);
}
late() {
 // remove any new mutations added to the disabled diploid genomes
 sim.subpopulations.individuals.genome2.removeMutations();

 // remove mutations in the haploid genomes that have fixed
 muts = sim.mutationsOfType(m1);
 freqs = sim.mutationFrequencies(NULL, muts);
 if (any(freqs == 0.5))
 sim.subpopulations.genomes.removeMutations(muts[freqs == 0.5], T);
}
200000 late() {
 sim.outputFixedMutations();
}

We begin with a typical initialize() callback, except that the recombination rate is set to
zero since there is no recombination in this clonal model. Note also that although this is a neutral
model for simplicity, the dominance coefficient is set to 1.0 on mutation type m1 as a reminder;
since mutations will never be homozygous in this model, dominance coefficients should always be
1.0 for conceptual clarity. Next we add a new subpopulation in tick 1 as usual; but in addition,
we set the subpopulation to reproduce clonally, as befits haploids (but see section 15.12). At the
end of the model we output fixed mutations, as a placeholder for whatever output would be
desired. The interesting model mechanics occur in between, in the late() callback.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 307

The first part of the late() callback removes mutations in the second haploid genome of each
new child generated. SLiM doesn’t know that we’re modeling haploids, and thus not using the
second genomes, so it adds new mutations to them as usual during offspring generation. This call
removes them again in order to keep all of the second genomes of individuals empty.

The second part of the late() callback solves another problem: removing fixed mutations.
SLiM automatically converts fixed mutations into Substitution objects and removes them from
the simulation; however, it defines fixation as occurring when the frequency of a mutation reaches
1.0. In this haploid model, mutations fix when they reach a frequency of 0.5, because of the
empty second genomes. We therefore need to remove mutations manually, rather than relying on
SLiM’s built-in machinery. This callback achieves that, passing T for the substitute parameter of
removeMutations() so that Substitution objects are created for the fixed mutations as usual.

Those are the only overrides needed in script to produce a model of haploids. The mechanisms
used here to enforce haploidy, such as removal of mutations on the unused chromosome and
substitution of fixed mutations at a frequency of 0.5, could also be used to make just one segment
of the simulated chromosome haploid. This would allow mitochondrial DNA and autosomal DNA
to be jointly simulated in SLiM, for example. Some modifications to the recipe above would be
needed to achieve this; you would probably want to use a sexual autosomal model with biparental
mating, add code to the modifyChild() callback to enforce maternal inheritance of the
mitochondrial DNA (i.e., to block any proposed child that received its mitochondrial DNA from
the father, or both parents, or neither), and use a recombination map to prevent recombination in
the mitochondrial portion of the genome, for example. Section 14.5 provides an example of a
scenario that is in many ways parallel to that. Other ploidy schemes, such as haplodiploidy and
alternation of generations, should also be implementable with modifications of these basic ideas,
although a nonWF approach is usually better. Even tetraploidy and higher ploidy levels can be
modeled, but that is more complex; a recipe for that may be found in the SLiM-Extras repository.

For an alternative model of haploid organisms that is more compatible with tree-sequence
recording, but which requires the nonWF model type, see sections 15.11 and 15.12.

14.10 Using mutation rate variation to model varying functional density
Beginning with SLiM 2.5, it is possible to set up a mutation-rate map that varies the mutation

rate along the length of the chromosome. This is similar to setting up a recombination-rate map, as
already supported by SLiM; see sections 6.1.1 and 6.1.2. A variable mutation-rate map can, of
course, be used for the obvious purpose of configuring mutational “hot” and “cold” spots along
the chromosome, and the code for doing so would look much like the code for those recipes.
Here, we will explore a less obvious use: modeling positional variation in functional density.

We know that different regions of chromosomes often have higher or lower functional density,
as a consequence of variation in the density of genes and the importance of those genes.
Regardless of the literal appropriateness of the term “junk DNA”, it is clear that large chromosomal
regions exist that are non-coding, and mutations in these regions generally appear to have
relatively little effect on fitness compared to mutations in coding regions. This is quite orthogonal
to mutational “hot” and “cold” spots; the variation we are concerned with here is not in the
mutation rate per se, but in the rate at which mutations actually influence fitness.

Prior to SLiM 2.5, modeling this would have required that one define a complex map of
genomic elements along the chromosome, all experiencing the same mutation rate (since that
could not be varied), but using a different fraction of neutral mutations to deleterious mutations
(and/or beneficial mutations, but for simplicity we will here focus on deleterious mutations). This
design would have been necessary in order to achieve the desired variation in the rate of

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 308

deleterious mutations, even if one was not actually interested in the neutral mutations at all. Such
a model would run much more slowly than necessary because of the neutral mutation overhead.

By defining a mutation-rate map, however, it is now straightforward to build a model in which
functional density varies along the chromosome, without having to model the neutral mutations. A
proof-of-concept model for this is so simple as to be trivial:

initialize() {
 initializeMutationType("m1", 0.5, "f", -0.01); // deleterious
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);

 // Use the mutation rate map to vary functional density
 ends = c(20000, 30000, 70000, 90000, 99999);
 densities = c(1e-9, 2e-8, 1e-9, 5e-8, 1e-9);
 initializeMutationRate(densities, ends);
}
1 early() {
 sim.addSubpop("p1", 500);
}
200000 late() { sim.outputFixedMutations(); }

The variables ends and densities are set up to encode the desired mutation-rate map, with the
end position for each chromosomal range and the effective functional density – the rate of
mutations having a deleterious effect, in this model – of that chromosomal range. As the recipes of
sections 6.1.1 and 6.1.2 illustrate, such maps can easily be generated randomly based upon
empirical metrics, or can even be read in from a file with empirical map data; in this model, to
keep things simple, we instead just specify a very simple map with five regions of different
functional density. After the model has been initialized, clicking the button to the right of the
chromosome view in SLiMgui and choosing Display Rate Maps will show the mutation-rate map
(we have seen that option show the recombination-rate map before; it shows whichever map has
been defined, or both if both have been defined):

The highest rate is in the region from base position 70000 to 89999, and indeed quite a few
deleterious mutations can be seen in that region (but none at very high frequency; the parameters
used in this model mean that the deleterious mutations are eliminated fairly efficiently). There is a
less active region from 20000 to 30000, with one mutation in this snapshot; the rest of the
chromosome has a lower functional density, and receives deleterious mutations relatively rarely.

In this recipe we work with only one mutation type, modeling deleterious mutations. It would
be possible to extend it to include several types of functional mutations, each with a different rate
of occurrence along the chromosome. In that case, the mutation-rate map would be set to encode
the sum of the rates for each of the mutation types in each chromosomal region, and genomic
elements would be used to partition mutations in each region into the correct fraction for each of
the functional mutation types. This would be somewhat more complex than this recipe, but
manageably so; and it would again be much more efficient than using a constant mutation rate
along the chromosome together with a varying fraction of neutral mutations, since modeling all of
the neutral mutations could again be avoided.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 309

14.11 Modeling microsatellites
A microsatellite (also known as a short tandem repeat or simple sequence repeat) is a

chromosomal region in which a specific nucleotide sequence repeats, often many times.
Microsatellites are important in many areas of applied genetics, from kinship analysis to forensics,
and are also often used to assess the similarity among individuals or subpopulations in ecology
and evolutionary biology. It is thus useful to be able to include them in evolutionary models.
Since explicitly modeling mutations that change the number of repeats in a microsatellite would
change the length of the chromosome, which is not allowed in SLiM, explicitly modeling the
repeated nucleotide sequence of a microsatellite doesn’t fit well into SLiM’s conceptual model.
Nevertheless, it is possible to model microsats more abstractly in SLiM, using mutations that
conceptually represent a microsat with a particular number of repeats at a given locus. This recipe
will illustrate one simple approach to this.

We will build this model step by step. First, the model initialization:

initialize() {
 defineConstant("L", 1e6); // chromosome length
 defineConstant("msatCount", 10); // number of microsats
 defineConstant("msatMu", 0.0001); // mutation rate per microsat
 defineConstant("msatUnique", F); // T = unique msats, F = lineages

 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, L-1);
 initializeRecombinationRate(1e-8);

 // microsatellite mutation type; also neutral, but magenta
 initializeMutationType("m2", 0.5, "f", 0.0);
 m2.convertToSubstitution = F;
 m2.color = "#900090";
}

We define the length of the chromosome (L), and several constants related to our microsats: the
number of microsats we will model, the mutation rate per microsat (per gamete), and a flag that
indicates whether to unique the microsats as the model runs (more on this below). The rest sets up
a simple neutral model structure, plus a mutation type, m2, that will represent our microsatellites.
We prevent microsatellites from fixing, with convertToSubstitution, since they are a permanent
feature of the chromosomal structure. We also set them to display in SLiMgui using a shade of
magenta, to set them apart from the other neutral mutations in the model.

Next we create a subpopulation with microsatellites:

1 late() {
 sim.addSubpop("p1", 500);

 // create some microsatellites at random positions
 genomes = sim.subpopulations.genomes;
 positions = rdunif(msatCount, 0, L-1);
 repeats = rpois(msatCount, 20) + 5;

 for (msatIndex in 0:(msatCount-1))
 {
 pos = positions[msatIndex];
 mut = genomes.addNewDrawnMutation(m2, pos);
 mut.tag = repeats[msatIndex];
 }

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 310

 // remember the microsat positions for later
 defineConstant("msatPositions", positions);
}

We call addSubpop() to create the subpopulation, and then we create our microsatellites. Each
microsat is simply an m2 mutation at a given position; the number of repeats in a given microsat is
represented using the tag property of the mutation. This code draws the positions and repeats for
all of the microsats first, and then loops to create each microsat using that information. Finally, we
remember the positions of the microsats in a defined constant for later use.

This code makes the initial population homogenous: the number of repeats of a given microsat
is the same across all genomes. It would of course be possible to start with a non-homogenous
state instead. To avoid creating a new Mutation for every microsat in every genome, however, it
would be best to determine all of the genomes containing a given repeat count at a given position,
and then call addNewDrawnMutation() just once on that entire genome vector so as to create a
single Mutation object that is shared among all of those genomes. Alternatively, a uniquing
strategy could be employed, similar to what we will see below, such that the first microsatellite
created at a given position with a given number of repeats is instantiated with a new Mutation, and
then all subsequent microsats with the same number of repeats at the same position look up and
use that existing Mutation object. Such extensions are left as an exercise for the reader.

With the initial subpopulation state set up, let’s define an endpoint for the model:

10000 late() {
 // print frequency information for each microsatellite site
 all_msats = sim.mutationsOfType(m2);

 for (pos in sort(msatPositions))
 {
 catn("Microsatellite at " + pos + ":");

 msatsAtPos = all_msats[all_msats.position == pos];

 for (msat in sortBy(msatsAtPos, "tag"))
 catn(" variant with " + msat.tag + " repeats: " +
 sim.mutationFrequencies(NULL, msat));
 }
}

This output callback loops over the (sorted) positions of the microsats. For each microsat
position, it looks up all of the microsats that exist at that position, and outputs frequency counts for
each variant (sorted by repeat count).

We’ll see some example output below, but the model isn’t finished yet; let’s finish it first. The
remaining piece in the puzzle is for our microsatellites to mutate. Microsats mutate in an
interesting way: they add or remove repeats. Furthermore, the probability of this happening is
much higher than the usual mutation rate in most organisms – often as high as one in ten
thousand. We model all this with a special modifyChild() callback:

modifyChild() {
 // mutate microsatellites with rate msatMu
 for (genome in child.genomes)
 {
 mutCount = rpois(1, msatMu * msatCount);

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 311

 if (mutCount)
 {
 mutSites = sample(msatPositions, mutCount);
 msats = genome.mutationsOfType(m2);

 for (mutSite in mutSites)
 {
 msat = msats[msats.position == mutSite];
 repeats = msat.tag;

 // modify the number of repeats by adding -1 or +1
 repeats = repeats + (rdunif(1, 0, 1) * 2 - 1);

 if (repeats < 5)
 next;

 // if we're uniquing microsats, do so now
 if (msatUnique)
 {
 all_msats = sim.mutationsOfType(m2);
 msatsAtSite = all_msats[all_msats.position == mutSite];
 matchingMut = msatsAtSite[msatsAtSite.tag == repeats];

 if (matchingMut.size() == 1)
 {
 genome.removeMutations(msat);
 genome.addMutations(matchingMut);
 next;
 }
 }

 // make a new mutation with the new repeat count
 genome.removeMutations(msat);
 msat = genome.addNewDrawnMutation(m2, mutSite);
 msat.tag = repeats;
 }
 }
 }

 return T;
}

There’s a lot to parse there; let’s take it step by step. First of all, the microsats in each genome in
the proposed child mutate independently, so we loop over the microsats and mutate them each
separately. For each genome, we draw the number of mutations that occur from a Poisson
distribution; this is faster than doing a separate random draw to determine the fate of each
individual microsat, but is otherwise essentially equivalent. If the number of microsat mutations is
zero, we’re done; we loop back to handle the other genome, and then we’re finished and return T.
When the number of microsat mutations is greater than zero, though, we have work to do.

In that case, the next thing we do is to draw the positions of the microsats that mutated, using
sample() to draw from the vector of positions we defined when we set up the simulation. Each
microsat thus has an equal probability of mutating (see below for discussion of this). We loop over
those positions and mutate each chosen microsat in turn. To mutate a microsat, we first look up
the existing mutation by position and find out how many repeats it has. We then decide what the
new, mutated repeat count will be; here we just add or subtract 1, and limit the repeat count to a
minimum of 5, but more sophisticated and realistic dynamics could be introduced. Finally,

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 312

ignoring the “if (msatUnique)” section for a moment (since msatUnique is presently defined as F
anyway), we effect the mutation event by removing the old microsat mutation from the genome
and adding a newly created microsat mutation at the same position, with the new repeat count for
its tag. (We can’t simply set the tag of the existing microsat mutation, because it is potentially
shared among many genomes; changing its tag would change the repeat count in all of those
genomes!)

Running this model produces output like:

Microsatellite at 60933:
 variant with 21 repeats: 0.001
 variant with 21 repeats: 0.026
 variant with 21 repeats: 0.001
 variant with 22 repeats: 0.741
 variant with 23 repeats: 0.105
 variant with 23 repeats: 0.126
Microsatellite at 98509:
 variant with 34 repeats: 1
Microsatellite at 123123:
 variant with 20 repeats: 0.964
 variant with 21 repeats: 0.001
 variant with 21 repeats: 0.035
Microsatellite at 142781:
 variant with 23 repeats: 0.795
 variant with 24 repeats: 0.205
...

This looks reasonable, except that more than one variant with the same repeat count sometimes
exists for a given microsatellite. Each such variant represents an independent mutational lineage;
each time a microsat mutation occurs, it is represented by a new Mutation object that SLiM tracks
forevermore. In some cases, keeping track of each mutational lineage may be desirable; it could
provide a sort of ancestry tracking, for example, that goes beyond what the repeat counts alone
would provide. Often, however, one would like such replicate mutational lineages to be merged,
such that just a single microsat mutation exists to represent a microsat with a given number of
repeats at a given position. This is what that “if (msatUnique)” code, which we skipped over
above, is for: it “uniques” the microsatellite lineages. To see the effect of this, let’s change that flag
by modifying its definition in the initialize() callback:

 defineConstant("msatUnique", T); // T = unique msats, F = lineages

If we run the model again (using the same random number seed, so as to reproduce the same
evolutionary dynamics), the output now looks like this:

Microsatellite at 60933:
 variant with 21 repeats: 0.028
 variant with 22 repeats: 0.741
 variant with 23 repeats: 0.231
Microsatellite at 98509:
 variant with 34 repeats: 1
Microsatellite at 123123:
 variant with 20 repeats: 0.964
 variant with 21 repeats: 0.036
Microsatellite at 142781:
 variant with 23 repeats: 0.795
 variant with 24 repeats: 0.205
...

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 313

The microsats have been uniqued, as desired. The “if (msatUnique)” code in the callback,
which implements this feature, is actually quite straightforward. It gets a vector of all existing
microsat mutations from the simulation, and then narrows that down to those at the desired
position, and then finally down to those with the desired number of repeats. If it found an exact
match, then it removes the existing microsat mutation and adds the match; the next statement then
loops forward to the next mutation site, if any. If it did not find a match, the code drops through to
add a newly created mutation instead; that is the case we saw before.

That’s all that’s needed: a little initialization code, a little output code, and a modifyChild()
callback to handle mutating the microsats. Although that modifyChild() callback is not
particularly short, conceptually it is really quite simple: decide on how many microsat mutation
events there will be in each genome and where they will be, and then change the mutations in the
genome to reflect those mutation events with new (or uniqued) mutations that have the appropriate
repeat count in their tag values.

There are a few ways in which greater realism could be added to this model. We already
discussed the possibility of starting with a heterogenous subpopulation state; any initial state could
be set up, although care should be taken to unique the microsat mutations, to keep memory usage
down and to provide a single mutational lineage for each unique microsatellite state.

Another way in which this model oversimplifies the biology is in its mutational model. In
reality, microsats can sometimes mutate by adding or subtracting more than a single repeat, and
their probability of mutating at all can depend upon the number of repeats present, as well as
upon things like the sex of the parent. The mutation rate for microsats can even depend upon the
similarity or dissimilarity in repeat counts between the two copies of the microsat in the parent that
generated the gamete, due to effects during meiosis. All of these effects could be modeled with
extensions to the modifyChild() callback presented here. To implement this, it would probably be
necessary (or at least simpler) to get rid of the rpois() call that draws the number of microsat
mutations for each genome, and instead simply loop over all of the existing microsat positions and
determine whether a mutation occurred at each position with a runif() draw that is compared to
the calculated probability of mutation for that microsat in that genome.

A third oversimplification is that this recipe does not explicitly track variation in microsats due
to point mutations rather than repeat-count mutations. Perhaps a good approach for this would
involve modeling repeat-count changes just as in this model, while adding in similar code that
would model nucleotide changes as well (using an appropriate mutation probability based on the
length of the microsat). If such a model was run without uniquing, each mutational lineage would
then be tracked separately, and so point mutations would create new mutational lineages that
would be considered distinct from other mutation lineages with the same repeat count. However,
this design would overcount the number of genetically distinct lineages, since repeat-count
mutations as well as point mutations would generate distinct mutational lineages. To account for
things better would require additional state information to be attached to each Mutation object,
using the setValue()/getValue() mechanism; in this way, two mutational lineages with the same
repeat count and no nucleotide differences could be merged together by the uniquing code, while
two mutational lineages with the same repeat count but with nucleotide differences could be kept
separate. In the extreme of maximal realism, one could actually store generated string
representations of nucleotide sequences inside the Mutation objects, but that would be overkill for
most purposes. Usually, a single token attached to each mutation, such as a random number
generated with runif(), could probably provide sufficient realism. Whenever a point mutation
occurred, a new mutation object would be created (with no uniquing necessary) and would be
given a new random token representing its unique new nucleotide sequence. Whenever a repeat-
count mutation occurred, on the other hand, the token value would be inherited from the old
microsat mutation at that position, indicating that the nucleotide difference, whatever it might be,

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 314

was (assumed to be) preserved across the repeat count change. If the uniquing code then re-used
an existing mutation only when the token values of the desired mutation and the existing mutation
were the same, a closer approximation of the correct pattern of microsatellite diversity might
emerge. Implementing this goes beyond the scope of this recipe, and so is left as an exercise for
the reader, but in essence it is actually quite simple; the design simply adds another piece of state,
tracked with setValue()/getValue(), that is handled very similarly to the tag value in the existing
recipe. That token value is inherited (just as tag is), changes its value upon mutation (just like tag,
but for point mutation events instead of repeat-count mutation events), and must be equal in order
for uniquing to find a match (just as tag is used by the existing uniquing code). Token values
would be set up when the subpopulation is initialized, just as tag values are, either with zero
values (representing a homogenous initial state) or with some sort of population structure indicated
by different random token values on different genomes to represent standing variation in
microsatellite diversity.

Depending upon the level of realism desired, therefore, this recipe might provide a complete
solution, or it might merely point the way. In either case, the basic strategy outlined here of using
tag values to indicate repeat counts on mutations that represent a microsatellite at a given locus is
the recommended approach in SLiM. In general, using mutations to represent some conceptual
difference between genomes, rather than necessarily representing a literal nucleotide difference,
can be a useful strategy for advanced models in SLiM, as similarly shown by section 14.4’s recipe
that tracks genomes that contain an inversion using a marker mutation.

14.12 Modeling transposable elements
A transposable element, or transposon, is a chromosomal region which is capable of replication

or positional change within the genome, either on its own or with the assistance of an enzyme
such as reverse transcriptase or transposase. Transposons constitute a substantial fraction of the
genome of many species, and can have evolutionary effects through side effects such as disabling
genes into which they “jump”, altering the regulation of nearby genes, and copying genetic
material within the genome. Given their evolutionary importance, incorporating transposons into
evolutionary models may be useful; in this recipe we will thus explore a simple transposon model.

There are various subtypes and classifications of transposons; here we will explore autonomous
Class I transposons, which “copy and paste” themselves to new locations in the genome under
their own power. Given the diversity of evolutionary effects transposons can have, and the
diversity of ways in which they can function, this recipe cannot provide a general formula for
modeling transposons and all of their effects; all this recipe will do is point the way. At the end of
this section, we will discuss ways in which this recipe could be extended to model further aspects
of the behavior of transposons.

We will not model the actual nucleotide sequence of transposons here. Furthermore, since
copying a transposon to a new location changes the length of the chromosome (which is not
possible in SLiM), we will model transposons conceptually rather than literally, as loci in the
genome that are capable of copying themselves. This approach is similar to the approach taken in
section 14.11 for modeling microsatellites.

We will also model the vulnerability of transposons to mutations that disable them by
deactivating their ability to jump; we will track disabled transposons, and assess the fraction of
each transposon that has been disabled. This is important, since even disabled transposons may
have evolutionary effects such as changes in gene regulation, and since most of the transposons in
typical organisms appear to be disabled.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 315

We will start with the model’s initialization:

initialize() {
 defineConstant("L", 1e6); // chromosome length
 defineConstant("teInitialCount", 100); // initial number of TEs
 defineConstant("teJumpP", 0.0001); // TE jump probability
 defineConstant("teDisableP", 0.00005); // disabling mut probability

 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, L-1);
 initializeRecombinationRate(1e-8);

 // transposon mutation type; also neutral, but red
 initializeMutationType("m2", 0.5, "f", 0.0);
 m2.convertToSubstitution = F;
 m2.color = "#FF0000";

 // disabled transposon mutation type; dark red
 initializeMutationType("m3", 0.5, "f", 0.0);
 m3.convertToSubstitution = F;
 m3.color = "#700000";
}

This defines the chromosome length and a few constants governing the behavior of TEs in the
model. It then sets up a simple neutral simulation, and defines two additional mutation types: one
for active TEs, m2, which displays as red in SLiMgui, and one for TEs that have been disabled by
mutation, m3, which display as a darker red.

Next we set up the initial state of our subpopulation. In this recipe, the tag values on the m2
and m3 mutations are used as identifiers; each TE gets its own unique tag value, which is used for
both its active (m2) and disabled (m3) forms, allowing the mutations representing the two forms to
be matched up. The tag value on the simulation itself, sim.tag, is used to keep track of the next
unused tag value; it starts at 0 and counts up. The setup thus looks like this:

1 late() {
 sim.addSubpop("p1", 500);

 sim.tag = 0; // the next unique tag value to use for TEs

 // create some transposons at random positions
 genomes = sim.subpopulations.genomes;
 positions = rdunif(teInitialCount, 0, L-1);

 for (teIndex in 0:(teInitialCount-1))
 {
 pos = positions[teIndex];
 mut = genomes.addNewDrawnMutation(m2, pos);
 mut.tag = sim.tag;
 sim.tag = sim.tag + 1;
 }
}

We make a new subpop, start sim.tag at 0, and then create new TEs that are fixed across the
whole population. (As in the recipe of section 14.11, creating an initial state that involves
heterogeneity in the TEs possessed by individuals would also be possible but is more complex; see

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 316

that recipe for discussion.) The positions for the TEs are drawn randomly across the chromosome,
and each TE is tagged with a sequential value from sim.tag.

Before implementing any more of the TE dynamics, let’s implement the final output event. We
want this to generate information on both active and inactive TEs, so the code is somewhat
involved:

5000 late() {
 // print information on each TE, including the fraction of it disabled
 all_tes = sortBy(sim.mutationsOfType(m2), "position");
 all_disabledTEs = sortBy(sim.mutationsOfType(m3), "position");
 genomeCount = size(sim.subpopulations.genomes);

 catn("Active TEs:");
 for (te in all_tes)
 {
 cat(" TE at " + te.position + ": ");

 active = sim.mutationCounts(NULL, te);
 disabledTE = all_disabledTEs[all_disabledTEs.tag == te.tag];

 if (size(disabledTE) == 0)
 {
 disabled = 0;
 }
 else
 {
 disabled = sim.mutationCounts(NULL, disabledTE);
 all_disabledTEs = all_disabledTEs[all_disabledTEs != disabledTE];
 }

 total = active + disabled;

 cat("frequency " + format("%0.3f", total / genomeCount) + ", ");
 catn(round(active / total * 100) + "% active");
 }

 catn("\nCompletely disabled TEs: ");
 for (te in all_disabledTEs)
 {
 freq = sim.mutationFrequencies(NULL, te);
 cat(" TE at " + te.position + ": ");
 catn("frequency " + format("%0.3f", freq));
 }
}

This prints all of the active TEs in the model (sorted by position), with information on their
overall frequency in the population and on the fraction of their occurrences that have been
disabled by mutations. After that, it prints a list of the completely disabled TEs (sorted as well);
frequencies are also given for those, since TEs could conceivably be disabled before fixing. The
logic of this code is quite straightforward, so there is no need to belabor it here.

We want our TEs to copy themselves; this occurs during the life of the organism, not during
meiosis, so we model it with a late() event:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 317

late() {
 // make active transposons copy themselves with rate teJumpP
 for (individual in sim.subpopulations.individuals)
 {
 for (genome in individual.genomes)
 {
 tes = genome.mutationsOfType(m2);
 teCount = tes.size();
 jumpCount = teCount ? rpois(1, teCount * teJumpP) else 0;

 if (jumpCount)
 {
 jumpTEs = sample(tes, jumpCount);

 for (te in jumpTEs)
 {
 // make a new TE mutation
 pos = rdunif(1, 0, L-1);
 jumpTE = genome.addNewDrawnMutation(m2, pos);
 jumpTE.tag = sim.tag;
 sim.tag = sim.tag + 1;
 }
 }
 }
 }
}

This loops through the genomes of all individuals in the simulation. For each genome, it gets all
of the TEs present, and decides how many (if any) will “jump” according to the probability teJumpP
for each TE, using a draw from a Poisson distribution. (This is faster than doing a separate random
draw for each TE, but is otherwise essentially equivalent.) If any TEs did jump, the ones that
jumped are selected at random using sample(). Each jump is simulated by creating a new TE at a
new, randomly chosen location. The new TEs get new tag values assigned sequentially from
sim.tag, so that their corresponding disabled versions can be looked up. And that is it for
jumping; its logic is straightforward since disabled TEs are not involved in the jumping process.

Finally, we need to implement the disabling of TEs by random point mutations. Since TEs are
simulated here as point mutations themselves, we need to simulate this disabling process
ourselves; SLiM’s automatic mutation generation will never modify our TEs for us. We model
disabling mutations in a modifyChild() callback. Its logic is similar to that of the jumping code
above, except that when a TE is disabled, a mutation of type m3 needs to be substituted in place of
the existing m2 mutation that represents the TE. The m3 mutation corresponding to any given m2 TE
is created just once, and then the same m3 mutation is looked up and reused every time that same
m2 TE is disabled in another genome. This “uniquing” of the m3 mutations makes the model much
more memory-efficient, and makes the output code much simpler. The main purpose of the tag
values we have been managing is, in fact, to facilitate this uniquing process. The disabling
callback looks like this:

modifyChild() {
 // disable transposons with rate teDisableP
 for (genome in child.genomes)
 {
 tes = genome.mutationsOfType(m2);
 teCount = tes.size();
 mutatedCount = teCount ? rpois(1, teCount * teDisableP) else 0;

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 318

 if (mutatedCount)
 {
 mutatedTEs = sample(tes, mutatedCount);

 for (te in mutatedTEs)
 {
 all_disabledTEs = sim.mutationsOfType(m3);
 disabledTE = all_disabledTEs[all_disabledTEs.tag == te.tag];

 if (size(disabledTE))
 {
 // use the existing disabled TE mutation
 genome.removeMutations(te);
 genome.addMutations(disabledTE);
 next;
 }

 // make a new disabled TE mutation with the right tag
 genome.removeMutations(te);
 disabledTE = genome.addNewDrawnMutation(m3, te.position);
 disabledTE.tag = te.tag;
 }
 }
 }

 return T;
}

For each genome in the proposed child, we get the TEs contained, and calculate the number
that will be disabled using a Poisson draw as before. We select the TEs that actually mutated, and
for each, attempt to look up a corresponding m3 mutation using the tag value of the m2 mutation. If
we find one, we substitute that. If not, we create a new m3 mutation to represent the disabled
state, marking it with the TE’s tag value so we can look it up next time. That’s it for the TE
disabling code; a bit lengthy, but the logic is simple.

If this model is run, typical output might look like this:

Active TEs:
 TE at 1793: frequency 0.011, 100% active
 TE at 2435: frequency 0.208, 100% active
 TE at 3629: frequency 0.002, 100% active
 TE at 6339: frequency 0.208, 94% active
 TE at 7081: frequency 0.020, 100% active
 TE at 7728: frequency 1.000, 79% active
 ...
Completely disabled TEs:
 TE at 24821: frequency 1.000
 TE at 83627: frequency 1.000
 TE at 98286: frequency 1.000
 ...

That output shows a mix of TEs at high frequency (perhaps present already in the initial
population setup, since not that many ticks have elapsed) and TEs at low frequency (which must be
copies due to jumping). Some TEs are completely active, whereas others have been partially or
fully disabled by mutations. (Once even a single copy of a TE is disabled by mutation, that copy
might drift to fixation; the fact that TEs have been completely disabled does not mean that TE-
disabling mutations are particularly common.)

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 319

Note that this model is never at equilibrium; the number of TEs is likely to grow without bound,
since the probability of jumping is greater than the probability of TEs being disabled by mutations.
That means that the model runs ever more slowly, since the TE mutations are not allowed to fix. If
a model didn’t care about disabled TEs at all, it would be much simpler and faster to simply delete
TEs from a genome when they are disabled.

Note also that the probabilities of jumping and of being disabled in this recipe are arbitrary and
have almost no empirical basis; they just worked well for testing the code. Please do not use these
values in any production code of your own.

With that, we have wrapped up this recipe, but obviously there are a great many aspects of the
biology of transposons that we haven’t covered here:

• Effects of transposons on fitness could be modeled through mutationEffect() callbacks,
either modifying the fitness effects of other mutations due to the proximity of transposons,
or modeling a direct fitness effect for the transposons themselves in their own
mutationEffect() callback. Alternatively, at the moment of a transposon’s jump a genetic
effect could be modeled by examining and altering other mutations in the vicinity of the
jump destination, to simulate up/down-regulation of those mutations (taking care to make
a private copy of any modified mutations first, so that other genomes sharing the same
mutations do not receive the same modifications as an unintended side effect).

• Transposons that relocate themselves, rather than copying themselves, could be
implemented by adding a call to genome.removeMutations(te) in the jump code.

• Attempts by the organism to suppress TEs en masse, for example through epigenetic
controls such as methylation, could be simulated by converting TEs in a given individual
into a suppressed version (perhaps using a new mutation type to represent suppression);
such suppression could be temporary, since one could write code to convert suppressed
TEs back into active TEs again, too.

• Non-autonomous TEs that can jump only in the presence of a separate enabling gene
could easily be modeled simply by checking for the presence of the enabling gene in an
individual prior to allowing any TEs in that individual to jump.

• It is not clear exactly what, if anything, restricts the proliferation of TEs in real organisms,
but one could certainly model some sort of balancing factor that would limit the
proliferation of TEs in this model. The probability of jumping could decrease as the
number of active TEs increases (for some unclear reason), or the fitness of organisms could
start to decrease sharply as their TE load increases above some bound (with perhaps a bit
more biological justification), or whatever other mechanism one wished.

• One of the most interesting aspects of transposons is that they sometimes jump more
frequently when an individual is subject to environmental stress; that could be modeled
by calculating a jump probability for the TEs in an individual that depends upon that
individual’s fitness, or upon the mismatch between its phenotype and its environment in
some specific trait, if desired.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 320

The point is that although this recipe is fairly rudimentary, many aspects of the evolutionary
dynamics of transposons could be easily modeled in SLiM by implementing whatever extensions to
this recipe are desired, as outlined above.

14.13 Modeling opposite ends of a chromosome
This recipe is not about how to model something complicated; instead, it is intended to

illuminate something conceptual about using SLiM in certain situations.
Consider the following recipe:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeGenomicElement(g1, 9900000, 9999999);
 initializeRecombinationRate(1.5e-7);
}
1 early() { sim.addSubpop("p1", 500); }
200000 late() { sim.outputFixedMutations(); }

This is a simple neutral model of a chromosome of length 1e7 bases. The only unusual thing
about it is that we are actually only modeling the two ends of the chromosome; we have defined a
genomic element spanning the first 1e5 bases, and another spanning the last 1e5 bases, and the
intervening region, which is 98% of the length of the chromosome, is not modeled. In SLiMgui,
the model looks like this after a little while:

This is perfectly fine; all that it means is that SLiM will not automatically generate mutations
within the region that is not covered by any genomic element, and so that central region remains
empty. The region does not have to remain empty; it would be legal to call addNewMutation() to
create a new mutation within that region, and SLiM would then track that added mutation
normally. The only effect that genomic elements have, in SLiM, is of causing the automatic
generation of new mutations by the SLiM core. But let’s keep the model as it is, and ask: what is
the behavior of the two end regions, with respect to recombination between them? Do they assort
independently, as if they were separate chromosomes, since they are separated by a rather long
stretch of chromosome? Or if not, then what is the effective recombination rate between them?

First of all, let’s make sure we understand exactly what “recombination rate” really means in
SLiM. As section 25.1 states, the recombination rate is the probability that a crossover will occur
between two adjacent bases. This is binomial; conceptually, a coin is flipped, and the coin lands
“heads” (crossover) with probability p, and “tails” (no crossover) with probability 1−p, and that is
done at every position between adjacent bases along the whole chromosome. There are L-1
positions between bases in a chromosome of length L. In this model, 2e5-2 of them occur
between the bases spanned by the two genomic elements, and the remainder, 9800002, occur
between those two regions. Those are the positions we’re interested in, and at each position a
crossover occurs with probability r=1.5e-7.

To get the probability that the two genomic elements will assort apart, rather than together, we
cannot simply multiply the number of positions (9800002) by the probability per position (1.5e-7),

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 321

of course; that would give us 1.47, a nonsensical result that isn’t even a valid probability. Instead,
we need to observe that the key question is actually whether the number of crossovers that occur
between the two regions is even or odd. An even number of crossovers will cancel out; we will
cross over and then cross back, perhaps repeatedly, with no net effect. The two genomic elements
will then assort together. An odd number of crossovers, on the other hand, will result in all but
one crossover canceling out, and one crossover will remain; the two genomic elements will then
assort apart.

So the question then becomes: for a binomial draw with 9800002 trials and a probability per
trial of 1.5e-7, what is the probability that the result of the draw will be odd? There is, of course,
established mathematical theory on this point, but let’s answer the question through simulation. In
an Eidos console, such as the one we can open inside SLiMgui, we can do a large number of
draws from that binomial distribution:

> draws = rbinom(1e8, 9800002, 1.5e-7)

That will take a moment, and then we have 1e8 draws from the requisite binomial distribution.
Next let’s ask what fraction of them is odd:

> sum(draws % 2 == 1) / 1e8

0.473642

So, the two genomic elements will assort apart about 47.4% of the time, and the remaining time
will assort together.

So now suppose we want to construct a SLiM model that just elides that central region (since
we weren’t using it anyway) and places the two chromosome ends immediately next to each other.
There is no particular obstacle to doing this, except that we need to know what recombination rate
to use for the join point between the two halves – which we have just figured out. So we could
now rewrite our model as:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeGenomicElement(g1, 100000, 199999);

 rates = c(1.5e-7, 0.473642, 1.5e-7);
 ends = c(99999, 100000, 199999);
 initializeRecombinationRate(rates, ends);
}
1 early() { sim.addSubpop("p1", 500); }
200000 late() { sim.outputFixedMutations(); }

This model ought to behave identically to the previous model, and ought to be somewhat more
efficient, too (although the difference may not be large enough to be noticeable). This is because
when running the first model SLiM would potentially be generating two or more breakpoints
between the two ends, and then resolving whether there were an even or odd number as it ran,
whereas when running the second model SLiM either generates zero breakpoints or one
breakpoint, with the correct calculated probability.

As turns out, we could get the same probability by using the rate-rescaling formula of section
5.5, since what we are effectively doing is rescaling a region of length 9800002 down to a length of
1 (length in terms of potential recombination positions, that is). That formula, executed in the
Eidos console, gives us:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 322

> 0.5*(1-(1-2*1.5e-7)^9800002)

0.473567

Which is very close to the number we got before (which, remember, was inexact since it came
from simulation). So that’s pleasing.

The point of this recipe, then, is twofold. One point is to provide another angle on the rate-
rescaling formula of section 5.5, to illustrate that it applies in situations other than the rescaling of
an entire model. The second, more important, point is to illustrate once again that the
recombination rate as specified by SLiM is the probability of a crossover occurring between two
adjacent bases, and the consequences that that has for reasoning about how recombination works
on larger scales.

This is as good a place as any for a digression that I think this manual ought to contain
somewhere: how SLiM actually generates recombination breakpoint positions under the hood.
This is worth demystifying because for models that use very high recombination rates the subtleties
of this process can be important. Mostly, though, this digression is just for those who are curious,
and beginning users of SLiM should feel free to skip it.

Overall, SLiM does this in several steps: (1) it decides upon the number of breakpoints it will
generate, (2) it chooses the location for each breakpoint based upon a weighted uniform draw
along the chromosome (where the weights are equal to the recombination rates for each individual
base, as defined by the recombination map), and then (3) it sorts and uniques the list of
breakpoints to provide a final list. The uniquing of the list means that there is, at most, one
crossover (i.e., breakpoint) between any two base positions; this is biologically realistic, and also
computationally simpler.

So the big question is: how to decide upon the number of breakpoints to generate? One way
would be to start from the fact that between each pair of bases the question is one of a binomial
draw, with a single trial of probability equal to the recombination rate (by SLiM’s definition). One
could do one such draw per pair of bases, add up the results, and that’s the number of crossovers
that occurred. The immediate problem with that approach is simply that it is immensely
computationally expensive, and if the user has supplied a complex recombination map with
different rates at every position it can’t be reduced to a single binomial draw with a larger number
of trials.

So perhaps we might wish to model recombination as a Poisson process instead, leveraging the
fact that Poisson draws can be added together: Poisson(λ1) + Poisson(λ2) = Poisson(λ1 + λ2). If two
adjacent base positions have a probability of a crossover between them of λ, then the mean of the
binomial draw can be used as the mean of a Poisson draw instead (the Poisson distribution being
well-known as a viable approximation for the binomial distribution with small λ and largish n).
Then we can add up the λ values across the chromosome and get the number of recombination
events with a single Poisson draw that uses that total λ value. And indeed, this is precisely what
SLiM 2.x and earlier did.

Unfortunately, as SLiM users started moving towards new areas of modeling in SLiM such as
multiple chromosomes, it became clear that there was a problem with this approach. When
modeling multiple chromosomes, you want, intuitively, to connect them together in SLiM with a
recombination rate of 0.5 to represent perfect independence of assortment (see the recipe in
section 6.1.4, for example). Unfortunately, this value is large enough that the Poisson
approximation of the binomial distribution breaks down. The Poisson draw can not only be 0 or 1
(as with the binomial), but also larger values, and with a rate of 0.5 this happens often enough to
matter. In SLiM’s case, if the Poisson draw indicated that (for example) two crossovers occurred,

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 323

their positions would be sorted and uniqued (to prevent multiple crossovers at the same exact
location, as described above), resulting in just one crossover where the Poisson draw had specified
two. The net effect of this would be that the probability of a crossover at the given location would
be somewhat lower than desired – about 0.39, in fact, rather than 0.5. (It is lower than 0.5
because more than half of the Poisson draws for λ=0.5 will be zero, compensating for the fact that
some of the draws are greater than one and making the mean of the Poisson distribution come out
to 0.5).

So at first blush it looks like we can’t use a binomial draw (too complicated in the case of
complex recombination maps) and we can’t use a Poisson draw (inaccurate with large
recombination rates such as 0.5). What to do?

The solution we arrived at, thanks to Peter Ralph, is to reparameterize the Poisson draws that
we’re doing. If the user has requested a recombination rate of p (probability of crossover between
two adjacent bases), but we want to use a Poisson draw and have it generate a crossover, after
sorting and uniquing, with probability p, then we can transform the requested p into a
reparameterized value λ such that Prob[(Poisson(λ) > 0) = p]. The formula for this
reparameterization is:

With this reparameterization, we end up with the correct probability of crossover after using a
Poisson(λ) draw, accounting for SLiM’s sorting and uniquing of the breakpoint vector. This means
that we can add up the λ values for each region along a whole chromosome, even with a complex
recombination map, and draw a preliminary number of crossovers from a Poisson distribution with
the total λ, and then after we select locations with the usual weighted uniform draws, and sort and
unique them, the probability of crossover at every specific site will be as the user requested. It will
work even when some positions have a rate of 0.5; and even though the Poisson distribution is
only an approximate estimation for the binomial distribution, this solution is in fact exact, since it
is based upon the probability that the Poisson draw for a specific position is greater than zero, not
upon the mean of the Poisson distribution.

If that was all gibberish, never mind. The point is that, as of SLiM 3, recombination rates should
be accurate (within numerical precision limits) even for large recombination rates like 0.5, with no
sacrifice in speed.

14.14 Visualizing ancestry and admixture with mutation() callbacks
Beginning with version 3.3, SLiM provides the ability to examine, modify, or even veto every

new mutation that it auto-generates, using a mutation() callback (see section 26.9). We
previously saw the use of this callback in section 10.6 (where we used a mutation() callback to
give an independent dominance coefficient to each mutation of a particular mutation type), and in
section 13.5 (where we used a mutation() callback to tag new QTL mutations with effect sizes
influencing two phenotypic traits). Both of those recipes, then, used the mutation() callback to
associate some additional state information with every new auto-generated mutation of a given
mutation type.

There are many other uses for mutation() callbacks, however; notably, they can be used to
modify the mutation type used by new mutations. This can be useful for keeping track of particular
mutations in a model, by giving them a different mutation type from the rest. Using otherwise
identical mutation types as a way of categorizing mutations can be a powerful tool; one could use
a distinct mutation type to separately track all mutations originating in a particular subpopulation,
or in a particular tick, or within the gametes of a particular individual, or just all of the mutations
in a randomly chosen sample.

λ = − log(1 − p)

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 324

In this recipe we will look at a two-subpopulation model that evolves separately for 10,000
generations, after which the subpopulations come into secondary contact and admix for another
5,000 generations. We’re interested in the pattern of ancestry along the chromosome. Each
subpopulation undergoes a mixture of common neutral mutations and rare beneficial mutations,
and so when admixture occurs recombination leads to some kind of alternation of ancestry along
the chromosome, as selection favors individuals that combine as many beneficial mutations as
possible into their genome. The neutral background mutations are swept along by this process,
and their pattern of ancestry reveals the pattern of admixture that occurred. Sections 14.7 and
17.5 present similar recipes along this theme (one using marker mutations, the other using tree-
sequence recording); this section provides a different angle, and a different type of solution, for this
problem. The focus here is not upon determining the true local ancestry at every position along
the chromosome, but upon tracking and visualizing the fates of individual mutations, using
different mutation types depending upon their subpopulation of origin.

Let’s start with the initialize() callback and subpopulation setup:

initialize() {
 initializeMutationRate(1e-8);

 // neutral and beneficial for p1
 initializeMutationType("m1", 0.5, "f", 0.0);
 m1.color = "yellow";
 m1.colorSubstitution = "yellow";

 initializeMutationType("m2", 0.5, "f", 0.1);
 m2.color = "red";
 m2.colorSubstitution = "red";

 // neutral and beneficial for p2
 initializeMutationType("m3", 0.5, "f", 0.0);
 m3.color = "blue";
 m3.colorSubstitution = "blue";

 initializeMutationType("m4", 0.5, "f", 0.1);
 m4.color = "green";
 m4.colorSubstitution = "green";

 initializeGenomicElementType("g1", c(m1, m2), c(1, 0.0001));
 initializeGenomicElement(g1, 0, 9999999);
 initializeRecombinationRate(1e-7);
}
1 early() {
 sim.addSubpop("p1", 1000);
 sim.addSubpop("p2", 1000);
}

This is straightforward enough; we make four mutation types (m1 and m3 being neutral, m2 and m4
being beneficial), and we set up custom colors for all of them in SLiMgui (see section 7.4). We
then create two subpopulations, p1 and p2, with no migration initially.

As the comments indicate, we want new mutations in p1 to use m1 and m2, whereas new
mutations in p2 should use m3 and m4. There is no way to tell SLiM to do that intrinsically,
however; the genetic structure of genomic elements and genomic element types in SLiM is fixed
across the whole model (see section 1.5.4). The genetic structure we set up here therefore just
uses m1 and m2, which is fine for p1 but wrong for p2.

We will fix that problem using mutation() callbacks:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 325

mutation(m1, p2)
{
 // use m3 instead of m1, in p2
 mut.setMutationType(m3);
 return T;
}
mutation(m2, p2)
{
 // use m4 instead of m2, in p2
 mut.setMutationType(m4);
 return T;
}

The first callback is declared as applying to m1 mutations generated in p2, and it changes the
mutation type of all such mutations to m3, and then returns T to tell SLiM to proceed with
generating the proposed mutation. The second callback similarly applies to m2 mutations in p2,
and changes their type to m4. That is the crux of the recipe; all that is left is to begin admixture at
tick 10000 (turning off mutation at the same time, for simplicity, so that we can see the effect on the
standing genetic variation more clearly), and to end at tick 15000:

10000 early() {
 sim.chromosome.setMutationRate(0.0);
 p1.setMigrationRates(p2, 0.01);
 p2.setMigrationRates(p1, 0.01);
}
15000 late() { sim.outputFixedMutations(); }

Running this model to tick 10000, we see this in SLiMgui if we focus in on just the beneficial
mutations (by control-clicking or right-clicking on the chromosome view):

The beneficial mutations have generally reached a frequency of 0.5, but cannot spread further
because of the lack of migration between the subpopulations. We can look at all mutation types,
but just in p1 (select p1 from the subpopulation table at the upper left of the window):

Here we see that within p1 the beneficial m2 mutations (red) have generally fixed, and there are
many neutral m1 mutations (yellow) as well, at various frequencies. The pattern in p2 is similar, but
the colors are different because the mutation types used are different, thanks to the mutation()
callbacks; in p2 the beneficial mutations are green (m4) and the neutral mutations are blue (m3):

At this point, the model turns on admixture, and after 272 more ticks all of the beneficial
mutations have either fixed or been lost, population-wide:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 326

A lot of neutral diversity was carried along, but it has not necessarily fixed yet. Once we run
out to 15000 ticks, however, the pattern in the neutral mutations is quite visible:

Comparing the last two snapshots above, it is apparent that regions where the beneficial
mutations from p1 won (red bars) mostly contain neutral mutations from p1 as well (yellow bars),
whereas regions where the beneficial mutations from p2 won (green bars) mostly contain neutral
mutations from p2 as well (blue bars).

The recipe of section 17.5 does this even better, in a sense; as we will see there, using tree-
sequence recording allows the true local ancestry at every position in every genome to be known
very efficiently. However, that information is only available after the fact, from analysis in Python.
The recipe here provides similar information, based upon the mutations in the model, in a way that
can be visualized interactively in SLiMgui. This information could also be used to actually
influence the dynamics of the model as it runs – perhaps individuals with a higher degree of p1
ancestry turn out to be more susceptible to an introduced disease, for example – in a way that
would be difficult to do with tree-sequence recording.

The point of this recipe is not really about tracking true local ancestry, however; for most
purposes tree-sequence recording does that better and faster. The point here is that mutation()
callbacks can be used to tweak the mutation type of new mutations in any way desired, to
separately track particular sets of mutations based upon any metric of interest – their
subpopulation of origin, their tick of origin, the state of the individual in which they originated, or
anything else. Once separate mutation types are being used to track different sets of mutations,
they can be visualized differently in SLiMgui, they can be located separately with methods like
mutationsOfType(), they can influence model dynamics differently, and they can be distinguished
in the output of methods like outputFixedMutations(). This is a very general technique with a
wide variety of uses.

14.15 Modeling biallelic loci with a mutation() callback
A question that occasionally arises is: how do I model a biallelic locus in SLiM? A biallelic

locus is a locus that has only two possible states; we will call them A and a. A new mutation at a
site that has an A will produce an a; a mutation at a site that has an a will produce an A. This is a
very common thing to model mathematically, because it is simple and tractable. However, it takes
a bit of doing in SLiM, since SLiM is geared towards other types of models: either infinite-alleles
models (the default), or nucleotide-based models. In this section we’ll construct a recipe of 100
unlinked biallelic loci – two recipes, in fact, to look at two different approaches to the problem.
(In the next section, section 14.16, we will even look at a third possible approach!)

There are a couple of issues to be handled. One is that normally in SLiM each new mutation
event creates a new mutation object, representing a new “mutational lineage”; SLiM is normally
an “identity by descent” style of model wherein each mutational lineage is tracked separately (see
section 1.5.2). Since we want our model to be strictly biallelic, however, we want “identity by

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 327

state” instead; we want only two mutation objects in the model for a given position, A and a. We
will achieve this by “uniquing down” new mutations to a canonical set of mutations.

Another issue is that normally in SLiM, mutations “stack”; a new mutation does not replace an
existing mutation at a given position, but instead stacks on top of it (see section 1.5.3). We want A
to replace a, and a to replace A, though; we don't want our biallelic mutations to stack. We will
achieve this using SLiM’s “stacking policy” facility in one recipe, and in the other recipe we will
script our own solution.

Finally, there is the question of how exactly the A and a states are modeled. In SLiM, we
typically use the lack of a mutation at a position to represent the “ancestral” or “wild-type” state at
that position, and that empty state has no fitness effect; only when a mutation exists is there a
fitness effect (see section 1.5.2). We will follow that convention in one recipe; allele a will be
represented by the empty state, and allele A by the presence of a mutation. In the other recipe, we
will instead represent both a and A with mutations, and will not allow the empty state to occur.

Let’s start with the version that uses mutation objects for both states; it is a bit simpler in its
implementation. Here’s the initialization:

initialize() {
 // an m2 mutation is "A"
 initializeMutationType("m2", 0.5, "f", 0.0);
 m2.convertToSubstitution = F;
 m2.color = "red";

 // an m3 mutation is "a"
 initializeMutationType("m3", 0.5, "f", 0.0);
 m3.convertToSubstitution = F;
 m3.color = "cornflowerblue";

 // enforce mutually exclusive replacement
 c(m2,m3).mutationStackGroup = 1;
 c(m2,m3).mutationStackPolicy = 'l';

 initializeGenomicElementType("g1", c(m2,m3), c(1.0,1.0));
 initializeGenomicElement(g1, 0, 99);
 initializeMutationRate(1e-4);
 initializeRecombinationRate(0.5);
}

We define two mutation types, m2 and m3 (I usually follow the convention of reserving m1 for
ordinary neutral mutations, but that is just a habit). Both types are set up to be neutral; these
recipes will be neutral models for simplicity. We prevent both types from being converted to
substitutions when they fix; for one thing, being “fixed” is just a temporary state in this model since
back-mutations are constantly occurring, and for another, we want to prevent the empty state from
ever occurring in this model. We also give the mutation types different colors for easy viewing in
SLiMgui.

Next we set up the stacking policy for these mutation types. We want them both to be in the
same “stacking group”; a new mutation of either type will interact with an existing mutation of
either type, therefore they belong in the same stacking group. The “interaction” in question is
replacement – we want a new mutation of either type to replace any existing mutation of either
type, therefore both mutation types should use the type "l" stacking policy, where "l" is for “last”
meaning that the last mutation wins.

Finally, we set up the chromosome to have 100 unlinked loci (using a recombination rate 0.5),
with a mutation rate of 1e-4 and equal probabilities of m2 and m3 mutations.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 328

With this genetic configuration, SLiM will do much of the work for us automatically: m2 and m3
mutations will replace each other. Next we should set up the initial state of the model:

1 early() {
 sim.addSubpop("p1", 100);

 // create the canonical mutation objects
 target = p1.genomes[0];
 target.addNewDrawnMutation(m2, 0:99);
 defineConstant("MUT2", target.mutations);
 target.removeMutations();
 target.addNewDrawnMutation(m3, 0:99);
 defineConstant("MUT3", target.mutations);
 target.removeMutations();

 // start homozygous "aa" at every position
 p1.genomes.addMutations(MUT3);

 // log results
 log = community.createLogFile("freq.csv", logInterval=10);
 log.addTick();
 log.addMeanSDColumns("freq", "sim.mutationFrequencies(NULL, MUT2);");
}

After creating a new subpopulation, this prepares the model for action. As mentioned above,
we want to “unique down” new mutations to a set of canonical mutation objects so that we
represent identity by state rather than identity by descent; we don’t want multiple mutational
lineages for one mutational state, as SLiM would normally provide. In this early() event we
actually create the canonical mutation objects that we will use throughout the simulation; this is a
technique I don’t think we have seen before. We use one genome (it doesn’t matter which) as a
temporary “target”, and add new m2 mutations at every position in it. Then we fetch those new
mutations out of the target, and remember them in a defined constant for the remainder of the run:
these are our canonical mutations for the m2 mutation type. We finish by removing them all from
the temporary target genome. We do the same with m3, obtaining our canonical m3 mutations.

Recall that we never want to allow the empty state to occur at any position; every position in
every genome must have a mutation, either m2 or m3. Arbitrarily, we therefore initialize the model
to be m3 at every position by adding the canonical m3 mutations to every genome, providing a legal
initial state according to our rules.

Finally, we set up a LogFile object to log out the mean (and standard deviation, not used here)
of the frequencies of m2 mutations, every tenth tick. We will use this later to generate a plot.

We are almost done; we just need to “unique down” to the canonical mutation whenever a
new mutation occurs. We do that with two trivial mutation() callbacks (and here’s the
termination event, too):

mutation(m2) {
 // unique down to the canonical m2 mutation
 return MUT2[mut.position];
}
mutation(m3) {
 // unique down to the canonical m3 mutation
 return MUT3[mut.position];
}
50000 late() { }

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 329

These simply look up the corresponding canonical mutation, by position, from the appropriate
global constant and return it. SLiM will add that mutation rather than the mutation it originally
proposed.

If we run this in SLiMgui, the “Display Haplotypes” mode of the chromosome view proves very
useful since every position has either an m2 or m3 mutation. At the end of a run, the chromosome
view looks like this:

Some positions are (temporarily) fixed for allele A (red), some positions for allele a (blue), and a
few positions are at an intermediate frequency with both alleles segregating. If we plot the logged
output in R, we can see that the mean frequency of A alleles in the model evolves towards 50%,
with some stochasticity:

The model appears to be working correctly, although one could perform additional statistical
tests to confirm that it matches theoretical expectations from analytical models.

Let’s move on to the second recipe for this section; recall that for this one, we will use the
empty state to represent a, and a mutation at a given position will represent A. We will again want
to unique those mutations down to provide identity by state, and we will need to ensure that
mutations do not stack, and that allele a replaces A and vice versa. Here’s the initialization:

initialize() {
 // m2 models a biallelic locus; an m2 mutation is "A",
 // absence of an m2 mutation is "a"; "aa" is neutral
 initializeMutationType("m2", 0.5, "f", 0.0);
 m2.convertToSubstitution = F;
 m2.color = "red";

 // m3 is used for new mutations; new m3 mutations get
 // uniqued down to the correct biallelic m2 state
 initializeMutationType("m3", 0.5, "f", 0.0);
 m3.convertToSubstitution = F;
 m3.color = "cornflowerblue";

 initializeGenomicElementType("g1", m3, 1.0);
 initializeGenomicElement(g1, 0, 99);
 initializeMutationRate(1e-4);
 initializeRecombinationRate(0.5);
}

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tick

m
ea
n(
fre
qu
en
cy
)

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 330

We create mutation type m2 to represent A, and tell it not to fix. We also create a mutation type
m3 which is used only for the internal implementation; we will never have m3 mutations segregating
in the population (so if we ever see a mutation in SLiMgui that is colored blue, we know we have a
bug). New mutations are always of type m3, and our script will sort out what to do with them. We
do not alter SLiM’s default stacking policy; this recipe will actually leverage stacking to do its work,
as shown below. In other respects this mirrors the previous recipe.

Next let’s look at the initial population setup:

1 early() {
 sim.addSubpop("p1", 100);

 // create the permanent m2 mutation objects we will use
 target = p1.genomes[0];
 target.addNewDrawnMutation(m2, 0:99);
 defineConstant("MUT", target.mutations);

 // then remove them; start with "aa" for all individuals
 target.removeMutations();

 // log results
 log = community.createLogFile("freq.csv", logInterval=10);
 log.addTick();
 log.addMeanSDColumns("freq", "sim.mutationFrequencies(NULL, MUT);");
}

We create a defined constant containing the canonical m2 mutations for the model, as we did
before. After removing them from the temporary target genome, every genome is empty at every
position; this represents the homozygous aa state in this model. We end by creating a LogFile
instance, as before.

Now we define a mutation() callback that influences the way in which new m3 mutations are
generated:

mutation(m3) {
 // if we already have an m2 mutation at the site, allow
 // the new m3 mutation; we will remove the stack below
 if (genome.containsMarkerMutation(m2, mut.position))
 return T;

 // no m2 mutation is present, so unique down
 return MUT[mut.position];
}

This first checks whether an m2 mutation already exists in the target genome at the position that
is mutating. If one does, then what we need is a back-mutation to the empty state – we want to
remove the existing m2 mutation and replace it with nothing. At present, mutation() callbacks
don’t support doing that, however (it would be a nice feature to add some day). So instead, we
allow the proposed m3 mutation to be added, by returning T. This creates a stacked setup, with the
new m3 mutation on top of the existing m2 mutation. We will clean up that mess in the late()
event shown below.

Otherwise, there is no previously existing m2 mutation, so this is a new mutation at an empty
position. We return the canonical m2 mutation for this position, to “unique down” to it, as in the
previous recipe.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 331

OK, so far so good – but we’ve got that mess to clean up. Wherever a stacked m2/m3 pair exists,
we want to remove both of them, thereby achieving the empty a allelic state that we want. The
code for this is a bit complicated:

late() {
 // implement back-mutations from A to a
 m3muts = sim.mutationsOfType(m3);

 // do we have any m3 mutations segregating?
 // if so, we have m2/m3 stacked mutations to remove
 if (m3muts.length() > 0)
 {
 genomes = sim.subpopulations.genomes;
 counts = genomes.countOfMutationsOfType(m3);
 hasStacked = genomes[counts > 0];

 for (genome in hasStacked)
 {
 stacked_m3 = genome.mutationsOfType(m3);
 stackPositions = stacked_m3.position;
 all_m2 = genome.mutationsOfType(m2);
 s = (match(all_m2.position, stackPositions) >= 0);
 stacked_m2 = all_m2[s];
 genome.removeMutations(c(stacked_m3, stacked_m2));
 }
 }
}

First we ask sim for all m3 mutations. If any exist, we have stacks to clean up; if none exist, then
we can skip the rest of the work. Assuming some exist, we fetch all the genomes in the model and
narrow down to those that contain at least one m3 mutation; these are the genomes that we need to
clean up. We loop through them with a for loop (this code cannot be vectorized, since each
genome needs to be processed differently). For each focal genome, we get the m3 mutations it
contains – there could be more than one – and the positions at which they occur. Then we use
match() to find the m2 mutations in the genome that are at the same positions; these are the ones
that are stacked with the new m3 mutations. Finally, we remove them all from the focal genome.
When the for loop is done, all of the stacks have been cleaned up, all back-mutations to allele a
have been handled, and no m3 mutations are left in the model – until next tick.

And then we have a termination event as before, and we’re done:

50000 late() { }

The default chromosome view display mode works well for this model, since it uses the empty
state for a; we can see the frequency of A at each position:

The complementary black bars coming down from the top (if you shift your perspective or stand
on your head) are the frequencies of a at each position. As before, most sites are fixed for a or A,
and a few are at intermediate frequencies. (It might look like there are more at intermediate
frequencies here, compared to the previous recipe; but actually, the Display Haplotypes mode that
we used to view the previous recipe will tend to obscure low-frequency heterozygosity because it
is based upon a subsample of the population’s genomes, and alleles at low frequency will often

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 332

not be visible due to sampling error; generate a full-size haplotype plot based on all genomes to
see the full reality of the haplotype structure in the population.)

The R plot from the logged data also looks fine:

It looks similar to the results from the other recipe, and indeed, the two models ought to behave
identically apart from the effects of stochasticity.

Which recipe is “better”? It’s hard to say; that depends upon your larger goals. The first recipe
is conceptually simpler and is also shorter. They run at about the same speed; the first recipe has
twice as many segregating mutations, which makes for some extra work for SLiM, but the second
recipe has to deal with removing the m2/m3 stacks. The first recipe may produce cleaner tree-
sequence recording output (see section 1.7), if you are interested in that, because it won’t have
transient m3 mutations flickering in and out each tick; but neither recipe will really produce a very
sensical tree sequence, since the tree sequence is inherently designed to represent identity by
descent, not identity by state.

Perhaps the biggest difference is how fitness is handled. Both of these recipes are neutral
models, for simplicity, which has kind of hidden that aspect of their design. In the first recipe, with
both m2 and m3 mutations segregating to represent A and a, heterozygous individuals contain an m2
mutation in one genome and an m3 mutation in the other. SLiM does not know that these are, in a
sense, two sides of the same coin; instead, it considers these individuals to be heterozygous for the
m2 mutation and heterozygous for the m3 mutation, and it will calculate the fitness effect of each
and multiply them together. Probably, to avoid confusion, you ought to keep the fitness effect of a
(m3) neutral, and allow only A (m2) to be non-neutral. In the second recipe, this is true
automatically and there is no potential for confusion; the empty state is a, and only A has an
associated mutation object that has a fitness effect.

Both recipes are really pretty reasonable and usable. Probably the factor that makes one
strongly preferable to the other will arise when you try to extend them to make a more complex
model, of which these biallelic dynamics are only a component. At that point you might find that
one or the other recipe proves to be more easily adaptable to your final design. Experiment with
both! Also note that modeling identity by state is not essential here; these recipes do it to make the
visualization and analysis easier, but if you want to have multiple mutation lineages in a biallelic
model, you certainly can (and then tree-sequence recording will produce more coherent results).
The first recipe probably lends itself better to that approach.

In closing, it’s worth noting that we could have also constructed a biallelic model using a
nucleotide-based SLiM model. To do this, just restrict the initial state of the model to have only

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tick

m
ea
n(
fre
qu
en
cy
)

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 333

(for example) C and G in the ancestral sequence, and then use a custom mutation matrix to force C
to mutate only to G, and G to mutate only to C. That will give you biallelic behavior, although if you
want to actually have only one mutation of each type at each position you will still have to
“unique down” as well. But we haven’t seen nucleotide-based models yet (that’s chapter 18), and
in any case it is a bit odd to use nucleotides to represent states that are not, conceptually, actually
nucleotides at all. The recipes shown here are therefore probably preferable.

Overall, these two recipes are not intended to represent the one right way (or two right ways!) to
write a biallelic model in SLiM. Instead, the goal here has been to illustrate different techniques
for influencing things like identity by state versus identity by descent, mutation stacking and
stacking policy, and “uniquing down” of new mutations to alternative mutational states. Once you
are comfortable with these techniques you can use them to achieve a wide variety of goals, and
you will have a better understanding of how SLiM really works under the hood.

In the next section we'll see a completely different way to model biallelic mutations, without
using SLiM’s genetic facilities at all.

14.16 Modeling biallelic loci in script
In the previous section we looked at two different ways to model biallelic loci using SLiM's

built-in genetic facilities. That proved to be rather complicated, because SLiM is designed to
model rather different types of genetics. For that reason, we needed to deal explicitly with
“uniquing down” separate mutational lineages (because SLiM normally models “identity by
descent”) into single mutation objects (producing “identity by state”). We also needed to deal
explicitly with back-mutations, when one of the two biallelic states at a locus was represented by
the absence of any mutation object at that locus, so that a new mutation back to that state would
return to that empty state. All of that logic was somewhat complicated, and somewhat difficult to
get right. Is there a better way?

Well, sort of. SLiM’s genetic model is not designed for modeling things like biallelic loci, since
those are really a theoretical abstraction, and SLiM tries to aim for something closer to biological
realism. So perhaps the easiest thing to do is to simply not use SLiM’s genetics at all. SLiM is
scriptable – can we just implement biallelic loci directly in script? That’s what we'll explore in this
section.

Let's start with the initialize() callback and the first-tick setup:

initialize() {
 defineConstant("MU", 1e-4);
 defineConstant("L", 100);
}

1 early() {
 sim.addSubpop("p1", 100);

 // all individuals start in the "wild-type" state
 // genomic state is kept in two vectors, G1 and G2
 p1.individuals.setValue("G1", rep(F, L));
 p1.individuals.setValue("G2", rep(F, L));

 // log results
 log = community.createLogFile("freq.csv", logInterval=10);
 log.addTick();
 log.addMeanSDColumns("freq", "biallelicFrequencies();");
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 334

The initialize() callback is very short, because this is (as far as SLiM is concerned) a so-called
“no-genetics” model. We haven’t seen this option much, since we’re usually interested in
modeling genetics, but SLiM allows models to be defined with no genetic setup whatsoever, as
above. We just define two constants: MU, the mutation rate per locus per tick, and L, the number of
biallelic loci.

In the 1 early() event we create a new subpopulation, p1, with 100 individuals. We then set
up the scripted genetic state of the new individuals. Each individual has two genomes (i.e., is
diploid). These genomes are associated with the individuals using setValue() using the keys "G1"
and "G2". Each genome is a vector of L values of logical type; each of the L biallelic loci is thus
coded as being either F or T. (You could model the loci with integer values instead, to represent
more than two states, if you wanted to.) In the initial state set up here, all loci in all individuals are
in the F state. We also set up a LogFile to log out frequencies every 10 ticks; this is much the same
as in section 14.15, except that we use a helper function for the logging:

// biallelicFrequencies() is used by the LogFile
function (float)biallelicFrequencies(void) {
 g = NULL;
 for (ind in p1.individuals)
 g = rbind(g, ind.getValue('G1'), ind.getValue('G2'));
 f = apply(g, 1, "mean(applyValue);");
 return f;
}

This function loops through all the individuals in p1 and uses rbind() to construct a genomic
matrix with L columns representing the loci, and N rows for the N individuals in the subpopulation.
It then uses apply() to summarize each column down to its mean, producing a vector of
frequencies for the L loci. This might not scale terribly well to very large numbers of loci or
individuals, but it is just for logging purposes.

The other thing we need is inheritance of our scripted genetic state. We do that with a
modifyChild() callback:

modifyChild() {
 // inherit biallelic loci from parents with recombination and mutation
 parentG1 = parent1.getValue("G1");
 parentG2 = parent1.getValue("G2");
 recombined = ifelse(rbinom(L, 1, 0.5) == 0, parentG1, parentG2);
 mutated = ifelse(rbinom(L, 1, MU) == 1, !recombined, recombined);
 child.setValue("G1", mutated);

 parentG1 = parent2.getValue("G1");
 parentG2 = parent2.getValue("G2");
 recombined = ifelse(rbinom(L, 1, 0.5) == 0, parentG1, parentG2);
 mutated = ifelse(rbinom(L, 1, MU) == 1, !recombined, recombined);
 child.setValue("G2", mutated);

 return T;
}

This is the heart of the model. For each new offspring generated, this callback constructs the
offspring’s genetic state based upon the state of the parents. It uses getValue() to fetch the state of
a parent, and then chooses one of the other of the parental alleles for each locus using ifelse()
and rbinom(). (This simulates unlinked loci; simulating other linkage patterns could be done, but
would get quite complex, so it would then be best to let SLiM handle the genetics instead, as in
the previous section.) After recombination comes mutation, again implemented with ifelse()

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 335

and rbinom() so that with probability MU, each locus gets flipped to its opposite state. After
mutation, the genome is associated with the child using setValue(). This process is done twice,
one time to generate the child’s first genome from the first parent, and one time to generate its
second genome from the second parent.

And finally, we need an end event:

50000 late() { }

And that’s the whole model. In some respects this is much simpler; we don’t have to worry
about identity-by-state versus identity-by-descent (since our scripted genetics implement identity-
by-state), and we don’t have to handle back-mutations in any special way (since the loci are
inherently biallelic).

In other respects, it is not as good as the models of the previous section, though. We don’t get
anything for free from SLiM; in particular, we have to do our own recombination and our own
mutation. Since that’s done in Eidos script instead of in SLiM’s C++ core, this model runs about
half as fast as the previous section’s recipes. There are other things we don’t get for free any more
either; we have to calculate the mutation frequencies ourselves, for example, and that is done in a
rather inefficient manner compared to how SLiM does it internally. If we wanted to simulate
linkage, or fitness effects, or anything else, we would have to script it all ourselves too. As far as
SLiM is concerned, these individuals don’t have genetics at all; they just have logical vectors
attached to them in script.

For very simple theoretical models of the evolution of biallelic loci, this recipe might be well-
suited to the task. For more complex scenarios, however, this approach might be too ungainly and
slow to be very useful. With the recipes from the previous section, we have now seen three very
different ways to implement biallelic loci, and one could doubtless come up with even more. The
best approach will depend upon circumstances; the goal here is just to illustrate some possible
approaches.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 336

15. Going beyond Wright–Fisher models: nonWF model recipes

Beginning with SLiM 3.0, two fairly different types of models are supported in SLiM: Wright–
Fisher or WF models, and non-Wright–Fisher or nonWF models. See section 1.6 for a discussion
of the differences between these two types of models. All of the recipes presented so far have been
WF models, since that is the default model type in SLiM. In this chapter, we will go beyond the
assumptions and constraints of Wright–Fisher models, and will examine recipes for a variety of
nonWF models.

A great deal of the overall design of SLiM is shared between WF and nonWF models. All of the
Eidos classes that embody SLiM are the same (Community, Species, Subpopulation, Individual,
etc.), and the way that SLiM models the chromosome, genomes, mutations, and so forth is
unchanged. Since that foundation is all shared, a good understanding of the concepts in the
preceding chapters will be assumed. Many of the techniques presented in the preceding recipes
will also work in nonWF models. We will not re-cast all of those techniques in a nonWF context,
since that would mostly just be repetitive and uninteresting; instead, we will focus on the
important ways in which nonWF models are different from WF models.

As discussed in more detail in section 1.6, the main differences between WF and nonWF
models fall into a few major categories. First of all, in nonWF models generations may be
overlapping and individuals can live for more than one tick; for this reason, in nonWF models the
model’s script is responsible for creating new offspring as needed, rather than that happening
automatically every tick as it does in WF models. Second, for the same reason, in nonWF models
the parental generation does not die off automatically after offspring are generated; instead, fitness
governs mortality (rather than governing mating success as in WF models). Third – as a
consequence of the previous two differences, really – in nonWF models population regulation is a
consequence of the balance between individual reproduction and individual mortality, just as it is
in natural populations, rather than being enforced through a set population size as in WF models,
and so the model typically needs to treat population regulation explicitly, with some individual-
level effect such as density-dependence. Fourth, migration in nonWF models is similarly managed
on an individual basis in the model’s script, rather than being done automatically by the SLiM
engine based upon set migration rates.

All of this points to two basic observations. One observation is that the tick cycle is quite
different between WF and nonWF models. Chapter 23 discusses the tick cycle for WF models,
whereas chapter 24 discusses the tick cycle for nonWF models and the important conceptual ways
in which it differs from the WF tick cycle. An understanding of those differences, such as the way
in which the semantics of early() and late() events have changed and the way that the meaning
of fitness has shifted, will be important to understand the recipes that follow, so chapter 24 should
be consulted for further information as needed. The other observation is that nonWF models are
generally more individual-based and more complex than WF models, because more
responsibilities like offspring generation and migration have been pushed from SLiM onto the
model’s script. With this additional complexity comes considerable additional power and
flexibility, however, as we will see.

15.1 A minimal nonWF model
Let’s begin with a minimal nonWF model, similar to the minimal WF model presented in

section 4.1. This will illustrate several of the fundamentals of nonWF models: how to switch SLiM
into nonWF “mode”, how to implement individual-based reproduction and density-dependent
population regulation, and how to work with overlapping generations.

With no further ado, here is the recipe:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 337

initialize() {
 initializeSLiMModelType("nonWF");
 defineConstant("K", 500);

 initializeMutationType("m1", 0.5, "f", 0.0);
 m1.convertToSubstitution = T;

 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8);
}
reproduction() {
 subpop.addCrossed(individual, subpop.sampleIndividuals(1));
}
1 early() {
 sim.addSubpop("p1", 10);
}
early() {
 p1.fitnessScaling = K / p1.individualCount;
}
late() {
 inds = p1.individuals;
 catn(sim.cycle + ": " + size(inds) + " (" + max(inds.age) + ")");
}
2000 late() {
 sim.outputFull(ages=T);
}

The first line of the initialize() callback is a call to initializeSLiMModelType("nonWF"); this
tells SLiM that we are building a nonWF model. That has various consequences; it activates the
nonWF tick cycle shown in chapter 24, for example, and it enables some properties and methods
on SLiM’s objects while disabling others. It is possible, when writing a WF model, to include a call
to initializeSLiMModelType("WF"), but unnecessary, since that is the default.

The next line sets up a defined constant, K. This will be the carrying capacity for the model’s
population regulation; we’ll cover that below.

The rest of the initialize() callback is much as we have seen before, but you might notice
one surprising thing: we set the convertToSubstitution property of mutation type m1 to T. In WF
models, mutations convert to substitutions automatically; the default value of that property is T, so
it would be redundant to set it to T again. In nonWF models, however, mutations do not convert
to substitutions automatically; the convertToSubstitution property is F by default and must be set
to T when desired. The reason is that in nonWF models fitness is absolute, not relative, and so
only completely neutral mutations with no side effects are safe to convert to Substitution objects
(see section 24.4 for further discussion). Since m1 mutations are completely neutral in this model,
we tell SLiM to allow them to fix; this will make the model run much faster.

The next script block is a new type of callback, a reproduction() callback, that may be used
only in nonWF models. Such reproduction() callbacks are called once per individual, at the
beginning of each cycle; this provides an opportunity for that focal individual to generate offspring
(which it might or might not do); see section 24.1 for further discussion. This callback calls
subpop.sampleIndividuals(1) to draw one random individual from subpop (the subpopulation of
the focal individual) as a mate, and then calls subpop.addCrossed() to add a new offspring
individual that is the result of crossing – biparental sexual reproduction – between the focal
individual for the callback (individual) and the chosen mate. The new individual is created, and
is in fact returned to the caller, but is not actually added to the subpopulation until offspring

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 338

generation is finished. Note that although each individual will generate exactly one offspring of its
own here, as the focal individual or “first parent”, it might also be chosen as a mate by another
individual (perhaps more than once, or perhaps not at all).

The next script block returns us to more familiar territory, since it simply calls addSubpop() to
create subpopulation p1 with ten initial individuals. The only point to be made here is that while
in a WF model this would set the subpopulation’s size forever (until setSubpopulationSize() was
called, at least), in a nonWF model this only sets the initial subpopulation size; the size of the
subpopulation will henceforth be governed by birth and death events, not by its initial size.

Speaking of death, the next early() event governs that. It calculates an absolute fitness value,
K / p1.individualCount, and sets that into the fitnessScaling property of p1. We have seen the
fitnessScaling property a little before, chiefly in chapters 13 and Q as a property on Individual.
It also exists as a property on Subpopulation, where it scales the absolute fitness of the whole
subpopulation because the calculated fitness for every individual in the subpopulation is
multiplied by the subpopulation’s fitnessScaling value.

This fitnessScaling property of Subpopulation may be used in WF models too, in fact, but is
not generally useful in that context; since WF models use relative fitness, scaling the fitness of all
individuals by the same constant has no effect. In nonWF models, however, it has a very
important effect! This fitnessScaling factor is what regulates the population size in the model; if
this line were commented out, the population would grow exponentially forever (until SLiM
crashed, or got so slow as to be effectively halted). Instead, when the subpopulation size is less
than K, fitnessScaling will be greater than 1.0 (and so no mortality will occur and the
subpopulation size will grow); but if it is larger than K, fitnessScaling will be less than 1.0 and
mortality will bring it back toward K. Since new individuals get generated at the beginning of each
cycle by the reproduction() callback, once the model reaches equilibrium the population size
will double during offspring generation to around 1000, then a fitnessScaling value of
approximately 0.5 will be set, and then approximately half of the individuals will die during the
viability/survival tick cycle stage, bringing the population size down to approximately 500 (i.e., K).

Note that there is nothing magical about this particular formula; any formula or model design
that influences individual fitness in such a manner as to regulate the population size will work (see
section 15.17). This particular formula produces exponential growth until K is reached (assuming
an otherwise neutral model), and then stochastic population size fluctuation around K thenceforth.
The population size will be stochastic around K because in nonWF models fitness is the probability
of death, but of course sometimes more individuals will die than expected, sometimes less; the fate
of each individual is in the hands of SLiM’s random number generator.

A very important point to note, however, is that at low population density this equation will
produce very high absolute fitness; when at 1/100th of carrying capacity, every individual’s
absolute fitness will be multiplied by 100 to reflect the benefits of low density – decreased
competition, more resources, etc. This is biologically unrealistic for almost all species; almost
always, there would be some maximum benefit that an individual could gain from being at low
density, and so you would want to use a more sophisticated density-dependence equation that
would cap the fitness scaling at that maximum value. (Indeed, in many species Allee effects would
exist, such that below some threshold density individual fitness would actually decrease due to
other biological considerations – difficulty of finding a mate, lack of benefits from flocking/
schooling, lack of cooperative interactions, etc.) In this model the lack of a cap to the benefits of
low density doesn’t matter; absolute fitness values above 1.0 are all equivalent anyway here, since
survival probability cannot be greater than 100%. In a model that includes deleterious mutations
or other fitness-decreasing effects, however, this density-dependence equation’s oversimplification
of biological reality will matter, masking or completely eliminating those other fitness effects when
at low density and thus making it virtually impossible for extinction to occur. In short: this is a toy

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 339

model, and in a more realistic model you would want to think carefully about how you enforce
density-dependence to ensure that the fitness effects of density are appropriate at all population
sizes. We will often use this same toy-model density-dependence equation in this manual, since it
is simple and general, but that does not mean it is sufficiently realistic for real-world modeling.
Section 15.4 discusses this problem from another angle: the problem of beneficial mutations
having no effect in individuals whose absolute fitness is already 1.0 or greater.

Next we have a late() event that outputs two pieces of information in each tick: the population
size, and the age of the oldest individual. Here’s the initial output from one run:

1: 10 (0)
2: 20 (1)
3: 40 (2)
4: 80 (3)
5: 160 (4)
6: 320 (5)
7: 496 (6)
8: 485 (7)
9: 500 (6)
10: 522 (7)
...

You can see the exponential growth at the start settling in around 500 once the model reaches
carrying capacity. You can also see that we already have overlapping generations in this model;
the individuals at the end of tick 1 are of age 0 (newly generated juveniles), and that initial cohort
ages without mortality during exponential growth (since we have not implemented a maximum
age or any sort of age-dependent reduction in fitness). By tick 7, though, the carrying capacity has
filled up and individuals start to die. Since every individual in this model has the same fitness,
mortality is purely random, and sometimes you will get a Methuselah that lives to be 20 or even
older; but most individuals will die through sheer bad luck before then, and the maximum age in
this model will tend to fluctuate around 10 or 15. Later recipes will explore how to control the
population age in biologically realistic ways, but for now let’s just bask in the glory of the fact that
we have already modeled something that can’t be modeled in WF SLiM: overlapping generations.

The final event produces output from the model with outputFull(), as we have seen many
times before. The only new element is the ages=T parameter, which requests that age information
be added to the output (the details of the output format are given in section 27.1.1).

That’s it; that completes our first nonWF recipe! In subsequent sections we will explore the
greater power the nonWF paradigm affords us, because we can now control the mating, fecundity,
migration, fitness, and survival of each individual.

15.2 Age structure (a life table model)
In the previous recipe, the probability of survival was the same regardless of age, and that

produced a particular emergent age structure in the population. In most biological systems,
however, the probability of survival is age-dependent. Commonly, this is modeled with a life table
that gives the probability that an individual of a given age will die within the next time period (the
next year, often).

To model non-overlapping generations in a nonWF model, one might use a life table that gives
a probability of survival of 0.0 for all individuals of age 1 or older (newly generated juveniles
having an age of 0); with such a life table, offspring would be generated and then the parental
individuals (all having an age of 1) would all immediately die (see section 15.13). In this model
we will implement a slightly more complex life table, for an imaginary species that has high

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 340

juvenile mortality, low adult mortality, and a maximum age of seven ticks. We will also implement
age-dependent fertility and density-dependent population regulation.

Let’s look at this model one piece at a time, beginning with initialization:

initialize() {
 initializeSLiMModelType("nonWF");
 defineConstant("K", 30);
 defineConstant("L", c(0.7, 0.0, 0.0, 0.0, 0.25, 0.5, 0.75, 1.0));

 initializeMutationType("m1", 0.5, "f", 0.0);
 m1.convertToSubstitution = T;

 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8);
}

This is identical to the previous recipe except for the addition of the defined constant L, which
is our life table. It gives the probability of mortality for each age; newly generated juveniles have a
mortality of 0.7 (i.e., 70%), then the mortality drops to zero for several years, and then it ramps
gradually upward with increasing age until it reaches 1.0 for age 7; all individuals of age 7 will die.
Note that this is only the age-related mortality; density-dependence will also cause mortality, as we
will see below, but that will be additional to this age-related mortality, which would occur even in
a population that was not limited by its density.

Next, let’s implement reproduction:

reproduction() {
 if (individual.age > 2) {
 mate = subpop.sampleIndividuals(1, minAge=3);
 subpop.addCrossed(individual, mate);
 }
}

This is essentially the same as the reproduction() callback in the previous recipe, except that
here we have prevented reproduction by individuals of age 2 or below (with the same limitation on
the chosen mate’s age). One could similarly restrict reproduction in a nonWF model based upon
genetics, individual state, resource acquisition, mate compatibility, or any other factor.

Population initialization looks like this:

1 early() {
 sim.addSubpop("p1", 10);
 p1.individuals.age = rdunif(10, min=0, max=7);
}

We again start at a population size of 10 and allow the population to grow upward to the
carrying capacity (only 30 in this model, to make reading the output of the model easier). Since
addSubpop() sets the age of all new individuals to 0, that would provide our model with a bit of an
artificial start, and it might also present difficulties since juvenile mortality in this model is so high
– sometimes the population might go extinct before it reaches reproductive age. We therefore
draw random ages from a discrete uniform distribution from 0 to 7. If one had empirical data
about the age distribution in one’s system, that might of course be an even better starting point.

And here we manage both age-related and density-dependent mortality:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 341

early() {
 // life table based individual mortality
 inds = p1.individuals;
 ages = inds.age;
 mortality = L[ages];
 survival = 1 - mortality;
 inds.fitnessScaling = survival;

 // density-dependence, factoring in individual mortality
 p1.fitnessScaling = K / (p1.individualCount * mean(survival));
}

We calculate the age-related mortality by getting all of the individuals in p1, getting their ages,
and then looking up those ages in L to get a vector of the mortality rates for the individuals.
Survival rates are the opposite of mortality rates, so we subtract from 1; if an individual has a
mortality rate of 1 it has a survival rate of 0, and vice versa. Finally, we set those survival rates into
the fitnessScaling properties of the individuals. We saw the fitnessScaling property of
Subpopulation in the previous recipe, where it scaled the fitness of all individuals in the
subpopulation by the same constant factor. The fitnessScaling property of Individual has much
the same effect, but on an individual basis; each individual can have a different fitnessScaling
value, which is multiplied into that individual’s calculated fitness. This is equivalent to
implementing a fitnessEffect() callback (see section 26.3) that returns a survival-based fitness
effect for the focal individual based upon that individual’s age; but this way is much faster since it
is done in a vectorized fashion without fitnessEffect() callbacks.

Next, the callback above calculates density-dependent mortality based upon K and the current
population size, as before, but also factors in the mean survival rate in the population due to age-
related mortality. Without that correction, the population would equilibrate around a lower size
than K, because age-related mortality would occur in addition to the density-dependent mortality
necessary to bring the population down to K. With the correction, the population size should
fluctuate stochastically around K, as desired. One could of course get fancier, and come up with
equations that made the probability of density-dependent mortality depend upon age (or any other
individual state) in some manner; perhaps older individuals would be weaker and more vulnerable
to diseases and parasites that are common when population density is high, for example.

late() {
 // print our age distribution after mortality
 catn(sim.cycle + ": " + paste(sort(p1.individuals.age)));
}
2000 late() { sim.outputFixedMutations(); }

These are the last components of our model: output and termination. The late() output event
prints the population’s age distribution in each tick; this is post-mortality, since late() events run
after the viability/survival tick cycle stage in nonWF models. A typical run:

1: 0 0 0 1 2 4 5 6 6
2: 0 0 0 0 0 1 1 1 2 3 5 6
3: 0 0 0 1 1 1 1 1 2 2 2 3 4
4: 0 0 0 1 1 1 2 2 2 2 2 3 3 3 4 5
5: 0 0 0 0 0 0 1 1 1 2 2 2 3 3 3 3 3 4 4 4 5
...
1996: 0 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 5 5 5 5
1997: 0 0 0 0 1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 4 5 6 6
1998: 0 0 0 0 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 4 5 5 6
1999: 0 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 3 4 4 4 4 5 5 5 6
2000: 0 0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 6 6

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 342

The beginning of the output shows growth toward the carrying capacity; even before the
carrying capacity is reached some age-related mortality occurs. The end of the output shows the
(somewhat stochastic) equilibrium population size and age structure. With this life table, the
population is dominated by middle-aged individuals; most juveniles die, and few individuals make
it to age 7 since the mortality rate ramps upward beginning at age 4. Note that no individuals of
age 7 are visible here because this output is post-mortality; no individual of age 7 should ever exist
at this point in the tick cycle. If this output event were an early() event instead, however, we
would expect to see the occasional age 7 individual.

This model uses a life table, but the larger point is that nonWF models allow one to model any
individual-based mortality effects, whether due to genetics (which would typically occur through
SLiM’s built-in fitness calculations), age (as with a life table or similar scheme), density (as also
modeled here), individual state, environmental effects, or anything else. Fitness effects influencing
survival can be expressed through fitnessEffect() callbacks, or using the fitnessScaling
properties of Subpopulation and Individual that we used here.

15.3 Monogamous mating and variation in litter size
In the previous recipe we explored how to manipulate individual fitness values in order to

implement age-dependent mortality using a life table. In this recipe we will look at the other end
of the circle of life: mate choice and fertility. The previous nonWF models we have built have used
an extremely simplistic model of reproduction in which each individual of reproductive age
produces exactly one offspring per tick itself with a randomly selected mate (and may be chosen as
a mate by another individual, too). Here we will implement a very different model of
reproduction: monogamy (within a single breeding season), and generation of a litter of offspring
of non-deterministic size.

This model will look very similar to section 15.1’s recipe, so let’s just see the whole model:

initialize() {
 initializeSLiMModelType("nonWF");
 defineConstant("K", 500);

 initializeMutationType("m1", 0.5, "f", 0.0);
 m1.convertToSubstitution = T;

 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8);
}
reproduction() {
 // randomize the order of p1.individuals
 parents = sample(p1.individuals, p1.individualCount);

 // draw monogamous pairs and generate litters
 for (i in seq(0, p1.individualCount - 2, by=2))
 {
 parent1 = parents[i];
 parent2 = parents[i + 1];
 p1.addCrossed(parent1, parent2, count=rpois(1, 2.7));
 }

 // disable this callback for this cycle
 self.active = 0;
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 343

1 early() {
 sim.addSubpop("p1", 10);
}
early() {
 p1.fitnessScaling = K / p1.individualCount;
}
late() {
 inds = p1.individuals;
 catn(sim.cycle + ": " + size(inds) + " (" + max(inds.age) + ")");
}
2000 late() {
 sim.outputFull(ages=T);
}

This is, in fact, identical to section 15.1 except for the reproduction() callback, so let’s look at
that in detail:

reproduction() {
 // randomize the order of p1.individuals
 parents = sample(p1.individuals, p1.individualCount);

 // draw monogamous pairs and generate litters
 for (i in seq(0, p1.individualCount - 2, by=2))
 {
 parent1 = parents[i];
 parent2 = parents[i + 1];
 p1.addCrossed(parent1, parent2, count=rpois(1, 2.7));
 }

 // disable this callback for this cycle
 self.active = 0;
}

We do something quite different here: this reproduction() callback runs only once per cycle,
not once per individual! It disables itself at the end of its own execution by setting its active flag
to 0 (see section 26.11 for discussion of this feature, which we haven’t seen much before now).
The reproduction() callback is called by SLiM for some particular focal individual, but the
callback ignores that individual and instead generates offspring for all of the individuals in the
whole population all at once. This is perfectly fine, and can be a useful strategy when the
reproduction behavior of individuals is non-independent; with monogamy, for example, once two
individuals have formed a mating pair those individuals are not available to be chosen as mates by
any other individuals, so mating behavior in this model is non-independent, and it is thus more
convenient to handle the reproduction of the whole population en masse. In SLiM, I call this
approach “big bang” reproduction.

The first thing we want to do is choose all of the monogamous mating pairs. The order of
individuals in SLiM is not guaranteed to be random in SLiM, so it would be unwise to simply pair
individuals 0 and 1, 2 and 3, etc.; that could lead to biases in mate choice that could manifest in
strangely skewed genetics over time. Instead, we use the sample() function to draw a complete
sample from the population, without replacement, effectively randomizing its order. Then we pair
individuals 0 and 1, 2 and 3, etc., from that, which is safe. We do that pairing with a for loop over
the even values up to p1.individualCount - 2 (guaranteeing that a pair of individuals remains the
last time through the loop, not just an odd one out at the end). Individuals i and i+1 are then
taken to be a monogamous mating pair. Of course one could implement any mating scheme at

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 344

all; females could choose males assortatively, or based upon their physical condition, or in any
other manner, and monogamy does not need to be enforced (as in the previous two recipes).

Next, we want to generate a litter for that mating pair. We draw the size of the litter from a
Poisson distribution with a mean of 2.7, arbitrarily, using rpois(). At the risk of sounding like a
broken record, of course litter size could depend upon anything at all – the genetics of the two
parents, their genetic compatibility, their respective conditions, their ages, their fecundity the
previous year, their phenotypic match with their environment, etc. Here, we happen to use a
Poisson distribution with a mean of 2.7. That gives us an integer litter size; we then generate the
litter by calling addCrossed() that many times with the same parents, by passing the litter size to
addCrossed() with its count parameter. This is functionally equivalent to having a for loop over
seqLen(litterSize), which we will see in some other recipes. If you need to treat each offspring
differently (selecting a different mate for each, for example), a for loop is necessary; if every child
is to be treated identically, using count streamlines the code a bit.

The only thing left is for the reproduction() callback to deactivate itself, as explained above.
This model has the same output code as section 15.1’s recipe; a typical run produces:

...
1995: 497 (6)
1996: 531 (7)
1997: 524 (6)
1998: 497 (7)
1999: 529 (8)
2000: 511 (6)

Note that the equilibrium age here is around 6 to 7, where in section 15.1 it was more around
10 to 15. That is because section 15.1’s recipe produced one offspring per individual per cycle (not
counting being chosen as a mate by another reproducing individual), whereas this recipes
produces about 1.35 (half of 2.7). That floods this model with young individuals, relative to the
earlier model. Density-dependent mortality and carrying capacity remain the same, however, so
skewing the age distribution towards juveniles in that manner inevitably means fewer old
individuals and a shorter expected lifespan. That happens because with more offspring generated,
the pre-mortality population size is larger, and so (given that the carrying capacity is the same)
density-dependent fitness effects are stronger, individual fitness is lower, and the probability of
mortality per individual is higher, reducing the expected lifespan.

15.4 Beneficial mutations and absolute fitness
Thus far, we have only looked at neutral nonWF models. Fitness in nonWF models is absolute

and affects survival, where in WF models it is relative and affects mating success; this makes fitness
dynamics a bit different between nonWF and WF models. In particular, since one cannot survive
with more than a 100% probability, fitness values above 1.0 in nonWF models do not benefit the
individual at all; fitness values above 1.0 are interpreted as being 1.0. However, fitness is also
multiplicative (in both nonWF and WF models), and the important thing is the final fitness value
for an individual. The way this works out in practice can be a bit counterintuitive, so in this
section we will explore a simple model of an introduced beneficial mutation that sweeps to
fixation in a population, and we will look at the population dynamics as it does so.

The recipe is again based on that of section 15.1:

initialize() {
 initializeSLiMModelType("nonWF");
 defineConstant("K", 500);

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 345

 initializeMutationType("m1", 0.5, "f", 0.0);
 m1.convertToSubstitution = T;
 initializeMutationType("m2", 1.0, "f", 0.5); // dominant beneficial

 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8);
}
reproduction() {
 for (i in 1:5)
 subpop.addCrossed(individual, subpop.sampleIndividuals(1));
}
1 early() {
 sim.addSubpop("p1", 10);
}
100 early() {
 mutant = sample(p1.individuals.genomes, 10);
 mutant.addNewDrawnMutation(m2, 10000);
}
early() {
 p1.fitnessScaling = K / p1.individualCount;
}
late() {
 inds = p1.individuals;
 catn(sim.cycle + ": " + size(inds) + " (" + max(inds.age) + ")");
}
2000 late() {
 sim.outputFull(ages=T);
}

The changes from section 15.1 are minor. In the initialize() callback we create a mutation
type m2, for beneficial mutations; this has quite a strong selection coefficient and is dominant, to
make it less likely to be lost to drift at the very beginning, but that is unimportant to the point of
this recipe; we just don’t want to have to get into making the recipe conditional on fixation since
that is an extra complication (see section 9.2). In the reproduction() callback each individual
now reproduces five times per cycle, creating very strong density-dependent fitness effects; this is a
highly fecund species. That is not essential to the point of this recipe, but it will make the effect
more obvious. (Note that the reproduction here is done with a for loop, rather than the count
parameter to addCrossed() as in section 15.3, because a different mate is chosen for each
offspring.) In a new 100 early() event we now select one genome from the population at
random, and add an m2 mutation to it. The rest of the model is the same. The m2 mutation will
(usually) sweep to fixation, and we will look at the resulting population size and age structure.

At the beginning, the model rapidly grows to the carrying capacity and stays there (each output
line, remember, shows the cycle counter followed by the population size and the age of the oldest
individual, post-mortality):

1: 10 (0)
2: 60 (1)
3: 360 (2)
4: 513 (3)
5: 473 (4)
6: 460 (4)
7: 480 (3)
8: 504 (3)
9: 505 (4)

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 346

The population size is around 500, the oldest individual usually 3 or 4. So far so good. Now
let’s look at the output at the end of the run, in a run in which the beneficial mutation fixes:

1996: 768 (4)
1997: 771 (3)
1998: 781 (4)
1999: 763 (3)
2000: 802 (4)

The population size is now fluctuating around 760 to 800, although the typical age of the oldest
individual is still 3 to 4. What happened to our carrying capacity of 500?

The answer lies in the fitness values calculated by SLiM. Two things affect fitness in this model.
One is density-dependent mortality, as embodied by the fitnessScaling value set in the early()
callback. When the population is above carrying capacity (as it is in every tick from 4 onwards, in
this model, due to the many juveniles), this scaling value will be less than 1.0; given how many
juveniles this model makes, it is probably usually 0.2 or lower, in fact. The other thing affecting
fitness is the beneficial mutation; since it is dominant, it gives any individual possessing it a fitness
effect of 1.5 since its selection coefficient is 0.5. These fitness effects are multiplicative, so once
the beneficial mutation has fixed, every individual will have a fitness value of approximately 0.2 *
1.5, or 0.3. This means, in effect, that fewer individuals will die, and the carrying capacity will
increase. Which is precisely what we see.

This may be unexpected for those who are used to the world of Wright–Fisher models, but it
makes good biological sense. If every individual possesses a mutation that makes them more fit –
more likely to survive – then the population size ought to increase. If there is some reason why
that shouldn’t happen, such as a hard limit on the amount of available food, then you ought to add
that biological detail to your model explicitly. This sort of thing is precisely why the individual-
based nature of nonWF models, with emergent dynamics for things like population size and age
structure, has the potential to be more biologically realistic.

This point becomes even more pointed if you write a model in which new beneficial mutations
can arise spontaneously. In such a nonWF model, absolute fitness would increase a little bit more
with every new beneficial mutation, and the population would evolve toward a “Darwinian
demon” with infinite absolute fitness and infinite population size. Fundamentally, that is just a
more extreme case of the same situation as in this recipe: if your model tells SLiM that absolute
fitness has increased, population size will increase concomitantly. If you want some mechanism to
hold that tendency in check, you need to add that mechanism to your model yourself.

In this recipe, for example, it would certainly be possible to force the model to maintain the
same carrying capacity throughout, but trying to do so might just expose how biologically
unrealistic that constraint really is. If the carrying capacity is the same before and after the
beneficial mutation fixes, that means that the survival probability is the same (assuming we don’t
alter reproductive output). So once the beneficial mutation has fixed, it apparently no longer
confers any benefit to the carrier – even though it did confer a benefit (relative to the non-carrier
individuals) earlier on, before the beneficial mutation had fixed. What has changed? Nothing
about the environment, and the population size has not changed (since we are making the carrying
capacity fixed) – and yet somehow, almost magically, the fitness benefit that used to exist has
evaporated. The only thing that has changed, in fact, is that now other individuals also possess the
mutation, whereas early on in the sweep few or none did. And that suggests one way that we
could make the carrying capacity fixed in this model: add in negative frequency-dependent
selection (see section 10.4.1). Maybe there’s a good biological reason for that: limited resources,
for example, such that a mutation that makes an individual better at obtaining those resources
confers less and less benefit as the mutation gets more and more common. If that’s the biology,

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 347

then great, model that. But if one is tempted to hold the population size fixed simply because one
is used to Wright–Fisher models that hold the population size fixed – not for any biological reason
– then it would probably be best to think twice. The lesson of this recipe, in other words, might
be: Model the biology, not your own modeling assumptions. Let emergent dynamics emerge.

Or if you really want to stay in the world of Wright–Fisher assumptions, then write a WF model;
there’s nothing wrong with that, as long as you understand the assumptions you’re making.

15.5 A metapopulation extinction-colonization model
Our models so far have been of a single subpopulation, but nonWF models have many

advantages for modeling migration that we will explore in this recipe and the next. Here, we will
model a metapopulation undergoing local extinctions and then re-colonizations from other
subpopulations. This would be difficult to implement in a WF model, because population size is
not allowed to go to zero (that signifies removal of the subpopulation from the model), and
because re-colonization by migrants does not happen naturally (it would have to be done as re-
creation of the extinct subpopulation using addSubpopSplit(), and the founders could come only
from a single source subpopulation). In a nonWF model, however, this is quite straightforward.
For simplicity, we will model a non-spatial metapopulation in which every subpopulation is
connected to every other by migration of equal strength:

initialize() {
 initializeSLiMModelType("nonWF");
 defineConstant("K", 50); // carrying capacity per subpop
 defineConstant("N", 10); // number of subpopulations
 defineConstant("m", 0.01); // migration rate
 defineConstant("e", 0.1); // subpopulation extinction rate

 initializeMutationType("m1", 0.5, "f", 0.0);
 m1.convertToSubstitution = T;

 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8);
}
reproduction() {
 subpop.addCrossed(individual, subpop.sampleIndividuals(1));
}
1 early() {
 for (i in 1:N)
 sim.addSubpop(i, (i == 1) ? 10 else 0);
}
early() {
 // random migration
 nIndividuals = sum(sim.subpopulations.individualCount);
 nMigrants = rpois(1, nIndividuals * m);
 migrants = sample(sim.subpopulations.individuals, nMigrants);

 for (migrant in migrants)
 {
 do dest = sample(sim.subpopulations, 1);
 while (dest == migrant.subpopulation);

 dest.takeMigrants(migrant);
 }

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 348

 // density-dependence and random extinctions
 for (subpop in sim.subpopulations)
 {
 if (runif(1) < e)
 sim.killIndividuals(subpop.individuals);
 else
 subpop.fitnessScaling = K / subpop.individualCount;
 }
}
late() {
 if (sum(sim.subpopulations.individualCount) == 0)
 stop("Global extinction in cycle " + sim.cycle + ".");
}
2000 late() {
 sim.outputFixedMutations();
}

We start off by defining constants for the carrying capacity K, the subpopulation count N, the
per-individual migration rate m, and the per-tick probability e of a local extinction event in a given
subpopulation, such as might occur due to a forest fire or a flood. We then set up a neutral
nonWF model with simple offspring generation (one offspring per individual per tick), and create N
subpopulations. The first subpopulation begins with 10 individuals; the rest begin empty, awaiting
migrants (which is legal in nonWF models; subpopulations can be empty). At the end of the
model, we have a late() event that halts the model with a message if all subpopulations have
gone extinct; if we make it to tick 2000 we output fixed mutations and stop.

The interesting code is in the middle, in the large early() event. This first implements random
migration by drawing the number of migrants from a Poisson distribution and then sampling
migrants at random from the full population; this gives each individual the same probability m of
migrating, and is more efficient than doing a random draw for each individual. It then loops
through the chosen migrants, finds their destination subpopulation (ensuring that it is not the
subpopulation the migrant already occupies), and finally calls takeMigrants() to move the
individual to its new home. The takeMigrants() call removes the individual from its old
subpopulation and adds it immediately to the target subpopulation; it is the way that migration is
typically implemented in nonWF models. Note that the design of this code avoids choosing and
moving a migrant, and then accidentally choosing that same individual as a migrant again and
moving it again; all migrants are selected, and then all migrants are moved. This design is
generally a good idea, to avoid accidentally skewing the migration rates for subpopulations away
from their intended rates. (The migrant property of Individual could also be used to prevent this,
together with the ability of sampleIndividuals() to select individuals that have not already
migrated.)

The second half of the early() event implements both density-dependence and random local
extinction events. For each subpopulation it draws from a random uniform distribution, and if the
draw is less than the probability of local extinction e, it calls sim.killIndividuals() to kill all
individuals in the subpopulation:

sim.killIndividuals(subpop.individuals);

We haven’t seen the killIndividuals() method before, but it is very straightforward: the
individuals are simply removed from their subpopulation(s) immediately. This method can only be
called in nonWF models, since WF models have a fixed subpopulation size.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 349

In an older version of this recipe, this line was instead:

subpop.fitnessScaling = 0.0;

This sets the subpopulation’s fitnessScaling property to zero, effectively reducing the fitness of
all individuals in the subpopulation to zero and thus killing them all. The two approaches are
almost identical; the only difference, really, is that killIndividuals() kills the individuals
immediately, whereas the fitnessScaling approach just sets them up to be killed when the
viability/survival tick cycle stage rolls around. In particular, if the script were to access
subpop.individuals against after the killIndividuals() call it would be empty, whereas after
setting fitnessScaling, subpop.individuals would still contain all the same individuals, since
they have not yet died in that version of the script. For our purposes here, the two approaches
work equally well; the recipe has switched to use killIndividuals() just to provide an example
of its use.

So that takes cares of local extinction events. The rest of the time – when the runif() draw is
not below the local extinction threshold – fitnessScaling is set based on subpopulation density
as usual, producing growth up to the carrying capacity K for each subpopulation.

When run, this model produces fairly realistic extinction-colonization dynamics; after a
subpopulation is hit by an extinction event, it will eventually be recolonized and then undergo
rapid growth until reaching carrying capacity again. Here’s a snapshot from SLiMgui mid-run:

Two subpopulations are presently empty, two have just been recolonized by a single migrant,
two others are at intermediate stages of growth, and four are roughly at carrying capacity (which is,
as usual in nonWF models, not a hard limit). Note that all individuals are displayed here in
yellow, because SLiMgui normalizes away subpopulation-level fitnessScaling constants in order
to display individual fitness prior to density-dependent scaling, since that is generally what one is
interested in seeing; it does the same thing, in a sense, in WF models too. In fact, though, the
populations below carrying capacity have a fitness greater than or equal to 1.0 that is driving their
growth (by suppressing density-dependent mortality) , and the populations at carrying capacity
have a fitness less than 1.0 that compensates for their births to keep them at equilibrium.

If the migration rate is too low, or the extinction rate is too high, the whole population will often
go extinct; but with less apocalyptic parameter values recolonization will keep up with extinction
and the population will persist (for a while, anyway; the design of the extinction events in this
model means that sudden global extinction of all subpopulations will happen with probability e^N,
so eventually the model will always go extinct as long as e > 0).

A nice feature in SLiMgui that is worth pointing out is that it keeps metrics regarding the
behavior of your model, and can display those metrics for you. You might recall the Population
Visualization graph that SLiMgui can display to show population sizes, fitnesses, and migration
patterns (see, e.g., sections 5.1.3 and 5.2.1). In nonWF models the migration rates between

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 350

subpopulations are not set ahead of time, but are instead an emergent property of the model, as
we have seen in this recipe. SLiMgui will monitor the actual migration generated in the running
nonWF model and display it in the Population Visualization graph. For example, here’s the pattern
of migration in tick 3 of a run of this recipe:

This shows that p5 has just received a migrant from p1; this is the initial colonization of p5, in
fact. The other subpopulations are black because they are empty at this point. Later in the run, it
might look like this instead:

Lots is going on here; p8 sent a relatively large proportion of its population to p4, by chance
(thus the thicker arrow) – maybe two or three or four migrants. Migrants were sent from p2 to both
p6 and p9, and then, immediately after, p2 got hit by an extinction event. And so forth. This
facility can be quite useful for debugging migration code, or for seeing how the pattern of
migration changes over time when it depends upon other model state (as in the next recipe).

In fact, SLiMgui monitors and displays other emergent metrics in nonWF models, too. In the
subpopulation table, for example, where things like the cloning rate, selfing rate, and sex ratio are
displayed for WF models, the actual, observed metrics for those properties will be displayed by
SLiMgui for nonWF models. This particular recipe is not a good showcase for that feature,
however, since it is an asexual model involving only biparental mating.

15.6 Habitat choice
In the previous section migration in nonWF models using the takeMigrants() method was

introduced. Here we will further explore migration in nonWF models. In WF models, as you may
recall, migration occurs during offspring generation: parents from one subpopulation mate, but
their offspring gets added to a different subpopulation if it migrates. This type of juvenile migration
is the only possibility in WF models; but nonWF models are not restricted in that way, and here we
will construct a nonWF model of migration that can occur at any age. Each tick, individuals will
choose which environment they will live in, a phenomenon commonly called “habitat choice”.
All else equal, they will prefer the environment they are already in; but if the other environment is

p1
p2

p3

p4

p5
p6

p7

p8

p9

p10

p1
p2

p3

p4

p5
p6

p7

p8

p9

p10

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 351

better for them, then with a non-zero probability they will decide to move. This model will also
include variation in the individual propensity to migrate, and emergent variation in the total
number of migrants in each tick – both difficult to capture in WF models.

The basic design of this model is patterned after the recipe in section 10.2: we have two
subpopulations, p1 and p2, and a mutation type, m2, that represents relatively rare mutations that
are beneficial in p1 but deleterious in p2. For balance, let’s also have a mutation type m3 for
mutations that are deleterious in p1 but beneficial in p2. Finally, let’s throw a spanner into the
works by making offspring initially go to a random subpopulation, not always to the subpopulation
of their parents (perhaps representing some sort of shared spawning environment from which
juveniles initially disperse randomly).

Here is the model except for the habitat choice code:

initialize() {
 initializeSLiMModelType("nonWF");
 defineConstant("K", 500);

 initializeMutationType("m1", 0.5, "f", 0.0);
 m1.convertToSubstitution = T;
 initializeMutationType("m2", 0.5, "e", 0.1); // deleterious in p2
 m2.color = "red";
 initializeMutationType("m3", 0.5, "e", 0.1); // deleterious in p1
 m3.color = "green";

 initializeGenomicElementType("g1", c(m1,m2,m3), c(0.98,0.01,0.01));
 initializeGenomicElement(g1, 0, 99999);
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8);
}
reproduction() {
 dest = sample(sim.subpopulations, 1);
 dest.addCrossed(individual, subpop.sampleIndividuals(1));
}
1 early() {
 sim.addSubpop("p1", 10);
 sim.addSubpop("p2", 10);
}
early() {
 p1.fitnessScaling = K / p1.individualCount;
 p2.fitnessScaling = K / p2.individualCount;
}
mutationEffect(m2, p2) { return 1/effect; }
mutationEffect(m3, p1) { return 1/effect; }

1000 late() {
 for (id in 1:2)
 {
 subpop = sim.subpopulations[sim.subpopulations.id == id];
 s = subpop.individualCount;
 inds = subpop.individuals;
 c2 = sum(inds.countOfMutationsOfType(m2));
 c3 = sum(inds.countOfMutationsOfType(m3));
 catn("subpop " + id + " (" + s + "): " + c2 + " m2, " + c3 + " m3");
 }
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 352

The structure of this model is quite predictable. The initialize() callback sets up the local-
adaptation m2 and m3 mutation types, and the two mutationEffect() callbacks render mutations of
those types deleterious in one or the other subpopulation. The reproduction() callback generates
each new offspring in a randomly chosen subpopulation, representing random juvenile dispersal
from a spawning environment as mentioned above. We also have the usual nonWF density-
dependent fitness scaling, and we have an output event that prints information about the two
subpopulations (as we will discuss below).

The interesting part, then, is the large early() event for habitat choice, which should be
inserted just above the density-dependence early() event above (so that density-dependence is
based upon post-migration subpopulation sizes, not the pre-migration sizes):

early() {
 // habitat choice
 inds = sim.subpopulations.individuals;
 inds_m2 = inds.countOfMutationsOfType(m2);
 inds_m3 = inds.countOfMutationsOfType(m3);
 pref_p1 = 0.5 + (inds_m2 - inds_m3) * 0.1;
 pref_p1 = pmax(pmin(pref_p1, 1.0), 0.0);
 inertia = ifelse(inds.subpopulation.id == 1, 1.0, 0.0);
 pref_p1 = pref_p1 * 0.75 + inertia * 0.25;
 choice = ifelse(runif(inds.size()) < pref_p1, 1, 2);
 moving = inds[choice != inds.subpopulation.id];
 from_p1 = moving[moving.subpopulation == p1];
 from_p2 = moving[moving.subpopulation == p2];
 p2.takeMigrants(from_p1);
 p1.takeMigrants(from_p2);
}

The logic of this event goes through several steps, but is not complicated. First it gets a vector of
all individuals, and derives vectors of the number of m2 and m3 mutations possessed by each
individual; each of these is a vector of counts corresponding to the original vector of individuals.
It then computes a vector of habitat preferences for each individual: starting from a neutral
preference of 0.5, the more m2 mutations an individual has, and the fewer m3 mutations it has, the
more that individual prefers p1 over p2. Each m2 or m3 mutation shifts its preference by only 10%,
however, so these preferences are not initially very strong; and this preference is clamped to the
range [0.0, 1.0] so that even once many m2 and m3 mutations exist this preference is still bounded.
Next the script computes an “inertial” habitat preference for p1 over p2, expressing a simple desire
not to move; for individuals presently in p1 this is 1.0, whereas for those in p2 it is 0.0. The final
habitat preference is computed as a weighted average of these two considerations; in this recipe
the genetically-based preference is given a weight of 0.75 and the inertial preference is given a
weight of 0.25, making individuals fairly strongly inclined to move, but this balance is a free
parameter in the model. Next, we actually decide which subpopulation each individual chooses,
by comparing a random uniform draw to the individual’s weighted preference. (Note that these
calculations continue to be vectorized; this event handles all migration with a single sequence of
calculations.) The moving vector is the subset of individuals that chose a different subpopulation
than they currently occupy; these individuals will migrate, while the rest stay put. The script then
finds which migrants are currently in p1 (moving to p2) and which are in p2 (moving to p1), and
then, finally, it makes takeMigrants() calls that actually move those individuals. This method
simply removes the given individuals from their current subpopulation and inserts them into the
target subpopulation. One could implement habitat choice in many different ways, embodying
different decision-making processes for the individuals involved, different degrees of knowledge

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 353

about the available habitat options, different approaches to the stochasticity of the choice, and so
forth; this is just one simple algorithm for demonstration purposes.

Without any migration (if the habitat-choice early() event is commented out, in other words),
this model will “flip” to favor one subpopulation based upon the m2 and m3 mutations that happen
to do well early on; the successful subpopulation will grow very large (as its carrying capacity
increases, because so many individuals carry mutations that are beneficial in that environment; see
section 15.4), whereas the unsuccessful subpopulation will shrink toward zero (swamped by vast
numbers of offspring from the other subpopulation that are massively maladapted and immediately
die). Output from that version of the model typically looks like this:

subpop 1 (191): 0 m2, 1180 m3
subpop 2 (1314): 0 m2, 8072 m3

The model has “flipped” toward subpop p2, which is now 1314 individuals to p1’s 191
individuals. There are quite a large number of copies of m3-type alleles in play, whereas there are
no m2-type alleles. Subpop p1 will never be able to dig itself out of this hole, since it gets
swamped with new offspring from p2 every tick that carry m3 alleles and not m2 alleles, and any m2
alleles it manages to scrape together get diluted into p2 and selected out. If the model runs longer,
p1 will effectively go extinct except for whatever cohort of confused migrants arrives to repopulate
it in each tick.

But with the early() event that implements habitat choice, the story is very different. Now, if
the probability of correct habitat choice is sufficiently high, the subpopulations can diverge; even
though they still sabotage each other with maladapted offspring, those offspring tend to migrate
over to the subpopulation where they are more fit. One subpopulation often grows significantly
larger than the other, but the model no longer “flips”; the smaller subpopulation is much more able
to persist. Output from the model with habitat choice:

subpop 1 (620): 2838 m2, 173 m3
subpop 2 (1065): 149 m2, 7177 m3

The subpopulations are now much closer in size, and show clear divergence in their m2 and m3
profiles. In SLiMgui the different haplotypes of the two subpopulations are immediately visible,
since the m2 and m3 mutations have been given different colors. Subpopulation p2 is larger here,
since there are more m3 alleles segregating, but it is no longer swamping p1 or diluting away the m2
alleles to such an extent that p1 can’t also thrive, and if new m2 mutations arise they will often be
able to establish themselves in p1 so the current imbalance may not even persist. Divergence here
is much more successful, and in fact it is effective enough that neutral sites will diverge as well,
indicating that this mechanism is sufficient to generate substantial reproductive isolation. The
degree of isolation will depend upon parameters such as the strength of habitat choice versus the
“inertial” preference for the current habitat, and the strength of the divergent selection on the m2
and m3 alleles, of course.

This recipe goes beyond the capabilities of WF models in several important ways. One way is
that individuals of all ages migrate in this model, not just newly created juveniles as in WF models.
Indeed, in this model the same individual may jump back and forth between p1 and p2 several
times, if it has no strong preference. A second way is that the migratory behavior here is based
upon individual genetic state. In principle this is possible to implement in WF models, using a
modifyChild() callback that accepts or rejects proposed migrant offspring based upon their
genetics, but in practice it would be difficult and problematic. A third way is that the amount of
migration in this model is itself condition-dependent; if there are many maladapted individuals,
there will be many migrants, if fewer, fewer migrants. This would be difficult to do in a WF model
since SLiM then fulfills a pre-set migration rate; that pre-set rate would have to be carefully

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 354

predicted and altered in every tick in order to try to foretell the desired result from offspring
generation, which would be very clumsy if it worked at all. Migration is an individual choice, so it
is much simpler and more natural to model it as such, as nonWF models do.

Many interesting extensions to this model could be made. For example, one could impose a
fitness cost upon migration, and then allow the propensity for migration to itself evolve by making
the weighting between habitat choice and “inertia” depend upon a quantitative trait. Individuals
that chose to migrate too often would suffer a high cost, but those that did not migrate at all, even
when strongly maladapted, would also be penalized, and so some intermediate, optimal migration
tendency would perhaps tend to evolve. Such a model would rely heavily upon the advantages of
the individual-based migration of nonWF models; it would be difficult to do as a WF model.

15.7 Evolutionary rescue after environmental change
The evolutionary response of a population to environmental change, and the probability of

extinction if that response is insufficient, is the subject of an important class of models called
“evolutionary rescue” models – particularly relevant in this era of anthropogenic climate change.
Evolutionary rescue can be based upon standing genetic variation, new mutations that provide
new adaptive potential, or genetic variation brought in by migrants. Here we will look at a QTL-
based model of evolutionary rescue that may (or may not) occur as a result of both standing
genetic variation and new mutations. This model is based heavily upon other QTL models in this
manual (see chapter 13), adapted here to illustrate that QTL-based approaches are entirely
compatible with nonWF models.

Let’s look at this model piece by piece, beginning with initialize():

initialize() {
 initializeSLiMModelType("nonWF");
 defineConstant("K", 500);
 defineConstant("opt1", 0.0);
 defineConstant("opt2", 10.0);
 defineConstant("Tdelta", 10000);

 initializeMutationType("m1", 0.5, "n", 0.0, 1.0); // QTL
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8);
}

For simplicity and speed, we define only a QTL mutation type, m1; this model has no neutral
mutations in it (but of course they would be trivial to add). Each QTL is drawn from a normal
distribution centered on 0.0 with a standard deviation of 1.0 (which are important parameters for
this model, since the exact nature of the standing genetic variation and mutational variance will be
important). Besides this, the initialization is quite standard. We set up defined constants for the
carrying capacity (K), for the phenotypic optimum before and after environmental change (opt1
and opt2), and for the time when the environmental change will occur (Tdelta).

Next we set up our reproduction and our initial population:

reproduction() {
 subpop.addCrossed(individual, subpop.sampleIndividuals(1));
}
1 early() {
 sim.addSubpop("p1", 500);
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 355

This is boilerplate, except that here we start the population already at its carrying capacity so
that if we configure the environmental change to occur immediately at the beginning of the model
(as we will try below), the population is not at a disadvantage due to not yet having grown to
capacity.

We need our QTL machinery, which is quite simple in this model:

early() {
 // QTL-based fitness
 inds = sim.subpopulations.individuals;
 phenotypes = inds.sumOfMutationsOfType(m1);
 optimum = (sim.cycle < Tdelta) ? opt1 else opt2;
 deviations = optimum - phenotypes;
 fitnessFunctionMax = dnorm(0.0, 0.0, 5.0);
 adaptation = dnorm(deviations, 0.0, 5.0) / fitnessFunctionMax;
 inds.fitnessScaling = 0.1 + adaptation * 0.9;
 inds.tagF = phenotypes; // just for output below

 // density-dependence with a maximum benefit at low density
 p1.fitnessScaling = min(K / p1.individualCount, 1.5);
}
mutationEffect(m1) { return 1.0; }

The mutationEffect(m1) callback makes the direct fitness effect of m1 mutations neutral, as
usual in such QTL models; the only effect of QTL mutations on fitness is indirect, through their
effect on individual phenotypic values (see chapter 13 for an introduction to the design of QTL
models).

The early() event calculates individual phenotypes as the sum of the effects of all QTLs
possessed by the individual. It then decides which phenotypic optimum is in effect, calculates the
deviation of each individual from that optimum, and calculates the degree of adaptation of each
individual from that using dnorm() (normalizing the adaptation values to the range (0,1] with
fitnessFunctionMax). Finally, fitnessScaling values for individuals are set based upon their
adaptation; a perfectly adapted individual will have an adaptation value of 1.0 and thus a
fitnessScaling value of 1.0, whereas an infinitely maladapted individual will have an adaptation
value of 0.0 and thus a fitnessScaling value of 0.1, the “floor” in this model (a crucial parameter
that will influence the probability of evolutionary rescue).

The early() event also, at the end, implements density-dependent population regulation. This
is done in the usual way, except that a maximum of 1.5 is imposed with min(). In principle, this
sort of correction ought to have been imposed on all our other nonWF models, but in models that
do not include deleterious mutations, and which are not expected to spend time at low density, it
is unimportant. The rationale for the correction is that being at low population density does
convey some benefit (assuming the absence of Allee effects, as we have been doing), allowing
individuals to survive and reproduce at their full capacity even when they carry some minor
deleterious mutations that would negatively impact them if they were in a population at full
carrying capacity – but this benefit is surely limited! Typically, a population will not thrive if it
carries many large-effect deleterious mutations, even if it is released from all density-dependent
pressures. The maximum of 1.5 here embodies that intuitive fact, by stating that the fitness benefit
of low density can never be more than a multiplicative fitness effect of 1.5. (This is another
important model parameter, of course.)

Finally, we have our output and termination events:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 356

late() {
 if (p1.individualCount == 0)
 {
 // stop at extinction
 catn("Extinction in cycle " + sim.cycle + ".");
 sim.simulationFinished();
 }
 else
 {
 // output the phenotypic mean and pop size
 phenotypes = p1.individuals.tagF;

 cat(sim.cycle + ": " + p1.individualCount + " individuals");
 cat(", phenotype mean " + mean(phenotypes));
 if (size(phenotypes) > 1)
 cat(" (sd " + sd(phenotypes) + ")");
 catn();
 }
}
20000 late() { sim.simulationFinished(); }

The simulation checks for extinction in every tick, and stops with a termination message.
Otherwise, it prints a summary with the current population size, and the mean and standard
deviation of the distribution of phenotypes. If extinction is avoided, the model stops after tick
20000.

Running this recipe as configured, we begin with no genetic diversity at all:

1: 500 individuals, phenotype mean 0 (sd 0)
2: 529 individuals, phenotype mean 0.000628046 (sd 0.107673)
3: 499 individuals, phenotype mean -0.00650893 (sd 0.152125)
4: 470 individuals, phenotype mean -0.00802766 (sd 0.188649)
5: 497 individuals, phenotype mean 0.00997383 (sd 0.225336)
...

By tick 10000, when the environment changes, we have built up some standing genetic variation
– although really not much more than we had just a few ticks in:

...
9995: 493 individuals, phenotype mean -0.101779 (sd 0.616717)
9996: 498 individuals, phenotype mean -0.139806 (sd 0.592579)
9997: 518 individuals, phenotype mean -0.146021 (sd 0.55228)
9998: 493 individuals, phenotype mean -0.127487 (sd 0.537018)
9999: 500 individuals, phenotype mean -0.139612 (sd 0.531529)

Then we hit tick 10000, the optimum suddenly changes to 10.0, and things get ugly fast:

10000: 123 individuals, phenotype mean -0.095242 (sd 0.560048)
10001: 77 individuals, phenotype mean 0.0100077 (sd 0.628869)
10002: 54 individuals, phenotype mean -0.191957 (sd 0.624277)
10003: 35 individuals, phenotype mean -0.0215701 (sd 0.55838)
10004: 18 individuals, phenotype mean 0.211882 (sd 0.862124)
10005: 7 individuals, phenotype mean 0.196655 (sd 1.07714)
10006: 5 individuals, phenotype mean 0.200521 (sd 0.144637)
10007: 3 individuals, phenotype mean 0.123028 (sd 0.0531924)
10008: 2 individuals, phenotype mean 0.153739 (sd 0)
10009: 1 individuals, phenotype mean 0.153739
Extinction in cycle 10010.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 357

The population evolved toward the new optimum, but not quickly enough to overcome its crash
in population size, and it went extinct only eleven ticks after the environment shifted. However,
this is actually not the typical outcome for the model. Here’s another run just before the
environmental change:

...
9995: 494 individuals, phenotype mean 0.152236 (sd 0.576086)
9996: 511 individuals, phenotype mean 0.144287 (sd 0.590623)
9997: 503 individuals, phenotype mean 0.151616 (sd 0.616162)
9998: 489 individuals, phenotype mean 0.115655 (sd 0.617752)
9999: 508 individuals, phenotype mean 0.11127 (sd 0.611983)

And here’s what happened after:

10000: 112 individuals, phenotype mean 0.373886 (sd 0.714775)
10001: 84 individuals, phenotype mean 0.394201 (sd 0.768464)
10002: 58 individuals, phenotype mean 0.447692 (sd 0.855927)
10003: 48 individuals, phenotype mean 0.689259 (sd 0.925998)
10004: 31 individuals, phenotype mean 0.877411 (sd 1.12496)
10005: 29 individuals, phenotype mean 1.12907 (sd 1.10892)
10006: 25 individuals, phenotype mean 1.50111 (sd 1.29306)
10007: 20 individuals, phenotype mean 1.45553 (sd 1.30944)
10008: 17 individuals, phenotype mean 1.88997 (sd 1.42636)
10009: 15 individuals, phenotype mean 2.67739 (sd 1.60781)
10010: 16 individuals, phenotype mean 2.92828 (sd 1.58097)
10011: 26 individuals, phenotype mean 3.32725 (sd 1.53169)
10012: 35 individuals, phenotype mean 3.87526 (sd 1.24333)
10013: 56 individuals, phenotype mean 4.13832 (sd 1.10771)
10014: 98 individuals, phenotype mean 4.27727 (sd 1.12148)
10015: 158 individuals, phenotype mean 4.54129 (sd 0.940975)
10016: 285 individuals, phenotype mean 4.66029 (sd 0.881386)
10017: 321 individuals, phenotype mean 4.84315 (sd 0.807692)
10018: 314 individuals, phenotype mean 4.98733 (sd 0.726859)
10019: 355 individuals, phenotype mean 5.08917 (sd 0.712417)
10020: 337 individuals, phenotype mean 5.18797 (sd 0.735515)
...

The population size dips down as low as 15 individuals, and the phenotypic optimum still
seems quite distant, but it manages to stage a full recovery; it’s back up to carrying capacity within
about a hundred ticks.

In twenty runs of the model, extinction occurred nine times and evolutionary rescue occurred
eleven times. We can test the importance of standing genetic variation for rescue by setting Tdelta
to 0, making the optimum be 10.0 from the start of the model with no chance for standing genetic
variation to build up; in this variant of the model, extinction occurred sixteen out of twenty times,
rescue only four times. So: probably important. Which might seem a bit surprising, since the
variance in phenotype is really not large in tick 9999; but there are, nevertheless, a lot of useful
QTLs that can be brought together by recombination.

We can also test the importance of new mutations to evolutionary rescue, by setting the
mutation rate to 0.0 when the environment changes; the population will then have nothing but
standing variation at its disposal. A proper test of this would require many runs of the model, to
see how often it occurs and so forth, but I can state that evolutionary rescue does sometimes occur
from the standing variation alone. Here’s the population just before the change, in one run of that
variant of the model:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 358

...
9995: 462 individuals, phenotype mean -0.020969 (sd 0.842111)
9996: 489 individuals, phenotype mean -0.0413428 (sd 0.843401)
9997: 488 individuals, phenotype mean 0.0205512 (sd 0.805816)
9998: 496 individuals, phenotype mean -0.0103366 (sd 0.744229)
9999: 488 individuals, phenotype mean -0.0287371 (sd 0.829185)

And here’s the recovery, in all its glory:

10000: 110 individuals, phenotype mean 0.0798129 (sd 0.941083)
10001: 86 individuals, phenotype mean 0.199899 (sd 0.936995)
10002: 70 individuals, phenotype mean 0.369471 (sd 0.986702)
10003: 52 individuals, phenotype mean 0.643418 (sd 1.1836)
10004: 46 individuals, phenotype mean 0.780035 (sd 1.25709)
10005: 42 individuals, phenotype mean 1.23978 (sd 1.55453)
10006: 43 individuals, phenotype mean 1.86605 (sd 1.7264)
10007: 39 individuals, phenotype mean 2.62644 (sd 1.805)
10008: 48 individuals, phenotype mean 3.24882 (sd 1.82018)
10009: 67 individuals, phenotype mean 3.83253 (sd 1.69954)
10010: 101 individuals, phenotype mean 4.43066 (sd 1.53875)
10011: 165 individuals, phenotype mean 4.76209 (sd 1.42616)
10012: 289 individuals, phenotype mean 5.14574 (sd 1.27371)
10013: 325 individuals, phenotype mean 5.48173 (sd 1.19875)
10014: 360 individuals, phenotype mean 5.79835 (sd 1.02552)
10015: 369 individuals, phenotype mean 5.93227 (sd 0.973104)
10016: 386 individuals, phenotype mean 5.96707 (sd 0.959739)
10017: 372 individuals, phenotype mean 6.00515 (sd 0.953603)
10018: 371 individuals, phenotype mean 6.2132 (sd 0.813674)
10019: 364 individuals, phenotype mean 6.31304 (sd 0.698918)
10020: 380 individuals, phenotype mean 6.37598 (sd 0.604686)
10021: 427 individuals, phenotype mean 6.45539 (sd 0.471641)
10022: 370 individuals, phenotype mean 6.51224 (sd 0.363968)
10023: 412 individuals, phenotype mean 6.53184 (sd 0.305041)
10024: 415 individuals, phenotype mean 6.54332 (sd 0.277311)
10025: 404 individuals, phenotype mean 6.53433 (sd 0.299239)
10026: 380 individuals, phenotype mean 6.55845 (sd 0.234658)
10027: 386 individuals, phenotype mean 6.55116 (sd 0.256157)
10028: 421 individuals, phenotype mean 6.53684 (sd 0.293376)
10029: 390 individuals, phenotype mean 6.53791 (sd 0.29318)
10030: 401 individuals, phenotype mean 6.53193 (sd 0.307162)
10031: 403 individuals, phenotype mean 6.55492 (sd 0.248401)
10032: 418 individuals, phenotype mean 6.57826 (sd 0.165723)
10033: 428 individuals, phenotype mean 6.57869 (sd 0.163795)
10034: 399 individuals, phenotype mean 6.58121 (sd 0.151873)
10035: 420 individuals, phenotype mean 6.5856 (sd 0.128374)
10036: 402 individuals, phenotype mean 6.58132 (sd 0.15131)
10037: 422 individuals, phenotype mean 6.58565 (sd 0.128071)
10038: 419 individuals, phenotype mean 6.59647 (sd 0)

This is somewhat remarkable, since the new optimum is more than twelve standard deviations
away from the population’s phenotypic mean at the moment of the environmental change. The
population fixes for a single QTL haplotype by the end (thus, a standard deviation of 0), and that
haplotype provides a phenotype of 6.59647, which is almost exactly eight standard deviations
away from where it started – quite impressive. So rescue appears to be possible from standing
variation alone (sometimes), and from new mutations alone (sometimes), and most often from both
together (but still, only sometimes).

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 359

These outcomes will depend – perhaps quite sensitively – on the various parameters of the
model, such as the carrying capacity, the distance from the old optimum to the new one, the
mutational distribution and rate, the “floor” of the fitness function, and the maximum fitness
benefit from low population density. There are other implicit parameters here too, such as the
level of individual fecundity and the variance in that fecundity (here, zero). This is also a
hermaphroditic model, and hermaphroditic selfing is not prevented; switching to a sexual model
would make evolutionary rescue that much more difficult, since a non-zero number of both males
and females would need to be present in every tick. In short, gaining a proper understanding of
the dynamics of even this rather simple model would require some real work, which is beyond the
scope of this manual.

Nevertheless, the population dynamics of the model seem fairly realistic, and adding in even
more realism – sex, Allee effects, gradual environmental change instead of a sudden shift, etc. –
would not be difficult. Simulating this in a WF model would be more difficult to do with this level
of realism, since the population size would have to be set explicitly in every tick (rather than being
emergent from the birth/death dynamics), and would be fulfilled deterministically by SLiM rather
than exhibiting the natural stochastic variation around the carrying capacity that this nonWF
model exhibits.

Another interesting direction to take this model would be to use it to investigate the advantages
of sexual versus clonal reproduction. It has long been theorized that one of the disadvantages of
clonal reproduction is the difficulty of responding to environmental changes without the ability to
recombine parental genomes to bring adaptive alleles together onto the same chromosome. One
could experiment, in this model, with the effect of sexual versus clonal reproduction on
evolutionary rescue – and even the evolution of the reproductive mode in response to
environmental change. One could add a second QTL-based trait (see section 13.5) that governed
the probability that an individual would clone or reproduce sexually, and see whether
environmental change – perhaps cyclical or unpredictable – would provide enough of an
advantage to sexual reproduction to prevent clonal reproduction from taking over the population.
This would be straightforward to simulate in a nonWF model, since each individual generates its
own offspring and can choose its own reproductive mode, based upon genetics or anything else. It
would be considerably harder to implement in a WF model since the reproductive mode is
controlled only by the subpopulation-wide cloning rate and cannot easily be influenced by
individual genetics or other state.

15.8 Pollen flow
Plants reproduce sexually when a pollen grain from a flower reaches another (or perhaps the

same) flower and fertilizes an ovule. The pollen might be transmitted by a pollinator, or by wind or
water or other vectors. An important aspect of plant reproductive biology, then, is that pollen from
a flower in one subpopulation might end up fertilizing a flower in a different subpopulation. In
animals, gene flow between subpopulations generally results from the migration of individuals,
such as we modeled in sections 15.5 and 15.6 (and in many WF recipes as well). In plants, in
contrast, gene flow between subpopulations often results from the migration of gametes, especially
in the angiosperms.

Pollen flow between subpopulations is a very important aspect of plant reproduction, then, but
it is quite difficult to model with a WF model in SLiM since offspring in WF models always come
from the mating of two individuals in the same subpopulation. Another advantage of nonWF
models, then, is that they can easily simulate pollen flow, because sexual reproduction can involve
any two individuals in the model.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 360

This will be a very quick model since the concept is very simple and we have no complicated
analysis to do with the results:

initialize() {
 initializeSLiMModelType("nonWF");
 defineConstant("K", 200);

 initializeMutationType("m1", 0.5, "f", 0.0);
 m1.convertToSubstitution = T;

 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8);
}
reproduction() {
 // determine how many ovules were fertilized, out of the total
 fertilizedOvules = rbinom(1, 30, 0.5);

 // determine the pollen source for each fertilized ovule
 other = (subpop == p1) ? p2 else p1;
 pollenSources = ifelse(runif(fertilizedOvules) < 0.99, subpop, other);

 // generate seeds from each fertilized ovule
 // the ovule belongs to individual, the pollen comes from source
 for (source in pollenSources)
 subpop.addCrossed(individual, source.sampleIndividuals(1));
}
1 early() {
 sim.addSubpop("p1", 10);
 sim.addSubpop("p2", 10);
}
early() {
 for (subpop in sim.subpopulations)
 subpop.fitnessScaling = K / subpop.individualCount;
}
10000 late() {
 sim.outputFixedMutations();
}

Most of this model is boilerplate that should be familiar by now. The interesting part is the
reproduction() callback. Here we model hermaphroditic (or perhaps monoecious) flowering
plants, so we do not model separate sexes, but we assume that selfing is no more common than
would be expected by chance (when an individual happens to choose itself as a pollen source in
this reproduction() code, which we do not prevent here). Each flower has 30 ovules, each with a
probability of 0.5 of being fertilized, so the total number of fertilized ovules is drawn from a
binomial distribution. We then determine the subpopulation that supplied the pollen for each of
those ovules (assuming independence), with a 99% chance that the pollen came from the local
subpopulation and a 1% chance that it was carried from the other subpopulation. Finally, we loop
to generate seeds for the fertilized ovules, using the proper pollen sources.

This model doesn’t show any particularly exciting behavior; it’s just a two-subpopulation neutral
model with a little gene flow. But it models pollen flow correctly, and thus provides a good
foundation for building a more complex model of plant evolution.

Those interested in modeling plants might also wish to look at the recipe in section 11.3, which
shows how to model gametophytic self-incompatibility. That recipe enforces self-incompatibility

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 361

with a modifyChild() callback, which ought to be compatible with this nonWF model. Note,
however, that in nonWF models suppression of a proposed child by a modifyChild() callback is
the end of that proposed child; in WF models, SLiM loops until the set subpopulation size is filled,
but in nonWF models SLiM simply attempts to generate each requested offspring, and those that
are rejected by a modifyChild() callback are abandoned. That behavior might be realistic and
desirable (if pollen limitation is severe, or if stigmas are getting clogged by a large amount of
incompatible pollen that prevents fertilization); if not, it is easy enough to make the
reproduction() callback here loop until offspring generation succeeds. (The addCrossed()
method will return NULL if the requested offspring is not generated.) Alternatively, one could
implement the self-incompatibility system directly in the reproduction() callback, rather than in a
modifyChild() callback, ensuring that the flower chosen as a pollen source for each fertilized
ovule is compatible. The latter approach is perhaps simpler, and should be faster.

15.9 Litter size and parental investment
Litter size (clutch size, brood size) is often involved in evolutionary trade-offs. All else being

equal, a larger litter is obviously better; the more offspring, the higher will be the fraction of one’s
own genes in the next generation. But all else is never equal, because each offspring requires an
investment of some sort – at least the energy required to make the egg and sperm, and often quite
a bit more beyond that. Offspring that receive insufficient parental investment will suffer lower
fitness, and at some point the disadvantages of that, in higher offspring mortality and/or lower
offspring mating success, will outweigh the advantages of having the extra offspring. In some
species, particularly those in harsh and extreme environments, scraping together enough resources
to produce even a single offspring is difficult, and the optimum may lie around one offspring per
breeding season or even less; other species pursue a strategy of extremely low parental investment
and produce as many offspring as they can. These different life history strategies can sometimes be
simplified (or oversimplified) into “K strategists” and “r strategists”; more broadly, life-history
tradeoffs are clearly of central importance in evolutionary biology.

In this recipe we will simulate a species with a quantitative trait that governs its litter size.
Section 15.3’s recipe included litter size variation, but here it will be governed by genetics, not just
chance. We will also account for parental investment and the resulting impact of larger litter size
on offspring fitness due to limited parental resources. The initialize() callback:

initialize() {
 initializeSLiMModelType("nonWF");
 initializeSex("A");
 defineConstant("K", 500);

 initializeMutationType("m1", 0.5, "f", 0.0);
 m1.convertToSubstitution = T;
 initializeMutationType("m2", 0.5, "n", 0.0, 0.3); // QTL

 initializeGenomicElementType("g1", c(m1,m2), c(1.0,0.1));
 initializeGenomicElement(g1, 0, 99999);
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8);
}

This is a sexual nonWF model, with both neutral mutations (m1) and QTL mutations (m2). This
initialization is probably rote by now (see chapter 13 for an introduction to QTL-based models).

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 362

Moving on to the reproduction() callback:

reproduction(NULL, "F") {
 mate = subpop.sampleIndividuals(1, sex="M");

 if (mate.size())
 {
 qtlValue = individual.tagF;
 expectedLitterSize = max(0.0, qtlValue + 3);
 litterSize = rpois(1, expectedLitterSize);
 penalty = 3.0 / litterSize;

 for (i in seqLen(litterSize))
 {
 offspring = subpop.addCrossed(individual, mate);
 offspring.setValue("penalty", rgamma(1, penalty, 20));
 }
 }
}

This callback applies only to females (the "F" in its declaration). The focal female chooses a
male mate using sampleIndividuals(), and assuming that succeeds (i.e., there is at least one male
in the population), the female will generate a litter with that mate. The script gets the female’s
litter-size phenotype from the tagF property where it will be stored (as we will see below) and
derives an expected litter size from its value such that the new individuals at the beginning of the
simulation, with no QTL mutations, have an expected litter size of 3. We then calculate the actual
litter size by doing a Poisson draw with the expectation as mean, and calculate a fitness penalty for
the offspring based upon the litter size they come from. The initial litter size of 3 entails no fitness
penalty, but larger litter sizes will have correspondingly larger penalties because of the decreased
amount of parental investment per offspring.

Having determined the litter size and the fitness penalty, we then make the litter’s offspring in a
loop. (Note the use of seqLen(litterSize), which will produce the correct number of loops even
if the litter size is zero; using the sequence operator with 1:litterSize would be incorrect, since a
litter size of 0 would generate the sequence 1 0 and the loop would then run twice instead of zero
times. Be careful using the sequence operator in such cases!) Each offspring is generated with a
call to addCrossed(), and then the fitness penalty due to parental underinvestment is set into a key
named "penalty" on the offspring for later use. Note that the actual penalty for each individual is
drawn from a gamma distribution with a mean of the expected penalty; this is a bit gratuitous,
probably, but makes the actual penalty somewhat non-deterministic.

Next we create our initial population:

1 early() {
 sim.addSubpop("p1", 500);
 p1.individuals.setValue("penalty", 1.0);
}

We set the initial fitness penalty on the new subpopulation’s individuals to 1.0 (i.e., no penalty,
since this is a multiplicative fitness effect).

Now comes an early() event that, together with the reproduction() callback, really does the
bulk of the work in this model:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 363

early() {
 // non-overlapping generations
 inds = sim.subpopulations.individuals;
 inds[inds.age > 0].fitnessScaling = 0.0;
 inds = inds[inds.age == 0]; // focus on juveniles

 // QTL calculations
 inds.tagF = inds.sumOfMutationsOfType(m2);

 // parental investment fitness penalties
 inds.fitnessScaling = inds.getValue("penalty");

 // density-dependence for juveniles
 p1.fitnessScaling = K / size(inds);
}

This callback has four parts, as commented. The first part makes generations non-overlapping in
this model, by setting the fitness of all individuals to 0.0 unless they are juveniles; of course the
same life-history tradeoffs apply with overlapping generations too, but having discrete generations
makes the model’s operation easier to observe. Having set the fitness of the adults to 0.0, it then
narrows the focus of the code to the juvenile population for the rest of the event by redefining the
inds variable to only those individuals of age 0.

The second part totals the effects of all QTL (m2) mutations for juveniles and puts those totals
into the tagF property of the juveniles; the reproduction() callback expects to find the total there,
as we already saw, and the output code below uses it as well.

The third part fetches individual fitness penalty values using the "penalty" key and sets them
into the fitnessScaling property of the individuals to create the desired fitness effect; note that a
large "penalty" value is actually beneficial, since these values are fitness effects.

Finally, the fourth part implements density-dependence with the usual use of the
fitnessScaling property of the subpopulation; here, however, we use only the number of
juveniles in the calculation, to account for the fact that the adults are already marked for death and
thus (we choose) should not participate in density-dependence effects.

Note that with this density-dependence formula the population size will generally be well
under K at equilibrium – in the ballpark of 200 individuals – because the average individual will be
subject to a substantial fitness penalty due to parental underinvestment. If we wanted the model to
stay close to K regardless of the mean fitness penalty due to parental underinvestment, we could
compensate for the mean penalty by scaling by the total individual fitness instead of the number of
individuals, with code like this:

p1.fitnessScaling = K / sum(inds.fitnessScaling);

However, this would still not produce exactly the right result. In particular, some individuals
come from a small litter will have "penalty" values well over 1.0, but that large positive fitness
won’t make a difference to their survival probability (because you can’t survive more than 100% of
the time), so the calculation here will overestimate the number of juveniles that are likely to
survive, and the density-dependence will then be a bit too strong. Still, the formula above will
only be substantially off when the mean litter size is small; once the model has equilibrated the
mean population size will be close to K, given the parameters used here.

But in any case, it is perfectly reasonable – perhaps even more reasonable – for a large mean
fitness penalty due to low parental investment to lead to a depressed mean population size; we
have shown the alternative density-dependence calculation above just to illustrate the choices that

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 364

can go into deciding upon the implementation of density-dependence. We will stick to the first
version of the density-dependence code for the “definitive” version of this recipe.

OK, since this is a QTL model we need to zero out the fitness effect of the QTL mutations as
usual, so that their only fitness effects are indirect:

mutationEffect(m2) { return 1.0; }

Then we do a little output in each tick, and provide a termination event:

late() {
 // output the phenotypic mean and pop size
 qtlValues = p1.individuals.tagF;
 expectedSizes = pmax(0.0, qtlValues + 3);

 cat(sim.cycle + ": " + p1.individualCount + " individuals");
 cat(", mean litter size " + mean(expectedSizes));
 catn();
}
20000 late() { sim.simulationFinished(); }

The model starts off like this:

1: 500 individuals, mean litter size 3
2: 430 individuals, mean litter size 3.00075
3: 408 individuals, mean litter size 3.00007
...

The mean litter sizes printed in the output are calculated in the same way as in the
reproduction() callback. The model starts with the default litter size of 3, and then QTLs start to
arise that modify that value. By the end of the model, we’re in a fairly different place:

19998: 182 individuals, mean litter size 8.18836
19999: 174 individuals, mean litter size 8.21173
20000: 183 individuals, mean litter size 8.20294

With these parameter values and configuration, the model tends to equilibrate at a litter size
around 6.5 to 7.5, but the range of outcomes is fairly broad and values as high as 9 or 10 are often
seen; apparently the selection on litter size imposed by this model is not terribly strong, so the
fitness peak is pretty broad. In any case, somewhere in this vicinity there seems to be a crossover
point where the benefit of more offspring is counterbalanced by the decrease in parental
investment. In this simple model, that result could probably be calculated analytically, but of
course that would be impossible in a more complex model involving other biological realism as
well.

The population size at the end is much smaller than it was at the beginning. This is because
every individual at the end is suffering from a lack of parental investment, and that depresses the
population size below the carrying capacity, as discussed above. We don’t even need to think
about that; it just happens automatically, as an emergent property of the model. If the optimal
litter size were sufficiently large (with sufficiently low parental investment as a result), evolution
toward the optimum litter size could probably drive the population extinct.

In this recipe, the penalty for each offspring depends upon the size of the litter to which the
offspring belonged. This makes sense when parental investment is, in fact, per offspring, such as
feeding newly hatched juveniles in a nest. In other cases, investment might depend upon the
expected litter size, not the actual litter size; if a bird adds body fat before the breeding season and
uses that energy to generate a predetermined number of eggs, but only a subset of those eggs

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 365

hatch, the investment is per egg, not per hatched chick. We can modify the recipe for that case by
changing the penalty calculation to be:

 penalty = 3.0 / expectedLitterSize;

Interestingly, even though litterSize is drawn from a distribution with a mean of
expectedLitterSize, this produces fairly different outcomes. The equilibrium litter size reached is
now typically around 3.5 to 4.0 – much smaller.

This model has a lesson that goes far beyond litter size and parental investment: nonWF models
can include genetic variation, and evolution, of traits that it is difficult or impossible to model in
such a way in WF models. One could easily write a nonWF model of the evolution of the sex
ratio, or of the selfing or cloning rate, or of migration or dispersal behavior, or of – as here – litter
size or parental investment. WF models can include all of those phenomena, but since they are
handled by SLiM’s core engine in WF models, it is quite difficult to include genetically-based
individual variation in them.

15.10 Forcing a specific pedigree in a nonWF model
It is sometimes desirable to force a SLiM model to follow a specific pedigree through arranged

matings between individuals. This is quite easy to do with a nonWF model, since in nonWF
models matings are arranged by the model’s script, not by SLiM’s core engine. We will use tag
values to identify each individual, with a unique tag value for every individual.

We will actually look at two recipes here; the first tracks the pedigree realized by a model run
and produces output files recording that pedigree, while the second reads those output files and
exactly reproduces the pedigree.

Let’s begin with the first recipe:

initialize() {
 initializeSLiMModelType("nonWF");
 defineConstant("K", 10);

 initializeMutationType("m1", 0.5, "f", 0.0);
 m1.convertToSubstitution = T;
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8);

 // delete any existing pedigree log files
 deleteFile("mating.txt");
 deleteFile("death.txt");
}
reproduction() {
 // choose a mate and generate an offspring
 mate = subpop.sampleIndividuals(1);
 child = subpop.addCrossed(individual, mate);
 child.tag = sim.tag;
 sim.tag = sim.tag + 1;

 // log the mating
 line = paste(community.tick, individual.tag, mate.tag, child.tag);
 writeFile("mating.txt", line, append=T);
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 366

1 early() {
 sim.addSubpop("p1", 10);

 // provide initial tags and remember the next tag value
 p1.individuals.tag = 1:10;
 sim.tag = 11;
}
early() {
 // density-dependence
 p1.fitnessScaling = K / p1.individualCount;
}

survival() {
 if (!surviving) {
 // log the death
 line = community.tick + " " + individual.tag;
 writeFile("death.txt", line, append=T);
 }
 return NULL;
}
100 late() { sim.simulationFinished(); }

This recipe is quite straightforward; in most respects it follows the typical skeleton of a nonWF
model, but with some logging code added in. In the initialize() callback we delete any pre-
existing log files. The reproduction() callback chooses a random mate and calls addCrossed() to
generate a child, as usual; it also sets that child up with a unique identifying tag value, and
appends a line summarizing the mating event to the mating.txt log file. The 1 early() event sets
up the subpopulation as usual, and also sets up initial tag values for the new individuals; the value
of sim.tag is used to track the next unused tag value in the run. The early() event provides
density-dependent population regulation, as we have seen in previous nonWF models. Finally, a
survival() callback appends death information to the death.txt log file, as discussed next. The
model ends at the end of tick 100.

We haven’t seen survival() callbacks before; these callbacks, which are available only in
nonWF models, allow the model to override SLiM’s default decisions during the nonWF tick
cycle’s viability/survival selection stage, regarding which individuals will survive and which will
die (see section 26.10). Normally, SLiM’s decisions are based on fitness; fitness in nonWF models
is interpreted as a probability of survival, as we have seen, and for each individual SLiM draws a
random uniform deviate from [0,1] and compares it to the individual’s fitness to see whether it
lives or dies. With a survival() callback, called for each individual in each tick, the model’s
script can override this decision in order to force a focal individual to live (by returning T) or to die
(by returning F). This recipe does not intervene in survival decisions in this way, however; it simply
observes them, logging out the tick and individual tag whenever an individual is about to die. It
returns NULL, indicating that SLiM should follow its default course of action. (See sections 15.13,
15.16, and 15.19 for more active uses of survival() callbacks).

A run of this model produces death.txt and mating.txt files on the user’s desktop (on macOS,
at least; the output paths in the recipe may need to be modified on other platforms). The
death.txt file is simply a series of lines, each of which has a tick and then the tag value of an
individual that died in that tick, like this:

2 2
2 4
2 6
...

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 367

3 7
3 19
...
4 20
4 21
...

This file records that in tick 2 the individuals with tag values 2, 4, 6, etc., died; in tick 3,
individuals with tag values 7, 19, etc.; in tick 4, individuals with tag values 20, 21, etc.; and so
forth, through to the end of the run.

The mating.txt file is almost as simple; here, each line records a tick, the tag values of the first
and second parent, and then the tag value of the generated offspring:

2 1 3 11
2 2 10 12
2 3 2 13
...
3 1 13 21
3 3 20 22
...
4 1 13 30
4 3 22 31
...

The first line in this example, for example, specifies that in tick 2 the individuals with tag values
1 and 3 mated to produce an offspring individual with tag value 11.

These files, then, provide all the information we need to reproduce the full pedigree and
population history of the model run. So much for the first recipe; now let’s move on to the second
recipe and see how it uses these files to force a replication of the logged pedigree:

function (+)readMatrix(s$ path, [string$ sep = ","])
{
 if (!fileExists(path))
 stop("readMatrix(): File not found at path " + path);
 df = readCSV(path, colNames=F, sep=sep);
 m = df.asMatrix();
 return m;
}
initialize() {
 initializeSLiMModelType("nonWF");
 defineConstant("K", 10);

 initializeMutationType("m1", 0.5, "f", 0.0);
 m1.convertToSubstitution = T;
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8);

 // read in the pedigree log files
 defineConstant("M", readMatrix("mating.txt", sep=""));
 defineConstant("D", readMatrix("death.txt", sep=""));

 // extract the ticks for quick lookup
 defineConstant("Mt", drop(M[,0]));
 defineConstant("Dt", drop(D[,0]));
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 368

reproduction() {
 // generate all offspring for the tick
 m = M[Mt == community.tick,];

 for (index in seqLen(nrow(m))) {
 row = m[index,];
 ind = subpop.subsetIndividuals(tag=row[,1]);
 mate = subpop.subsetIndividuals(tag=row[,2]);
 child = subpop.addCrossed(ind, mate);
 child.tag = row[,3];
 }

 self.active = 0;
}
1 early() {
 sim.addSubpop("p1", 10);

 // provide initial tags matching the original model
 p1.individuals.tag = 1:10;
}
early() {
 // execute the predetermined mortality
 inds = p1.individuals;
 inds.fitnessScaling = 1.0;

 d = drop(D[Dt == community.tick, 1]);
 indices = match(d, inds.tag);
 inds[indices].fitnessScaling = 0.0;
}
100 late() { sim.simulationFinished(); }

Let’s walk through how it works. First of all, we define a new function named readMatrix()
that reads in a text file from a given filesystem path, assumed to be composed of lines of values,
and returns a matrix representing the contents of the file. (Note that this function is in the online
SLiM-Extras repository, too.) We haven’t used matrices much in previous recipes; they are a
relatively new feature of Eidos, and work in much the same way as matrices in R do (see the Eidos
manual for discussion). Indeed, we haven’t seen many examples of user-defined functions either
(again, see the Eidos manual). Without worrying too much about such details, however, if we treat
this function as a black box and call it with the path of our death.txt file, we get this matrix:

 [,0] [,1]
 [0,] 2 2
 [1,] 2 4
 [2,] 2 6
 ...

And for our mating.txt file we get this:

 [,0] [,1] [,2] [,3]
 [0,] 2 1 3 11
 [1,] 2 2 10 12
 [2,] 2 3 2 13
 ...

The initialize() callback of this recipe sets up the model in the usual way (mirroring the
setup of the first recipe, which is what one would probably want in most cases). It then calls
readIntTable() to read in the log files, and retains the resulting matrices as defined constants, M

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 369

and D. Finally, it extracts the first column from M and D (which contains the ticks for each logged
event) and retains those as constants Mg and Dg, for simplicity and speed later. So far so good; this
is the information the recipe will use to reproduce the logged pedigree.

Next, the reproduction() callback executes the pedigree’s mating events. It does this by
fetching the rows of M that refer to the current tick, and looping through those rows to generate
each mating event (again, you may wish to refer to the Eidos manual for information on the syntax
involved in working with matrices). The tag value of the offspring is set according to the logged
pedigree as well, so that the new individual will match up with the tag values used in the log files.
The callback triggers all of the mating events for the tick in a single call, rather than working with
the individual supplied to the reproduction() callback, so it then disables itself, by setting
self.active to 0, ensuring that it is not called again in the current tick (as we saw before in
section 15.3).

The 1 early() event creates the initial subpopulation, as in the first recipe, and sets the tag
values of individuals in the same way so that both models get the same setup.

Finally, we have the early() event. This does not cause density-dependent population
regulation in the usual way of nonWF models; instead, it uses the fitnessScaling property values
of individuals to weed out specifically the individuals that died in each tick in the original model
run. It begins by setting fitnessScaling to 1.0 on all individuals. Then it looks up the mortality
events for the current tick, similarly to how the reproduction() callback looked up mating events.
It then uses match() to find the indices of the individuals in question, and sets fitnessScaling to
0.0 for those individuals. Those individuals will be killed by SLiM during the viability/survival tick
cycle stage that follows the early() event. The model terminates at the end of tick 100, matching
the behavior of the original model.

In this way, this recipe reproduces the saved pedigree, even when a different random number
seed is used. If you run the second recipe repeatedly, you will therefore get replicates of the saved
pedigree, but with different mutational and recombinational histories and thus different segregating
mutations at the end of the runs. Of course you may not wish to take on faith that the pedigree is
replicated exactly, so if you wish you can add calls to catn() in the appropriate spots to log out
each mating and mortality event, to confirm that they follow the pedigree as intended.

This basic scheme could be extended in various ways, as needed. For example, the log files
presently support only biparental matings; if you wanted to force a pedigree that involved cloning
in some cases, you could extend the mating.txt file format to have an extra column with a value
indicating whether the offspring was generated by cloning or not, or you could add a third log file,
named something like cloning.txt, to record those events; either strategy would work. You could
also log out, and then reproduce, other model events if you wished, such as migration events;
since you are in complete control of such events in nonWF models, doing this would be quite a
straightforward extension of these recipes. You could probably even record, and then reproduce,
the recombination breakpoints used in the generation of each offspring individual, using a
recombination() callback, so as to make the replicate run duplicate exactly the same pattern of
local ancestry along the chromosome as the original model run, if you wanted to. This strategy, of
driving model dynamics from file-based data, is quite general and can be applied to many tasks.

The second recipe can of course be used on its own, to make SLiM follow any pedigree
specified by its input files; that pedigree information could come from empirical data rather than
from recording a previous SLiM model run as we have done here.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 370

15.11 Modeling clonal haploids in a nonWF model with addRecombinant()
In section 14.9 we saw a recipe for modeling clonal haploids in SLiM by keeping the second

genome of each individual empty. New mutations arising in those second genomes were removed
in each tick, and a recombination rate of zero was used to prevent any recombination with those
empty genomes. That recipe is general and flexible; however, it does have some drawbacks,
particularly when tree-sequence recording is being used (see section 1.7 and chapter 17). With
tree-sequence recording, the recipe of section 14.9 records rather odd dynamics, with mutations
appearing and then disappearing in each generation, and the empty second genomes of
individuals inheriting from each other. These bizarre inheritance records are probably harmless,
but may complicate post-simulation analysis, and in any case constitute something of an offense
against clean design. Even more problematic for section 14.9’s strategy, when doing tree-sequence
recording, is the question of how to model horizontal gene transfer, as we discuss in section 15.12.

Here, then, we will look at an alternative strategy for modeling clonal haploids. This strategy
can be employed only in nonWF models, but integrates much more smoothly with tree-sequence
recording and is conceptually more straightforward as well. The recipe, in full:

initialize() {
 initializeSLiMModelType("nonWF");
 defineConstant("K", 500); // carrying capacity
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 m1.convertToSubstitution = T;
 initializeGenomicElement(g1, 0, 99999);
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8);
}
reproduction() {
 subpop.addRecombinant(individual.genome1, NULL, NULL, NULL, NULL, NULL);
}
1 early() {
 sim.addSubpop("p1", 500, haploid=T);
}
early() {
 p1.fitnessScaling = K / p1.individualCount;
}
50000 late() { sim.outputFixedMutations(); }

This mostly has the typical nonWF setup and population regulation, as we have seen before. It
sets m1.convertToSubstitution to T; SLiM will be able to automatically detect and remove fixed
mutations for us, unlike in section 14.9. The one notable difference from typical nonWF setup is
that we pass haploid=T to addSubpop(). This tells SLiM that the 500 individuals created for p1
should be true haploids, with the second genome of each individual being a null genome, not just
an empty genome. Null genomes (see section 1.5.1) are essentially placeholders used by SLiM to
represent the conceptual absence of a genome; they are used when modeling sex chromosomes
(see section 6.2.3), and they can also be used when modeling haploids in nonWF models. So we
start with 500 individuals that are haploid, with null second genomes. Any attempt to modify or
manipulate these null genomes in SLiM will produce an error, for code safety.

The most interesting and new part of this model is the reproduction() callback, which uses a
method we have not seen before, addRecombinant(). Like addCrossed(), addCloned(),
addSelfed(), and addEmpty(), this adds a new offspring individual to the target subpopulation, but
it provides greater control over precisely how that new individual is generated. Section 25.16.2
provides full documentation on this complex method, but in short, it allows you to supply two
parent genomes for each genome in the new offspring, with a list of recombination breakpoints to

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 371

be used in stitching together those parent genomes through crossovers. The first three parameters
to its call here specify that genome1 from the focal parent should be used to generate the offspring’s
first genome, with no second recombinant strand (NULL), and no recombination breakpoints (NULL);
this provides clonal reproduction of the parent’s first genome. New mutations will be added by
SLiM as usual. The second group of three parameters to addRecombinant() are all NULL here; that
specifies that the second offspring genome should be a null genome, so the offspring is haploid.

This approach, using addRecombinant(), allows the model to tell SLiM precisely how to
generate offspring. This has several benefits. One is that, unlike the recipe of section 14.9, we
don’t have to go back and remove mutations added by SLiM to the second genomes of individuals;
SLiM knows not to add mutations to those genomes in the first place. Another is that tree-
sequence recording, if enabled, is able to better understand and record what is going on; it does
not record the addition and removal of spurious mutations, and all of the second genomes of
individuals in this model will be recorded as being null genomes (which you can test for with
pyslim), producing a cleaner recorded tree sequence that better reflects the fact that those second
genomes do not actually exist at all, conceptually. The third benefit of using addRecombinant() is
that it allows more complex modes of offspring generation to be expressed as well; as an example,
in the next section we will see how to model horizontal gene transfer in bacteria using
addRecombinant() to express the horizontal gene transfer to SLiM.

15.12 Modeling clonal haploid bacteria with horizontal gene transfer
In section 15.11 we looked at a model of clonal haploids using addRecombinant(), as an

alternative to the original haploid clonal model presented in section 14.9. The use of
addRecombinant() allowed the details of child generation to be expressed precisely to SLiM,
facilitating a simpler model design and more accurate recording of ancestry in the tree sequence (if
tree-sequence recording were enabled; see section 1.7). In this section we’ll explore those
benefits in more detail in a model of horizontal gene transfer in bacteria.

This is a more complex model than that of section 15.11, so let’s take things in two steps. First,
here is all of the code except the reproduction() callback:

initialize() {
 initializeSLiMModelType("nonWF");
 defineConstant("K", 1e5); // carrying capacity
 defineConstant("L", 1e5); // chromosome length
 defineConstant("H", 0.001); // HGT probability
 initializeMutationType("m1", 1.0, "f", 0.0); // neutral (unused)
 initializeMutationType("m2", 1.0, "f", 0.1); // beneficial
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, L-1);
 initializeMutationRate(0); // no mutations
 initializeRecombinationRate(0); // no recombination
}
1 early() {
 // start from two bacteria with different beneficial mutations
 sim.addSubpop("p1", 2, haploid=T);

 // add beneficial mutations to each bacterium, but at different loci
 g = p1.individuals.genome1;
 g[0].addNewDrawnMutation(m2, asInteger(L * 0.25));
 g[1].addNewDrawnMutation(m2, asInteger(L * 0.75));
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 372

early() {
 // density-dependent population regulation
 p1.fitnessScaling = K / p1.individualCount;
}
late() {
 // detect fixation/loss of the beneficial mutations
 muts = sim.mutations;
 freqs = sim.mutationFrequencies(NULL, muts);

 if (all(freqs == 1.0))
 {
 catn(sim.cycle + ": " + sum(freqs == 1.0) + " fixed.");
 sim.simulationFinished();
 }
}
1e6 late() { catn(sim.cycle + ": no result."); }

The initialize() code defines a few constants: the carrying capacity, the chromosome length,
and the probability that horizontal gene transfer will occur during a given mitosis event. Note that
we will model horizontal gene transfer as occurring during reproduction, rather than as a discrete
event occurring later in a bacterium’s lifetime. This design is much simpler, particularly if tree-
sequence recording is enabled; horizontal gene transfer changes the genealogical relationships
among individuals, and tree-sequence recording is not designed to accommodate such changes in
the middle of an individual’s lifespan. The approximation seems unlikely to matter.

Note also that although we define a neutral mutation type here, m1, we do not model neutral
mutations, and indeed, we use a mutation rate of 0.0. This is because a model of this sort is likely
to use tree-sequence recording to overlay neutral mutations after the fact for much greater speed;
since we haven’t gotten into tree-sequence recording yet, however, we will defer that topic until
sections 17.1 and 17.2. For now, it suffices to say that we do not model neutral mutations here.

The initial population here consists of just two bacteria, which are set up to carry different
beneficial mutations at different locations in the genome. The population will expand
exponentially until reaching the carrying capacity of 1e5. We have used a fairly large population
size since we are modeling bacteria, but a carrying capacity of 1e6 or even higher might be
desirable for some purposes. Apart from taking more time and memory, this model should scale
up without difficulties; the fact that neutral mutations are not included makes it scale much better.

In the late() event we detect the fixation or loss of the beneficial mutations; if both mutations
have fixed or been lost, the model prints a message indicating how many mutations fixed, and
then stops. If the model runs for 1e6 ticks without fixation or loss, it stops with a message.

All of that is routine. Now here’s the reproduction() callback, where the interesting action is:

reproduction() {
 if (runif(1) < H)
 {
 // horizontal gene transfer from a randomly chosen individual
 HGTsource = p1.sampleIndividuals(1, exclude=individual).genome1;

 // draw two distinct locations; redraw if we get a duplicate
 do breaks = rdunif(2, max=L-1);
 while (breaks[0] == breaks[1]);

 // HGT from breaks[0] forward to breaks[1] on a circular chromosome
 if (breaks[0] > breaks[1])
 breaks = c(0, breaks[1], breaks[0]);

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 373

 subpop.addRecombinant(individual.genome1, HGTsource, breaks,
 NULL, NULL, NULL);
 }
 else
 {
 // no horizontal gene transfer; clonal replication
 subpop.addRecombinant(individual.genome1, NULL, NULL,
 NULL, NULL, NULL);
 }
}

Each bacterium reproduces exactly once each tick, producing two bacteria from one, which
makes sense from the perspective of reproduction by mitosis. This reproduction can happen in
two different ways, depending upon a random draw from runif(). If the draw is greater than or
equal to H, reproduction is purely clonal as in the model of section 15.11; that is the else clause
here. If the draw is less than H, horizontal gene transfer occurs, which needs some explanation.

In that case, we first draw a random individual (other than the focal individual) to act as the
source for the transfer, and get its first genome. Next we use a do–while loop to draw two distinct
locations along the genome; these will be the endpoints of the transfer. Specifically, the transfer
will start at breaks[0] and go forward to breaks[1]. For a bit of extra biological realism, we will
model a circular chromosome here, so if breaks[0] is greater than breaks[1] the transfer will wrap
around from the end of the genome to the start, as modelled in SLiM; we check for that case and
patch up the breaks vector to reflect what we want to happen in that situation. Finally, we call
addRecombinant() to generate the offspring bacterium including the horizontal gene transfer. We
pass it to the parent genomes – that of the reproducing bacterium, and that of the horizontal gene
transfer source – with the breakpoint vector that describes when SLiM should switch between
those strands as it produces the offspring genome by recombination. As before, we pass NULL for
the next three parameters to indicate that the second offspring genome should be a null genome
(conceptually, nonexistent). (A diploid model that wanted to generate its own recombination
breakpoints might use those parameters, for example.)

Without horizontal gene transfer, this would be a model of clonal competition: one lineage
would end up “winning” and the other would go extinct, although it might take a long time for
that outcome to be reached since it would depend on drift. This behavior can be seen by setting H
to 0.0. With horizontal gene transfer, however, the bacteria will often stumble upon a lineage (or
perhaps more than one lineage) that combines both mutations in the same genome, providing an
advantage similar to that provided by recombination in sexual reproduction. Once such a lineage
arises it will almost always win, and we will get output like this from the model:

197: 2 fixed.

Both beneficial mutations fixed in tick 197, thanks to horizontal gene transfer.
The details of the breakpoint generation here might need to be modified in a more realistic

model. Here we draw the start and end positions of the transfer region independently, but perhaps
it would be better to draw the start location randomly and then draw a transfer length from a
geometric distribution or some other distribution. This would constrain the horizontal gene
transfer to generally be a small minority of the genome, as is typical in the transfer of a plasmid or
a transposon. The location and length of the transfer could also be constrained by some sort of
genetic structure to explicitly model the transfer of a plasmid that spans a given range of the
genome, of course. The reproduction() callback could also base the choice of whether or not
horizontal gene transfer occurs upon the contents of the two genomes in question, not just upon a
random probability; one could model a selfish gene in the transfer donor that makes horizontal

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 374

gene transfer more likely to occur, for example. Since all of the logic governing the horizontal
gene transfer is in the model’s script, it can include whatever biological realism is of interest.

Note that prior to the addition of addRecombinant() in SLiM, it would have been possible to
model horizontal gene transfer by actually getting all of the mutations from the transfer region out
of the source’s genome, and then adding them into the target’s genome with addMutations()
(removing any existing mutations from the target region first). This would work fine except that it
obscures what is actually going on in terms of genealogy and inheritance. If tree-sequence
recording were used with such a model, the transferred region would not be recorded as
originating in the source genome; instead, the mutations would just magically appear in the target
genome, with no genealogical relationship between source and target recorded in the tree
sequence. The method presented here, using addRecombinant(), is therefore preferable. (If one
needed to model even more complex patterns of inheritance – offspring genomes that consist of a
mosaic of genetic material from more than two parental genomes, for example – using the
addMutations() technique might still be necessary, however, since addRecombinant() is designed
to record at most two parental genomes for each offspring genome. Tree-sequence recording
would not work well in such a model, however.)

To make a relatively realistic model of bacterial evolution with SLiM, this sort of realistic
inheritance and horizontal gene transfer is one important ingredient. The other important
ingredient is the ability to model a sufficiently large population size, which is often made possible
by the performance benefits provided by tree-sequence recording as we will see in chapter 17. For
a related bacterial HGT model that incorporates tree-sequence recording, and also manipulates
recombination breakpoints to simulate a circular chromosome, see Cury et al. (2022), which
inspired this simplified recipe. Thanks to Jean Cury for his collaboration on these models.

15.13 Implementing a Wright–Fisher model with a nonWF model
In this chapter, we have focused on aspects of nonWF models that go beyond the Wright–Fisher

model, such as overlapping generations, age structure, and individual-level control over
reproduction and migration. Sometimes, however, it can be useful to implement a Wright–Fisher
model as a nonWF model in SLiM – or at least some aspects of a Wright–Fisher model. You might
want to have non-overlapping generations, for example; or you might want panmictic offspring
generation as in the Wright–Fisher model, with each offspring generated from an independent,
randomly drawn pair of parents. Implementing such a model using the nonWF model type might
be desirable because you might also want some non-Wright–Fisher dynamics in your model that
would be difficult to implement in a WF model, or you might want to take advantage of features of
SLiM that are only available in nonWF models. In this section, we will look at two nonWF models
that incorporate aspects of the Wright–Fisher model. Both models will include deleterious
mutations in addition to neutral mutations, to show how each model treats fitness.

The first recipe here is quite simple, so let’s look at it in full:

initialize() {
 initializeSLiMModelType("nonWF");
 initializeMutationType("m1", 0.5, "f", 0.0);
 m1.convertToSubstitution = T;
 initializeMutationType("m2", 0.0, "f", -0.5);
 initializeGenomicElementType("g1", c(m1, m2), c(1.0, 0.05));
 initializeGenomicElement(g1, 0, 99999);
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8);
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 375

reproduction() {
 K = sim.getValue("K");

 // parents are chosen randomly, irrespective of fitness
 parents1 = p1.sampleIndividuals(K, replace=T);
 parents2 = p1.sampleIndividuals(K, replace=T);

 for (i in seqLen(K))
 p1.addCrossed(parents1[i], parents2[i]);

 self.active = 0;
}
1 early() {
 sim.setValue("K", 500);
 sim.addSubpop("p1", sim.getValue("K"));
}
early()
{
 // parents die; offspring survive proportional to fitness
 inds = sim.subpopulations.individuals;
 inds[inds.age > 0].fitnessScaling = 0.0;
}
10000 late() { sim.outputFixedMutations(); }

In the initialize() callback, we set up this simple nonWF model with neutral and deleterious
mutations and a uniform chromosome. Note that we do not set up a constant K for the population
carrying capacity there; instead, in the 1 early() event, we set K up as a value kept by the
simulation using setValue(), making it easier to vary K over time (although we don’t do so in this
simple recipe). The p1 subpopulation begins with a size equal to the value of K just defined.

The reproduction() callback implements a Wright–Fisher style of reproduction. It gets the
current subpopulation size using getValue(), and then generates that many offspring into p1 with
randomly drawn parents for each offspring. It then deactivates itself by setting self.active to 0, to
prevent SLiM from calling it again, since it has reproduced the entire subpopulation; we first saw
this “big bang reproduction” strategy in section 15.3. Note that this code does not prevent the first
and second parents of a given offspring from being the same individual, so a certain amount of
“incidental selfing” will occur (as is typical in the Wright–Fisher model). Changing that would
require that the second parents be drawn inside the for loop, one by one, using the exclude
parameter to sampleIndividuals(), which would look something like this:

secondParent = p1.sampleIndividuals(1, exclude=firstParent);

This draws the second parent from p1 while explicitly excluding firstParent as a choice; the
sampleIndividuals() method has many useful options of this sort. We won’t make that change in
this recipe, though, since incidental selfing is often desirable in Wright–Fisher models (to match
the results of analytical models).

Changing this model to be sexual instead of hermaphroditic would also be easy, since
sampleIndividuals() can similarly be told to draw only females (for the first parents) or only
males (for the second parents). One could also easily implement the Wright–Fisher style of
migration between subpopulations by generating some fraction m of the new offspring in p1 from
parents drawn from a different subpopulation instead.

The early() event implements non-overlapping generations by simply killing off all non-
juvenile individuals, by setting their fitnessScaling to 0.0. This is, in effect, an extremely simple
version of the sort of life table we saw in section 15.2. Note that unlike most nonWF models, this
model has no other population regulation; the usual density-dependence code is absent. Since the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 376

reproduction() callback always generates exactly K offspring, and all non-juveniles are killed off
each tick, the size of the population (before the viability/survival tick cycle stage) is deterministic
and the population does not require further regulation.

This model remains non-Wright–Fisher in one key way: fitness is still expressed through pre-
mating mortality, not through an individual’s probability of mating. This has three important
consequences. First of all, although the population size is K after offspring generation, it can drop
below K during the viability/survival tick cycle stage due to fitness-based mortality. The model is
thus a “hard selection” model, not a “soft selection” model as is typical for Wright–Fisher models.
Second, fitness values over 1.0, due to beneficial mutations or other effects, have no effect since
the probability of survival can be at most 100% (see section 15.4 for discussion of this issue.)
Third, the distribution of fecundity among individuals here is different from that of a Wright–Fisher
model; in this model, as in most nonWF models, either an individual survives (in which case it has
the same expected fecundity as any other surviving individual) or it dies (in which case it has an
expected fecundity of zero, being dead). In the Wright–Fisher model, on the other hand, fitness
modifies the probability that an individual will be chosen as a mate, and so the distribution of
fecundity is continuous rather than bimodal. In many cases this difference will have very little
effect upon the outcome of the model, so this simple pseudo-Wright–Fisher model design might
suffice. However, in SLiM 3.7 and later it is straightforward to modify this model design to make
fitness influence mating success rather than survival, using a survival() callback. Here is the
second recipe for this section, showing that modified design:

initialize() {
 initializeSLiMModelType("nonWF");
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 0.0, "f", -0.5);
 c(m1,m2).convertToSubstitution = T;
 initializeGenomicElementType("g1", c(m1, m2), c(1.0, 0.05));
 initializeGenomicElement(g1, 0, 99999);
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8);
}

reproduction() {
 K = sim.getValue("K");

 // parents are chosen proportional to fitness
 inds = p1.individuals;
 fitness = p1.cachedFitness(NULL);
 parents1 = sample(inds, K, replace=T, weights=fitness);
 parents2 = sample(inds, K, replace=T, weights=fitness);

 for (i in seqLen(K))
 p1.addCrossed(parents1[i], parents2[i]);

 self.active = 0;
}
1 early() {
 sim.setValue("K", 500);
 sim.addSubpop("p1", sim.getValue("K"));
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 377

survival() {
 // survival is independent of fitness; parents die, offspring live
 return (individual.age == 0);
}
10000 late() { sim.outputFixedMutations(); }

The 1 early(), and 10000 late() callbacks are identical. There are three important differences
to discuss: the survival() callback, the reproduction() callback, and the initialize() callback.

First of all, the early() event of the previous recipe, which set the fitnessScaling of the
parental generation to 0.0 to provide non-overlapping generations, has been removed; in its place
is a survival() callback. These callbacks are called during the viability/survival tick cycle stage in
nonWF models, and govern the decisions SLiM makes regarding which individuals live and which
die (see section 26.10 for details). Here, we return F for individuals in the parental generation,
telling SLiM that those individuals should die regardless of their fitness, and we return T for
juveniles, telling SLiM that they should survive regardless of their fitness. The key insight here,
then, is that we are still allowing SLiM to calculate fitness values for all individuals based upon the
deleterious mutations they possess (and any other fitness effects that might be present in the
model), but we are completely decoupling fitness from mortality with the survival() callback. If
we left things there, the model would actually become a neutral model; the deleterious mutations
would be prevented from having any effect on the actual fitness of individuals, since the fitness
values calculated by SLiM would no longer affect actual fitness in the simulation.

Of course that is not what we want; we want fitness values to influence mating success instead.
We achieve that with the modified reproduction() callback. The key lines are these:

fitness = p1.cachedFitness(NULL);
parents1 = sample(inds, K, replace=T, weights=fitness);
parents2 = sample(inds, K, replace=T, weights=fitness);

With these lines, we replace the unbiased selection of parents in the first recipe with a biased
selection of parents, proportional to fitness. We use the cachedFitness() method to get SLiM’s
calculated fitness values for all individuals; they will be in the same order as in p1.individuals, so
the elements in the inds and fitness vectors correspond one-to-one. Then we use the sample()
function to draw parents with weights=fitness; we no longer use sampleIndividuals() since it
does not have a weights parameter.

Finally, the initialize() callback now has this line:

c(m1,m2).convertToSubstitution = T;

Now that fitness is relative and selection is soft, we can allow the non-neutral mutations in the
model to be substituted by SLiM when they fix; just as in a WF model, this is safe because a
deleterious or beneficial mutation that is fixed across the population has no effect on relative
fitness. In this particular model this makes no real difference, since the deleterious mutations
modeled here have such a large negative selection coefficient that they will probably never fix
anyway; but this is nevertheless an important point for models that involve mutations that are
nearly neutral, or even beneficial.

With these changes, we now have a true Wright–Fisher model, and the three caveats discussed
above regarding the first recipe no longer apply. Specifically, (1) the population size will remain at
K regardless of mean fitness, so fitness is now relative fitness and this model is now a soft-selection
model; (2) fitness values over 1.0 will now influence mating success as one would expect, since
fitness is now interpreted as relative fitness rather than absolute fitness; and (3) the distribution of
fecundity will no longer be bimodal, since it will no longer be based upon the black-and-white
fact of which individuals survive. The only drawback of this second recipe is that it will run a little

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 378

more slowly than the first, since drawing parents weighted by fitness is more computationally
intensive than drawing them without weighting. The difference is not terribly large – a little over a
2× slowdown, perhaps – so in most cases it will make sense to choose the model design that is
best suited to the problem at hand.

Even the first recipe shown here is substantially more complex than the equivalent WF model,
which looks like this:

initialize() {
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 0.0, "f", -0.5);
 initializeGenomicElementType("g1", c(m1, m2), c(1.0, 0.05));
 initializeGenomicElement(g1, 0, 99999);
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
10000 late() { sim.outputFixedMutations(); }

And it runs several times slower – about 3×, in an informal test. The speed penalty for switching
to a nonWF model is large here because most of what this model really does is reproduce, and the
reproduction for the nonWF model is handled in script rather than in SLiM’s core as it is for the WF
model. The penalty associated with switching to nonWF is therefore almost maximized here; if the
model had other time-consuming things to do besides reproduce, the penalty would be smaller.
For example, if the chromosome length in this model were 107 instead of 105, SLiM would spend
much more time handling the genetics of the model – doing mutation and recombination, as well
as checking for fixation or loss of mutations – and in that case, this recipe would take only ~1.35×
as long as the equivalent WF model. With a chromosome length of 108, the slowdown is only a
factor of ~1.07×. This underlines that when making the choice between a WF and a nonWF
model, that choice should almost always be made based upon which model type is a better fit for
the scenario being simulated, rather than upon performance. If a model is big and complex
enough that its runtime is problematic – i.e., is measured in hours to days – the overhead due to
choosing the nonWF model type will probably be small.

15.14 Alternation of generations
SLiM is generally a framework for modeling diploid organisms, but with some creative scripting

that assumption can be modified. We have seen some recipes for modeling haploids, as in
sections 14.9, 15.11, and 15.12. In nonWF models a similar strategy can be used to fully model
the phenomenon of alternation of generations, the way that diploid and haploid life cycle stages
generally alternate in organisms that are often thought of simply as “diploids”. Many sexual
animals, for example, have a multicellular diploid phase that produces a unicellular haploid phase
– sperm and eggs – that then fuse, in fertilization, to produce the next diploid generation. In plants
this situation is generally even more pronounced, often with a multicellular haploid phase, the
gametophyte, that can be free-living and large – often larger and more obvious than the diploid
sporophyte, which is often reduced. For many organisms, then, it may be important to model both
the haploid and diploid phases explicitly; mutations may be expressed differently between them,
selection may act differently upon them, they may migrate or disperse differently, and so forth.
SLiM does not have intrinsic support for modeling this alternation of generations, but it is
straightforward to implement in script in a nonWF model, as we will see in this section.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 379

This model will be somewhat complicated, so let’s start with the setup:

initialize()
{
 defineConstant("K", 500); // carrying capacity (diploid)
 defineConstant("MU", 1e-7); // mutation rate
 defineConstant("R", 1e-7); // recombination rate
 defineConstant("L1", 1e5-1); // chromosome end (length - 1)

 initializeSLiMModelType("nonWF");
 initializeSex("A");
 initializeMutationRate(MU);
 initializeMutationType("m1", 0.5, "f", 0.0);
 m1.convertToSubstitution = T;
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, L1);
 initializeRecombinationRate(R);
}
1 early()
{
 sim.addSubpop("p1", K);
 sim.addSubpop("p2", 0);
}

We use defined constants for several of the model parameters. The recipe here involves only
neutral mutations, but extending it to other types of mutations should present no difficulties.

This is a sexual model, so we set up separate sexes with initializeSex(). We are not
modeling sex chromosomes, but we will track the sex of individuals in both the diploid and
haploid phase; sperm will be considered “male”, and eggs “female”, in this model.

A key point in the design of this model is that although we are modeling only a single
subpopulation, we use two subpopulations in the model, p1 and p2. The first, p1, is used to hold
diploids; the second, p2, is used to hold the haploid sperm and eggs. This separation is not strictly
necessary, but it makes the design of the model simpler, because this way we can define a
reproduction() callback for p1 that reproduces the diploids (producing sperm and eggs), and a
separate reproduction() callback for p2 that reproduces the haploids (producing fertilized eggs
that develop into diploids). For other processing of the individuals in the model, such as
mutationEffect() callbacks, this partitioning will also prove useful, as we will see below.

The next step is to define the reproduction() callbacks. Let’s start with the one for p1:

reproduction(p1)
{
 g_1 = individual.genome1;
 g_2 = individual.genome2;

 for (meiosisCount in 1:5)
 {
 if (individual.sex == "M")
 {
 breaks = sim.chromosome.drawBreakpoints(individual);
 s_1 = p2.addRecombinant(g_1, g_2, breaks, NULL, NULL, NULL, "M");
 s_2 = p2.addRecombinant(g_2, g_1, breaks, NULL, NULL, NULL, "M");

 breaks = sim.chromosome.drawBreakpoints(individual);
 s_3 = p2.addRecombinant(g_1, g_2, breaks, NULL, NULL, NULL, "M");
 s_4 = p2.addRecombinant(g_2, g_1, breaks, NULL, NULL, NULL, "M");
 }

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 380

 else if (individual.sex == "F")
 {
 breaks = sim.chromosome.drawBreakpoints(individual);
 e = p2.addRecombinant(g_1, g_2, breaks, NULL, NULL, NULL, "F",
 randomizeStrands=T);
 }
 }
}

The definitions of g_1 and g_2 at the beginning are just shorthand, to keep the lines later in the
callback from being so long that they wrap when shown here. As usual in nonWF models, this
callback is called by SLiM once per individual in p1, giving the focal individual an opportunity to
reproduce – in this model, an opportunity to produce gametes. The top-level loop causes the focal
diploid individual to undergo meiosis exactly five times; this is an oversimplification, obviously,
but there is no need, in most models, to generate millions of sperm. Within the loop, male
individuals undergo meiosis by producing four sperm, whereas females produce just a single egg
(plus three “polar bodies” that are discarded by meiosis in most sexual species, due to anisogamy;
the polar bodies are not modeled here).

Gametes are produced by the addRecombinant() method, adding the resulting haploid
individuals to p2. The calls to addRecombinant() here pass NULL for the genomes and breakpoints
that generate the second genome of the offspring; this results in an empty second genome in the
offspring, as is typical when modeling haploids in SLiM. The genomes used to generate the first
genome of the offspring can be supplied as either (g_1, g_2) or (g_2, g_1); the first of the two
genomes supplied is the copy strand at the beginning of recombination. Since the sperm
generated use all of the genetic material from meiosis, both of those options are used (twice,
because of the homologous chromosomes involved in meiosis); since egg generation produces
only a single gamete, the choice of initial copy strand is randomized using randomizeStrands=T,
an optional flag for addRecombinant() that gives each strand (between g_1 and g_2, here) an equal
probability of being used as the initial copy strand.

Particularly for the sperm, since we want to generate the gametes in a realistic fashion following
the rules of meiosis, we generate the recombination breakpoints ourselves and use them to
generate complementary gametes. To generate breakpoints in the standard SLiM fashion, we call
the drawBreakpoints() method of Chromosome; by default this produces a set of breakpoints
identical to what SLiM would generate for its own internal use in reproduction. The number of
recombination breakpoints generated is chosen by drawBreakpoints(), by default, using the
overall recombination rate defined by the model.

Now let’s look at the reproduction() callback for p2, which contains haploid gametes:

reproduction(p2, "F")
{
 mate = p2.sampleIndividuals(1, sex="M", tagL0=F);
 mate.tagL0 = T;

 child = p1.addRecombinant(individual.genome1, NULL, NULL,
 mate.genome1, NULL, NULL);
}

This callback is defined only for females – i.e., eggs. Each egg gets to “reproduce” – be
fertilized – to produce a new diploid organism in p1. In this model a random sperm is chosen to
fertilize each egg, but one could easily implement phenomena such as sperm competition here to
make the choice non-random. We mark sperm that have been used to fertilize an egg with a
tagL0 value of T, so that they will not be used again; when we draw a random sperm, we specify

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 381

in the call to sampleIndividuals() that the sperm chosen must have a tagL0 value of F, indicating
that it has not already been used. Once the fertilizing sperm has been selected, it is tagged with a
value of T, and the diploid zygote is generated with a call to addRecombinant(). The call to
addRecombinant() here supplies only a single genome for each of the offspring genomes, with
NULL for the breakpoint vectors; this makes the offspring’s genomes a clonal copy of the
corresponding genomes from the gametes. Normally, new mutations would be generated and
added by SLiM during this clonal replication; we will fix that momentarily.

These callbacks implement the generation of gametes and then the fusion of gametes to
produce diploid zygotes; but a little additional machinery is needed, which we implement in an
early() callback that cleans up after reproduction and sets up for the next reproduction event:

early()
{
 if (sim.cycle % 2 == 0)
 {
 p1.fitnessScaling = 0.0;
 p2.individuals.tagL0 = F;
 sim.chromosome.setMutationRate(0.0);
 }
 else
 {
 p2.fitnessScaling = 0.0;
 p1.fitnessScaling = K / p1.individualCount;
 sim.chromosome.setMutationRate(MU);
 }
}

In even-numbered generations the top half of this event will execute; in odd-numbered
generations the bottom half will execute. In an even-numbered generation, at the point that
early() events are called, p1 will have just generated gametes. This recipe assumes non-
overlapping generations, so here we kill off the diploids by setting their fitnessScaling to 0.0; p1
will be emptied out completely. Next, we set the tagL0 values of all of the gametes in p2 to F; this
marks all of the sperm as unused, in preparation for the way the reproduction(p2) callback uses
the tagL0 property. Finally, we set the mutation rate to 0.0; we do not want new mutations to be
generated by SLiM during fertilization, so we need to disable mutation temporarily.

In odd-numbered generations, gametes have just undergone fertilization, filling p1 up with new
diploid offspring. We therefore kill off the haploid gametes by setting their fitnessScaling to 0.0;
p2 will be emptied out completely. Since each egg produces a zygote, we will have way too many
diploids; we will be far above carrying capacity. The next line thus implements density-dependent
fitness for p1, as usual in nonWF models; note that no such density-dependence was imposed
upon the gametes in this model. Finally, we set the mutation rate back up to the defined constant
MU, since we want new mutations to arise during gamete production.

With this design, the population will flip back and forth between p1 and p2 as it flips between
diploidy and haploidy, and the mutation rate will flip on and off as well. It would be
straightforward to implement overlapping generations of diploids in this model; one could even
delve into more esoteric ideas such as sperm storage. Fitness effects could differ in the haploid
and diploid phases, by implementing mutationEffect() callbacks that apply only to p1 or p2.

All that is left to finish off the model is a termination event, which here is trivial:

1000 late()
{
 sim.simulationFinished();
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 382

This approach to modeling the alternation of generations may be overkill in many practical
situations. This model runs much more slowly than the equivalent model of only the diploid
phase; for one thing, it is generating a population of gametes that is more than ten times larger
than the population of diploids, every generation. Other strategies for modeling life cycle
complexity may be usable instead; section 15.8, for example, presents a model of pollen flow
between subpopulations of plants, which is simple to model without getting down to the details of
modeling individual pollen grains and the sperm cells they produce as separate entities.
Additional biological realism should generally be incorporated into a model only when there is
reason to believe that it matters – that it would affect the results of the model. In some cases,
however – such as when one wishes to have selection operate in the haploid phase – the
additional biological realism of modeling alternation of generations may be useful. If you do want
to model alternation of generations, you might find the shadie Python package useful; it provides a
Python front end (with SLiM as a back end) for many such models (see section 1.10).

One could use the same basic concepts to model phenomena such as haplodiploidy (see
section 15.21); addRecombinant() allows many different mating systems to be modeled.
Partitioning the population according to genetics – here, diploids versus haploids – is also a useful
trick in many scenarios. Indeed, such artificial partitioning can be very useful in other contexts
too, such as storing non-reproducing juveniles separately from reproductive adults, or storing
sympatric but reproductively isolated groups separately. Since the spatial interaction engine of
InteractionType evaluates interactions on a per-subpopulation basis (see chapter 16), it can also
be useful to partition the population according to “interaction groups” – sets of individuals that
interact with each other – although interaction constraints (see section 16.18) are often better.

15.15 Meiotic drive
In section 12.3 we saw a model of a gene drive, a genetic construct that drives itself higher in

frequency by copying itself from one chromosome to the other. We implemented that mechanism
with a modifyChild() callback that copied the drive allele from one child genome to the other in
each newly generated offspring. In this section, we will look at a different type of drive: meiotic
drive. Meiotic drive involves an allele that, when heterozygous in a parent, somehow ensures that
it is inherited by more than 50% of offspring. Various physical mechanisms might underlie such an
inheritance bias, but the mechanism is unimportant for the model here; we will simply model an
introduced allele that exhibits meiotic drive.

There is more than one way that a meiotic drive could be implemented in SLiM. One could
imagine a modifyChild() callback that would check whether a parent had the drive allele, and if
so, and if it failed to be inherited by the proposed child, would return F to prevent generation of
that child. That approach would have the advantage of being compatible with WF models, but it
would entail significant overhead since many proposed offspring might be vetoed; and in a nonWF
model, the vetoing of proposed children would decrease the population size unless the model took
additional steps to ensure that vetoed crosses were redone. Here we will model a more intuitive
nonWF-based approach in which we control the recombination breakpoints that are used for
offspring generation, making breakpoints that lead to inheritance of the drive allele more likely
than breakpoints that do not. Offspring generation therefore always succeeds (unlike the
modifyChild() design), but inheritance of the meiotic drive allele is biased, as desired.

The bulk of the model is straightforward:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 383

initialize() {
 initializeSLiMModelType("nonWF");
 defineConstant("K", 500); // carrying capacity
 defineConstant("D_pos", 20000); // meiotic drive allele position
 defineConstant("D_prob", 0.8); // meiotic drive probability

 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 m1.convertToSubstitution = T;

 initializeMutationType("m2", 0.1, "f", -0.1); // drive allele
 m2.color = "red";
 m2.convertToSubstitution = F;

 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 10);
}
early() {
 p1.fitnessScaling = K / p1.individualCount;
}
100 early() {
 target = sample(p1.genomes, 10);
 target.addNewDrawnMutation(m2, D_pos);
}
100:1000 late() {
 mut = sim.mutationsOfType(m2);
 if (size(mut) == 0) {
 catn(sim.cycle + ": LOST");
 sim.simulationFinished();
 } else if (sim.mutationFrequencies(NULL, mut) == 1.0) {
 catn(sim.cycle + ": FIXED");
 sim.simulationFinished();
 }
}

Similar to the selective-sweep models of chapter 9, we introduce a drive allele in tick 100 and
monitor it for fixation or loss in every tick thereafter. Unlike those selective-sweep models,
however, the drive allele is strongly deleterious, with a selection coefficient of -0.1, so if left to its
own devices it would virtually always be lost quickly. However, the meiotic drive machinery will
take care of that problem. Here is the reproduction() callback for the recipe:

reproduction() {
 m = subpop.sampleIndividuals(1);
 b1 = driveBreakpoints(individual.genome1, individual.genome2);
 b2 = driveBreakpoints(m.genome1, m.genome2);
 subpop.addRecombinant(individual.genome1, individual.genome2, b1,
 m.genome1, m.genome2, b2);
}

This callback uses addRecombinant() to produce its offspring. We used this method before in
section 15.11 to implement clonal haploid reproduction, in section 15.12 to implement horizontal
gene transfer in bacteria, and in section 15.14 to implement alternation of generations. As those
diverse uses show, it is quite a flexible tool for precisely controlling offspring generation in unusual

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 384

models, and here we use it to control gamete production in such a manner as to enforce the
operation of the meiotic drive. The code here is very simple, however; we just choose a mate,
draw recombination breakpoints to generate the two gametes, and call addRecombinant() to
generate the offspring with those breakpoints. The real meiotic drive magic is in the
driveBreakpoints() function, which we define as follows:

function (i)driveBreakpoints(o<Genome>$ gen1, o<Genome>$ gen2)
{
 // start with default breakpoints generated by the chromosome
 breaks = sim.chromosome.drawBreakpoints();

 // if both genomes have the drive, or neither, then just return
 gen1has = gen1.containsMarkerMutation(m2, D_pos);
 gen2has = gen2.containsMarkerMutation(m2, D_pos);
 if (gen1has == gen2has)
 return breaks;

 // will the drive be inherited? do we want it to be?
 polarity = sum(breaks <= D_pos) % 2; // 0 for gen1, 1 for gen2
 polarityI = (gen1has ? 0 else 1);
 desiredPolarity = (runif(1) < D_prob) ? polarityI else !polarityI;

 // intervene to produce the outcome we want
 if (desiredPolarity != polarity)
 return c(0, breaks);
 return breaks;
}

This user-defined function begins by calling sim.chromosome.drawBreakpoints() to draw
recombination breakpoints following SLiM’s standard procedure (using whatever recombination
rate map has been defined, etc.). Remember that during meiosis, these breakpoints result in
crossovers that recombine the parental genomes, and biologically speaking, either result of this
crossing-over could end up as the gamete used in fertilization; if one possible gamete is AABABBB
(A and B representing genomic regions from the two parental genomes), there will be another
possible gamete that is BBABAAA, the reciprocal result from the crossing-over. What we do in this
function is simply bias the choice of which of these possible gametes actually gets used to produce
the offspring generated by SLiM. From the perspective of the meiotic drive allele, this choice only
matters if the parent is heterozygous, such that one gamete would contain the drive allele and the
other would not, so we check for that up front. If the parent is indeed heterozygous, then we look
at the proposed breakpoints to determine which parental genome would be the copy strand at the
meiotic drive location (represented by the variable polarity), and which parental genome ought
to be the copy strand at the meiotic drive location to produce the result we want (represented by
the variable desiredPolarity), whether that result is inheritance or non-inheritance of the drive
allele (as determined by a coin flip with probability D_prob). If those two are not the same – if it
would be be inherited but it oughtn’t to be, or it wouldn’t be inherited but it ought to be – we
simply add a new breakpoint at position 0 at the start of the breakpoint vector before returning it,
which has the effect of flipping which genome is used as the initial copy strand.

When this recipe is run, the meiotic drive allele introduced in tick 100 usually sweeps to
fixation, although occasionally it is lost early on due to the combination of drift and the selection
against it. The probability that it will sweep rather than being lost will depend upon how
deleterious it is, what the dominance coefficient for its fitness effect is, and the probability that it
will drive during meiosis (D_prob), among other things. Indeed, for some values of these

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 385

parameters the drive will tend to neither fix nor be lost, but instead will often equilibrate at an
intermediate frequency.

This recipe could also have been written with a recombination() callback that did essentially
the same work as the driveBreakpoints() function does here. That design would also be fine;
depending on what else needs to happen in the model, one or the other might be preferable. The
recombination() callback design would be usable in WF as well as nonWF models; on the other
hand, the design shown in this recipe might work better if, for example, the meiotic drive should
operate only in certain circumstances, such as environmental context, which might be easier to
determine at the level of the reproduction() callback than inside a recombination() callback.
For many purposes, both designs might be equally good.

This recipe could also be considered to represent other types of inheritance bias and
intragenomic conflict, such as an allele that is favored during competition among sperm from a
single mate, or an allele that causes lethal maternal effects in offspring from a heterozygous mother
that do not inherit the allele. (The latter case might be better implemented as a modifyChild()
callback, however, as discussed at the beginning of this recipe, since one might want such
mortality to actually depress the population size in a nonWF model.)

15.16 Range expansion in a stepping-stone model in two recipes
Section 5.3.1 demonstrated a linear stepping-stone model using the WF framework. As a WF

model, the population sizes were dictated as a top-down parameter, and so the model started with
all of the “stepping stones” already at carrying capacity. It is often desirable to have a more
dynamic population structure, which the nonWF model allows. Section 15.5 demonstrated this
with a non-spatial metapopulation, with extinction and recolonization of subpopulations. In this
section we’ll see how to implement a spatial stepping-stone model with that sort of dynamic
structure. More specifically, we will look at range expansion through a series of initially empty
subpopulations, seeded from a single subpopulation at the end of the “stepping stone” chain. This
model will also differ from section 15.5 in using non-overlapping generations, just for variety,
employing more or less the strategy of section 15.9. The most interesting contrast with section
15.5, however, is that that recipe moved migrants one at a time, rather inefficiently, whereas this
recipe shows how to pre-plan and then execute a complex pattern of migration in bulk with the
takeMigrants() method. An alternative recipe will then be presented, showing how to implement
the same migration behavior using a survival() callback instead of takeMigrants().

Here is the model except for the early() event that handles migration and population
regulation, and an additional output event we will see later:

initialize() {
 defineConstant("K", 1000); // carrying capacity per subpop
 defineConstant("N", 10); // number of subpopulations
 defineConstant("M", 0.01); // migration probability
 defineConstant("R", 1.04); // mean reproduction (as first parent)

 initializeSLiMModelType("nonWF");
 initializeMutationType("m1", 0.5, "f", 0.0);
 m1.convertToSubstitution = T;
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8);
}
reproduction() {
 // individuals reproduce locally, without dispersal

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 386

 litterSize = rpois(1, R);

 for (i in seqLen(litterSize))
 {
 // generate each offspring with an independently drawn mate
 mate = subpop.sampleIndividuals(1, exclude=individual);
 if (mate.size())
 subpop.addCrossed(individual, mate);
 }
}
1 early() {
 // create an initial population of 100 individuals, the rest empty
 for (i in seqLen(N))
 sim.addSubpop(i, (i == 0) ? 100 else 0);
}
1001 late() { sim.outputFixedMutations(); }

The 1 early() event sets up N subpopulations, all of which are empty except the first; setting
them all up ahead of time simplifies the logic in the rest of the model, since we can just assume
that all N subpopulations exist. We set up the numbering to start with p0, for simplicity when using
the zero-based indexing of Eidos. The reproduction() callback reproduces the focal individual by
choosing a litter size, based upon a Poisson draw with a mean of R; many individuals will have
one offspring, but many will have zero or two, and occasionally an individual will get lucky and
have three or more offspring. Note that the mean reproductive output R is from the perspective of
the focal individual, the first parent; individuals will also often be chosen as a mate, and generate
additional offspring in this way, but that is above and beyond their “own” reproduction. In this
model, each offspring is generated with a (probably) different mate, independently drawn, rather
than implementing monogamy. Selfing is not allowed, using the exclude= parameter of
sampleIndividuals(), even though this is a hermaphroditic model, which makes colonization
significantly more difficult; a new colony must be seeded with at least two individuals to have any
chance of establishment.

Before this model can run, it needs some population regulation, as well as migration:

early() {
 inds = sim.subpopulations.individuals;

 // non-overlapping generations; kill off the parental generation
 ages = inds.age;
 inds[ages > 0].fitnessScaling = 0.0;
 inds = inds[ages == 0];

 // pre-plan migration of individuals to adjacent subpops
 numMigrants = rbinom(1, inds.size(), M);

 if (numMigrants)
 {
 migrants = sample(inds, numMigrants);
 currentSubpopID = migrants.subpopulation.id;
 displacement = -1 + rbinom(migrants.size(), 1, 0.5) * 2; // -1 or +1
 newSubpopID = currentSubpopID + displacement;
 actuallyMoving = (newSubpopID >= 0) & (newSubpopID < N);

 if (sum(actuallyMoving))
 {
 migrants = migrants[actuallyMoving];
 newSubpopID = newSubpopID[actuallyMoving];

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 387

 // do the pre-planned moves into each subpop in bulk
 for (subpop in sim.subpopulations)
 subpop.takeMigrants(migrants[newSubpopID == subpop.id]);
 }
 }

 // post-migration density-dependent fitness for each subpop
 for (subpop in sim.subpopulations)
 {
 juvenileCount = sum(subpop.individuals.age == 0);
 subpop.fitnessScaling = K / juvenileCount;
 }
}

This has three parts. The first part just implements non-overlapping generations by killing every
individual with an age greater than zero, by setting their fitnessScaling to zero. At the end of
this part, the script refocuses the variable ind down to just the survivors of that cull: the juveniles.

The second part handles migration. The logic here is vectorized for efficiency, so it is a bit
subtle. First, we decide how many individuals will attempt to migrate; this is a single binomial
draw with a probability of M for each “trial” – each individual. If at least one individual is
migrating, we proceed by drawing the actual migrants using sample(), without replacement. The
subpopulation of all the migrants is obtained from the subpopulation property of Individual, and
then we get the id of those subpopulations so that we can work with the subpopulations as
integer values. Next we decide where each migrant wants to move, by drawing a -1 or +1
displacement for each migrant using rbinom(), and adding that displacement to each migrant’s
current subpopulation id.

The next step is probably the trickiest bit. If an individual is in p0 and wants to move
“leftward”, to an id of -1, or if an individual is in p9 and wants to move “rightward”, to an id of
10, we want to prohibit those moves; those individuals just won’t migrate after all. We calculate,
for each migrant, whether they are actually moving or not, based on this heuristic. If we’re left
with any individuals that are actually moving, we want to refocus our efforts down onto that
subset, and forget about the individuals that aren’t moving after all. We do that by redefining
migrants and newSubpopID as being the subset of their old values where actuallyMoving is T. (If
this is unclear, note that this sort of vectorized logic is covered in more detail in the Eidos manual,
and in the online SLiM workshop.)

Now we know exactly who is moving, and where they are moving to. We implement our pre-
planned migration with a for loop through the subpopulations, moving all individuals with a
destination of subpop at one time with a single call to takeMigrants(). This is one virtue of pre-
planning the migration before executing it; it allows much more efficient migration, since a single
vectorized call to takeMigrants() is much faster than separate calls for each individual being
moved. (The overhead for each separate call to takeMigrants() is actually fairly large, for internal
implementation reasons; moving ten individuals one at a time actually takes much more than ten
times as long as moving all ten at once.) The other virtue of pre-planning the migration is that
individuals can only one one “step” per tick; if, instead, we chose and moved migrants from p0,
then chose and moved migrants from p1, etc., a lucky individual might manage to be chosen from
p0 and moved to p1, then chosen from p1 and moved to p2, all in a single tick – violating our
intended migration dynamics. In general, pre-planning is almost always the best design for
migration in nonWF models, to avoid such issues.

Finally, the last part of the early() event implements density-dependent fitness. This should be
familiar; the only thing to note is that the density-dependence implemented here depends upon

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 388

the final number of individuals in each subpopulation, after migration, and it is based only on the
number of juveniles; the parental generation is, effectively, already gone.

The recipe is not quite done yet, but we can recycle and run it, and the range expansion
dynamics will proceed as intended. Since R and M are both fairly small, and two individuals are
needed to colonize, expansion is fairly slow. Here’s a plot from SLiMgui’s “Population
Visualization” graph, showing the population structure a little after 200 ticks in:

The expansion has reached as far as p7, but several of the subpopulations at the end of the
chain are still relatively small in size. By chance, p6 is delivering an unusually large fraction of
migrants into p7 in this tick.

This visualization helps to reassure that the model is working correctly, but for analysis it would
be helpful to have quantitative metrics regarding the progress of the range expansion over time. To
do this, we will leverage the LogFile class, a new feature in SLiM 3.5 that was introduced in
section 4.2.5. We can add a new 1 late() event to create and configure a new LogFile:

1 late() {
 // set up a log file
 log = community.createLogFile("sim_log.txt", sep="\t",
 logInterval=10);
 log.addCycle();
 log.addPopulationSize();
 log.addMeanSDColumns("size", "sim.subpopulations.individualCount;");
 log.addCustomColumn("pop_migrants",
 "sum(sim.subpopulations.individuals.migrant);");
 log.addMeanSDColumns("migrants",
 "sapply(sim.subpopulations, 'sum(applyValue.individuals.migrant);');");
}

The log file will be a TSV (tab-separated values) file, since we requested a tab separator with
sep="\t", and new rows will be appended every 10 ticks automatically. Columns will be in the
order configured here: first the cycle number, then the overall population size, and then several
custom columns. The addMeanSDColumns() method takes a lambda – a string containing Eidos
source code – that is expected to return a vector of values, and it appends columns containing the
mean and standard deviation of that vector. Our first use of it here will provide the mean and
standard deviation of the sizes of the subpopulations in the model. Then we use
addCustomColumn() to add a single column containing the total number of migrants in the
population, calculated with another lambda. Finally, we add columns with the mean and standard
deviation of the number of migrants in each subpopulation, so we can get a sense of how the
migrant fraction of the subpopulations varies. With a few lines of code, we now have automatic
logging of some fairly sophisticated simulation metrics.

p0
p1

p2

p3

p4
p5

p6

p7

p8

p9

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 389

Running the model with this logging produces an output file like this:

cycle num_individuals size_mean size_sd pop_migrants migrants_mean migrants_sd
1 100 10 31.273 1 0.1 0.316228
11 149 14.9 46.4195 2 0.2 0.632456
21 207 20.7 64.066 1 0.1 0.316228
...
381 9218 921.8 238.048 96 9.6 4.24788
391 9400 940 176.237 82 8.2 2.78089
401 9515 951.5 142.741 72 7.2 3.01109
411 9897 989.7 31.4503 108 10.8 3.58391
421 9995 999.5 4.08928 78 7.8 2.25093
431 10023 1002.3 9.60382 93 9.3 2.90784
441 9984 998.4 10.0907 89 8.9 3.95671
451 10024 1002.4 7.74884 87 8.7 3.59166
...
1001 9991 999.1 8.5173 97 9.7 3.23351

These metrics make it clear that the range expansion has essentially ended by tick 421. At the
end, subpopulations are receiving an average of about 9 migrants per tick, and their size has
equilibrated at our K of 1000 as intended. We could now add in some non-neutral dynamics, with
perhaps some additional LogFile columns measuring things like mutation frequencies, mean
fitness, or FST between different population pairs, perhaps leveraging SLiM’s population-genetics
utility functions documented in section 25.18.2 – also new in SLiM 3.5.

With SLiM 3.7 there is an alternative way to implement migration in nonWF models, using a
survival() callback (see section 26.10). These callbacks, as their name suggests, control survival
during the mortality phase of the tick cycle; this use of survival() callbacks was shown in section
15.13, for example. However, they can also be used to move individuals between subpopulations
during the mortality phase. This extension makes sense, philosophically, if death is regarded as
simply the movement of an individual to a different place – the “land of the dead” in mythology,
such as Niflheim, Mictlan, etc. Section 15.19 will present a model that does this quite literally,
storing dead individuals in a “cold storage” subpopulation for later reference. If death is just a
special type of migration, then allowing other migration to also occur during SLiM’s mortality
phase makes eminent sense! In any case, more pragmatically, SLiM offers this feature because it
provides a convenient alternative mechanism for implementing migration that can be simpler than
the pre-planning strategy necessary with takeMigrants() shown above. A survival() callback is
called once for each focal individual in the model, so there is no need for pre-planning to prevent
an individual from being moved more than once in a given tick.

Most of the script for this alternative recipe is the same as presented above, and will not be
shown again here (the complete recipe is available in SLiMgui’s File menu as usual). The early()
event no longer has any takeMigrants() migration code:

early() {
 // non-overlapping generations; kill off the parental generation
 inds = sim.subpopulations.individuals;
 sim.killIndividuals(inds[inds.age > 0]);

 // pre-migration density-dependent fitness for each subpop
 for (subpop in sim.subpopulations)
 subpop.fitnessScaling = K / subpop.individualCount;
}

This alternative recipe also takes a different approach to implementing non-overlapping
generations, using killIndividuals() instead of setting the fitnessScaling of the parental
generation to 0.0. We last saw killIndividuals() in section 15.5; it can be a convenient way to
immediately kill individuals without waiting for the viability/survival tick cycle stage to happen.
Notice how the immediacy of killIndividuals() results in a simplification of the density-

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 390

dependence code, too; compare it to the same code in the previous version of the recipe, which
had to carefully exclude the parental generation from the density-dependence.

And then we add a survival() callback that implements the new migration scheme:

survival() {
 // honor SLiM's survival decision
 if (!surviving)
 return NULL;

 // migrate with probability M
 if (runif(1) >= M)
 return NULL;

 // migrate the focal individual to an adjacent subpop
 subpops = sim.subpopulations;
 newSubpopID = subpop.id + (-1 + rbinom(1, 1, 0.5) * 2); // -1 or +1
 newSubpop = subpops[subpops.id == newSubpopID];
 if (newSubpop.size())
 return newSubpop;
 return NULL;
}

The first couple of lines simply return NULL, telling SLiM to go ahead with its default survival
decision for the focal individual, if the focal individual is slated to die (we don’t want to interfere
with that outcome). The next couple of lines similarly return NULL if a random draw indicates that
the focal individual is not migrating (migration occurring with probability M). If we do not return
NULL at either of these points, it means that the focal individual is attempting to migrate, so the rest
of the survival() logic handles the migration behavior. It begins by calculating the new
subpopulation id that the migrant will move to (+1 or -1 from its current position) and looking up
the subpopulation with that id. That lookup can fail, if an individual in subpop 0 tries to move in
the -1 direction or an individual in subpop N-1 tries to move in the +1 direction; in those cases,
NULL is returned to leave the focal individual where it is. Otherwise, the callback returns the new
subpopulation for the focal individual, and SLiM will move the individual for us.

There is one key difference between these two recipes that has been glossed over until now: the
timing of migration with respect to selection. In the first version of the recipe, the early() event
moved individuals first, and then imposed density-dependent fitness upon individuals in their new
subpopulations; a comment in the early() event thus read “post-migration density-dependent
fitness”. In this new version of the model, the early() event imposes density-dependent fitness
upon individuals in their original subpopulations, and then the survival() callback moves
individuals to their new subpopulations after the selection decisions have, in effect, already been
made (in actual fact the two happen simultaneously, during the mortality phase, but the probability
of survival for each individual is based upon the fitnessScaling value calculated by the early()
event prior to migration). For this reason, the comment in the early() event was changed to read
“pre-migration density-dependent fitness” above. It would be easy to modify the first recipe to do
pre-migration density-dependence; takeMigrants() can be called at almost any time, so the timing
of migration is very flexible with that approach. It would be difficult to modify the second recipe
to do post-migration density-dependence, however, since the migration is occurring at the same
time as mortality decisions are being made, and so the final post-migration density of each
subpopulation is not yet known when the survival decision for a given individual needs to be
made. The survival() callback approach to migration is therefore less flexible than the
takeMigrants() approach; however, it can still be very useful!

We can confirm that the model still works as intended with another plot:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 391

This snapshot, again taken a little after tick 200, shows that the migrational dynamics of the
model are working much as they did before; the timing of migration in the tick cycle did change,
as discussed above, but that makes little difference to this particular model.

15.17 Logistic population growth with the Beverton–Holt model
In this section we will look at three different methods of regulating population size, using three

different subpopulations in a single model without migration. For simplicity and comparability, all
three methods will use non-overlapping generations. We will compare their results and discuss
their differences.

The non-spatial nonWF models presented in this manual (such as in section 15.1) generally use
a very simple density-dependence equation for the regulation of population size, with a form like
this (we will call this the “simple model” in our discussion below):

p1.fitnessScaling = K / p1.individualCount;

This scales the fitness of the population so that if there are at least K individuals before viability
selection, the population size after viability selection will be K (on average, with stochastic
variation). In other words, it simply enforces a carrying capacity of K. If there are fewer than K
individuals, then the fitnessScaling value for the population will be greater than 1.0, and so
every individual will survive (for otherwise neutral models), which allows the population size to
grow exponentially as long as the reproduction rate is above zero. As discussed in section 15.4, K
will be the actual equilibrium population size for the model only if the model is neutral;
deleterious mutations will decrease mean fitness and cause equilibration below K, whereas
beneficial mutations will increase mean fitness and cause equilibration above K, which often
makes sense from a biological perspective. The “simple model” is therefore a nicely individual-
based and emergent model that encapsulates absolute fitness and hard selection, in general.

The “simple model” can easily be adapted to non-overlapping generations, as for example in
section 15.9, by killing off the parental generation and then applying the “simple model” just to
the offspring:

inds = p1.individuals;
inds[inds.age > 0].fitnessScaling = 0;
n_t_plus_pt5 = sum(inds.age == 0);
p1.fitnessScaling = K / n_t_plus_pt5;

Here we use the variable name n_t_plus_pt5 for the number of juveniles produced by
reproduction, for reasons that will become more clear below. The fitnessScaling for the
juveniles depends only upon the number of juveniles, n_t_plus_pt5, since the parental generation

p0
p1

p2

p3

p4
p5

p6

p7

p8

p9

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 392

has, conceptually, already died. This will be the first of the three population-regulation models we
will examine in this section.

However, in some respects the “simple model” is not ideal. In particular, it generates
exponential growth in population size until K is reached, whereas for many biological systems
logistic growth may be more realistic. For continuous-time models such as the Lotka–Volterra
model, the logistic equation itself is often used; for discrete-time models such as those in SLiM, the
Beverton–Holt model is often used to provide similar logistic population growth. The Beverton–
Holt equation looks like this:

The population size at the next timestep, , is a function of its size at the current time, , the
proliferation rate per generation, (often called , but we will ignore that distinction here for
simplicity) and the model parameter , where the carrying capacity is .

One key point to notice here is that, philosophically, the Beverton–Holt model is fundamentally
different from the “simple model”, because it includes both birth and death in a single equation;
the new population size is expressed as a function of the old population size times the
proliferation rate (birth), limited by the carrying capacity (death). In the “simple model”, on the
other hand, we assume that reproduction has already happened, and we are interested solely in
the probability of survival for the individuals now alive. In this sense, the Beverton–Holt model
could be viewed as a model of density-dependent fecundity, rather than a model of density-
dependent survival; it is, in a sense, scaling the reproduction rate of the population according to
population density. That can be biologically realistic; there are certainly species that vary their
fecundity with density in such a manner. One could write this perspective into a SLiM nonWF
model, too; one could write a reproduction() callback that would generate offspring at an
appropriate rate to obey the Beverton–Holt equation (with non-overlapping generations, for our
purposes here), and then not have any density-dependence at the viability/survival tick cycle stage
at all. This will be the second of the three population-regulation models we will examine.
(Section 15.13 provides a similar approach for the “simple model” as an expression of fecundity
rather than survival; this is similar to the Wright–Fisher model, with reproduction up to
regardless of any intrinsic reproduction rate .)

But one can also view the Beverton–Holt equation as an expression of density-dependent
survival; it’s just that from this perspective it is (I think, and will argue) a bit odd. Viewed in this
way, there are three population sizes that we need to be concerned with, not just two: we have ,
the parental population size at time t before reproduction, we have what I will call , the
number of juveniles produced by reproduction (equal to), and we have , the number of
surviving juveniles after mortality, which will be the pre-reproduction parental individuals for the
next generation. In SLiM, we will move from to by reproduction at rate R, just as in the
first model. We will then move from to by mortality due to some mean population
fitness, calculated based upon the Beverton–Holt model. To figure out how to do the latter move,
let’s rewrite the standard Beverton–Holt equation above, substituting in place of using the
fact that . The in the denominator of the original equation becomes as a
result; note that by dividing by we are effectively back-estimating the original, pre-
reproduction population size from the post-reproduction size and . This is necessary
because conceptually, once we are at the juvenile-mortality phase of the tick cycle we no longer
“remember” what the original pre-reproduction population size was; all we know (or all we ought

nt+1 =
Rnt

1 + nt /M

nt+1 nt
R R0

M K = (R − 1)M

K
R

nt
nt+0.5

Rnt nt+1

nt nt+0.5
nt+0.5 nt+1

nt+0.5 nt
nt+0.5 = Rnt nt nt+0.5 /R

nt+0.5 R
nt nt+0.5 R

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 393

to pretend we know, for biological realism) is the current population size after the parental
generation has died, which is . With that substitution, we then have:

This is the form of the equation that makes sense for use in SLiM, because we can now
calculate the proper fitnessScaling value as by dividing both sides by . This will
be the third of the three population-regulation models we will examine.

The oddity of this is that we can’t really excise from the model by redefining our terms in this
way and thinking only in terms of the post-reproduction number of juveniles; when we do so, we
then have to use R to back-estimate the pre-reproduction size from . What this expresses is
that the logistic growth modeled by the Beverton–Holt equation depends intrinsically upon the
reproduction rate, even when it is modeled as mortality. For example, suppose the carrying
capacity is 1000, and the post-reproduction population size is 500, and we want to know
what the post-selection population size ought to be. The answer, according to the Beverton–
Holt model, depends upon ; the survival rate of the juveniles is not solely governed by the
number of juveniles and the carrying capacity, as it is in the “simple model”, but also by the
reproduction rate. If you think about what logistic population growth entails, you will see that it
cannot be otherwise; and yet it is quite strange from an individual-based perspective in which one
wishes to draw a clear conceptual separation between reproduction and survival, as SLiM does.
This means that when we calculate a fitnessScaling value using the Beverton–Holt equation, we
must include (or) in our equation. We can certainly do that, as shown above; we just should
not be surprised that we have to do so. This is another angle on the idea that the Beverton–Holt
model is more naturally thought of as expressing density-dependent fecundity rather than density-
dependent survival. This is important to understand, because if you want to use the Beverton–Holt
equation in a model with more complex, individual-based reproduction, such as age-structured
reproduction rates, you will need to think about this explicitly; you will either have to algebraically
derive the theoretical reproduction rate for your model, or you will have to use the pre-
reproduction population size and the current size to calculate the realized reproduction
rate , even though the parental individuals, conceptually, no longer exist. One way or another,
the Beverton–Holt model needs to know . Note that if the rather philosophical discussion here is
impenetrable – or if you disagree with my philosophical points! – that isn’t really important, as
long as the derivation of the fitnessScaling value that we will use to govern mortality
is clear.

With those caveats, we have now described the three population regulation approaches that we
would like to compare. Here’s the setup portion of the corresponding recipe:

initialize() {
 defineConstant("K", 50000);
 defineConstant("R", 1.1);
 defineConstant("M", K / (R - 1));

 initializeSLiMModelType("nonWF");
 initializeMutationType("m1", 0.5, "f", 0.0);
 m1.convertToSubstitution = T;
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8);
}

nt+0.5

nt+1 =
nt+0.5

1 + nt+0.5 /R M

nt+1/nt+0.5 nt+0.5

R

nt nt+0.5

K nt+0.5
nt+1

R

R M

R
nt nt+0.5

R
R

nt+1/nt+0.5

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 394

1 early() {
 sim.addSubpop("p1", 50); // the "simple model"
 sim.addSubpop("p2", 50); // Beverton-Holt influencing fecundity
 sim.addSubpop("p3", 50); // Beverton-Holt influencing survival

 log = community.createLogFile("sim_log.txt", logInterval=1);
 log.addCycle();
 log.addSubpopulationSize(p1);
 log.addSubpopulationSize(p2);
 log.addSubpopulationSize(p3);
}

The initialization is boilerplate, except that we define the constants K, R, and M that we will need
for our equations. The 1 early() event sets up our three subpopulations, each with an initial size
of 50. It also creates and configures a new LogFile object that will log out the size of each
subpopulation in each tick; see section 4.2.6 for an introduction to the LogFile class.

Next, we have three separate reproduction() callbacks, one for each of our three
subpopulations:

reproduction(p1) {
 // p1 simply reproduces with a mean litter size of R, like p3
 litterSize = rpois(1, R);
 for (i in seqLen(litterSize))
 subpop.addCrossed(individual, subpop.sampleIndividuals(1));
}

reproduction(p2) {
 // p2 reproduces up to the Beverton-Holt equation's target
 n_t = subpop.individualCount;
 n_t_plus_1 = (R * n_t) / (1 + n_t / M);
 mean_litter_size = n_t_plus_1 / n_t;
 litterSize = rpois(1, mean_litter_size);

 for (i in seqLen(litterSize))
 subpop.addCrossed(individual, subpop.sampleIndividuals(1));
}
reproduction(p3) {
 // p3 simply reproduces with a mean litter size of R, like p1
 litterSize = rpois(1, R);
 for (i in seqLen(litterSize))
 subpop.addCrossed(individual, subpop.sampleIndividuals(1));
}

The p1 and p3 callbacks implement identical individual-based reproduction logic: choosing a
litter size from a Poisson distribution with mean R, and generating that litter size with a randomly
chosen mate for each offspring. This provides population growth at (approximately) the desired
proliferation rate R. For p2, we adopt a different strategy, because this is the subpopulation using
the Beverton–Holt equation as a model of fecundity. Here, reproduction is density-dependent;
individuals have fewer offspring as density increases, and R expresses the maximum proliferation
rate, attained only at low density. To model this, we use the Beverton–Holt equation to calculate
the number of offspring, , that we ought to generate given the parental generation size . Then
we calculate what our true reproduction rate, , ought to be, and we use that as the mean
litter size to reproduce the focal individual. We draw the actual litter size from a Poisson
distribution with mean mean_litter_size, and the rest of the reproduction code is the same as for

nt+1 nt
nt+1/nt

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 395

the other subpopulations. This is a sort of stochastic, individual-based version of the Beverton–
Holt model; the population doesn’t always produce exactly offspring, but each individual’s
reproductive behavior is such that the average number of offspring in the population will be .

Finally, we implement non-overlapping generations and density-dependence:

:200 early() {
 // p1 uses the "simple model" with non-overlapping generations
 inds = p1.individuals;
 inds[inds.age > 0].fitnessScaling = 0;
 n_t_plus_pt5 = sum(inds.age == 0);
 p1.fitnessScaling = K / n_t_plus_pt5;

 // p2 has selection only to achieve non-overlapping generations
 inds = p2.individuals;
 inds[inds.age > 0].fitnessScaling = 0;

 // p3 uses the Beverton-Holt equation for survival
 inds = p3.individuals;
 inds[inds.age > 0].fitnessScaling = 0;
 n_t_plus_pt5 = sum(inds.age == 0);
 p3.fitnessScaling = 1 / (1 + (n_t_plus_pt5 / R) / M);
}

For p1, we kill the parental generation and then implement the “simple model” for density-
dependence, just as shown at the beginning of this section (and now it should be clear why we
used the symbol n_t_plus_pt5 for the number of juveniles, since we called that quantity in
the discussion above). For p2, all we need is to kill the parental generation; we implemented the
Beverton–Holt equation in p2’s reproduction() callback. For p3, we kill the parental generation
and then apply a fitnessScaling for the Beverton–Holt model, , as derived above for
this third population model.

The output from LogFile allows us to easily plot the behavior of the three models in R:

The logistic curves of the two Beverton–Holt models are clearly different from the exponential
curve of the “simple model”. The two Beverton–Holt models, on the other hand, perform quite
similarly. All three models are subject to stochastic variation, and a particularly low reproduction
rate early on can have a long-lasting effect of population growth; indeed, extinction is even
possible for all three models. Here, however, we avoided such unlucky outcomes.

15.18 Dynamic population structure in nonWF models
Section 5.2 showed how to handle dynamic population structure in WF models: adding and

removing subpopulations, and also the more complex operations of splitting and joining

nt+1
nt+1

nt+0.5

nt+1/nt+0.5

0 50 100 150 200

Generation

Po
pu

la
tio

n
si

ze

0
25
00
0

50
00
0

p1
p2
p3

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 396

subpopulations. We have seen some types of dynamic population structure in previous nonWF
recipes, such as the metapopulation extinction-colonization dynamics of section 15.5 and the
range expansion scenario of section 15.16. Those models essentially involved moving individuals
around between pre-existing subpopulations, using the takeMigrants() method. However, we
haven’t yet seen how to do those more complex operations: splitting and joining subpopulations.
We’ll cover that here; however, in a nonWF model, since we are responsible for explicitly making
all decisions for our modeled individuals, we have to decide exactly how those operations work.
The first thing we have to do, then, is figure out exactly what we want our model to do.

For splitting a subpopulation, there are two obvious choices. One option would be to create a
new zero-size subpopulation and move individuals into it from an existing subpopulation using
takeMigrants(). It’s pretty obvious how to implement this – just call addSubpop() with a size of 0,
choose target individuals to move, and move them. We’ve seen a similar approach in those
previous sections, so we won’t dwell on that here. The other option would be to create a new
zero-size subpopulation and generate new individuals for it in the next generation, filling it up
with new juvenile individuals that were generated from parents in the other subpopulations. It is
less obvious how to implement that, so that is what we will do here. The two are conceptually
somewhat different; the first might resemble some kind of vicariance event that splits an existing
subpopulation in two, whereas the second might represent a species that always has excess
juvenile production, and in some kind of chance long-distance dispersal event some of those
excess juveniles land in a new, unoccupied habitat and colonize it. Which approach makes sense
for your simulation is a question of the real-world biology you are trying to model, but as I wrote
above, in this section we will implement the second approach.

For joining a subpopulation, there are similarly two obvious choices. One option would be to
simply move all of the individuals from one subpopulation into the other with takeMigrants(),
and then remove the now-empty subpopulation from the model. All of the individuals, whatever
their ages, sexes, habitat preferences, etc., will now be together, and the next time reproduction
occurs you will start to generate hybrids. The original subpopulations will be lost; only the joined
subpopulation will now exist. Again, this approach should be very easy to implement from what
we saw in previous recipes using takeMigrants(), so we will not dwell on it here. The other
option would be to create a new subpopulation with addSubpop() of size 0, and generate new
juveniles into it that are the result of hybridization between the two original subpopulations. This
gives us much greater control. We can make the original subpopulations dwindle away over time
as the new hybrid subpopulation grows, or we can keep them around in parallel with the new
hybrid subpopulation. We can also control which individuals mate with which during the
production of hybrids, allowing any process of hybridization we want (assortative or disassortative
mating, age or sex biases in the choice of parents, and so forth). It is again less obvious how to
implement this type of population admixture, so we will focus on it here.

To keep things simple, we will implement a very basic scenario for these events: starting with
two subpopulations, joining them in a single tick, then splitting off a new subpopulation in a single
tick. We will model only neutral mutations, no migration except for the split and join events, and
emergent overlapping generations and age structure. The techniques seen in other recipes for age
structure, migration, etc., could be added.

Here’s the start of the recipe:

initialize() {
 initializeSLiMModelType("nonWF");
 initializeMutationType("m1", 0.5, "f", 0.0);
 m1.convertToSubstitution = T;

 initializeGenomicElementType("g1", m1, 1.0);

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 397

 initializeGenomicElement(g1, 0, 99999);
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8);
}
reproduction() {
 // each subpopulation reproduces within itself
 subpop.addCrossed(individual, subpop.sampleIndividuals(1));
}
1 early() {
 // start with two subpops that grow to different sizes
 sim.addSubpop("p1", 10).setValue("K", 500);
 sim.addSubpop("p2", 10).setValue("K", 600);
}
early() {
 // density-dependent regulation for each subpop
 for (subpop in sim.subpopulations) {
 K = subpop.getValue("K");
 subpop.fitnessScaling = K / subpop.individualCount;
 }
}
5000 late() { }

In most respects this is unsurprising. We create two subpopulations, p1 and p2; a single
reproduction() callback is used to reproduce both of them (and any other subpopulations that
might exist later on); and we implement density-dependent population regulation for each
subpopulation. The only unusual thing here is that we keep the carrying capacity value for each
subpopulation, K, attached to the subpopulation itself using setValue() and getValue(); this
makes it easy to write the density-dependence code as a simple loop over all existing
subpopulations, regulating each in turn. Note that we give p1 and p2 different sizes, just because
we can. The model runs to tick 5000.

Next, let’s implement the join event. We want p1 and p2 to merge together to form p3 in tick
1000, not by moving individuals with takeMigrants() – which we certainly could do – but by
generating new hybrid offspring and placing them into p3. To make things a bit more interesting,
we will choose the first parent of each offspring randomly from the pool of available individuals
(slightly favoring p2, note, since it has a larger number of individuals due to its larger carrying
capacity), but we will choose the second parent of each offspring with a large bias toward p2. This
is a hermaphroditic model, but the same basic technique could be used to create a bias toward
one source subpopulation specifically for the male parents in each mating, for example. The
implementation looks like this:

999 late() {
 // create a zero-size subpop for the join
 sim.addSubpop("p3", 0).setValue("K", 750);
}
1000 reproduction() {
 // generate juveniles to seed p3
 founderCount = rdunif(1, 10, 20);
 p1_inds = p1.individuals;
 p2_inds = p2.individuals;
 all_inds = c(p1_inds, p2_inds);

 for (i in seqLen(founderCount))
 {
 // select a first parent with equal probabilities
 parent1 = sample(all_inds, 1);

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 398

 // select a second parent with a bias toward p2
 if (rdunif(1) < 0.2)
 parent2 = sample(p1_inds, 1);
 else
 parent2 = sample(p2_inds, 1);

 // generate the offspring into p3
 p3.addCrossed(parent1, parent2);
 }

 // we're done, don't run again this tick
 self.active = 0;
}
1000 early() {
 // get rid of p1 and p2 now
 c(p1,p2).fitnessScaling = 0.0;
}

We start off in tick 999 by creating p3 ahead of time. This is necessary because SLiM does not
allow us to call addSubpop() from inside a reproduction() callback; new subpopulations, into
which we want to generate offspring, must be created in advance.

Then, in tick 1000, we define a new reproduction() callback. This creates all of the new
offspring to fill p3, from parents chosen from p1 and p2 as described above. It does this in one “big
bang” and then disables itself by setting self.active to 0, so that it runs only a single time; we
have seen this strategy in various recipes before, such as those in sections 15.3 and 15.13. The
workings of this callback should be fairly obvious. The important point to notice here is that you
are allowed to define more than one reproduction() callback in a model; SLiM will run all of the
callbacks that are enabled for a given tick, and each callback can do its own reproduction. For
this reason, the generic reproduction() callback we defined before will run as usual in tick 1000,
and will reproduce p1 and p2 as usual; in tick 1000 the reproduction() callback above will run in
addition, and will generate additional offspring that will go into p3. Biologically, this might
represent surplus offspring that were unmodeled in other ticks (since the surplus individuals would
just die as a result of density-dependence anyway), but that in tick 1000 happen to find their way to
a new habitat due to some chance event.

After reproduction has finished, early() events run, and the 1000 early() event here just
empties out p1 and p2 by setting their fitnessScaling value to 0. All individuals in those
populations will subsequently die, since their fitness will be 0. This approach keeps p1 and p2 in
existence, but empty. (We could call removeSubpopulation() on them instead, to actually remove
them, but in SLiM 3.5 there was a bug that caused that approach to throw an error during SLiM’s
mutation tallying, so let’s avoid that.)

Finally, we want to split off a new subpopulation, p4, from p3 in tick 2000. Rather than doing
this by moving founders from p3 to p4 with takeMigrants() – which we certainly could do – we
want to generate new founders for p4 from parents in p3. The implementation for that looks like
this:

1999 late() {
 // create a zero-size subpop for the split
 sim.addSubpop("p4", 0).setValue("K", 100);
}
2000 reproduction() {
 // generate juveniles to seed p4
 founderCount = rdunif(1, 10, 20);
 all_inds = p3.individuals;

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 399

 for (i in seqLen(founderCount))
 {
 // select parent1/parent2 with equal probabilities
 parent1 = sample(all_inds, 1);
 parent2 = sample(all_inds, 1);

 // generate the offspring into p4
 p4.addCrossed(parent1, parent2);
 }

 // we're done, don't run again this tick
 self.active = 0;
}

The approach here should seem very familiar; it is quite parallel to the subpopulation joining
code we saw before. We create p4 in tick 1999 with a size of 0, and give it its carrying capacity.
Then in 2000 a custom reproduction() callback selects parents from p3 (with no bias, in this case)
and generates offspring into p4. Again, our generic reproduction() callback will run in addition
to this, reproducing p3 as usual; here we are generating offspring in addition to that. We allow p3
to continue to exist in this case, since we’re modeling a split instead of a join.

That’s all there is to it; however, the strategies shown here can easily be generalized. You could
select parents with whatever criteria you wish, to generate founding juveniles with whatever
parental bias you desire in terms of age, sex, genetics, or other traits. You could do an n-way split
or an n-way join, instead of the 2-way split and 2-way join shown here, selecting parents from the
source populations in whatever proportions you desire. And all of this can be generalized beyond
the concept of splits and joins; you can write a recombination() callback to generate offspring in
any way you wish, from any parents you choose, into any destination subpopulations. As always,
the rule should be: start with the biology you want to model, and then ask “What’s the best way to
model this biology?” Whether your biological system involves seasonal migration of adults or one-
time dispersal of juveniles, whether it includes monogamous mating or broadcast spawning,
whether mating is assortative or random, etc., should dictate the structure of the reproduction code
you write. Just about any reproductive strategy can be implemented in a nonWF model.

15.19 Sperm storage with a survival() callback
Sometimes it is desirable to put individuals into “cold storage” – keeping them around for later

purposes, without having them act like normal living organisms in the model. One example of this
is a “seed bank”, in which seeds wait to germinate at a later time; another is “resting eggs” that lie
dormant until they hatch, such as exist in species like Daphnia. Seeds and resting eggs can be
implemented by generating the individual that they would produce (the germinated plant, the
hatched Daphnia) but keeping it in a cold storage subpopulation for an indeterminate length of
time. When the seed is deemed to germinate, or the resting egg is deemed to hatch, the individual
can be moved from cold storage into a regular subpopulation, assigned an age of zero, and
handled normally thenceforth. Individuals in such cold storage do not reproduce, and may not die
for a long time; they are essentially frozen in stasis, awaiting further instructions. This strategy is
quite straightforward to implement, so we will not examine it further.

Another use for a “cold storage” subpopulation is to simulate sperm storage. Females of some
species will mate with a male and store sperm from that male for a long period of time, using the
stored sperm to fertilize eggs over time without needed to re-mate. The stored sperm may last
much longer than the male that produced it, in fact; the male may continue siring progeny for
quite some time after it has actually died, thanks to the storage of its sperm. Simulating this is less
straightforward than implementing a seed bank or resting eggs, since males need to be kept in the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 400

simulation after they die – but not kept indefinitely, since the number of dead males would grow
without bound. We need strategies for moving males into cold storage when they die, for finding
them in cold storage when their sperm is used to generate new offspring, and for clearing them out
of cold storage once there is no longer any living female with stored sperm from them.

To implement this recipe, we will use a couple of techniques that we have seen very little in this
manual thus far. Most importantly, we will use survival() callbacks, documented in section
26.10. These callbacks govern the decisions made by SLiM during the nonWF tick cycle’s viability/
survival selection stage (see chapter 24). Normally, in this stage, individuals live or die
probabilistically, based upon their fitness. A survival() callback lets the model intervene in those
choices, forcing particular individuals to live (by returning T) or die (by returning F) regardless of
fitness. In addition, a survival() callback can actually move individuals; by returning a
Subpopulation object, the callback can request that the individual ought to live, but ought to be
moved to a particular subpopulation. This facility could conceivably be used to implement a
general-purpose migration scheme in a nonWF model, without the use of takeMigrants(); here,
we will use it to divert males that are slated for death into a cold storage subpopulation instead, so
that they can continue to be used to sire progeny as a result of their previously stored sperm.

With no further ado, let’s plunge into the model. This recipe is based upon a model developed
by Anita Lerch, with her kind permission; survival() callbacks were then added to SLiM
specifically to better support the implementation of models like hers, as shown here.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 401

Let’s start with the less interesting boilerplate like initialization and output:

initialize() {
 initializeSLiMModelType("nonWF");
 initializeSLiMOptions(keepPedigrees=T);
 initializeSex("A");
 defineConstant("K", 500);

 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 m1.convertToSubstitution = T;
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);

}
1 early() {
 sim.addSubpop("p1", 100);
 p1inds = p1.individuals;
 p1inds.age = rdunif(size(p1.individuals), min=0, max=10);
 p1inds.tag = -1;

 sim.addSubpop("p1000", 0); // cold storage for dead males
}
late() {
 catn(sim.cycle + ": p1 (" + p1.individualCount + ")" +
 ", p1000 (" + p1000.individualCount + ")");
}
10000 late() {
 sim.outputFixedMutations();
}

We turn on pedigree tracking, because we will use pedigree IDs to find males when we need to
generate new offspring from their stored sperm. This is a sexual model, so we set that up with
initializeSex("A"). It has overlapping generations and a minimum reproductive age, so we set
initial ages for the first generation.

One notable thing in the above code is that we set the tag property for all initial individuals to
-1. The tag value of females will be used in this model to indicate the male from which a female
has stored sperm; if it is -1, the female has not stored sperm yet. (The tag values of males is
unimportant at this point, and can be set to -1 here as well for simplicity.) The other notable thing
is that we create a special subpopulation, p1000, with an initial size of 0; this is the “cold storage”
subpopulation where we will put males when they die, to preserve their genetics as a source of
stored sperm for the females.

Next, let’s look at how males end up in cold storage. This is really the heart of this recipe, and it
is done by a survival() callback:

survival(p1) {
 // move dying males into cold storage in case they have mated
 if (!surviving)
 if (individual.sex == "M")
 return p1000;
 return NULL;
}

This callback governs what happens to p1 individuals during the viability/survival tick cycle
stage; we declare it specifically as survival(p1) because we want the rules here to apply only to

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 402

p1. The callback is called once for each individual in p1, and makes a decision regarding that
focal individual. Here, it first checks the surviving flag (a pseudo-parameter supplied to the
callback by SLiM; see section 26.10), which indicates whether the focal individual would survive
(T) or die (F) according to SLiM’s standard fitness-driven machinery. If it is slated for death, the
callback then checks whether the focal individual is male. If it is, it returns p1000; this requests
that SLiM not kill the focal individual as it normally would, but instead move it to the p1000 cold
storage subpopulation. In all other cases, the callback returns NULL; this tells SLiM to proceed with
its default action, as if there were no survival() callback. The end result, then, is that mortality in
p1 proceeds according to SLiM’s standard fitness-driven behavior, except that when males die they
get spirited off to p1000 instead of actually dying.

So far, so good. Now we need to write the code to govern female reproduction in p1 (there is
no reproduction() callback in the model that applies to p1000, so the cold storage males do not
reproduce at all). We do this in “big bang” fashion, getting all reproductive females (minAge=7),
reproducing them all in a loop, and then using self.active = 0 to deactivate the callback, as we
have seen in some previous models:

reproduction(p1) {
 matureFemales = subpop.subsetIndividuals(sex="F", minAge=7);

 for (female in matureFemales)
 {
 if (female.tag < 0) {
 // the female has not yet chosen a mate, so choose one now
 mate = subpop.sampleIndividuals(1, sex="M", minAge=7);
 } else {
 // the female has already chosen a mate; look it up by id
 mate = sim.individualsWithPedigreeIDs(female.tag);
 }
 if (mate.size()) {
 female.tag = mate.pedigreeID;
 subpop.addCrossed(female, mate, count=rpois(1, 5));
 } else {
 catn(sim.cycle + ": No mate found for tag " + female.tag);
 }
 }
 self.active = 0;
}

For each female in the matureFemales vector, we need to deal with mate choice, stored sperm,
and cold storage lookup, as well as actual offspring generation. We start by checking whether the
female’s tag is < 0, indicating that she has not yet mated; in that case we choose a mate, which
must be a male of reproductive age. Otherwise – if the female has already mated – her tag value
will be the pedigree ID of the male she mated with (and stored sperm from); we look up that male
using the individualsWithPedigreeIDs() method, which provides convenient and fast lookup.
Usually, the code will now have found the female’s male mate (this can fail if the female is
unmated and there are no males of reproductive age, so we need to check). Given that mate, we
do a couple of things. First, we store the male’s pedigreeID in the female’s tag; this is, in effect,
the moment when sperm storage occurs. Then we draw a litter size using rpois() and generate
offspring using a call to addCrossed() with the litter size as the count parameter, as we saw
previously in section 15.3; a for loop to generate the offspring one by one is not necessary, since
every offspring is generated in the same way with the same parents. That completes the female’s
mating for this tick; but since this is an overlapping-generations model and females may live for

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 403

several ticks, the focal female may have an opportunity to reproduce again. If so, she will utilize
the stored sperm from her mate rather than searching for a mate again.

We need to do a little book-keeping, in an early() event (which should be added after the
existing 1 early() event for correct order of operations):

early() {
 // fix all new female tags; faster to do this vectorized
 offspringFemales = p1.subsetIndividuals(sex="F", maxAge=0);
 offspringFemales.tag = -1;

 // p1 is governed by standard density-dependence
 p1.fitnessScaling = K / p1.individualCount;

 // cold storage individuals are kept until unreferenced
 p1000.individuals.tag = 0;
 maleRefs = p1.subsetIndividuals(sex="F").tag;
 maleRefs = maleRefs[maleRefs != -1];
 referencedDeadMales = sim.individualsWithPedigreeIDs(maleRefs, p1000);
 referencedDeadMales.tag = 1;
}

This does three things. In the first section, we set the tag values of all newly generated female
offspring to -1, to indicate that they are unmated. We could have done this in the reproduction()
callback as we generated offspring one by one, or we could have done it in a modifyChild()
callback, but it is simpler and more efficient to do it here in vectorized fashion. Since we do it in
an early() event (running immediately after reproduction, in nonWF models), the tag values will
be correctly set up before any other code uses them.

In the second section we just implement standard density-dependence for p1, based upon the
defined carrying capacity K.

The third section is the most interesting bit; this is where we manage the cold storage
subpopulation, purging males once they are unreferenced so that the size of the cold storage
doesn’t grow without bound. To do this, we need to figure out which males are unreferenced; the
strategy employed is simple. First, we assume that all males in p1000 are unreferenced, and set
their tag property to 0 to indicate that. Next, we look up all females in p1 and get their tag values;
this is effectively a list of the males that are referenced. Unmated females will have a tag of -1,
which we’re not interested in, so we filter out those -1 values from maleRefs. Next, we use the
handy individualsWithPedigreeIDs() method to look up all of the referenced males, specifically
in p1000 (we do not want referenced males that are still alive, and thus still in p1). Finally, we set
the tag of those referenced p1000 males to 1, overriding the value of 0 set previously and
indicating that they are referenced.

The final piece of the puzzle is that we need to use the male tag values that we just set, to
govern survival of p1000 males. We do that with another survival() callback:

survival(p1000) {
 return (individual.tag == 1);
}

This callback, specific to p1000, simply looks at the tag value of the male. If it is 1, that
indicates that the male is referenced, so we return T to indicate that the male should survive. If it is
not 1, that indicates that the male is unreferenced, so we return F to indicate that the male should
now die. (Conceptually, of course, it already died at the moment it was moved to cold storage; the
point is that now we no longer need its genetics to generate offspring from its stored sperm.) This
survival() callback therefore completely overrides SLiM’s default fitness-based mortality. It

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 404

doesn’t matter what mutations the males possess; they could even possess completely lethal
mutations that make their fitness 0. Regardless, they will be kept until they become unreferenced
by the females; and then, once unreferenced, they will die regardless of how many beneficial
mutations they may possess. We have complete control over the fate of the p1000 males.

When this model is run, the output is unexciting, but does indicate that the cold storage is
working:

1: p1 (100), p1000 (0)
2: p1 (218), p1000 (0)
3: p1 (348), p1000 (0)
4: p1 (504), p1000 (7)
5: p1 (505), p1000 (73)
6: p1 (488), p1000 (97)
7: p1 (482), p1000 (80)
8: p1 (509), p1000 (54)
9: p1 (495), p1000 (110)
10: p1 (502), p1000 (116)
11: p1 (491), p1000 (128)
12: p1 (515), p1000 (100)
13: p1 (481), p1000 (149)
14: p1 (497), p1000 (66)
15: p1 (512), p1000 (72)
...
9995: p1 (495), p1000 (121)
9996: p1 (492), p1000 (97)
9997: p1 (503), p1000 (94)
9998: p1 (505), p1000 (72)
9999: p1 (508), p1000 (91)
10000: p1 (499), p1000 (110)

The p1 subpopulation grows from its initial size of 100 to a dynamic equilibrium around 500, its
carrying capacity, as expected. The p1000 cold storage subpopulation starts at size 0, and grows
when males die and get moved to it, but since only referenced males are kept, its size stays
bounded over time. We do not see the "No mate found for tag" log, indicating that all females
are finding male mates and that cold storage lookup of males is working correctly.

Sperm storage can have more complex dynamics than what is implemented in this recipe. One
wrinkle is that male-male competition can occur as a result of female choice: females can mate
with multiple males, and either use the stored sperm from the male they deem best, or actually use
stored sperm from several different males depending upon conditions. Another possibility is that
male-male competition can result from sperm competition: a female that has mated with multiple
males may be host to a tiny internal battle between the sperm of different males, with the victors
surviving to fertilize the female’s eggs. These and other possibilities would be simple extensions to
the recipe shown here, with females keeping references to multiple male mates (probably using
setValue() instead of tag, since tag is a singleton property), and the dynamics of female choice or
sperm competition playing out later, perhaps in the reproduction() callback.

This recipe illustrates the power and flexibility of the survival() callback mechanism, added in
SLiM 3.7. These callbacks provide complete control over the survival decisions made by SLiM,
including the option to move individuals between subpopulations in lieu of mortality. Indeed, the
movement of individuals by survival() callbacks need not represent mortality at all; it could be
used to implement ordinary migration, or “life history” transitions such as attainment of
reproductive maturity. Those sorts of movements could also, more conventionally, be
implemented using takeMigrants() as we have seen previously, but in some situations survival()
may be simpler – particularly when movement is related to fitness and selection. Since

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 405

survival() callbacks are provided with information on the survival decision made by SLiM for
every individual, including each individual’s final calculated fitness value, they can also be used
purely observationally – for example, to log out the fitness value of each individual along with the
outcome of selection for that individual, or similar information (see section 15.10).

15.20 Tracking separate sexes in script, nonWF style
Section 12.5 showed how to track the sex of individuals yourself in script in a WF model, using

the tagL0 property to represent the sex of each individual. In this section we will look at the same
idea implemented in a nonWF model.

This approach can be useful for implementing unusual mating systems that don’t fit well into
SLiM’s conception of sex. In sexual models in SLiM, for example, SLiM does not allow selfing; it is
assumed that females produce eggs and male individuals produce sperm, and that one egg and
one sperm are required for fertilization. There are some sexual species, however, that can
reproduce by methods such as automixis – the fusion of nuclei or gametes produced by the same
individual – that violate this assumption. In this section, by way of illustration, we will implement
a sexual species that usually reproduces by biparental mating between a female and a male, to
produce an offspring of either sex, but in which a female can also sometimes reproduce by
automixis, without a male mate, to produce a daughter.

There are various forms of automixis; for simplicity, we will here implement a form of automixis
in which any two randomly chosen gametes from the focal female fuse, but we will discuss other
types of automixis at the end. The focus here is not really on automixis; that is just used as a
pedagogical example to justify the explicit tracking of sex in script, rather than using
initializeSex("A") and letting SLiM do it for us.

Here’s the whole model except the reproduction() callback:

initialize() {
 initializeSLiMModelType("nonWF");
 defineConstant("K", 500); // carrying capacity
 initializeMutationType("m1", 0.5, "f", 0.0);
 m1.convertToSubstitution = T;
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", K);

 // assign random sexes (T = male, F = female)
 p1.individuals.tagL0 = (runif(p1.individualCount) <= 0.5);
}
early() {
 p1.fitnessScaling = K / p1.individualCount;
}
1:2000 late() {
 ratio = mean(p1.individuals.tagL0);
 catn(sim.cycle + ": " + ratio);
}

The initialization is boilerplate; note that we do not call initializeSex() here, since we do not
want SLiM to track sex itself. In the 1 early() event we draw a random sex for each individual
using runif() with a threshold probability of 0.5, and assign those sex values into the tagL0

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 406

property of the individuals; somewhat arbitrarily, we designate T as male and F as female. That
choice does prove convenient, however, in the 1:2000 late() event. There, we output the sex
ratio in each cycle (calculated as M:(M+F), following the definition used by SLiM), since the sex
ratio will provide a test that the model is working as intended. That sex ration can be computed
simply as mean(p1.individuals.tagL0) since Eidos considers F to be 0 and T to be 1.

The reproduction() callback is also quite simple:

reproduction() {
 // we focus on the reproduction of the females here
 if (individual.tagL0 == F)
 {
 if (runif(1) < 0.7)
 {
 // choose a male mate and produce a son or daughter
 mate = subpop.sampleIndividuals(1, tagL0=T);
 offspring = subpop.addCrossed(individual, mate);
 offspring.tagL0 = (runif(1) <= 0.5);
 }
 else
 {
 // reproduce through automixis to produce a daughter
 offspring = subpop.addSelfed(individual);
 offspring.tagL0 = F;
 }
 }
}

We want to focus on the reproduction of females here; usually we could do that by declaring
the callback as reproduction(NULL, "F"), but since we’re tracking sex ourselves in tagL0, we
need to test that the focal individual is female ourselves. If it is (tagL0 == F), we then roll the dice;
with a 70% chance, we choose a mate with sampleIndividuals(), narrowing the pool of eligible
individuals to males using tagL0=T, and then call addCrossed() to produce one offspring from that
biparental mating. That offspring is assigned a sex randomly, with equal probability. The
remaining 30% of the time, we have the female reproduce by automixis, by calling addSelfed().
This is the step that SLiM would not allow in a normal sexual model; addSelfed() can only be
called in non-sexual models. (This limitation was put in place to clarify how to implement selfing
when modeling sex chromosomes.) Since this is, in SLiM’s view, a non-sexual model, we are
allowed to call it. The offspring resulting from this automixis is always female (following the
biology of some species with automixis).

When the model is run, it can be seen that the calculated sex ratio starts around 0.5 but quickly
falls to an average of about 0.35. This is expected, since males are produced only by biparental
mating, which happens 70% of the time. Any given offspring will therefore be male with a
probability of 0.7×0.5 = 0.35. Our tracking of sex appears to be working properly.

This model can easily be extended in various directions. One could track more than just two
sexes or mating types; you could use further logical tags (tagL0 through tagL4 exist on
Individual), or you could switch the model over to use the tag property, which can take any
integer value. You could model fish that change sex over the course of their lives (as some do),
alternative sexual types like “sneaker males”, sex determination according to environmental cues
like temperature, species with ZW sex chromosomes instead of XY (if there are biological details
that make that distinction important for your model), or anything else of the sort.

As mentioned at the outset, automixis is a complex topic, and it is not our real focus here. We
have implemented automixis by simply calling addSelfed(), which generates two haploid gametes

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 407

from the focal female using SLiM’s standard recombination machinery and fuses them to form the
diploid offspring. The biological reality is that depending upon whether a species uses “central
fusion automixis”, “terminal fusion automixis”, or some other type, the gametes that fuse to
produce the offspring may have certain properties because they are derived from certain specific
points in the process of meiosis (Wikipedia has a helpful diagram in its article on automixis). In
this case, addSelfed() does not provide the desired behavior, and the addRecombinant() method is
the more powerful alternative. With addRecombinant(), you can control the exact set of
recombination breakpoints used to generate each of the two gametes used by SLiM in the
offspring, making them exhibit the necessary properties. We will not show an example of that
approach here, but other recipes in this manual do use addRecombinant() for various other
purposes; section 15.15 might be particularly relevant as an example of the general approach.
Generating your own breakpoints is reasonably straightforward, either by using the
drawBreakpoints() method of Chromosome (if SLiM’s default breakpoint generation is acceptable,
perhaps with some modification), or by generating them yourself using functions like rbinom() to
determine the number of breakpoints and rdunif() to draw each breakpoint’s position. Section
1.5.6 discusses SLiM’s default recombination breakpoint generation algorithm in detail; you might
wish to pattern your own breakpoint generation algorithm after it.

15.21 Modeling haplodiploidy with addRecombinant()
We have seen ways of handling a variety of mating systems in SLiM, including selfing (section

6.3.1), cloning (section 6.3.2), haploidy (sections 14.9, 15.11, and 15.12), and alternation of
generations (section 15.14), as well as how to track separate sexes yourself in script in order to
implement more unusual mating systems such as automixis (sections 12.5 and 15.20). One fairly
common mating system we have not covered yet is haplodiploidy. In haplodiploidy (sometimes
called arrhentoky), males develop from unfertilized eggs and are haploid, while females develop
from fertilized eggs and are diploid. It is particularly well-known as the sex-determination system
in the Hymenoptera (bees, ants, and wasps), and has interesting effects on the relatedness of
individuals that may promote the emergence of eusociality.

The haplodiploidy model presented here was developed in collaboration with Rodrigo Pracana,
Richard Burns, Robert L. Hammond, and Yannick Wurm, and a related preprint has been posted on
bioRxiv at https://doi.org/10.1101/2021.10.25.465450. The model presented in that publication is
fairly different from the one shown here; it implements a Wright–Fisher model design (but written
as a nonWF SLiM model), with non-overlapping generations, a fixed population size, and fitness
that acts through mating success. In that model, all reproduction occurs in a single “big bang”,
generating all of the individuals needed to fill out the next juvenile cohort. It therefore follows the
recipe of section 15.13, which shows how to implement a Wright–Fisher model as a nonWF
model. (In fact it goes even further than that recipe does, in making fitness influence mating
success rather than reproduction!) That paper will likely be of interest to those modeling
haplodiploidy in SLiM, as it explores some of the consequences of haplodiploidy for deleterious
and beneficial mutations and compares simulations in SLiM to some prior analytical work. If the
SLiM code from either that paper or this section is adapted for use in a publication, a citation to
Pracana, Burns, Hammond, Haller, & Wurm (2021) would be much appreciated. Thanks to my
collaborators for welcoming the publication of this recipe here.

In this section, on the other hand, we will look at a very minimal nonWF haplodiploidy model;
to keep things simple it will follow typical nonWF model conventions such as overlapping
generations, density-dependent population regulation, and fitness that acts through survival. Each
female will reproduce independently, via a separate callout to the reproduction() callback. In all
these respects, this recipe follows the very simple nonWF template of the recipe in section 15.1.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 408

https://doi.org/10.1101/2021.10.25.465450

OK, with that background information out of the way, let’s look at the model! Note that this
model requires SLiM 3.7 to run. Here’s the initialize() callback:

initialize() {
 defineConstant("K", 2000);
 defineConstant("P_OFFSPRING_MALE", 0.8);
 initializeSLiMModelType("nonWF");
 initializeMutationRate(1e-8);
 initializeMutationType("m1", 0.0, "f", 0.0);
 m1.convertToSubstitution = T;
 m1.haploidDominanceCoeff = 1.0;
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 999999);
 initializeRecombinationRate(1e-6);
 initializeSex("A");
}

We define a carrying capacity K of 2000. We also define a parameter, P_OFFSPRING_MALE, that is
the probability that a given offspring generated by a female will be a (haploid) male, as opposed to
a (diploid) female. Here that is set to 0.8, quite arbitrarily; offspring will be mostly males.

We set up a neutral mutation type, m1; this model can also accommodate non-neutral
mutations, but we won’t do that here for simplicity. We set convertToSubstitution to T so these
neutral mutations get substituted by SLiM when they fix (see section 1.5.2); note that SLiM will
correctly detect fixation even though the model contains a mixture of haploids and diploids. We
also set the haploidDominanceCoeff property to 1.0. This property is used as the “dominance”
coefficient in haploids, where mutations can only be present in a single copy. Recall that in
diploids, a homozygous mutation has a fitness effect of 1+s ,where s is the selection coefficient of
the mutation, and a heterozygous mutation has a fitness effect of 1+hs, where h is the dominance
coefficient kept in the dominanceCoeff property of MutationType. You might want a mutation to
have a different fitness effect when found in a haploid – not 1+s, and not 1+hs, but rather 1+zs,
where z is the value of the haploidDominanceCoeff property (note that I just made up the use of
the symbol z here, that is not a standard convention). Here we set this to 1.0, but it doesn’t matter
anyway since this is a neutral model. Note that if you wanted even finer control over the fitness
effects of mutations in haploids you could achieve that with a mutationEffect() callback.

The rest of the initialization is quite standard. We use initializeSex("A") to ask SLiM to track
separate sexes for us; we don’t do anything here that requires us to use the techniques of section
15.20 to track sex ourselves.

Here’s the rest of the framework of the model, apart from the reproduction() callback:

1 early() {
 // make an initial population with the right genetics
 mCount = asInteger(K * P_OFFSPRING_MALE);
 fCount = K - mCount;
 sim.addSubpop("p1", mCount, sexRatio=1.0, haploid=T); // males
 sim.addSubpop("p2", fCount, sexRatio=0.0, haploid=F); // females
 p1.takeMigrants(p2.individuals);
 p2.removeSubpopulation();
}
early() {
 p1.fitnessScaling = K / p1.individualCount;
}
10000 late() {
 sim.simulationFinished();
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 409

The early() event implements density-dependent fitness, and the 10000 late() event defines
the end of the simulation. The interesting bit is the 1 early() event that creates the initial
population. First, it uses P_OFFSPRING_MALE to calculate the initial number of males and females in
the subpopulation. Then it creates all the males in p1, passing sexRatio=1.0 to make them all
male, and haploid=T to make them all haploid. Similarly, it creates all the females in p2, passing
sexRatio=0.0 to make them all female, and haploid=F to make them all diploid. It moves the
females into p1 with takeMigrants(), and then removes p2 from the model. This sleight of hand
lets us use addSubpop() to easily create the males and females we want. We could avoid the use
of p2 by creating p1 with an initial size of 0, and then filling it up with new empty individuals with
the appropriate genetics using addEmpty() in a 1 reproduction() callback, but this design is much
simpler, and the ephemeral existence of p2 is fairly harmless. (If you use tree-sequence recording
with this model, the initial creation of the females in p2 might make for problems with recapitation
and so forth; in that case, the addEmpty() technique might be better. You could also simply call
sim.addSubpop("p1", K, sexRatio=P_OFFSPRING_MALE) to create the initial subpopulation; this
will make the males in the first generation be diploid, but that ought to be harmless since their
second genomes will never be used for anything.)

Finally, here is the reproduction() callback, which runs only for females since it is declared
with "F" for its focal sex:

reproduction(NULL, "F") {
 gen1 = individual.genome1;
 gen2 = individual.genome2;
 breaks = sim.chromosome.drawBreakpoints(individual);

 // decide whether we're generating a haploid male or a diploid female
 if (rbinom(1, 1, P_OFFSPRING_MALE))
 {
 // didn't find a mate; make a haploid male from an unfertilized egg:
 // - one genome comes from recombination of the female's genomes
 // - the other genome is a null genome (a placeholder)
 subpop.addRecombinant(gen1, gen2, breaks, NULL, NULL, NULL, "M",
 randomizeStrands=T);
 }
 else
 {
 // found a mate; make a diploid female from a fertilized egg:
 // - one genome comes from recombination of the female's genomes
 // - the other genome comes from the mate (a haploid male)
 mate = subpop.sampleIndividuals(1, sex="M");
 subpop.addRecombinant(gen1, gen2, breaks, mate.genome1, NULL, NULL, "F",
 randomizeStrands=T);
 }
}

This handles all the key details of haplodiploidy. We will generate the offspring using the
method addRecombinant(); it is a very low-level method, so we will need to tell it exactly what to
do (see section 25.16.13). We want it to recombine the two genomes of the female parent, gen1
and gen2; local variables are used for those genomes just to make the subsequent code a bit more
readable. Since we will need crossover breakpoints to pass to addRecombinant() to generate the
egg, we get them from sim.chromosome, which draws them following SLiM’s standard procedure.
Finally, we need to decide whether we’re going to generate a (haploid) male or a (diploid) female
offspring. We use rbinom() to determine this, with P_OFFSPRING_MALE as the probability for male.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 410

If the offspring is male, there is no mate; the egg is unfertilized. In this case, we call
addRecombinant() with gen1, gen2, breaks for the parental genomes and breakpoints for the egg,
and NULL, NULL, NULL for the sperm to indicate that there is no sperm. This makes the second
genome of the offspring a null genome, indicating that the offspring is haploid. We pass "M" to
addRecombinant() to tell it the offspring is male. Finally, we pass randomizeStrands=T since we
want it to be random which genome is the initial copy strand; this option chooses the initial copy
strand from the two genomes with equal probability (previously used in section 15.14).

If the offspring is female, we first have to choose a mate. We use sampleIndividuals() to do
this, requiring only that the mate be male; of course, further restrictions could be placed on that
selection. Then we call addRecombinant(), passing gen1, gen2, breaks as before for the egg.
Here, however, we pass mate.genome1, NULL, NULL for the sperm, indicating that the sperm
carries a copy of the male’s haploid genome, without a second strand and without recombination.
We pass "F" to tell addRecombinant() the offspring is male, and again pass randomizeStrands=T to
choose an initial copy strand randomly between gen1 and gen2. (This option has no effect on the
second gamete, from mate, since it is clonal; there is only one copy strand.)

That’s all there is to it; it’s really quite straightforward. Implementing these sorts of mating
system is mainly a matter of thinking through the biological logic: who mates with whom, who is
what ploidy, and where each offspring chromosome comes from. Translate that logic into the
appropriate calls to addCrossed(), addCloned(), addSelfed(), and addRecombinant() in your
reproduction() callback, and things will often go quite smoothly. If you need to violate rules that
SLiM normally enforces – having a non-hermaphroditic individual self, for example, or having
more than two sexes – you may want to track the sex of individuals yourself, as shown in section
15.20.

Breaking with our usual procedure, we will not show results from this recipe here;
demonstrating the correctness of this model is really beyond the scope of this manual. Instead, the
reader is encouraged to consult Pracana, Burns, Hammond, Haller, & Wurm (2021), which
analyzes results from a fairly similar model to show that they match the predictions for
haplodiploidy made by analytical models.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 411

16. Continuous-space models, interactions, and spatial maps

This chapter introduces several features related to continuous-space models – models in which
individuals have explicit spatial positions in a 1D, 2D, or 3D spatial landscape. Setting up such a
continuous-space model will be discussed; in addition, the related classes InteractionType and
SpatialMap, which provide advanced spatial modeling functionality, will be explored. Note that
all of these are optional, advanced features; by default, continuous space is not enabled.

In this chapter we will provide an introduction to spatial modeling using SLiM’s WF (Wright–
Fisher) model type, for pedagogical simplicity. In practice, it is almost always a good idea for
spatial models to be non-Wright–Fisher or nonWF models, to allow for more realistic spatially
local dynamics; in sections 16.15 and 16.16 we will discuss this issue further, and will transition to
using nonWF models of continuous space. It is very strongly recommended that the reader review
nonWF models in chapter 15, and use them for most or perhaps all spatial modeling.

Continuous-space support in SLiM is enabled by supplying a dimensionality parameter to the
initializeSLiMOptions() call during model initialization. This parameter may be "x", "xy", or
"xyz"; these set up SLiM to support 1D, 2D, or 3D continuous space, respectively, within each
subpopulation using the coordinate axes specified. (Setting up spaces using different coordinate
axes than these, such as 2D space using y and z, is not supported.) The corresponding x, y, and z
properties of Individual will then be interpreted by SLiM as spatial coordinates, rather than simply
as type float tag values. Model code can then set the positions of individuals as desired; this
might be done in a modifyChild() callback, so that the positions of new offspring are immediately
set, but it can also be done at any other point in the tick cycle. Individual positions can also be
used by model code in any way desired; for example, spatially continuous variation in selection
could be implemented in a mutationEffect() callback by computing an environmental value at
the spatial location of the focal individual, and then comparing the individual’s phenotype to that
environmental value (see section 16.9). When continuous space is enabled, SLiMgui will display
subpopulations graphically using the spatial positions of individuals.

Interactions between individuals can be implemented in pure Eidos, as seen previously in the
frequency-dependent model of section 10.4.1 and the green-beard model of section 10.4.3. This
can be cumbersome, however, since all of the interaction mechanics must be written by the user in
Eidos, which – as an interpreted language – is not nearly as fast as the C++ in which the SLiM core
is written. The InteractionType class provides a solution to this problem, by providing built-in
support for fast interaction evaluation while still allowing scripted customization of the interactions
through a new type of callback, the interaction() callback. InteractionType can be used to
model non-spatial interactions, as we will see in section 16.6; but it is particularly well-suited to
modeling interactions in continuous space, since it is able to translate distances into interaction
strengths automatically using any of several different spatial kernels (Gaussian, negative
exponential, etc.) called “interaction functions”. In addition, InteractionType is optimized for
spatial searches (such as nearest-neighbor searches) through the use of two specialized data
structures, “k-d trees” and “sparse vectors”. Together, these features allow complex spatial
interactions to be implemented in just a few lines of Eidos code, with performance that can be
orders of magnitude better than would otherwise be possible.

In continuous-space models, the local environment often affects individuals, influencing their
survival, fecundity, dispersal, or other behaviors as a result of spatial variation in things like
elevation, climate, habitat quality, terrain, or human influence. As mentioned above, this can be
implemented in pure Eidos, particularly for very simple environmental variation such as a linear
gradient in some variable. For more complex spatial variation in environmental variables, the
SpatialMap class can be used to represent variation that is either generated algorithmically or
imported from map data. Any number of spatial maps can be defined, representing any

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 412

environmental variables needed, and spatial maps can be manipulated and combined in various
ways. The effect of a given spatial map upon the individuals in the model is scripted in Eidos.

When continuous space is enabled in a model, the Subpopulation class then contains several
features to support that functionality. First, Subpopulation is then aware of its spatial boundaries
(the spatial coordinates of the edges of the subpopulation). Second, it can help to enforce those
boundaries through various “boundary conditions”. Third, it then allows a new SpatialMap object
to be defined for the landscape that its individuals inhabit. When individuals in different
subpopulations (or even different species) inhabit the same landscape, they can share a given
spatial map between their subpopulations.

With that introduction, let’s delve into some recipes that demonstrate SLiM’s continuous-space
modeling features.

16.1 A simple 2D continuous-space model
In this recipe we will explore a very simple model utilizing continuous space. In this model,

individuals will live on a two-dimensional landscape. Individuals will not interact spatially in this
model; that will be introduced in section 16.2. The model:

initialize() {
 initializeSLiMOptions(dimensionality="xy");
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 late() {
 sim.addSubpop("p1", 500);

 // initial positions are random in ([0,1], [0,1])
 p1.individuals.x = runif(p1.individualCount);
 p1.individuals.y = runif(p1.individualCount);
}
modifyChild() {
 // draw a child position near the first parent, within bounds
 do child.x = parent1.x + rnorm(1, 0, 0.02);
 while ((child.x < 0.0) | (child.x > 1.0));

 do child.y = parent1.y + rnorm(1, 0, 0.02);
 while ((child.y < 0.0) | (child.y > 1.0));

 return T;
}
2000 late() { sim.outputFixedMutations(); }

There are only a few new things about this model. First of all, continuous 2D space is enabled
in the model with the call to initializeSLiMOptions(). Second, when the subpopulation is
created in the 1 late() event initial positions for all individuals are generated using runif().
Note that by default the spatial extent of the subpopulation spans the interval [0,1] in x and y, so
the default min and max values for runif() suffice. Third, a modifyChild() callback generates a
spatial position for the offspring individual. In this recipe, the offspring position is based upon the
position of the first (i.e., maternal) parent, as given by parent1.x and parent1.y, with random
deviations drawn from a normal distribution using rnorm(). The new positions could fall outside
of the subpopulation’s boundaries, so they are redrawn until they fall inside using while loops. We

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 413

will see better techniques for these things in later recipes; for now, we are keeping everything very
simple and very explicit, so it is clear exactly what the model is doing.

When run in SLiMgui, a typical snapshot of this model looks like this:

Here, SLiMgui is displaying each individual at its corresponding spatial position, as a small

square (colored according to fitness, as usual, but this model is neutral). Notably, spatial structure
has emerged already in this simple model, because of the way that child positions are based upon
maternal positions; this tends to encourage spatial clustering. Since spatial position is of no
consequence in the model, however, this makes no difference to the evolutionary dynamics
observed.

16.2 Spatial competition
The recipe in the previous section set up spatiality but did not use it. In this section we will

extend that recipe to include spatial competition between individuals. The strength of competition
between two individuals will depend upon the spatial distance between them, falling off with
increasing distance according to a Gaussian kernel with a characteristic width. This could
represent either direct competition between individuals – territoriality, fighting – or indirect
competition between individuals, perhaps due to an overlap in foraging areas such that the
resource usage of one individual decreases the fitness of another. The recipe:

initialize() {
 initializeSLiMOptions(dimensionality="xy");
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);

 // Set up an interaction for spatial competition
 initializeInteractionType(1, "xy", reciprocal=T, maxDistance=0.3);
 i1.setInteractionFunction("n", 3.0, 0.1);
}
1 late() {
 sim.addSubpop("p1", 500);

 // initial positions are random in ([0,1], [0,1])
 p1.individuals.x = runif(p1.individualCount);
 p1.individuals.y = runif(p1.individualCount);
}
1: late() {
 // evaluate interactions before fitness calculations
 i1.evaluate(p1);
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 414

fitnessEffect() {
 // spatial competition
 totalStrength = i1.totalOfNeighborStrengths(individual);
 return 1.1 - totalStrength / p1.individualCount;
}
modifyChild() {
 // draw a child position near the first parent, within bounds
 do child.x = parent1.x + rnorm(1, 0, 0.02);
 while ((child.x < 0.0) | (child.x > 1.0));

 do child.y = parent1.y + rnorm(1, 0, 0.02);
 while ((child.y < 0.0) | (child.y > 1.0));

 return T;
}
2000 late() { sim.outputFixedMutations(); }

Here we have added a few new elements. First of all, a call to initializeInteractionType()
creates a new interaction type with identifier 1, which is therefore referred to as i1, in much the
same way that mutation types, genomic element types, and subpopulations are numbered and
named in SLiM. This call also defines the interaction type as using both the x and y coordinates of
the model, and sets the maximum range for the interaction as 0.3; beyond that limit interaction
strengths are always assumed to be zero, allowing better performance. The interaction is also
configured with reciprocal=T; this guarantees that the interaction strength exerted upon A by B is
equal to the interaction strength exerted upon B by A, allowing computational optimizations.
(Whether such optimizations are actually done depends on the version of SLiM.)

To digress for a moment, this idea of reciprocality brings in a more general concept: interactions
modeled with InteractionType always involve an exerter that is exerting some influence, and a
receiver that is receiving that influence. Typically, many exerters exert their influence upon any
one given receiver, so InteractionType models many-to-one relationships from exerters to
receivers. (If you are instead interested in finding out all of the receivers that are receiving an
influence from one given exerter, InteractionType is not set up to answer that question – but you
can often simply flip your perspective regarding who is the exerter versus the receiver.)

Second, a call to setInteractionFunction() tells i1 that it should convert spatial distances into
interaction strengths using a Gaussian function (represented by "n" for “normal”, to avoid
confusion with the "g" for “gamma” used elsewhere in SLiM). This Gaussian function is scaled to
have a maximum value of 3.0 and a standard deviation of 0.1, representing fairly local
interactions. It can now be seen how the maximum distance set for i1 was chosen; it is 3× the
standard deviation of the interaction kernel. Interaction strengths beyond that distance would be
extremely small, and are neglected by this model for efficiency (see section 16.12 for discussion).

Next, interaction type i1 needs to actually be used. A precondition for this is that i1 be
“evaluated” in each tick for the subpopulations upon which it will be used. This is done in the 1:
late() event, with a call to its evaluate() method. The evaluate() method takes a snapshot of
the model’s state at that moment in time (for the specified subpopulations), and i1 will then
calculate all interactions based upon that snapshot. This is necessary because under the hood,
InteractionType performs a lot of time-consuming analysis to set up spatial data structures
representing the state of the model, allowing it to respond quickly to spatial queries. It does that
analysis just once, and the results are cached and used for all queries until the interaction is
evaluated again. (There are two exceptions to this, having to do with interaction() callbacks and
with receiver constraints, that will be discussed when they arise.) Here we pass p1 to evaluate()
to indicate that the interaction will be used within that subpopulation. For interactions that cross

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 415

between subpopulations (or even different species), it is required to evaluate() the interaction
type for both the exerter and the receiver subpopulations.

Having evaluated i1 in the late() event, just before fitness calculations in the tick cycle, the
model then uses i1 in a fitnessEffect() callback to calculate fitness values that represent the
effects of spatial competition. We have seen fitnessEffect() callbacks only a few times before
(see sections 13.1 and 14.2). They are called once per individual per cycle, to evaluate a fitness
effect for a given focal individual (see section 26.3). The returned fitness effect is combined,
multiplicatively, with all other fitness effects that apply to that focal individual. In the
fitnessEffect() callback here, the call to totalOfNeighborStrengths() totals up the interaction
strengths between individual (the focal individual, the receiver) and all individuals interacting
with it (the exerters), in its subpopulation. These interaction strengths, as we saw above, were
configured to be calculated using a particular Gaussian kernel, and a maximum distance of 0.3
was chosen. Those settings are now used to find the interaction strength between individual and
every exerter, and the sum of those strengths is returned. The fitnessEffect() callback divides
that total by the number of individuals in the subpopulation to get a mean interaction strength, and
subtracts that mean value from 1.1 to get a fitness value. Those details are fairly arbitrary; the
overall intent, however, is that the stronger the competition felt by a receiver, the lower the
receiver’s fitness. This fitnessEffect() callback will be called once for each individual in each
cycle, resulting in a fitness effect due to spatial competition between individuals.

If we run this model in SLiMgui, it looks markedly different from the previous model:

Perhaps the most obvious difference is that individuals are no longer all yellow (which indicated

neutrality). Now, individuals in relatively tight spatial clusters are orange or even red, indicating
they have fitness values below 1.0 due to the effects of competition. Those individuals will be less
likely to reproduce, whereas the individuals enjoying a lack of competition in isolated areas will
be more likely to reproduce. That leads to the other obvious difference: the space is more
completely and uniformly occupied. This model uses the same offspring positioning algorithm as
the previous recipe, which we saw promoted spatial clustering; however, excessive clustering is
now opposed by the effects of competition, producing a somewhat more uniform distribution.

As discussed above, this model implements the fitness effect of spatial competition using a
fitnessEffect() callback. This could easily be implemented using the fitnessScaling property
of Individual instead, as we will see in section 16.4; the choice of which method to use is
somewhat arbitrary, so we will use both in this chapter in order to illustrate both methods.

16.3 Boundaries, boundary conditions, and dispersal kernels
Here we will pause to examine the question of boundaries, boundary conditions, and dispersal

kernels in spatial models. When a new offspring individual is given a position that is based upon

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 416

the parental position(s) plus some random deviation, as is commonly done, the question arises of
how to constrain those new positions; we have already confronted that question, in fact, in the
modifyChild() callbacks we have used to set offspring positions.

One option is simply to impose no constraint; space is then considered to be infinite in extent
in all directions. This is the default in SLiM, simply because SLiM imposes no default constraint
upon offspring positions; however, it is rarely desirable in individual-based models since a finite
population on an infinite landscape has zero density – rarely an interesting or biologically relevant
case. Instead, models generally use one of several standard boundary conditions. In this section
we will initially break from our usual conventions and will simply assume all of the code from the
previous recipe (section 16.2), presenting only replacement modifyChild() callbacks to implement
each of four standard boundary conditions. The literature contains some discussion of these
different boundary conditions and the effects they may have on evolutionary dynamics (notably,
Mazzucco, Doebeli & Dieckmann 2018). At the end of this section, we will see a full recipe for a
more modern alternative approach to enforcing boundary conditions, added in SLiM 4.1.

First of all, with “stopping” boundaries, new positions are simply clamped to the spatial
boundary; points outside the boundary are forced to the nearest point inside bounds. In SLiM, this
can be implemented as:

modifyChild() {
 // Stopping boundary conditions
 pos = parent1.spatialPosition + rnorm(2, 0, 0.02);
 child.setSpatialPosition(p1.pointStopped(pos));

 return T;
}

This introduces several new concepts. The spatialPosition property of Individual provides a
float vector of the spatial coordinates of the individual; since this model has "xy" dimensionality,
this vector has two elements, with the same values as the x and y properties that we have been
using. The setSpatialPosition() call is just the reciprocal of this, taking a float vector of
coordinates and setting them into the x and y properties of the child in one operation, as a
convenient shorthand. Finally, the pointStopped() method of Subpopulation implements the
spatial boundary condition by clamping the coordinates in the float vector it is passed to the
boundaries of the subpopulation and returning the clamped vector. So all in all, this callback gets
the coordinates of the parent, adds a normal draw to each (thus deviating the offspring’s x and y
coordinates from those of the parent), asks the subpopulation to clamp the new position into
bounds, and sets the final position into the child. All of this is just convenient shorthand; it could
easily be implemented by using the x and y properties of the Individual directly, as well as the
spatial boundaries of the Subpopulation (available through its spatialBounds property).

Second, with “reflecting” boundaries, new positions outside the spatial boundary are reflected
to fall inside it; the extent to which a point lies outside an edge is translated into the extent to
which the point lies inside that edge instead. This requires just a trivial modification of the
previous recipe, substituting the pointReflected() method in place of pointStopped():

modifyChild() {
 // Reflecting boundary conditions
 pos = parent1.spatialPosition + rnorm(2, 0, 0.02);
 child.setSpatialPosition(p1.pointReflected(pos));

 return T;
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 417

Third, with “absorbing” boundaries, new offspring whose proposed positions lie outside bounds
are absorbed – they are nipped in the bud, as it were, and are not generated. This is accomplished
in SLiM by returning F from the modifyChild() callback, which tells SLiM to start over from scratch
by choosing new parents and generating a completely new offspring:

modifyChild() {
 // Absorbing boundary conditions
 pos = parent1.spatialPosition + rnorm(2, 0, 0.02);
 if (!p1.pointInBounds(pos))
 return F;

 child.setSpatialPosition(pos);
 return T;
}

This uses the pointInBounds() method of Subpopulation to test whether the new position lies
inside the spatial boundaries. If not, F is returned, terminating generation of the proposed child;
new parents will be drawn, and a new candidate offspring produced which will again be vetted by
the absorbing boundary condition of the modifyChild() callback..

Fourth, with “reprising” boundaries, if a proposed position falls outside bounds a new position
is generated until a position within bounds is obtained. This is the boundary condition we
implemented the hard way in sections 16.1 and 16.2, but it can be done a little more easily (and
more generally, since the spatial boundaries are now not hard-coded):

modifyChild() {
 // Reprising boundary conditions
 do pos = parent1.spatialPosition + rnorm(2, 0, 0.02);
 while (!p1.pointInBounds(pos));
 child.setSpatialPosition(pos);

 return T;
}

This again uses pointInBounds(), but this time if the point is not inside bounds the code loops
back to generate a new point, until a point within bounds is obtained. We will see a more efficient
implementation of reprising boundaries momentarily.

Fifth, with “periodic” boundaries, space is constructed in such a manner that boundaries do not
exist but the spatial extent is nevertheless finite; the spatial topology is instead cylindrical or
toroidal, wrapping around at some or all edges. This boundary condition is a more complex topic
than the other boundary conditions, since it actually changes the way in which distances are
calculated; we will therefore defer a presentation of it until section 16.12. It’s an important topic,
though, since periodic boundaries can avoid problematic “edge effects”, as discussed there.

We have been using Subpopulation methods to check/enforce the boundary conditions for us.
Subpopulation is the class responsible for landscape-level properties such as the coordinates of the
spatial boundaries, as well as other state we will see later. By default the spatial boundaries used
by Subpopulation span the interval [0,1] in each dimension, and we have allowed that default to
stand in the models shown here. This can be changed, using the setSpatialBounds() method of
Subpopulation, but we will not pursue that here (see section 16.7 for an example). In any case,
the Subpopulation methods we have seen will check and enforce whatever boundaries are set.

Incidentally, because Subpopulation knows its own spatial bounds, it can provide a more
general way to set up initial random positions. These recipes of this section, as presented in
SLiMgui and the recipe archive, use this code to do so:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 418

1 late() {
 sim.addSubpop("p1", 500);

 // Initial positions are random within spatialBounds
 p1.individuals.setSpatialPosition(p1.pointUniform(500));
}

The pointUniform() method generates points drawn at random from within the spatial bounds
of the subpopulation (drawing each coordinate from a uniform distribution spanning the range
within bounds). Here it generates 500 such points – one for each individual – and returns them as
one big vector. That vector is passed to setSpatialPosition(), which operates in a vectorized
fashion, assigning one point to each corresponding individual (see section 25.7.2). This is
equivalent to the code presented in earlier recipes, but it will also work properly if the spatial
bounds of the subpopulation have been changed from the default, and it is simpler and faster.

Let’s finish off this section with a discussion of dispersal kernels. In the recipes presented so far,
dispersal has always been done with two independent draws, for x and y, from a Gaussian
function. That implements a radially symmetric Gaussian dispersal kernel, but this approach
would be incorrect for any other distribution; Gaussian functions are actually the only functions for
which independent draws for x and y produce a radially symmetric dispersal kernel. If a different
kernel shape is desired – more leptokurtic or platykurtic, for example – the math gets a bit trickier.
In SLiM 4.1, a new method was introduced, pointDeviated(), that provides a set of alternative
dispersal kernels in addition to the Gaussian kernel. As an added bonus, this method can also
automatically handle most boundary conditions for us. Here is a complete recipe:

initialize() {
 initializeSLiMOptions(dimensionality="xy");
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);

 initializeInteractionType(1, "xy", reciprocal=T, maxDistance=0.3);
 i1.setInteractionFunction("n", 3.0, 0.1);
}
1 late() {
 sim.addSubpop("p1", 500);

 // Initial positions are random within spatialBounds
 p1.individuals.setSpatialPosition(p1.pointUniform(500));
}
1: late() {
 // Dispersal and boundary enforcement
 inds = p1.individuals;
 pos = inds.spatialPosition;
 pos = p1.pointDeviated(inds.size(), pos, "reprising", INF, "n", 0.02);
 inds.setSpatialPosition(pos);

 // Evaluate for competition
 i1.evaluate(p1);
}
fitnessEffect() {
 totalStrength = i1.totalOfNeighborStrengths(individual);
 return 1.1 - totalStrength / p1.individualCount;
}
2000 late() { sim.outputFixedMutations(); }

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 419

The modifyChild() callback is gone; we no longer use that approach to set offspring positions.
In its place are a couple of new lines at the top of the 1: late() event. First we get the vector of
individuals from p1.individuals, since we will use it more than once. Then we fetch individual
positions from spatialPosition, use pointDeviated() to perform both dispersal and boundary
enforcement, and set the resulting vector of points back into their corresponding individuals with
setSpatialPosition().

The pointDeviated() call requires further explanation, of course. We pass it the number of
points to deviate, and a float vector containing the point data. The next parameter, "reprising",
specifies the boundary condition to use; this could also be "none" or "stopping" or "reflecting",
or "periodic" for periodic boundaries (which we have not really gotten into yet). In any case, the
requested boundary condition would be applied to the process, using the spatial bounds of p1
since that is the target object – we called p1.pointDeviated(). Note that absorbing boundaries
are not supported by pointDeviated(), since they actually change the child-generation process
itself by suppressing the generation of some offspring; for that boundary condition, the best
approach remains a modifyChild() callback.

The next three parameters to pointDeviated() specify the dispersal kernel to be used. The first
of these is the maximum dispersal distance, if you want the kernel to cut off to zero probability at a
given distance; here we use infinity, INF, since we do not want a cutoff. The next is the kernel
type; "n" is for “normal” or Gaussian, as usual. The last parameter here is the standard deviation
of the dispersal kernel, sometimes called its “width”. Other supported kernel types are "f" for a
flat kernel, "l" for a linear kernel, "e" for an exponential kernel, and "t" for a kernel based on the
Student’s t-distribution; "c" for Cauchy is not supported, since the Cauchy distribution does not
generalize well to higher dimensions. See section 25.16.2 for the reference documentation for
pointDeviated(), with further discussion of the dispersal kernels and how they are mathematically
defined for dimensions higher than 1D (since there is more than one reasonable way to do that).

The perspicacious reader might have noticed an oddity of this recipe: we deviate the offspring
positions without having previously set them! Where does the value of spatialPosition for the
offspring come from, prior to the pointDeviated() call? This relies upon another new feature of
SLiM 4.1, added specifically to support pointDeviated(): offspring positions are now
automatically set to the position of their first parent, as a default or initial position. The way that
this recipe uses pointDeviated() relies upon this fact. Similarly, in the previous recipes, we could
have added the rnorm() dispersal deviates to the child’s position instead of the position of parent1.
(Using the parental position seems clearer, though, when the logic is explicitly written in script.)

In addition to convenience and generality, using pointDeviated() in this manner also provides
a substantial performance advantage. The reason is that it allows dispersal and boundary
condition enforcement to be performed for all juveniles in a single method call, as in this recipe.
All of the work is then done in C++, in the SLiM core. By comparison, with the approach of the
previous recipes a modifyChild() callback was called for each proposed offspring (involving a
significant amount of overhead just to set up and tear down an Eidos interpreter to execute the
callback each time it is called), and the callback then used several property accesses and method
calls – and even a do–while loop, in the case of reprising boundaries – to do the work for just one
individual. As always, vectorization is the key to performance in Eidos. Here, since this is a WF
model with non-overlapping generations, we can vectorize across all individuals in p1. In a
nonWF model with overlapping generations, one would vectorize across specifically the new
juveniles (unless dispersal of adults at the same time is also desired).

We will not generally use pointDeviated() in other recipes in this manual, since it complicates
the conceptual model design somewhat; but it is often a good approach, especially when greater
performance is desired.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 420

16.4 Mate choice with a spatial kernel
Now we will work with the first “reprising” boundary condition model of section 16.3, and we

will add the element of spatial mate choice. The likelihood that one individual will choose
another individual as a mate will depend upon the spatial distance between them, falling off with
increasing distance according to a Gaussian kernel (but a different one from the competition
kernel). This could represent, for example, mate-finding based upon auditory cues such as
birdsong which become progressively less perceptible as distance increases.

Doing this is remarkably easy. We just need to add a second interaction type, evaluate it, and
utilize it in a mateChoice() callback:

initialize() {
 initializeSLiMOptions(dimensionality="xy");
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);

 // spatial competition
 initializeInteractionType(1, "xy", reciprocal=T, maxDistance=0.3);
 i1.setInteractionFunction("n", 3.0, 0.1);

 // spatial mate choice
 initializeInteractionType(2, "xy", reciprocal=T, maxDistance=0.1);
 i2.setInteractionFunction("n", 1.0, 0.02);
}
1 late() {
 sim.addSubpop("p1", 500);
 p1.individuals.setSpatialPosition(p1.pointUniform(500));
}
1: late() {
 i1.evaluate(p1);
 inds = sim.subpopulations.individuals;
 competition = i1.totalOfNeighborStrengths(inds);
 inds.fitnessScaling = 1.1 - competition / size(inds);
}
2: first() {
 i2.evaluate(p1);
}
mateChoice() {
 // spatial mate choice
 return i2.strength(individual);
}
modifyChild() {
 do pos = parent1.spatialPosition + rnorm(2, 0, 0.02);
 while (!p1.pointInBounds(pos));
 child.setSpatialPosition(pos);

 return T;
}
2000 late() { sim.outputFixedMutations(); }

Interaction type i1 is used for competitive interactions, as before. We now declare i2 as well,
which we will use for mate choice. It also uses a Gaussian kernel, this time with a maximum
value of 1.0, a standard deviation of 0.02, and a maximum distance of 0.1. This is quite a narrow,
short-range mate-choice function that will promote local mating quite strongly.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 421

Having declared i2, we then need to evaluate it. We do this in a first() event. We haven’t
seen first() events much yet; they are similar to early() events, but execute even earlier in the
tick cycle (see section 23.0). In this model the distinction makes no difference; we could just as
well use an early() event. This seems like a good opportunity to introduce first() events,
though, particularly since in a nonWF model it would be essential for the evaluation to be in a
first() event rather than an early() event, since early() events run after reproduction in nonWF
models (see chapter 24). Putting evaluation of interactions used during reproduction into a
first() event is a good habit to get into, for that reason.

In any case, having evaluated the interaction we are prepared to use it in the mateChoice()
callback, which simply returns the result of the call i2.strength(individual). This call asks i2 to
evaluate the strength of interaction between the first parent (individual) and all other individuals
in its subpopulation. The result is returned as a vector. Happily, that is precisely what
mateChoice() callbacks are expected to return – a vector of mating weights between the first
parent and all other individuals. The result can therefore simply be passed on to SLiM without
further processing. It would be equivalent – from a performance perspective, even better, in fact –
to use the drawByStrength() method of InteractionType (see section 25.8.2) to draw a single
mate, using weights proportional to interaction strengths, and return that chosen mate from the
mateChoice() callback. Either way, we are doing a draw from the eligible exerters, with weights
proportional to their interaction strength with a focal receiver.

We made one other change from section 16.3: the fitnessEffect() callback is gone, and
instead we implemented the fitness effect of spatial competition with a couple of lines in the
1: late() event. After evaluating i1, we get a vector of all of the individuals in the simulation,
and then call i1.totalOfNeighborStrengths() with that vector. This returns a vector with the total
interaction strength felt by each individual, evaluated in bulk. We then do a vectorized calculation
of the resulting fitness effects for the individuals, and do a vectorized assignment of those fitness
effects into the fitnessScaling property of the individuals vector. This property simply represents
a fitness effect, set by script, that gets multiplied together with all other fitness effects in the model
to produce the final fitness of an individual (see section 14.2 and chapter 13 for further discussion).
This is equivalent to the fitnessEffect() callback we used in previous models, except that it is a
bit more efficient – we can avoid the overhead of all those fitnessEffect() callbacks, and the
calculations are all vectorized so there is less overhead from Eidos script interpretation.

That is all that is needed; we now have a model that includes both spatial competition and
spatial mate choice, using different kernels. If we run this model in SLiMgui, it looks essentially
identical to the model of section 16.2, but the evolutionary dynamics under the hood are quite
different. We can explore that with a quick modification of these recipes, by dropping in the
heterozygosity calculator used in section 14.1. The code from the final output event of that recipe
can be used without modification. In a quick experiment, we can do 25 runs of the models, run to
tick 10000 to allow equilibration, and output the mean heterozygosity at the end of each run. Let’s
also do runs of the equivalent non-spatial model (constructed by simply removing all of the
interaction code, the mateChoice() callback, and all references to spatial positions). Simple
summary statistics across the mean heterozygosity values obtained from the 25 runs of each of the
three models look like this:

Model Mean Std. Deviation

Non-spatial 0.0002148 0.000092

Competition only (15.2) 0.0001934 0.000071

Competition and mate choice (15.4) 0.0001005 0.000067

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 422

The first thing to note is that the outcomes of the non-spatial and competition-only models are
quite similar. Indeed, even with 25 samples each, a t-test finds that they do not differ significantly
(p = 0.3651). Apparently local offspring generation and spatial competition do not suffice to drive
much, if any, genetic divergence among spatial clusters. This is not surprising, since with non-
spatial mating in each generation the model is then de facto panmictic.

The second thing to note, however, is that the model with spatial mate choice – this section’s
recipe – is quite different from the other two. This is confirmed by t-test; it is highly significantly
different from both the non-spatial model (p = 0.0000104) and the competition-only model
(p = 0.0000204). The addition of spatial mate choice (especially with the narrow kernel used here)
has driven substantial genetic divergence among spatial clusters. We have ourselves a real spatial
model.

16.5 Mate choice with a nearest-neighbor search
In this section we will modify the previous recipe to implement spatial mate choice using a

nearest-neighbor search instead of a spatial kernel. Each individual choosing a mate will make a
choice from among its three nearest neighbors, without further consideration of distance. In this
recipe the selection will be random, but it would be simple to make the mate choice depend upon
some genetic or non-genetic trait of the prospective mates, reflecting choosy mate selection from
within a small pool of nearby candidates.

We will begin with the recipe of section 16.4. To modify it for the present recipe, we need only
to replace the mateChoice() callback with the following:

mateChoice() {
 // nearest-neighbor mate choice
 neighbors = i2.nearestNeighbors(individual, 3);
 return (size(neighbors) ? sample(neighbors, 1) else float(0));
}

The nearestNeighbors() method returns the three (3) nearest neighbors of the first parent
(individual). In SLiM, a “neighbor” is an individual within the maximum interaction distance of
the focal individual (other than the focal individual itself); individuals beyond that maximum
cannot be “neighbors”, even if they are the nearest individual to the focal individual. It is therefore
possible for this method to return fewer than three individuals; indeed, if individual is spatially
isolated this method might return an empty vector. We would like to simply return one individual,
chosen at random from the neighbors vector using sample(), as the chosen mate; to guard against
the possibility of a zero-length result from nearestNeighbors(), however, we check the length of
neighbors and return float(0) if it is zero-length, indicating to SLiM that no mate could be found
(see section 26.4). This code uses the Eidos “trinary conditional” operator, ?else, for brevity; it is
like an if–else statement, but compacted into a single expression (see the Eidos manual for further
discussion).

To digress for a moment: a previous version of this recipe used this callback code instead:

mateChoice() {
 // nearest-neighbor mate choice
 neighbors = i2.nearestNeighbors(individual, 3);
 mates = rep(0.0, p1.individualCount);
 mates[neighbors.index] = 1.0;

 return mates;
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 423

This constructs a mating-weight vector with 0 for all potential mates, and then changes the
values for the neighbors found (if any) to 1, using the subpopulation indices of the neighbors as
indices into the weights vector. This behaves identically to the new version, except that it is much
slower because SLiM has to scan through the entire returned weights vector with each mating,
assessing its meaning and then using the specified weights to choose a mate, which is very
inefficient. Returning a singleton Individual – a specific chosen mate – from a mateChoice()
callback is much faster, when possible.

Note that the nearestNeighbors() call is purely a spatial query; it does not involve the
calculation of interaction strengths at all. In this recipe, the parameters that configure i2 – the
Gaussian function’s maximum value and standard deviation, and indeed the fact that a Gaussian
function is to be used at all – are therefore irrelevant and can be removed. The complete recipe:

initialize() {
 initializeSLiMOptions(dimensionality="xy");
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);

 // spatial competition
 initializeInteractionType(1, "xy", reciprocal=T, maxDistance=0.3);
 i1.setInteractionFunction("n", 3.0, 0.1);

 // spatial mate choice
 initializeInteractionType(2, "xy", reciprocal=T, maxDistance=0.1);
}
1 late() {
 sim.addSubpop("p1", 500);
 p1.individuals.setSpatialPosition(p1.pointUniform(500));
}
1: late() {
 i1.evaluate(p1);
 inds = sim.subpopulations.individuals;
 competition = i1.totalOfNeighborStrengths(inds);
 inds.fitnessScaling = 1.1 - competition / size(inds);
}
2: first() {
 i2.evaluate(p1);
}
mateChoice() {
 // nearest-neighbor mate choice
 neighbors = i2.nearestNeighbors(individual, 3);
 return (size(neighbors) ? sample(neighbors, 1) else float(0));
}
modifyChild() {
 do pos = parent1.spatialPosition + rnorm(2, 0, 0.02);
 while (!p1.pointInBounds(pos));
 child.setSpatialPosition(pos);

 return T;
}
2000 late() { sim.outputFixedMutations(); }

We have now seen three different types of spatial query using InteractionType. The first is the
use of totalOfNeighborStrengths() to add up all of the interactions felt by a receiver from every

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 424

exerter; we used this to build spatial competition. The second is strength(), which we used to
obtain a vector of interaction strengths between a receiver and every exerter (it can also calculate
the interaction strengths with a specific vector of exerters). The third is the nearestNeighbors()
method used here, which returns a vector with (up to) a specified number of the nearest neighbors
of a receiver. IndividualType supports several other queries, such as distance() to get distances
between a focal individual and others, distanceToPoint() and nearestNeighborsOfPoint() to do
those queries using a given spatial point rather than a receiver individual, and drawByStrength()
to draw neighbors of a focal individual weighted by interaction strength (a fast combination of
nearestNeighbors(), strength(), and sample(), conceptually). There is also a variant of
nearestNeighbors(), called nearestInteractingNeighbors(), that limits the nearest-neighbor
search to individuals that actually exert an interaction upon the receiver. This is useful when
working with interaction constraints, such as “sex-segregated” interactions that are only exerted by/
upon individuals of a particular sex. InteractionType supports a variety of such interaction
constraints with the setConstraints() method; for example, in a sexual model one might want a
mating interaction that is exerted only by males of a minimum age, and felt only by females within
a minimum and maximum age, so that nearestInteractingNeighbors() would consider only
sexually mature, fertile mating pairs. Instead of providing examples of the use of all these methods
– which are all documented in section 25.8 – we will now change direction to start building –
gradually – towards models of landscape heterogeneity using spatial maps.

16.6 Divergence due to phenotypic competition with an interaction() callback
Here we will depart from the previous recipes, which have all used neutral spatial models, to

explore a different topic: a non-neutral, non-spatial model. This recipe will involve a quantitative
trait, using a strategy similar to that in the recipe of section 13.4. It will use an InteractionType to
model competition among individuals based upon their phenotype: individuals with a more
similar phenotype will compete more strongly (since they utilize similar resources). The goal here
is to demonstrate the use of an interaction() callback to influence the interaction strengths
calculated by SLiM. It is most straightforward to introduce this first in a non-spatial model; in a
later section we will see the use of an interaction() callback in a spatial model.

This recipe is a first step toward something like the model of Dieckmann & Doebeli (1999): a
model demonstrating that phenotypic competition and assortative mating can produce speciation
in a non-spatial (i.e. sympatric) model. More specifically, we will be working toward the sexual,
“ecological trait” model described in that paper, although our model will be different in many
ways – it will be a generational model rather than a continuous-time model, and we will not
include the “mating trait” used in that paper, for example. We will continue the development of
this model in the next several sections.

Here’s the starting point for the model, without any interaction code yet:

initialize() {
 defineConstant("optimum", 5.0);
 defineConstant("sigma_K", 1.0);

 initializeMutationRate(1e-6);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "n", 0.0, 1.0); // QTL
 m2.convertToSubstitution = F;

 initializeGenomicElementType("g1", c(m1, m2), c(1, 0.01));
 initializeGenomicElement(g1, 0, 1e5 - 1);
 initializeRecombinationRate(1e-8);
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 425

mutationEffect(m2) { return 1.0; }
1 late() {
 sim.addSubpop("p1", 500);
}
1: late() {
 inds = sim.subpopulations.individuals;

 // construct phenotypes and fitness effects from QTLs
 phenotypes = inds.sumOfMutationsOfType(m2);
 inds.fitnessScaling = 1.0 + dnorm(phenotypes, optimum, sigma_K);
 inds.tagF = phenotypes;
}
1:2001 late() {
 if (sim.cycle == 1)
 cat(" cyc mean sd\n");

 if (sim.cycle % 100 == 1)
 {
 phenotypes = p1.individuals.tagF;
 cat(format("%5d ", sim.cycle));
 cat(format("%6.2f ", mean(phenotypes)));
 cat(format("%6.2f\n", sd(phenotypes)));
 }
}

This is a simple model of randomly arising QTLs with additive effects that produce a phenotype;
we have seen this sort of model before in sections 13.2 and 13.4 (see those recipes for further
discussion). A phenotypic optimum is defined at 5.0, and stabilizing selection around that
optimum is produced by the 1: late() event, which implements a Gaussian fitness function based
on divergence from the optimum. The fitness values are placed in the fitnessScaling property of
the individuals, and the phenotypes themselves are saved in the tagF property of the individuals
for future reference. The individual QTL mutations, of mutation type m2, are made effectively
neutral by the mutationEffect(m2) callback, so that fitness is determined only by the overall
phenotype they produce additively. QTL mutations are prevented from being replaced by
Substitution objects when they fix using convertToSubstitution, since they should continue to
influence phenotypes. All of this should be familiar from chapter 13; we will be using QTL-based
models a lot in this chapter, so it is worth reviewing them now if any of this does not make sense.

At this point, let’s pause for a moment. We have stabilizing selection toward an optimum at
5.0, and we start with a mean phenotype of 0.0 since the model starts with no QTLs defined in the
initial population. At the end of every hundredth cycle, the output event prints out the cycle
counter with the mean and standard deviation of the population’s phenotypic values. A typical run
looks something like this:

 cyc mean sd
 1 0.00 0.00
 101 -0.00 0.36
 201 0.00 0.12
 301 0.02 0.26
 401 -0.06 0.38
 501 -0.21 1.16
 601 -0.27 0.91
 701 0.12 0.46
 801 0.21 0.38
 901 0.17 0.30
 1001 1.26 1.40
 1101 4.52 0.46

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 426

 1201 4.86 0.50
 1301 4.87 0.43
 1401 4.93 0.48
 1501 5.12 0.39
 1601 4.96 0.41
 1701 4.97 0.39
 1801 5.01 0.35
 1901 4.84 0.30
 2001 4.92 0.27

It took a little while for the population to develop enough useful variance to be able to reach
the fitness peak, but it got there in the end. The population often contains an appreciable amount
of variance in the middle of the evolutionary trajectory, but as it settles onto the optimum the
variance decreases and tends toward zero, since any deviation from the phenotypic optimum is
punished by the fitness function. In practice, as seen above, the standard deviation fluctuates
around 0.3 or 0.4 for quite a while after the population reaches the optimum.

Now let’s finish the model by implementing competition. We have seen interaction types
several times before in this chapter, but here we will use them somewhat differently: to govern
competition based upon phenotypic similarity, rather than competition based upon spatial
proximity. First, we create an InteractionType by adding these lines to the end of the
initialize() callback:

initializeInteractionType(1, "", reciprocal=T); // competition
i1.setInteractionFunction("f", 1.0);

Now we have an interaction type, i1, that will evaluate our phenotypic competition interaction.
It is a reciprocal interaction, as in previous recipes. It has a spatiality of "" because this is a non-
spatial model. This means that it has no concept of distance, so the only interaction formula we
are allowed to use is a fixed value, type "f", as specified here. In its present form this interaction
is not terribly useful; every individual interacts with every other individual with a strength of 1.0.
We will fix that momentarily. First, however, let’s add code to evaluate and use the interaction, at
the end of the 1: late() event:

 // evaluate phenotypic competition
 i1.evaluate(p1);
 competition = sapply(inds, "sum(i1.strength(applyValue));");
 effects = 1.0 - competition / size(inds);
 inds.fitnessScaling = inds.fitnessScaling * effects;

This code evaluates i1, and then uses sapply() to calculate, for each individual, the sum of the
strengths of all interactions felt by that individual. The sapply() function is a very useful tool,
documented in the Eidos manual; in short, it loops over its first parameter, executes the code given
(as a string) in its second parameter each time through the loop, and returns a vector that contains
the concatenation of all results from the loop. Its effect here is thus very much like running a
for (ind in inds) loop, with a loop body that executes sum(i1.strength(ind)) and pastes its
results together into a single vector. Using sapply() is both more concise and faster than such a
loop, however; it is a function worth learning.

In short, sapply() provides us with the strength of competition felt by every individual. We
then convert that into a fitness effect for each individual, much as we did in sections 16.4 and
16.5. The only twist is that here we need to multiply those fitness effects into the existing values in
inds.fitnessScaling, since we already used the fitnessScaling property for fitness effects due to
proximity to the phenotypic optimum. Fitness effects combine multiplicatively, in general, so we

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 427

multiply the new phenotypic competition fitness effects into the previously calculated phenotypic
selection fitness effects to produce final fitnessScaling values.

The only hitch is that our interaction is still rather useless; it still evaluates to a fixed interaction
strength of 1.0 between every pair of individuals. Now we will make the interaction i1 more
useful by adding an interaction() callback:

interaction(i1) {
 return dnorm(exerter.tagF, receiver.tagF, sigma_C) / NORM;
}

This uses two defined constants, sigma_C and NORM, that we need to add at the top of the
initialize() callback:

defineConstant("sigma_C", 0.4);
defineConstant("NORM", dnorm(0.0, mean=0, sd=sigma_C));

Since this is the first time we’ve seen an interaction() callback, let’s examine it closely. It
defines the interaction strength of interaction type i1, according to its declaration. It uses two
variables, exerter and receiver, that are defined by SLiM; they are pseudo-parameters of the
interaction() callback, similar to those we have seen with other types of callbacks. The exerter
is the individual exerting the interaction, and the receiver is the individual receiving the
interaction; since this interaction is reciprocal, the distinction between the two is somewhat moot,
but for non-reciprocal interactions it would be essential. The callback looks up the phenotypic
values of the two individuals (from their tagF properties where we put them before) and uses
dnorm() to calculate the degree of competition between the two, based upon a Gaussian
competition kernel with width sigma_C. Finally, the interaction strength is normalized to have a
maximum value of 1.0 here by dividing by NORM (defined to be the value returned by dnorm() for
two individuals with identical phenotypes), so that the maximum strength of competition is
independent of the width of the competition kernel.

SLiM will now automatically use this interaction() callback to determine the strength of i1
between every pair of individuals. Note that this callback calculates the strength from scratch; it is
also possible for an interaction() callback to modify the default strength calculated by the
interaction function, which is supplied to the callback in the pseudo-parameter strength. (Section
26.7 has full documentation regarding interaction() callbacks, including all of the pseudo-
parameters available to them.)

That completes the model. If we run this full model now in SLiMgui, we should see something
like:

 cyc mean sd
 1 0.00 0.00
 101 1.62 2.71
 201 4.57 1.38
 301 4.76 1.41
 401 4.87 1.22
 501 4.75 1.44

 1301 4.98 1.38
 1401 5.04 1.60
 1501 5.43 1.61
 1601 5.01 1.32
 1701 5.20 1.30
 1801 5.50 1.78
 1901 5.22 1.39
 2001 5.54 1.75

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 428

Note that the phenotypic variance rises to higher levels now, and stays high for the remainder of
the run. The theoretical expectation is that the variance will remain high indefinitely, because the
presence of phenotypic competition rewards divergence from the mean phenotype.

A key point to understand regarding this model is that the interaction() callbacks will be
called while fitness values are being calculated, as a side effect of the i1.strength() call in the
sapply() call in the 1: late() event. When evaluate() is called on an InteractionType, the
state of the model is saved in a snapshot, and distances and interaction strengths are calculated
based upon that snapshot. When interaction() callbacks are involved, however, they are called
in a deferred fashion because they are slow; calling them may not be necessary at all, if particular
interaction strengths are never queried, so deferring the calls can provide a large performance
gain. This means that interaction() callbacks are called at a later time than the evaluation of the
interaction; indeed, they can be called up until mating begins in the following tick, depending
upon when the model queries the interaction. If this proves difficult to manage in a model, you
may wish to run the interaction queries you need up front, immediately after calling evaluate(),
and cache their results for later use; or alternatively, you may wish to defer your call to evaluate()
until you are ready to actually run your interaction queries. That is not an issue in this model,
however – the interaction() callbacks are called just after i1.evaluate() anyway, as it happens.

The full model looks like this:

initialize() {
 defineConstant("optimum", 5.0);
 defineConstant("sigma_K", 1.0);
 defineConstant("sigma_C", 0.4);
 defineConstant("NORM", dnorm(0.0, mean=0, sd=sigma_C));

 initializeMutationRate(1e-6);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "n", 0.0, 1.0); // QTL
 m2.convertToSubstitution = F;

 initializeGenomicElementType("g1", c(m1, m2), c(1, 0.01));
 initializeGenomicElement(g1, 0, 1e5 - 1);
 initializeRecombinationRate(1e-8);

 initializeInteractionType(1, "", reciprocal=T); // competition
 i1.setInteractionFunction("f", 1.0);
}
mutationEffect(m2) { return 1.0; }
1 late() {
 sim.addSubpop("p1", 500);
}
1: late() {
 inds = sim.subpopulations.individuals;

 // construct phenotypes and fitness effects from QTLs
 phenotypes = inds.sumOfMutationsOfType(m2);
 inds.fitnessScaling = 1.0 + dnorm(phenotypes, optimum, sigma_K);
 inds.tagF = phenotypes;

 // evaluate phenotypic competition
 i1.evaluate(p1);
 competition = sapply(inds, "sum(i1.strength(applyValue));");
 effects = 1.0 - competition / size(inds);
 inds.fitnessScaling = inds.fitnessScaling * effects;
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 429

interaction(i1) {
 return dnorm(exerter.tagF, receiver.tagF, sigma_C) / NORM;
}
1:2001 late() {
 if (sim.cycle == 1)
 cat(" cyc mean sd\n");

 if (sim.cycle % 100 == 1)
 {
 phenotypes = p1.individuals.tagF;
 cat(format("%5d ", sim.cycle));
 cat(format("%6.2f ", mean(phenotypes)));
 cat(format("%6.2f\n", sd(phenotypes)));
 }
}

Since this model does not include assortative mating, it is not expected to produce speciation
(and we will see in the next section that it does not). At present, it is merely a model of what
Haller & Hendry (2013) called “squashed stabilizing selection”: selection based upon a fitness
function that is stabilizing around an optimum, but has been squashed downward at its center due
to negative frequency-dependent selection, producing disruptive selection that nevertheless keeps
the population in the vicinity of the fitness peak. We will add assortative mating to this model in
the recipe of section 16.8, but first, let’s examine a way to improve upon the model as it stands.

16.7 Modeling phenotype as a spatial dimension
In the previous section, we built a model of a quantitative trait constructed from randomly

arising QTLs that combined additively to determine the phenotype. We then built an interaction to
model competition based upon similarity in phenotype. In this section we will modify that recipe
slightly, to better utilize the power of InteractionType. Although this model will remain a non-
spatial model for the time being, we will now model the phenotype in SLiM as if it were a spatial
dimension. This will bring us two benefits: speed, and additional visualization power.

This change is quite straightforward. Beginning with the model of section 16.6, we first need to
enable spatiality at the beginning of the initialize() callback:

initializeSLiMOptions(dimensionality="x");

We will use the x property of individuals to store their phenotypes now, instead of tagF:

inds.x = phenotypes;

The interaction() callback that evaluates phenotypic competition should change to use x:

interaction(i1) {
 return dnorm(exerter.x, receiver.x, sigma_C) / NORM;
}

Finally, the output code should also use x instead of tagF (see the full model below).
Let’s make one other change. Previously, we’ve seen two-dimensional spatial models that used

the default boundaries of [0, 1] in x and y. In section 16.3 we mentioned that this default could be
changed; let’s change it now, because in this model phenotypic values often go outside that range.
We can add a line immediately after p1 is defined, telling p1 its spatial boundaries:

p1.setSpatialBounds(c(0.0, 10.0));

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 430

That’s it; we now have a model in which phenotype is a pseudo-spatial dimension. Why is this
better? One reason is that it provides better visualization capabilities in SLiMgui. If we run the
model now, we get a display that shows individuals in a one-dimensional phenotypic space (with
random y coordinates chosen by SLiM to spread the individuals out for greater visibility):

Since we told p1 that its spatial boundaries were [0.0, 10.0], that is the spatial extent displayed
by SLiMgui here, so the phenotypic optimum is at the horizontal center of the display here. This
snapshot, taken at about tick 300, shows that the population has already reached the optimum; the
mean phenotype here is 4.91, in fact, with a standard deviation of 1.40 – typical of the model’s
equilibrium state. Colors correspond to fitness as usual; the band of individuals on the left is
particularly low-fitness because it is far off of the optimum, and yet is also quite crowded – there
are a lot of individuals with that phenotype at this instant in time. All of the discrete banding here
is the result of variation in QTLs of relatively large effect. Note that individuals quite far off the
fitness peak can still be fairly high-fitness, as long as their phenotype is rare.

So this is one benefit of treating phenotype as a spatial dimension: the dynamic evolution of the
phenotypic distribution can be watched in real time, color-coded by fitness as the fitness function
resulting from the squashed stabilizing selection fluctuates from tick to tick.

The other benefit is that the model is much faster, because InteractionType’s optimizations for
spatial interactions are brought to bear. We’re simulating phenotypic competition with a Gaussian
function in an interaction() callback; we can instead remove that interaction() callback and
change the definition of the i1 interaction like so:

initializeInteractionType(1, "x", reciprocal=T, maxDistance=sigma_C * 3);
i1.setInteractionFunction("n", 1.0, sigma_C);

This defines i1 as a spatial interaction using x, which is our phenotypic “dimension”. It then
tells i1 to use a Gaussian function with a maximum value of 1.0 and a width of sigma_C –
precisely what the interaction() callback used to do. Indeed, this model is exactly equivalent.
The difference is that it runs much faster – it completes about 4750 ticks in 30 seconds (on my
machine), whereas the version using an interaction() callback completes about 420 ticks in 30
seconds. Not a bad speed improvement! The key is that we have avoided having to make a call to
an Eidos interaction() callback for every interaction; having to run a callback a bunch of times in
every tick is always slow.

Even a little more speed can be squeezed out, at the price of accuracy. If a maximum distance
of 0.8 is set for i1, and totalOfNeighborStrengths() is used instead of strength() in the code
that calculates total phenotypic competition, about 5030 ticks can be completed in 30 seconds.
Since a maximum distance of 0.8 is two standard deviations of the competition kernel, the effects
of this change should be relatively small in terms of the overall behavior of the model, but it is
nevertheless a sacrifice in accuracy, and the performance gain in this case is not large, so we will

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 431

not consider this change to be a part of the official recipe for this section. In other cases, however,
the performance gain can be very large; a maximum distance should always be considered for
spatial interactions, particularly if it can safely be set to a short enough distance to exclude most
other individuals from interacting with the focal individual at all.

The full recipe for this section, for posterity, is:

initialize() {
 defineConstant("optimum", 5.0);
 defineConstant("sigma_K", 1.0);
 defineConstant("sigma_C", 0.4);
 defineConstant("NORM", dnorm(0.0, mean=0, sd=sigma_C));

 initializeSLiMOptions(dimensionality="x");
 initializeMutationRate(1e-6);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "n", 0.0, 1.0); // QTL
 m2.convertToSubstitution = F;

 initializeGenomicElementType("g1", c(m1, m2), c(1, 0.01));
 initializeGenomicElement(g1, 0, 1e5 - 1);
 initializeRecombinationRate(1e-8);

 initializeInteractionType(1, "x", reciprocal=T,
 maxDistance=sigma_C * 3);
 i1.setInteractionFunction("n", 1.0, sigma_C);
}
mutationEffect(m2) { return 1.0; }
1 late() {
 sim.addSubpop("p1", 500);
 p1.setSpatialBounds(c(0.0, 10.0));
}
1: late() {
 inds = sim.subpopulations.individuals;

 // construct phenotypes and fitness effects from QTLs
 phenotypes = inds.sumOfMutationsOfType(m2);
 inds.fitnessScaling = 1.0 + dnorm(phenotypes, optimum, sigma_K);
 inds.x = phenotypes;

 // evaluate phenotypic competition
 i1.evaluate(p1);
 competition = sapply(inds, "sum(i1.strength(applyValue));");
 effects = 1.0 - competition / size(inds);
 inds.fitnessScaling = inds.fitnessScaling * effects;
}
1:2001 late() {
 if (sim.cycle == 1)
 cat(" cyc mean sd\n");

 if (sim.cycle % 100 == 1)
 {
 phenotypes = p1.individuals.x;
 cat(format("%5d ", sim.cycle));
 cat(format("%6.2f ", mean(phenotypes)));
 cat(format("%6.2f\n", sd(phenotypes)));
 }
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 432

16.8 Sympatric speciation facilitated by assortative mating
In the previous section we refined our non-spatial model of phenotypic competition, by treating

phenotype as though it were a spatial dimension so that SLiM could run the model more quickly
and with better visualization. It is now time to take another step toward the model of Dieckmann
& Doebeli (1999) by changing mating in the model to be assortative by phenotype. This will in
some ways be similar to what we did in section 16.4; but there mating was spatially assortative,
whereas here mating will be phenotypically assortative.

Beginning with the model of section 16.7, the changes needed are quite small. First, we need
to add code in initialize() to define a new interaction type, i2, that we will use for mate
evaluation:

initializeInteractionType(2, "x", reciprocal=T, maxDistance=sigma_M * 3);
i2.setInteractionFunction("n", 1.0, sigma_M);

We have to define the sigma_M kernel width as well, at the beginning of the initialize()
callback:

defineConstant("sigma_M", 0.5);

Since this interaction is based on "x", which is our pseudo-spatial phenotype dimension, it
represents phenotypic proximity just as i1, our phenotypic competition interaction, does. Indeed,
the only reason not to use i1 to govern mate choice as well is that we want to be able to make it
use a different interaction function than competition, so that we can play with the width of the
mate-choice kernel independently of the width of the competition kernel.

Next, we need to evaluate that interaction in a first() event:

1: first() {
 // evaluate mate choice in preparation for reproduction
 i2.evaluate(p1);
}

And finally, we need a mate choice callback that uses that interaction:

mateChoice() {
 // spatial mate choice
 return i2.strength(individual);
}

And that’s it. We now have a model in which phenotype, as determined by randomly arising
additive QTLs, is something like a “magic trait” (Servedio et al. 2011) – a trait that simultaneously
determines both fitness (because of the phenotypic optimum) and assortative mating (because of
the mateChoice() callback) (although it is perhaps not strictly a magic trait since it is governed by
underlying QTLs; see sections 11.1 and 13.3 for more discussion of this topic). When exposed to
the disruptive selection caused by phenotypic competition in the model, the magic-ish trait here
readily produces speciation. (Note that this is true speciation, not just asexual evolutionary
branching, because this is a sexual model in the sense that matters – biparental mating with
assortment and recombination of gametes – even though it models hermaphrodites, not separate
sexes).

We can see evidence for speciation in two different ways in SLiMgui. First of all, instead of the
cloud of different phenotypes around the optimum that the previous model generated, we now see
a set of discrete phenotypic clusters:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 433

Second, we now see strong genetic separation between these clusters in the pattern of neutral
variation exhibited by the population:

Note that there are virtually no neutral mutations at high frequency; instead, there is a large
amount of neutral diversity that is pinned at a couple of intermediate frequencies. These are blocs
of neutral mutations that have fixed within one of the species in the model, but are unable to
spread more widely because of the reproductive isolation between the species. Hybridization is
not impossible; it does occur occasionally, as can be seen in the snapshot above. But it is rare
enough that gene flow between the species is insufficient to allow that neutral diversity to spread.

It would be fair to argue that although this is a model of speciation given a pre-existing magic
trait, it is not a model of the emergence of the magic trait itself, because it lacks the “mating trait”
of the Dieckmann & Doebeli (1999) model. Adding in such a trait would be a simple extension of
the present model, and would presumably support the result found by Dieckmann & Doebeli
(1999) – that in an ecological scenario such as this, assortative mating will readily emerge,
transforming an ordinary trait into a magic trait that then facilitates speciation. We will leave that
extension of the model as an exercise for the reader, since pursuing it would not serve the aims of
this chapter. Instead, in the next section we will turn back toward spatial models, while
incorporating what we have done here with QTLs, phenotypic competition, and phenotype-based
assortative mate choice.

Here’s the full model, for the record:

initialize() {
 defineConstant("optimum", 5.0);
 defineConstant("sigma_K", 1.0);
 defineConstant("sigma_C", 0.4);
 defineConstant("sigma_M", 0.5);
 defineConstant("NORM", dnorm(0.0, mean=0, sd=sigma_C));

 initializeSLiMOptions(dimensionality="x");
 initializeMutationRate(1e-6);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "n", 0.0, 1.0); // QTL
 m2.convertToSubstitution = F;

 initializeGenomicElementType("g1", c(m1, m2), c(1, 0.01));
 initializeGenomicElement(g1, 0, 1e5 - 1);
 initializeRecombinationRate(1e-8);

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 434

 initializeInteractionType(1, "x", reciprocal=T,
 maxDistance=sigma_C * 3); // competition
 i1.setInteractionFunction("n", 1.0, sigma_C);

 initializeInteractionType(2, "x", reciprocal=T,
 maxDistance=sigma_M * 3); // mate choice
 i2.setInteractionFunction("n", 1.0, sigma_M);
}
mutationEffect(m2) { return 1.0; }
1 late() {
 sim.addSubpop("p1", 500);
 p1.setSpatialBounds(c(0.0, 10.0));
}
1: late() {
 inds = sim.subpopulations.individuals;

 // construct phenotypes and fitness effects from QTLs
 phenotypes = inds.sumOfMutationsOfType(m2);
 inds.fitnessScaling = 1.0 + dnorm(phenotypes, optimum, sigma_K);
 inds.x = phenotypes;

 // evaluate phenotypic competition
 i1.evaluate(p1);
 competition = sapply(inds, "sum(i1.strength(applyValue));");
 effects = 1.0 - competition / size(inds);
 inds.fitnessScaling = inds.fitnessScaling * effects;
}
2: first() {
 // evaluate mate choice in preparation for reproduction
 i2.evaluate(p1);
}
mateChoice() {
 // spatial mate choice
 return i2.strength(individual);
}
1:2001 late() {
 if (sim.cycle == 1)
 cat(" cyc mean sd\n");

 if (sim.cycle % 100 == 1)
 {
 phenotypes = p1.individuals.x;
 cat(format("%5d ", sim.cycle));
 cat(format("%6.2f ", mean(phenotypes)));
 cat(format("%6.2f\n", sd(phenotypes)));
 }
}

16.9 Speciation due to spatial variation in selection
In the previous section, we observed that speciation can occur as a result of phenotypic

competition and assortative mate choice in a non-spatial model. In this section we will return to
spatial modeling, while preserving many aspects of the previous recipe. We will now introduce
spatial variation in selection, and will observe adaptive speciation among spatial groups as a result
of local selection pressures in combination with phenotypic competition. The optimum trait value
for the quantitative trait – the phenotypic optimum, in other words – will vary according to the x

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 435

position in space, producing a linear environmental gradient. This model is broadly inspired by
the model of Doebeli & Dieckmann (2003), although again there are many differences.

This recipe has enough differences from the previous recipe that we will build it here from
scratch, rather than just giving changes relative to the previous recipe. Let’s start with the
initialization and setup:

initialize() {
 defineConstant("sigma_C", 0.1);
 defineConstant("sigma_K", 0.5);
 defineConstant("sigma_M", 0.1);
 defineConstant("slope", 1.0);
 defineConstant("N", 500);

 initializeSLiMOptions(dimensionality="xyz");
 initializeMutationRate(1e-6);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "n", 0.0, 1.0); // QTL
 m2.convertToSubstitution = F;

 initializeGenomicElementType("g1", c(m1, m2), c(1, 0.1));
 initializeGenomicElement(g1, 0, 1e5 - 1);
 initializeRecombinationRate(1e-8);

 initializeInteractionType(1, "xyz", reciprocal=T,
 maxDistance=sigma_C * 3); // competition
 i1.setInteractionFunction("n", 1.0, sigma_C);

 initializeInteractionType(2, "xyz", reciprocal=T,
 maxDistance=sigma_M * 3); // mate choice
 i2.setInteractionFunction("n", 1.0, sigma_M);
}
mutationEffect(m2) { return 1.0; }
1 late() {
 sim.addSubpop("p1", N);
 p1.setSpatialBounds(c(0.0, 0.0, -slope, 1.0, 1.0, slope));
 p1.individuals.setSpatialPosition(p1.pointUniform(N));
 p1.individuals.z = 0.0;
}

This model is our first to use dimensionality "xyz". The x and y dimensions are true spatial
dimensions; this is a 2D model. The z dimension will be used here for phenotype, just as we used
x as a pseudo-spatial phenotypic dimension in previous recipes. We set up QTL machinery for the
phenotype much as we did before; the fraction of mutations that are QTLs is higher in this model
just so that we don’t have to wait as long to get interesting behavior. We create two interaction
types, i1 for competition and i2 for mating, as before. Note that both of these interaction types
have spatiality "xyz"; i1 therefore encompasses both spatial and phenotypic competition in a
single interaction, and i2 encompasses both spatially and phenotypically assortative mate choice.
For our purposes here this is sufficient, but more interaction types could be defined as desired.

Then we set up the population, in the 1 late() event. We set spatial boundaries of [0.0, 1.0]
for x and y, and of [-slope, slope] for z. The optimum phenotype will actually vary from
−slope/2 to slope/2, from the left edge to the right edge of the environment; the wider interval
here is used just to allow for some phenotypic variation beyond that interval. (In fact, the spatial
boundary for z is not used in this model, nor by SLiMgui, so it is irrelevant anyway). Finally, we set
random spatial positions for all of the initial individuals, and zero out their phenotypes (z).

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 436

Next, let’s implement the machinery to manage spatial positions and phenotypes:

modifyChild() {
 // set offspring position based on parental position
 do pos = c(parent1.spatialPosition[0:1] + rnorm(2, 0, 0.005), 0.0);
 while (!p1.pointInBounds(pos));
 child.setSpatialPosition(pos);

 return T;
}
1: late() {
 inds = sim.subpopulations.individuals;

 // construct phenotypes and fitness effects from QTLs
 phenotypes = inds.sumOfMutationsOfType(m2);
 optima = (inds.x - 0.5) * slope;
 inds.fitnessScaling = 1.0 + dnorm(phenotypes, optima, sigma_K);
 inds.z = phenotypes;

 // color individuals according to phenotype
 for (ind in inds)
 {
 hue = ((ind.z + slope) / (slope * 2)) * 0.66;
 ind.color = rgb2color(hsv2rgb(c(hue, 1.0, 1.0)));
 }

 // evaluate phenotypic competition
 i1.evaluate(p1);
 competition = sapply(inds, "sum(i1.strength(applyValue));");
 effects = 1.0 - competition / size(inds);
 inds.fitnessScaling = inds.fitnessScaling * effects;
}

2: first(p1) {
 // evaluate mate choice in preparation for reproduction
 i2.evaluate();
}
mateChoice() {
 // spatial mate choice
 return i2.strength(individual);
}

As in previous recipes, we use a modifyChild() callback to place offspring near their first
parent, with a small random deviation. We ensure that the offspring phenotype is 0.0 here, so that
it doesn’t cause the pointInBounds() call to return F; we don’t want SLiM to bounds-check
offspring phenotypes for us. The phenotype of 0.0 set here is overwritten a moment later, in the
1: late() event above, when phenotypes are calculated for all individuals and placed into their z
coordinate. That code also calculates fitness effects due to phenotypic proximity to the
environmental optimum; in previous recipes the optimum was a constant value, but now the
optimum depends upon the individual’s position in space, since we are now modeling a linear
spatial environmental gradient, so we compute a vector of optima that we can pass to dnorm() to
do a vectorized assessment of local adaptation on the gradient.

Next, a bit of extra code here calculates color values for individuals; in this model individuals
are colored according to their phenotype, rather than their fitness, so that spatial adaptive
divergence is directly visible in SLiMgui, as we’ll see below. The code here calculates a hue in the
HSV (hue/saturation/value) color system, then converts that to the RGB (red/green/blue) color

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 437

system and then to a hexadecimal color string which it sets as the color of the individual (see the
Eidos manual for details on these functions).

Next, we evaluate competition, both spatial and phenotypic; it is actually unchanged from the
previous recipe. Similarly, the mateChoice() callback above is unchanged from the previous
section, although it now scores mates based upon both spatial and phenotypic similarity. The
strength() method simply evaluates interaction strength; here that is based upon both spatial
position and phenotype, since the interaction now encompasses both, but the code using
strength() does not need to change at all.

Finally, let’s use the same output event that we used before:

1:5001 late() {
 if (sim.cycle == 1)
 cat(" cyc mean sd\n");

 if (sim.cycle % 100 == 1)
 {
 phenotypes = p1.individuals.z;
 cat(format("%5d ", sim.cycle));
 cat(format("%6.2f ", mean(phenotypes)));
 cat(format("%6.2f\n", sd(phenotypes)));
 }
}

This prints out a history of the phenotypic mean and standard deviation every 100 cycles, with a
header emitted in cycle 1.

Running this model does indeed produce speciation. One sign of that is that we can see
discrete clusters of individuals of different colors, representing the fact that they have adapted to
different parts of the environmental gradient:

There are three species present here, colored yellow, green, and cyan, adapted to the conditions
at the left, center, and right of the environmental gradient, respectively. (There are also a few
mutants of other colors sprinkled in.)

Another piece of evidence for speciation is the presence of large amounts of neutral diversity
that is not mixing between the different phenotypic clusters, as we saw before in section 16.8:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 438

Many mutations are at a frequency of approximately 2/3 because they are shared between two
species; the yellow species split from the green species only about 1000 ticks before these
snapshots were taken, and so the two species share a great deal of their genetic background.
Many other mutations are at a frequency of approximately 1/3 because they are shared only within
the cyan species, which split from the green species more than 8000 ticks earlier. Remarkably, not
a single mutation has fixed across the whole population after 9000 ticks of runtime; the onset of
speciation is quite early (in this run of the model, at least), and the reproductive barrier is quite
strong with the parameter values used here.

One could bring in other machinery to further assess the extent of adaptive divergence and
reproductive isolation, such as the FST calculation function, calcFST(), that we used in section
11.1. One could also use SLiMgui’s “Create Haplotype Plot” feature to see whether the groups
that appear to be species fall out as genetic clusters naturally (see sections 13.3 and 14.4 for
previous uses of this feature). For a different run of the model than shown above, with only two
species present, a haplotype plot looks like this:

The two species are clearly visible in the haplotype plot, with completely different neutral
variation along the whole chromosome. Within each species some haplotype structure is also
visible; this is divergence among the separate spatial clusters within each species.

The full model, for reference:

initialize() {
 defineConstant("sigma_C", 0.1);
 defineConstant("sigma_K", 0.5);
 defineConstant("sigma_M", 0.1);
 defineConstant("slope", 1.0);
 defineConstant("N", 500);

 initializeSLiMOptions(dimensionality="xyz");
 initializeMutationRate(1e-6);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "n", 0.0, 1.0); // QTL
 m2.convertToSubstitution = F;

 initializeGenomicElementType("g1", c(m1, m2), c(1, 0.1));
 initializeGenomicElement(g1, 0, 1e5 - 1);
 initializeRecombinationRate(1e-8);

 initializeInteractionType(1, "xyz", reciprocal=T,
 maxDistance=sigma_C * 3); // competition
 i1.setInteractionFunction("n", 1.0, sigma_C);

 initializeInteractionType(2, "xyz", reciprocal=T,
 maxDistance=sigma_M * 3); // mate choice
 i2.setInteractionFunction("n", 1.0, sigma_M);
}
mutationEffect(m2) { return 1.0; }

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 439

1 late() {
 sim.addSubpop("p1", N);
 p1.setSpatialBounds(c(0.0, 0.0, -slope, 1.0, 1.0, slope));
 p1.individuals.setSpatialPosition(p1.pointUniform(N));
 p1.individuals.z = 0.0;
}
modifyChild() {
 // set offspring position based on parental position
 do pos = c(parent1.spatialPosition[0:1] + rnorm(2, 0, 0.005), 0.0);
 while (!p1.pointInBounds(pos));
 child.setSpatialPosition(pos);

 return T;
}
1: late() {
 inds = sim.subpopulations.individuals;

 // construct phenotypes and fitness effects from QTLs
 phenotypes = inds.sumOfMutationsOfType(m2);
 optima = (inds.x - 0.5) * slope;
 inds.fitnessScaling = 1.0 + dnorm(phenotypes, optima, sigma_K);
 inds.z = phenotypes;

 // color individuals according to phenotype
 for (ind in inds)
 {
 hue = ((ind.z + slope) / (slope * 2)) * 0.66;
 ind.color = rgb2color(hsv2rgb(c(hue, 1.0, 1.0)));
 }

 // evaluate phenotypic competition
 i1.evaluate(p1);
 competition = sapply(inds, "sum(i1.strength(applyValue));");
 effects = 1.0 - competition / size(inds);
 inds.fitnessScaling = inds.fitnessScaling * effects;
}
2: first() {
 // evaluate mate choice in preparation for reproduction
 i2.evaluate(p1);
}
mateChoice() {
 // spatial mate choice
 return i2.strength(individual);
}
1:5001 late() {
 if (sim.cycle == 1)
 cat(" cyc mean sd\n");

 if (sim.cycle % 100 == 1)
 {
 phenotypes = p1.individuals.z;
 cat(format("%5d ", sim.cycle));
 cat(format("%6.2f ", mean(phenotypes)));
 cat(format("%6.2f\n", sd(phenotypes)));
 }
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 440

16.10 A simple biogeographic landscape model
The time has come to introduce a new topic: spatial maps. For this, we will temporarily

abandon the spatial quantitative-trait local adaptation model we have been building in previous
recipes, and switch to a much simpler model. Our goal in this section is to build a biogeographic
model that uses a spatial map. Just for fun, the map we will use is a map of the world. There are
no end of issues with this – the map projection distorts the geography, Russia and Alaska are not
connected across the Bering Strait because the spatial boundary intervenes, and so forth. But as a
simple toy model to illustrate the concept and the potential of spatial maps, it should serve our
purposes.

Let’s start with the model, and then delve into the concepts:

initialize() {
 initializeSLiMOptions(dimensionality="xy");
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);

 // spatial competition
 initializeInteractionType(1, "xy", reciprocal=T, maxDistance=30.0);
 i1.setInteractionFunction("n", 5.0, 10.0);

 // spatial mate choice
 initializeInteractionType(2, "xy", reciprocal=T, maxDistance=30.0);
 i2.setInteractionFunction("n", 1.0, 10.0);
}
1 late() {
 sim.addSubpop("p1", 1000);

 p1.setSpatialBounds(c(0.0, 0.0, 539.0, 216.0));

 mapImage = Image("world_map_540x217.png");
 p1.defineSpatialMap("world", "xy", 1.0 - mapImage.floatK,
 valueRange=c(0.0, 1.0), colors=c("#0000CC", "#55FF22"));

 // start near a specific map location
 for (ind in p1.individuals) {
 ind.x = rnorm(1, 300.0, 1.0);
 ind.y = rnorm(1, 100.0, 1.0);
 }
}
1: late() {
 i1.evaluate(p1);
 inds = sim.subpopulations.individuals;
 competition = i1.totalOfNeighborStrengths(inds) / size(inds);
 competition = pmin(competition, 0.99);
 inds.fitnessScaling = 1.0 - competition;
}
2: first() {
 i2.evaluate(p1);
}
mateChoice() {
 return i2.strength(individual);
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 441

modifyChild() {
 do pos = parent1.spatialPosition + rnorm(2, 0, 2.0);
 while (!p1.pointInBounds(pos));

 // prevent dispersal into water
 if (p1.spatialMapValue("world", pos) == 0.0)
 return F;

 child.setSpatialPosition(pos);
 return T;
}
20000 late() { sim.outputFixedMutations(); }

Here’s what the model looks like in SLiMgui at the end of tick 1, after population setup:

The black dot in eastern Africa is the initial population; this model seeds the population at a
specific location, perhaps simulating – not realistically, obviously! – the origin of Homo sapiens in
Africa. This model has spatial competition and spatial mate choice, as we have seen in previous
recipes, so the population rapidly spreads to occupy new territory in order to escape the local
competition from other individuals. Here is the population at the end of tick 63:

Notice that the individuals are constrained to occupy only land locations. It is also interesting
that they have managed to reach Madagascar; the dispersal kernel used can jump small distances,
so the population can sometimes bridge the Mozambique Channel. Some water gaps are too large
to bridge, however. Here is the population at the end of tick 1000:

The population has spread across all of mainland Asia, but has not been able to enter Indonesia,
and has thus not reached Australia; the land area provided by the Indonesian islands is probably
too small to support a subpopulation (and similarly, the subpopulation that colonized Madagascar
has died out). Reaching the New World would be even more difficult, given the fact that the
Bering Strait is unavailable (a periodic boundary condition in the x direction would be needed to
make that work; see section 16.12); individuals would have to make like the Vikings and jump
from mainland Europe to Iceland, Greenland, and thence to North America.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 442

The fact that this particular biogeographic pattern is observed is not necessarily a problem, of
course; a great many organisms are unable to disperse from Eurasia to Australia or the Americas.
But it is a consequence of the details of this model – the particular dispersal kernel chosen, the
particular way in which dispersal is constrained to land, the details of the map used (the fact that it
does not include elevation, rivers, etc.), the way in which competition and mating are
implemented, and so forth. There is no obstacle to changing these details to match the biological
details of a particular species, to produce a more empirically based biogeographic model.

So, how was this recipe constructed? Let’s now delve into a few of the details. Most of the
model is familiar boilerplate: the setup in initialize(), the 1: late() event that evaluates the
spatial interactions, and the mateChoice() callbacks, for example. Let’s start, then, by looking at
the 1 late() event that initializes the population:

1 late() {
 sim.addSubpop("p1", 1000);

 p1.setSpatialBounds(c(0.0, 0.0, 539.0, 216.0));

 mapImage = Image("world_map_540x217.png");
 p1.defineSpatialMap("world", "xy", 1.0 - mapImage.floatK,
 valueRange=c(0.0, 1.0), colors=c("#0000CC", "#55FF22"));

 // start near a specific map location
 for (ind in p1.individuals) {
 ind.x = rnorm(1, 300.0, 1.0);
 ind.y = rnorm(1, 100.0, 1.0);
 }
}

It begins by creating a subpopulation, p1, as usual. It then sets up spatial boundaries for p1,
from (0, 0) to (539, 216); this is dictated by the size of the map that we are about to load, which is
540x217 pixels in size. Note that the bounds are made one smaller than the image size, in fact, in
each dimension; this is because the spatial map’s grid is aligned with the corners of the bounds,
and so only half of the area of edge pixels (and one-quarter of the area of corner pixels) lies inside
the spatial bounds, as will be illustrated in the next section. The spatial bounds of the
subpopulation do not need to derive exactly from the size of the spatial map in this way, but it is
usually desirable for them to at least match the aspect ratio of the map, so that the map is not
stretched.

The map is then read in from a file; note that the path to this file will probably be different on
your system (it can be found inside the Recipes folder that can be downloaded from SLiM’s home
page). This is a simple black-and-white PNG image file, which we load using the Eidos class Image
(see the Eidos manual for documentation on that class). We get the black channel from the image,
as float values in [0,1], with the floatK property (for a color image, RGB channels would be
defined, but for a grayscale image only a single channel is defined, named “K”, as in the standard
color space “CMYK”). We don’t need to do any coordinate transformations; Image and
defineSpatialMap() take care of that for us. We do, however, need to flip the sense of the pixels
in the image – it depicts land as black pixels (0), but we want land to be 1 and water to be 0, so we
transform the values with 1.0 - mapImage.floatK.

Now we call the defineSpatialMap() method of Subpopulation to give the map to SLiM. The
first parameter, "world", is a name for the map; you can define as many spatial maps as you wish,
and you can refer to them by name. The "xy" parameter indicates the spatiality of the map, which
must be a subset of the dimensionality of the model as a whole; here our map covers dimensions x
and y. Next we provide the values for the map as a matrix of float values (if we were creating a

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 443

1D spatial map we would pass a vector; if a 3D spatial map, an array). (Note that the Eidos
manual discusses how matrices and arrays work in more detail.)

The last two parameters here are optional, and are for SLiMgui’s benefit. The first parameter,
valueRange, gives the expected range of values for the map data; this need not match the actual
range of the data. The purpose of this is to tell SLiMgui what value range should be displayed
using distinct colors; values outside this range will be clamped to be within the range for display.
The second parameter, colors, gives a vector of color strings that specify how particular values
should be displayed (see the Eidos manual for details on color strings). The lowest value in
valueRange will be displayed using the first color in colors; the highest value in valueRange will
be displayed using the last color in colors. Color values in between will be evenly distributed
across valueRange, and intermediate values – those not corresponding exactly to a given color –
will be displayed using an interpolation between the two nearest color values. Here, the values
supplied for these parameters indicate that a value of 0.0 should be displayed with the color
"#0000CC" (dark blue), whereas 1.0 should use color "#55FF22" (medium green). Values between
0.0 and 1.0 would be interpolated, but in fact our map data is binary, so that does not arise.

With that, we have defined a spatial map and told SLiMgui how to display it. We now just need
to use it to govern the model dynamics. At the end of the 1 late() event the positions of all
individuals are initialized to be near a particular spot in East Africa, using rnorm() to draw the
coordinates instead of using the pointUniform() method we have used in previous recipes. (See
the SLiM-Extras GitHub repository for a modified recipe that draws initial positions anywhere on
land, using pointUniform() with a vectorized iteration strategy for efficiency.)

Then in our modifyChild() callback we enforce that individuals can only disperse to land, by
consulting the spatial map:

modifyChild() {
 do pos = parent1.spatialPosition + rnorm(2, 0, 2.0);
 while (!p1.pointInBounds(pos));

 // prevent dispersal into water
 if (p1.spatialMapValue("world", pos) == 0.0)
 return F;

 child.setSpatialPosition(pos);
 return T;
}

The first couple of lines generate a random offspring position based upon the position of the first
parent, as we have seen before. That code loops until a point inside the spatial bounds of the
subpopulation is generated. Next, the callback consults the spatial map to find out its value at the
candidate point using the spatialMapValue() method, giving it map name and the candidate
point. This method simply looks up the value nearest to the given point in the map data. If it is
0.0 – water – then the callback returns F, rejecting the proposed child. Otherwise, the location is
on land, so it is set as the new child’s position and T is returned to accept the proposed child.

Notice, then, that a reprising boundary condition is used for the edges of the map, but an
absorbing boundary condition is used for the coastlines. This means that individuals close to a
coastline suffer a fitness penalty; their children are relatively likely to land in water, and when they
do, they don’t get another chance to generate a different child location. This is part of the reason
that colonizing areas like Indonesia is difficult in this model (the fact that locations in places like
Indonesia are relatively unlikely to be chosen as child locations in the first place is also important).
We can change the modifyChild() callback’s code a bit to change that:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 444

modifyChild() {
 do {
 do pos = parent1.spatialPosition + rnorm(2, 0, 2.0);
 while (!p1.pointInBounds(pos));
 } while (p1.spatialMapValue("world", pos) == 0.0);

 child.setSpatialPosition(pos);
 return T;
}

Now the boundary condition on coastlines is reprising also, and a quick run of the model
shows that that allows much more dispersal into small land areas:

Indonesia and Australia are soon reached, and the UK and Madagascar often also support
populations. Reaching North America is still quite difficult, however.

This is obviously just a fun toy model, but it would be easy to extend. A map using more
values, to indicate things like mountain ranges, could be used, and the map could be much higher
resolution (SLiM places no limit on the size of spatial maps, as long as your computer has enough
memory). Dispersal on a high-resolution map could be much more short-range, making it so that
even small barriers like rivers would present obstacles to dispersal. A much larger population size
would probably be appropriate, for most organisms. Moreover, instead of using a constant
population size as this model does, which is clearly unrealistic, the population size could be
related to fitness in such a way that when the population discovers a new area and expands into it,
thereby increasing in fitness since the effects of competition are diminished, the population size
would increase to reflect the new higher carrying capacity; that would happen naturally in a
nonWF model (see section 16.15), so that would be a better design than the WF model shown
here. (As noted at the beginning of this chapter, spatial models should almost always be nonWF
models, because of local density considerations like this.) Mate choice could be based not only
on spatial distance, but also upon, for example, the map values at points intermediate between the
two proposed parents, so that a mountain range would produce vicariance between even closely
adjacent subpopulations. All of these sorts of features could be added with just a few more lines of
code. Note also that although this model reads its spatial map in from an image file, it is also
straightforward to construct a map at runtime in script; see twoHabitatMap.txt in the online SLiM-
Extras repository, as well as some of the following sections.

One particularly interesting feature for a biogeographic model like this would be to include
spatial heterogeneity that affects the selection on individuals, such that there is selection pressure
towards local adaptation. For instance, with this world map the more polar regions might exert
selection toward more cold-adapted phenotypes whereas the more tropical regions might select for
more warm-adapted phenotypes. In section 16.9 we saw a very primitive stab at this sort of
model, with the introduction of a simple linear environmental gradient. Real landscapes are more
complicated than that, though – mountaintops are similar to polar environments, whereas
coastlines tend to have more moderate climates, for example. In the next section, we’ll look at a
model of local adaptation to spatial heterogeneity that goes beyond a simple linear environmental
gradient by using a spatial map.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 445

16.11 Local adaptation on a heterogeneous landscape map
The previous section introduced the ability to define an arbitrary spatial map, whereas in

section 16.9 we explored a model of adaptation to a linear environmental gradient. One could try
combining those two approaches, to see how complex environmental heterogeneity influences
evolutionary outcomes like divergence and speciation. This recipe will demonstrate such an
approach, inspired by the model of Haller, Mazzucco & Dieckmann (2013), although the
landscapes generated here will be fairly different from those used in that paper. This recipe will
generate a random spatial map representing the local phenotypic optimum across the landscape,
and will then simulate the local adaptation of a spatial population to the conditions of that
landscape. Here the landscape is generated algorithmically, but it would be trivial to instead read
the spatial map from a PNG file as was done in the previous recipe.

The model of section 16.9 provides us with a quantitative trait based upon underlying randomly
arising QTLs, with phenotypic competition and assortative mating based upon that quantitative
trait. Let’s assume that machinery for now (the full recipe will be presented at the end), and look at
the parts that are new. Most importantly, we have gotten rid of the slope constant of section 16.9,
and instead here generate a heterogeneous landscape:

1 late() {
 sim.addSubpop("p1", N);
 p1.setSpatialBounds(c(0.0, 0.0, 0.0, 1.0, 1.0, 1.0));
 p1.individuals.setSpatialPosition(p1.pointUniform(N));
 p1.individuals.z = 0.0;

 defineConstant("mapValues", matrix(runif(25, 0, 1), ncol=5));
 p1.defineSpatialMap("map1", "xy", mapValues, interpolate=T,
 valueRange=c(0.0, 1.0), colors=c("red", "yellow"));
}

We define spatial bounds of [0, 1] for each dimension, including the z dimension that is used
for phenotype, and set up the initial population at random positions on the landscape with
phenotypic values of 0.0, as in section 16.9. A map is then generated simply as a set of 25 draws
from a uniform distribution between 0 and 1, transformed into a 5×5 matrix. This matrix, saved off
in the defined constant mapValues (we will use it later), is set as a spatial map on subpopulation p1
with a call to defineSpatialMap(). We specify that it corresponds to dimensions "xy", that values
are expected to range between 0.0 and 1.0, and that colors for that range should ramp from red to
yellow. This is basically familiar from the biogeographic model of section 16.10, although the
spatial map there came from a file.

We’ll look at what this map ends up looking like in a moment, but first let’s finish building the
model. In the 1: late() event, we will replace the code from section 16.9 that colors individuals
according to phenotype with new code that uses the same color scheme as the landscape
coloring:

// color individuals according to phenotype
inds.color = p1.spatialMapColor("map1", phenotype);

This uses a vectorized call to the spatialMapColor() method of Subpopulation, which
translates a value into a color using the mapping established by a particular spatial map. In this
way, the colors of individuals adapted to a given phenotypic optimum will exactly match the
colors of map areas where that phenotypic optimum exists. Individuals that are perfectly adapted
to their environment will therefore be displayed in SLiMgui in a color that matches their
environment, whereas a mismatch in color between an individual and its environment will
indicate maladaptation.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 446

Finally, for evaluating the fitness effects due to individual phenotype compared to the
phenotypic optimum, we need to use spatialMapValue() to find the phenotypic optimum for the
point in space occupied by each individual. The map can be looked up by name, as we saw in the
previous section, and the location of each individual is obtained using its spatialPosition()
method. We select just the x and y coordinates of the individual locations, since those are the
dimensions used by the spatial map. We then call spatialMapValue() in vectorized fashion, to get
the optima for all individuals in one call. The final code looks like this:

phenotype = inds.sumOfMutationsOfType(m2);
location = inds.spatialPosition[rep(c(T,T,F), inds.size())];
optimum = p1.spatialMapValue("map1", location);
inds.fitnessScaling = 1.0 + dnorm(phenotype, optimum, sigma_K);
inds.z = phenotype;

The rest of the recipe is as it was before. An example run looks like this:

We have a nice randomly heterogeneous landscape, and the population has clearly adapted to
it; we have reddish individuals in two of the more reddish areas, and orange individuals in three
more orange areas. As before, the structure of neutral diversity visible in the chromosome view
provides clear evidence of reproductive isolation and speciation.

There is one thing that may be surprising, however. We supplied a 5x5 map to
defineSpatialMap(), but the snapshot above shows what appears to be a continuous landscape.
This is a result of the interpolation=T parameter we supplied to defineSpatialMap(), which
instructed it to use interpolation (bilinear interpolation, in this case, to be precise) to make the
landscape continuous. To understand better how that works, let’s look in a little more detail at
how SLiM builds landscape maps. First of all, here is the 5x5 grid of values that we supplied to
defineSpatialMap(), colored according to the given color map:

Given this particular pixel grid, if we were to supply interpolate=F to defineSpatialMap()
instead, the landscape displayed by SLiMgui would look like this:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 447

Note that because the pixel grid is aligned with the corners of the spatial bounds of the
subpopulation, only ½ or ¼ of the area of the outer pixels is contained within bounds. The reason
for this is clear if we look at the pixel grid superimposed on that landscape:

This is by design; it is the most natural way to handle such spatial maps when interpolation is
involved (try thinking through the alternative to see why), and for consistency it is also how SLiM
handles spatial maps when interpolation is not used.

So now when interpolation is turned on, the landscape looks like this:

This is the result of bilinear interpolation, which shades continuously between the defined
points to produce a continuous map. The values defined by the pixel grid remain fixed, however.
To illustrate that, here is the pixel grid superimposed on the interpolated landscape:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 448

SLiM does not interpolate statically, with the interpolation=T option; it does not generate and
store an interpolated map of some large but fixed size. Instead, when interpolation is enabled for
a given spatial map, it calculates the exact interpolated value for a given point upon request.
Interpolated maps are therefore completely continuous and effectively infinite-resolution (within
the precision limits of floating-point numbers). With only 25 defined values, we therefore have an
infinitely detailed landscape. In the previous recipe, using the world map, we did not enable
interpolation, because we actually wanted the pixel grid; we wanted a world of binary pixels,
either land or water, without allowing any shading between the two. It should be noted that
bilinear interpolation is fast, but not otherwise ideal; if you look at the interpolated landscape
above, you can see the “diamond” artifacts in it, such as the angular contours around the brightest
yellow peaks, due to that interpolation method. In section 16.14 we will see a technique for
obtaining much higher-quality interpolation of spatial maps.

A logical step following the work of Haller, Mazzucco & Dieckmann (2013) would be to
introduce temporal change in the landscape as well. We will not delve into that idea in any detail;
but it is worth noting that that, too, is quite easy in SLiM. This is not part of the official recipe for
this section – but try adding this code:

1: late()
{
 weight = (cos((sim.cycle - 1) / 1000.0) + 1.0) / 2.0;
 newMap = weight * mapValues + (1 - weight) * 0.5;
 p1.defineSpatialMap("map1", "xy", newMap, interpolate=T,
 valueRange=c(0.0, 1.0), colors=c("red", "yellow"));
}

This will cause the landscape to slowly cycle between heterogeneity and homogeneity. During
the heterogeneous phases, speciation generally occurs as seen above. As the landscape fades into
homogeneity, these species can persist, preserved by assortative mating and by the negative
frequency-dependence of the competition function, such that speciation continues even when the
landscape heterogeneity is completely gone:

Although the two species appear to have become sympatric in some areas, considerable
reproductive isolation remains:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 449

And when the heterogeneity returns to the landscape, the species can find their way back to
areas where they are well-adapted – albeit with some evidence of genetic intermingling with the
other species, such as some partially introgressed haplotypes.

In any case, here is the full model (without the temporal-change code discussed just above):

initialize() {
 defineConstant("sigma_C", 0.1);
 defineConstant("sigma_K", 0.5);
 defineConstant("sigma_M", 0.1);
 defineConstant("N", 500);

 initializeSLiMOptions(dimensionality="xyz");
 initializeMutationRate(1e-6);
 initializeMutationType("m1", 0.5, "f", 0.0); // neutral
 initializeMutationType("m2", 0.5, "n", 0.0, 1.0); // QTL
 m2.convertToSubstitution = F;

 initializeGenomicElementType("g1", c(m1, m2), c(1, 0.1));
 initializeGenomicElement(g1, 0, 1e5 - 1);
 initializeRecombinationRate(1e-8);

 initializeInteractionType(1, "xyz", reciprocal=T,
 maxDistance=sigma_C * 3); // competition
 i1.setInteractionFunction("n", 1.0, sigma_C);

 initializeInteractionType(2, "xyz", reciprocal=T,
 maxDistance=sigma_M * 3); // mate choice
 i2.setInteractionFunction("n", 1.0, sigma_M);
}
mutationEffect(m2) { return 1.0; }
1 late() {
 sim.addSubpop("p1", N);
 p1.setSpatialBounds(c(0.0, 0.0, 0.0, 1.0, 1.0, 1.0));
 p1.individuals.setSpatialPosition(p1.pointUniform(N));
 p1.individuals.z = 0.0;

 defineConstant("mapValues", matrix(runif(25, 0, 1), ncol=5));
 p1.defineSpatialMap("map1", "xy", mapValues, interpolate=T,
 valueRange=c(0.0, 1.0), colors=c("red", "yellow"));
}
modifyChild() {
 // set offspring position based on parental position
 do pos = c(parent1.spatialPosition[0:1] + rnorm(2, 0, 0.005), 0.0);
 while (!p1.pointInBounds(pos));
 child.setSpatialPosition(pos);

 return T;
}
1: late() {
 // construct phenotypes and fitness effects from QTLs
 inds = sim.subpopulations.individuals;
 phenotype = inds.sumOfMutationsOfType(m2);
 location = inds.spatialPosition[rep(c(T,T,F), inds.size())];
 optimum = p1.spatialMapValue("map1", location);
 inds.fitnessScaling = 1.0 + dnorm(phenotype, optimum, sigma_K);
 inds.z = phenotype;

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 450

 // color individuals according to phenotype
 inds.color = p1.spatialMapColor("map1", phenotype);

 // evaluate phenotypic competition
 i1.evaluate(p1);
 competition = sapply(inds, "sum(i1.strength(applyValue));");
 effects = 1.0 - competition / size(inds);
 inds.fitnessScaling = inds.fitnessScaling * effects;
}
2: first() {
 // evaluate mate choice in preparation for reproduction
 i2.evaluate(p1);
}
mateChoice() {
 // spatial mate choice
 return i2.strength(individual);
}
10000 late() {
 sim.simulationFinished();
}

This is the most complex recipe we will build involving spatiality, interactions, and spatial
maps, but there is so much more that could be done. Interactions could be based upon genetics in
ways beyond the QTL-based models we have explored; a spatial green-beard model would be
interesting, for example. SLiM allows multiple spatial maps to be defined; it would be interesting
to bring in empirical data on elevation, rainfall, mean temperature, and a host of other variables,
and allow a population to evolve in a complex, multidimensional landscape to see whether
realistic patterns of spatial biodiversity might be realized. One could even create a model in
which the behavior of the organisms on the landscape modify the landscape itself – a model of
desertification driven by overgrazing, for example.

The landscape in this recipe was created with runif() draws that provided spatially
uncorrelated white noise. That is fine for some applications, particularly given the smoothing
provided by interpolation, but real environments usually exhibit more complex patterns of spatial
autocorrelation in environmental variables, from linear environmental gradients to patchy
heterogeneity of a particular spatial scale. The SLiM-Extras repository on GitHub has a model,
landscape_ac.slim, with a more sophisticated random landscape generation method that
produces random landscapes that exhibit spatial autocorrelation; if you want a more realistic
pattern of spatial variation, but do not have environmental data, that model might prove useful.

This recipe used the generated spatial map to determine the phenotypic optimum across the
landscape, allowing local adaptation to occur. It is often desirable to instead use a spatial map to
determine habitability. This makes sense when the environmental variable in question is
something to which your simulated organisms cannot adapt; instead, some areas simply have a
higher carrying capacity than others. This is quite simple; in the context of a nonWF spatial model
like that of section 16.15 or 16.16, just implement density-dependent competition with a local
scaling for the carrying-capacity density taken from the habitability map, something like this:

K_local = K * p1.spatialMapValue("habitability", inds.spatialPosition);
inds.fitnessScaling = K_local / competition;

See those sections for discussion of how carrying-capacity density works, and so forth. The WF
model framework is not well-suited to variation in population density across the landscape, so a
nonWF model really should be used for most spatial models, as we have mentioned previously.

We will see more features of spatial maps in section 16.14, but have some other topics first.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 451

16.12 Periodic spatial boundaries
In section 16.3, various options for spatial boundary conditions were introduced: stopping,

absorbing, reflecting, and reprising boundaries. The possibility of periodic spatial boundaries was
also mentioned, but was deferred as an advanced topic. The time has come to explore this.

A periodic spatial boundary is one which wraps around: one edge of a spatial dimension is
connected seamlessly to the opposite edge. A non-periodic one-dimensional bounded space is a
line segment: points in this space fall between x0 and x1. An individual might travel from x0 to x1,
at which point the end of the line segment is reached and motion must stop or reverse. The
periodic version of this is a circle: x0 and x1 have been joined together to form a closed curve:

Here, an individual might travel from x0 to x1 and continue onwards; at the moment it reaches
x1 it has also, simultaneously, returned to x0, and may continue towards x1 again (and again, and
again). Note that there is no “seam” and no “privileged point” in this space; the spatial topology at
every point is identical, and an individual moving within the space cannot tell where it is located
with respect to the point where x0 meets x1.

A non-periodic two-dimensional bounded space is a rectangle with extents [x0, x1] and [y0, y1].
There are three periodic versions of this: x0 and x1 may be joined, y0 and y1 may be joined, or both
may be joined. The first two options produce a topology like the surface of a cylinder without end
caps; the third option produces not a sphere, but a torus, like the surface of a doughnut:

Again, movement along the periodic dimension(s) may continue indefinitely, wrapping around
at the boundary; and again, there is no “seam” or “privileged point” in these spaces (along the
periodic axis or axes), and an individual moving within the space cannot tell where it is located
with respect to the points where the original coordinates meet.

Finally, a non-periodic three-dimensional bounded space is a cube; it may be made periodic in
x, in y, in z, in x and y, in x and z, in y and z, or in x and y and z, yielding seven different periodic
versions of three-dimensional space. The topology of these is harder to visualize than the one-
dimensional and two-dimensional cases, but the principle is the same: movement along the
periodic axis or axes may continue indefinitely because it wraps around, along the periodic axis or
axes there is no “seam”, and an individual moving within the space cannot tell where it is located
with respect to the points where the original coordinates meet.

This is all rather abstract, but periodic boundary conditions are very useful in modeling,
especially when doing theoretical work rather than trying to simulate a real landscape. The reason
is simple: periodic spatial boundaries eliminate edge effects, which are otherwise a source of bias
in spatial models. In effect, periodic boundaries allow you to model an infinite space with no
edges at all. Of course the space is not really infinite, but instead repeats periodically; but if the
spatial scale of important interactions and dynamics in the model is small compared to the size of
the periodic space, this is often an acceptable approximation.

x0 x1
x0
x1

x0
x1

y0

y1

x0
x1

y0 y1

x0 x1

y0 y1

y0

y1

x0 x1

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 452

Setting up periodic spatial boundaries in SLiM is a little more complex than implementing other
boundary conditions because periodic spatial boundaries fundamentally change many aspects of
SLiM’s spatial engine; enforcing the boundary condition is no longer just a question of modifying
generated offspring positions in a particular way (although that is one part of it). For instance,
consider two individuals that occupy positions (0.0, 0.1) and (0.0, 0.9) in a two-dimensional space
with extent [0.0, 1.0] in both x and y. With any other boundary condition, the distance between
these two individuals is 0.8 (0.9 − 0.1). With periodic boundaries, however, the distance between
them is 0.2, because a line of length 0.2 may be drawn between them that wraps around the
boundary in the y dimension. By definition, the distance between two points in a periodic space
is always the shortest distance possible out of the infinitely many different distances that could be
calculated. This means that distances, interaction strengths, and indeed all of the underlying
mechanics of InteractionType’s spatial queries must take the spatial periodicity into account.

For this reason, periodic spatial boundaries must be declared up front, and cannot be changed
subsequently. This declaration is done with a parameter to initializeSLiMOptions() named
periodicity, which specifies the periodic spatial dimensions as a string. In this recipe, we will
work with a two-dimensional model that is periodic in both dimensions – a toroidal model, as
pictured above. This can be set up as follows:

initialize() {
 initializeSLiMOptions(dimensionality="xy", periodicity="xy");
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
 initializeInteractionType("i1", "xy", reciprocal=T, maxDistance=0.2);
 i1.setInteractionFunction("n", 1.0, 0.1);
}

The initializeSLiMOptions() call establishes a 2D space (with dimensionality="xy") and
then declares both of those dimensions to be periodic (with periodicity="xy"). We also set up a
spatial interaction here, involving both spatial dimensions; it uses a Gaussian interaction function
with a standard deviation of 0.1, so it falls off at well under the spatial scale of the model as a
whole. We declare it to have a maximum distance of 0.2, for efficiency; the interaction strength
will be very low further than two standard deviations out anyway.

Next, let’s set up a subpopulation with random initial positions:

1 late() {
 sim.addSubpop("p1", 2000);
 p1.individuals.setSpatialPosition(p1.pointUniform(2000));
}

Nothing surprising. Let’s implement a modifyChild() callback to set up offspring positions:

modifyChild() {
 pos = parent1.spatialPosition + rnorm(2, 0, 0.02);
 child.setSpatialPosition(p1.pointPeriodic(pos));
 return T;
}

This uses a function named pointPeriodic() that is similar to the pointStopped() and
pointReflected() functions we saw before; it translates the point it is passed so that it falls within
the spatial boundaries, while implementing the periodic boundary conditions requested. In this

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 453

case, pointPeriodic() wraps a point that lies beyond the periodic spatial boundaries, just as if the
offspring had walked off of one edge of the space and re-appeared at the opposite edge.

We need an event to define the end of the simulation, as usual:

1000 late() { sim.outputFixedMutations(); }

And now let’s do something a bit more interesting: let’s use the interaction type that we defined
above to show, visually in SLiMgui, how interactions work in periodic space:

late()
{
 i1.evaluate(p1);
 focus = sample(p1.individuals, 1);
 s = i1.strength(focus);
 inds = p1.individuals;
 for (i in seqAlong(s))
 inds[i].color = rgb2color(c(1.0 - s[i], 1.0 - s[i], s[i]));
 focus.color = "red";
}

This event runs in every tick. It evaluates the interaction, then chooses a focal individual
randomly. It asks the interaction type to calculate the interaction strength between the focal
individual and all other individuals; then it loops over the individuals (by index) and sets each
one’s color in SLiMgui using a particular formula (see the Eidos manual for discussion of the
rgb2color() function). Finally, it sets the color of the focal individual to red. The result:

The focal individual can be seen in red. The individuals closest to it are blue, while those
farthest away are yellow. Because of the particular RGB (red, green, blue) color values passed to
rgb2color(), the color of individuals at intermediate distances fades smoothly from blue to yellow.
This is a nice illustration of the shape of the interaction kernel, and in fact this sort of coloration
strategy can be quite useful in testing and visualizing spatial models.

There’s an interesting digression to be had here. The interaction kernel we’re using here is of
type "n", meaning “normal” – more properly called “Gaussian”, in this context. The interaction
strength is given by the height of the interaction kernel, a 2D Gaussian density function. It’s
common knowledge that a normal distribution – a 1D Gaussian function – contains 68.2% of its
area within 1σ of the mean, 95.4% of its area within 2σ, and 99.7% within 3σ. Do those numbers
then reflect the volumes contained within 1σ, 2σ, and 3σ of the center of our 2D Gaussian
interaction kernel, which would correspond to the expected total interaction strength originating
within those radii (assuming uniform spatial distribution of individuals)? The answer is no. The
radius of a draw from a 2D Gaussian function – and therefore the volume under the surface of the
2D Gaussian interaction kernel – follows what is known as the Rayleigh distribution. According to
this distribution, only 39.3% of the volume under the curve is within 1σ of the center; 86.5% is
within 2σ and 98.9% is within 3σ. So an interaction kernel with a maximum distance of only 2σ,

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 454

such as we used here, will capture only 86.5% of the total interactions around a focal individual
(again, given a uniform spatial distribution of individuals). This might be acceptable for quick
prototyping, but it is pretty rough – much rougher than a 2σ width in the 1D case. Probably at
least 3σ is a good idea for all important work, unless you actually want a truncated kernel.

Coming back to earth after that digression, we can see that the snapshot above involved a focal
individual that was far from any of the spatial boundaries. When a different focal individual is
chosen, we can see that the spatial interaction wraps around the edges of the periodic space:

The third snapshot illustrates that wrapping occurs in both spatial dimensions, not just one at a
time. Due to the toroidal geometry of the space, the four corners of the space as displayed in
SLiMgui are actually all the same point! In the diagram above of the toroidal geometry of this
space, the four corners as displayed in SLiMgui correspond to the intersection of the blue and red
lines drawn on the torus. Note that topologically, there is nothing special about the blue and red
lines in particular; every point on the torus lies at the intersection between a curve that circles
around the major circumference of the torus (like the blue line) and a curve that circles around the
minor circumference of the torus (like the red line). An individual living in this space cannot tell
whether it is at the periodic boundary or not; as was emphasized earlier, there is no seam.

If you wish, you can play with this model by making only the x dimension periodic, or only the
y dimension, to see how that affects the spatial interaction and what the resulting cylindrical
topology feels like in practice. If you do so, note that pointPeriodic() will enforce only the
periodic boundary condition; it will leave coordinates that are not periodic unmodified. To keep
the modeled individuals inside bounds, some boundary condition – whether stopping, reflecting,
absorbing, or reprising – must be enforced for the non-periodic coordinates. This can be done just
as it was in section 16.3; in particular, it is useful to note that a call to pointPeriodic() can be
wrapped inside a call to pointStopped() or pointReflected() to achieve the desired effect. This
works because pointPeriodic() has already brought the periodic coordinates into bounds, so they
will not be modified by pointStopped() or pointReflected(). So a model that used periodic
boundaries for only one of the two axes, and that enforced reflecting boundaries on the non-
periodic axis, could use a modifyChild() callback like this:

modifyChild() {
 pos = parent1.spatialPosition + rnorm(2, 0, 0.02);
 child.setSpatialPosition(p1.pointReflected(p1.pointPeriodic(pos)));
 return T;
}

All of the other elements of spatial modeling that were introduced in earlier recipes in this
chapter – spatial competition, spatial mate choice, spatial maps – will work with periodic spatial
boundaries. You can still model phenotype as a spatial dimension, too, as in section 16.7 for
example; you will just (probably) not want that dimension to be periodic, since phenotypic traits
are usually linear – being very short is not the same thing as being very tall!

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 455

The concept of periodic space can take some getting used to; cylindrical or toroidal space may
seem rather artificial at first. But in fact, because of the absence of edge effects, periodic space is
actually less artificial than other arbitrarily-chosen boundary conditions; it will not exhibit biases in
the spatial density of individuals in one part of the space versus another, individuals everywhere
will feel the same average interaction strength if they are randomly distributed, and motion in
particular directions from particular locations will not be artificially impeded. A strong case can
be made that this better reflects the ecological conditions in the interior of a large species range
than any other boundary condition.

Because of the greater underlying complexity, models using periodic space will be a little
slower than non-periodic models, but unless population size is large the difference should be
slight. Unless you actually want a particular edge effect in your model, perhaps reflecting some
real-world landscape’s dynamics, periodic boundaries may be the best option.

16.13 Density-dependent fecundity with summarizeIndividuals()
In previous sections, we have looked at a variety of ways to use InteractionType to evaluate

spatial interactions, modeling phenomena such as spatial resource competition and spatial mate
choice. In this section we’re going to look at another type of spatial interaction: local density-
dependent fecundity. This could easily be implemented using InteractionType: calculate the
interaction strength felt by a prospective parent and scale the probability of its reproduction
accordingly. Instead of doing that, we will look at a completely new technique: using a function
called summarizeIndividuals() to generate a spatial map of local density, and using that map to
scale individual fecundity. The pros and cons of this approach will be discussed at the end.

We’ll build this on top of a very straightforward model:

initialize() {
 initializeSLiMOptions(dimensionality="xy");
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 late() {
 sim.addSubpop("p1", 1000);
 p1.individuals.setSpatialPosition(p1.pointUniform(1000));
}
modifyChild() {
 pos = parent1.spatialPosition + rnorm(2, 0, 0.01);
 pos = p1.pointReflected(pos);
 child.setSpatialPosition(pos);
 return T;
}
10000 late() { sim.outputFixedMutations(); }

Nothing here is new so far; we make a subpopulation of 500 individuals in a 2D space, and
have offspring land near their parents. For simplicity we do not include spatial competition or
mate choice here, so this is almost a return to the recipe of section 16.1.

Next, let’s introduce the summarizeIndividuals() function. Our ultimate goal is to use it to
assess local density, but let’s start with a simpler problem: assessing local presence/absence. We
will do this in a new late() event that will run in every tick:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 456

late() {
 inds = p1.individuals;
 bounds = p1.spatialBounds;

 // make a presence/absence map: 1 is present, 0 is absent
 presence = summarizeIndividuals(inds, c(10, 10), bounds,
 operation="1;", empty=0.0, perUnitArea=F);
 p1.defineSpatialMap("presence", "xy", presence, F,
 range(presence), c("black", "orange", "red"));
}

Before even explaining this code, let’s look at the result in SLiMgui:

The background colors show the spatial map named "presence". Red squares indicate cells in
the 10×10 spatial map where individuals are present; black squares indicate absence. Notice that
the cells on the edges and corners are smaller, because part of their extent lies outside the spatial
bounds; this is the standard behavior of spatial maps, as discussed in section 16.11 in detail.

So how does this work? The operation of the summarizeIndividuals() function is somewhat
complex (see section 25.18.3), but essentially it builds the presence/absence map for us by binning
individuals (passed to it as inds) into cells in a 10×10 grid (as requested by c(10, 10)) that spans
the spatial bounds of the subpopulation (passed to it as bounds), and then calculating a value for
each grid cell based upon the contents (the individuals) in each corresponding bin.

That per-cell calculation is highly configurable, which is where much of the complication of this
function comes in. The operation parameter is an Eidos lambda, a singleton string value that
contains executable code; we have seen lambdas before in contexts such as sapply() and LogFile
(see also section 20.5). In this case, operation is "1;", perhaps the simplest possible lambda; it
simply evaluates to 1. So with this lambda, each grid cell evaluates to 1: presence! What if no
individuals are present in a given grid cell? In that case, summarizeIndividuals() actually takes
the value to be used as a separate parameter, empty. Here empty is 0.0, so grid cells that contain
no individuals receive a value of 0: absence! The last parameter, perUnitArea, provides a final
processing option that we will explore in a moment.

Perhaps the power of summarizeIndividuals() is already somewhat apparent; since we can
supply any lambda we wish for operation, we can do a great many things. We could assess the
mean age of individuals across space, for example, by passing "mean(individuals.age);" for
operation (the focal individuals being evaluated are passed to the lambda in the pseudo-
parameter individuals); or if individual phenotypic values for a quantitative trait are stored in the
tagF property (see chapter 13) we could get the minimum phenotypic value in grid cells across
space with "min(individuals.tagF);". The operation lambda is not limited to simple property
accesses, either; any Eidos code is allowed, including calls to methods and user-defined functions.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 457

Here, however, we have a simpler goal: a map of local density. To produce that, change the
above late() event to the following code:

late() {
 inds = p1.individuals;
 bounds = p1.spatialBounds;

 // make a density map: 0 is empty, 1 is maximum density
 density = summarizeIndividuals(inds, c(10, 10), bounds,
 operation="individuals.size();", empty=0.0, perUnitArea=T);
 density = density / max(density);
 p1.defineSpatialMap("density", "xy", density, F,
 range(density), c("black", "orange", "red"));
}

A couple of things have changed. We now use an operation of "individuals.size();", so we
are getting the size of the individuals vector in each grid cell to produce a count. As noted
above, the grid cells in spatial maps are not all the same size; since we want to assess local
density, which is in units of “individuals per unit area”, we now pass T for perUnitArea, and can
now see what it does: it divides the result of operation for a given grid cell by the spatial area of
that grid cell (in the units of the spatial bounds). This means that the count in edge cells will be
multiplied by two (because half their area is outside bounds), and the count in corner cells will
similarly be multiplied by four. This perUnitArea=T option also rescales the counts downward by a
constant factor because the unit area of one grid cell is less than one, but that doesn’t matter here
because our next step is to normalize the resulting matrix, named density, to a range of [0, 1].
This normalization is not needed to define the spatial map, but doing this now will make our
density-dependence code later on more efficient. Finally, we use a three-color scale in SLiMgui to
improve the display.

An aside: here we normalized to [0, 1], but of course you can do whatever calculations you
wish with the result from summarizeIndividuals() before making a spatial map from it; you might
rescale the values, transform them with log() or sqrt(), combine them with values from another
call to summarizeIndividuals(), or whatever else is desired. It’s also worth noting here that the
vector of individuals passed to summarizeIndividuals() can be any set of individuals; it need not
correspond to a whole subpopulation, but might be just the males, or just the juveniles. The
spatial bounds can also be whatever area you wish; it can be a sub-area within the simulated
landscape, and then only individuals inside that sub-area will be incorporated into the summary
(but the result will no longer be directly usable as a spatial map, since its bounds will not match
those of the subpopulation).

With the above changes to the summarizeIndividuals() call, here’s the new appearance in
SLiM (using the same seed value, so it is directly comparable to the previous screenshot):

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 458

The highest density is in the red square near the center; shades of orange to black indicate
lower densities. We have successfully shifted from local presence/absence to local density.

Finally, we want to actually use this spatial map to influence local fecundity. We will do this by
adding a bit of code to the modifyChild() callback. Here’s the final version of that callback:

modifyChild() {
 pos = parent1.spatialPosition + rnorm(2, 0, 0.01);
 pos = p1.pointReflected(pos);

 if (runif(1) < p1.spatialMapValue("density", pos))
 return F;

 child.setSpatialPosition(pos);
 return T;
}

Inserted into the middle is a little new logic that gets the map value for the candidate child
position (rather than the parent position, as it happens; perhaps this models juvenile mortality at
high densities). Since we normalized the map values to [0, 1] above, we can now conveniently
use this value as a probability threshold; the callback returns F, suppressing the generation of this
proposed child, if a random uniform draw is less than the normalized density value. This achieves
the desired density-dependent fecundity, which smooths out the spatial distribution of the
individuals tremendously, as seen in this screenshot:

Offspring are still produced close to their first parent, which normally produces a clumped
spatial distribution as we have seen in previous models; now, however, offspring are preferentially
generated into grid squares that had a low density in the parental generation, driving the spatial
distribution outward into unoccupied areas. This model thus demonstrates that density-dependent
fecundity can decrease spatial clumping. In a nonWF model, where population size is determined
by the balance between births and deaths rather than simply being a top-down parameter, density-
dependent fecundity can also regulate population size – similarly to competition, but by
decreasing births rather than by increasing deaths. This is another example of the superiority of
nonWF models for spatial modeling; a top-down population size parameter, as in the WF model,
probably doesn’t really make much biological sense.

The quantization of the density information into discrete grid squares is not without
disadvantages. It’s not so easy to see with the 10×10 grid above, but the individuals are actually
playing little bet-hedging games with their spatial locations; they are not randomly distributed.
This is more clear with a lower-resolution grid. Here’s the same model with the dim parameter
changed from c(10, 10) to c(4, 4):

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 459

Now the problem is quite apparent; the individuals are clustering around the vertices between
grid cells! The payoff of this strategy is simple: if you’re in such a location and any of the four grid
cells you’re near happens to become low-density, you’ve got a one-in-four chance that an offspring
you generate will land in that good habitat. If, on the other hand, you’re far from such a vertex,
your offspring will all land in the same grid cell as you; all your eggs are literally in one basket. If
that basket – that grid cell – happens to become high-density, you and your whole lineage may die
out. Worse, you and your offspring are competing against each other; if your lineage is successful
and grows, then that means that the density of your grid cell is increasing – so your growth is self-
limiting and ultimately doomed. If you were near a vertex, you and your offspring could occupy
four different grid cells, hedging against extinction and limiting competition.

This is not necessarily a fatal flaw. For one thing, it’s “biologically realistic”, in the sense that it
is an emergent strategic response to the incentives presented by the model, and real-world
organisms might well respond to the same incentives in the same way. (Here’s a fun example of
such patterns in nature, although it isn’t clear exactly what “incentives” are being responded to in
this case: https://www.nature.com/articles/s42003-020-01431-0). Of course these patterns might
still be undesirable; you might not really want to be setting up these particular incentives for your
digital organisms. Happily, the extent of this problem also depends upon parameterization; it is
more visible at 4×4 than at 10×10 because the scale of dispersal relative to the scale of the spatial
grid is smaller at 4×4, making it easier for the organisms to stay close to the favored positions, and
making the benefit of the favored positions larger. At 10×10 the effect is weaker, because dispersal
is larger, relative to the grid size, and so (a) it is more difficult for an individual and its offspring to
stay close to the favored locations, and (b) the favored locations are less favored in the first place,
because even an individual at the center of a grid cell might generate an offspring into an adjacent
cell. At 20×20 the artifact seems to be virtually gone; a statistical test might still reveal some
degree of bias, but depending upon what you’re trying to achieve that might be acceptable (after
all, other spatial modeling techniques can also produce artifacts, clustering, etc., as we have seen
in previous sections). There is a limit to this, though; at 100×100 the grid cells are so small that
almost all of them are empty, and so they no longer really serve to prevent the spatial clustering
that was observed in the model before the density map was implemented. The upshot, then, is that
it is important to really understand what you are modeling (working in a graphical modeling
environment helps a lot with this!), to look carefully for artifacts and biases introduced by your
modeling choices, and to choose arbitrary parameters (like the resolution of the density map here)
carefully, with an eye to how they might influence model dynamics.

This might seem like an abrupt change of subject, but it really isn’t: As mentioned at the outset,
this recipe could have been implemented using InteractionType instead. Why might we choose
summarizeIndividuals() instead? What are the pros and cons of this approach?

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 460

https://www.nature.com/articles/s42003-020-01431-0

An advantage of InteractionType is that it is exact. Evaluating an interaction goes out and
finds all of the neighbors that exist within the maximum interaction distance, calculates their
strength of interaction with the focal individual or point, and returns the precise interaction
strength felt. If desired, the interaction strength exerted by nearby individuals can depend upon
their exact distance to the receiver, as expressed by the interaction function. Parallels can easily be
drawn between this approach and analytical formulas of spatial interactions. The results from
summarizeIndividuals(), on the other hand, are in some sense approximate. Individuals get
binned together based on their spatial position, and the gathered value for a grid cell is
representative of a sort of average across that whole cell; precise interaction strengths based upon
distances between pairs of interacting individuals are never calculated. Every individual inside a
given grid cell will see the same “interaction strength” (here, density), while an individual just
barely across the border into an adjacent grid cell might see a completely different value. This can
lead to artifacts, as we just saw, if it is not handled carefully.

As is often the case, however, strengths are also weaknesses, and weaknesses are also strengths.
Because of the exact calculations it does for every focal individual or point, InteractionType is
relatively slow. With a large number of individuals, and a relatively large maximum interaction
distance, the overhead of its calculations can be very large, scaling quadratically with the number
of individuals in the worst case – every individual interacting with every other individual. The
summarizeIndividuals() approach provides a much more efficient alternative. Since it simply
bins individuals spatially (a kind of radix sort, really) and then evaluates the value contributed by
each individual independent of the other individuals, it scales linearly with the number of
individuals – in computer science parlance, it is O(N) instead of O(N2). For large N (the number of
individuals), the difference can be the difference between a simulation that runs in hours and a
simulation that would not finish in months.

So the use of summarizeIndividuals() can be an optimization technique, then. Its approximate
nature can be somewhat unfortunate; that two nearby parents might feel very different densities
because they fall into different grid squares is clearly not optimal. How much of a problem this is
will depend upon circumstances. For large population sizes, these quantization biases might (or
might not) become fairly unimportant; they might tend to “average out” as N approaches infinity.
They might be managed by convolving the resulting matrix – smoothing or blurring it, essentially,
so that some non-locality of density gets spread between adjacent cells of the spatial map; we will
see a technique for this in the next section. You could also consider taking more than one sample
from the spatial map, at a cluster of points surrounding an individual, and averaging the results.
For sufficiently large N, such techniques should still be much faster than using InteractionType,
but there’s nothing like benchmarking.

The other reason to use summarizeIndividuals() is that you actually want a quantized spatial
map of some metric. These can be particularly useful visualization in SLiMgui and for output as
image files. For the former, note that you can define a spatial map in your model and never
actually use it at all; you can define it purely as a visualization for SLiMgui. For the latter, note that
you can construct an Image object directly from a matrix returned by summarizeIndividuals(),
and then save that Image to disk as a PNG with the write() method of Image. This works even
when you are not running under SLiMgui.

I seemed worthwhile to introduce summarizeIndividuals() in the simpler context of a WF
model, but as mentioned above, this sort of spatial model is probably better as a nonWF model. In
this recipe, the population size is fixed and only the relative probability of reproduction varies
across the landscape with density; the overall population size is set as a top-down parameter, and
so although density-dependent fecundity is present, it is not regulating the population size, which
is a bit unnatural biologically. Later sections of this chapter will delve into these concepts in
depth; but summarizeIndividuals() can be used in nonWF models just as easily as it was here.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 461

16.14 Directed dispersal with the SpatialMap class
Spatial maps are useful for a broad range of problems, since they can represent anything from

environmental variables (elevation, temperature) to spatially varying model parameters
(habitability, dispersability) to summaries of model state such as local population density, perhaps
generated with summarizeIndividuals() as we saw in the previous section. They have proved so
useful, in fact, that in SLiM 4.1 they were split out into their own standalone Eidos class,
SpatialMap. In previous recipes in this chapter, we have always used the name of a spatial map to
work with it – looking up map values by passing in the name of the map to Subpopulation’s
spatialMapValue() method, for example. In SLiM 4.1 it is now possible to keep a reference to a
given spatial map in a global constant or variable, allowing direct use of the SpatialMap object
instead of using it indirectly through Subpopulation with the map’s name. This, in turn, has
allowed a small forest of new methods on SpatialMap to be created, providing new ways to work
with spatial maps and to use them for new purposes.

In this section we will look at a recipe that shows off some of these new capabilities. In
particular, we will algorithmically generate a spatial map that is of higher quality than the bilinear-
interpolated map we saw in section 16.11, and then we will show how to model “directed
dispersal”, the deliberate movement of individuals towards their preferred habitat, on that
algorithmically generated spatial map. Many – perhaps most – animals move spatially in a directed
manner, toward desirable areas with food, mates, and shelter, or away from undesirable areas with
predators or competitors. Such directed dispersal has both ecological and evolutionary
consequences – changing the spatial distribution of a population, altering patterns of mating,
altering the utilization of resources in the landscape, increasing carrying capacity, shifting the
selection pressures acting upon a population, and so forth. Directed dispersal is therefore an
important behavior to be able to model; this recipe shows one possible approach.

This model will actually be our first nonWF spatial model. We won’t use the nonWF model
type for anything fancy, though; in fact, the individuals in this model will be immortal, never
reproducing and never dying. The nonWF model type makes that very easy to achieve. We’ll
build it step by step; here’s the first step:

initialize() {
 defineConstant("K", 1000);
 initializeSLiMModelType("nonWF");
 initializeSLiMOptions(dimensionality="xy", periodicity="xy");
}
1 late() {
 sim.addSubpop("p1", K);
 p1.individuals.setSpatialPosition(c(0.0, 0.0));
 p1.individuals.color = rainbow(K);

 do {
 m = matrix(rbinom(16, 1, 0.2), ncol=4, byrow=T);
 m = cbind(m, m[,0]);
 m = rbind(m, m[0,]);
 } while ((sum(m) == 0) | (sum(m) == 1));

 map = p1.defineSpatialMap("map", "xy", m, valueRange=c(0,1),
 colors=c("black", "white"));
 defineConstant("MAP", map);
}

This is a “no-genetics model”, which does not define a chromosome or any genetic
architecture, for simplicity; we have seen these a couple of times before. The initialize()
callback is therefore very simple – no genetics! It defines a constant K for the population size, for

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 462

convenience. Next, it calls initializeSLiMModelType() to declare the model as a nonWF model;
see chapter 15 for further discussion on that topic. Finally, it declares the model to be a 2D spatial
model with periodic boundaries (just to demonstrate that the new SpatialMap features we will use
work with periodic boundaries).

The 1 late() event begins by creating a new subpopulation, p1, of size K. At this stage, we are
not really interested in these individuals; we’re going to focus on creating the spatial map first. We
therefore set the positions of all individuals to (0, 0) to keep them out of our way. Their colors are
then set to a variety of bright colors using rainbow(), to make it easier to follow particular
individuals as they wander around the landscape.

The next lines comprise a do–while loop that generates a candidate spatial map from random
0/1 data generated by rbinom(), looping until the map data is not uniformly 0 or 1. Since this
model uses periodic boundaries, the top and left edges of the map are duplicated onto the bottom
and right, making it wrap around correctly at the edges.

Finally, we define the spatial map with a call to p1.defineSpatialMap(), as we have seen
before. We pass "xy" to get a 2D map, and use a value range of c(0,1) for SLiMgui display,
ranging from black to white. We haven’t seen this before, but defineSpatialMap() actually returns
the SpatialMap object that it created – this is new in SLiM 4.1. We assign that return value into a
variable, which we then use to define a global constant, MAP, that refers to the SpatialMap object.
We’ll use MAP in the rest of the model’s code.

So now we have an initial spatial map, but it is very low-resolution and blocky. Here’s a
screenshot from SLiMgui:

This is our starting point for the map creation algorithm used by this model. You can see how
the grid values on the left edge were copied over to the right edge to form a correct periodic map;
the half-square on the left edge matches up with the half-square on the right edge to form a
complete square in periodic space.

The next step is in a 2: late() event:

2 late() {
 MAP.interpolate(15, method="cubic");
}

This calls a new SpatialMap method, interpolate(). It requests that the map be interpolated
by a factor of fifteen in each dimension; in other words, between each adjacent pair of grid points
in the original map, fourteen new points will be interpolated. Bicubic interpolation is requested
with the "cubic" parameter; this is a much higher-quality interpolation method than the on-the-fly
bilinear interpolation that SpatialMap can do (see section 16.11 for an example of that, with
discussion of its shortcomings), but it is also much slower than bilinear interpolation. It is

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 463

therefore not supported by SpatialMap for on-the fly-interpolation, but it can be done with this
method once, up front, to scale up the resolution of the map smoothly. After stepping over this
event, here is the new appearance of the map in SLiMgui:

There are two things to note here. One is that the appearance is still visibly blocky; 15×
interpolation is still fairly coarse. This is deliberate, for pedagogical purposes, and will be
remedied in a later step. The other is that we have blown out SLiMgui’s display scale, producing a
solid white blob toward the middle of the map. This occurred because bicubic interpolation does
not guarantee that all interpolated values are in the same range as the original data. The original
data was all zero and one values, but the range now (from executing MAP.range() in the Eidos
console) is from -0.222285 to 1.23631. In our defineSpatialMap() call, we told SLiMgui to
display values from zero to one as colors from black to white; all values greater than one are also
displayed as white (and all values less than zero as black, although that problem is less visible
here). This is how bicubic interpolation is supposed to work; it is not a bug. However, we’d like to
bring our map values back into range, for display purposes if nothing else. We do that in the next
tick’s event:

3 late() {
 MAP.rescale();
}

This call rescales the map’s values – to the interval [0, 1] by default, although you can change
that by supplying optional parameters to the call. After stepping over tick 3, we see this:

It now looks much nicer. Let’s think of this map as a map of local resource availability, for each
point on the landscape. Some points (white) have lots of resources; some (black) have few.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 464

Onward to the next step:

4 late() {
 MAP.smooth(0.3, "n", 0.1);
}

In tick 4 we make another new method call on the spatial map, smooth(). The effect of this call
is to smooth out, or blur, the values of the map. This is done by convolution with a kernel, defined
by the parameters to smooth() in a manner similar to initializeInteractionFunction(), which
also defines a kernel. Here, 0.3 is the maximum distance used for the convolution, in the same
spatial units as the map (which is, in turn, in the same spatial units as the subpopulation it was
defined upon). The parameter "n" requests a Gaussian (“normal”) kernel, and 0.1 specifies the
standard deviation, or “width”, of that kernel. Other kernel shapes are also supported by smooth();
see its documentation for details. The result is a smoothed version of the previous map:

This suffers for a range problem again; smoothing the map narrowed the range of values, which
is now from 0.0894965 to 0.813802 (the Eidos console tells us). This is because the highest peaks
and deepest valleys got smoothed out across space, bringing their values towards the mean value
of the map. Again, we’d like to rescale for display purposes, which the next tick’s event does:

5 late() {
 MAP.rescale();
}

This results in a nice high-contrast smoothed map:

If the map before smoothing was a map of resource availability across space, what does this
smoothed map represent, from a biological perspective? It could represent the resource
availability felt by an animal at a given point in space. Consider that animals forage spatially for

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 465

food; what is relevant to them is not just the resource availability at the exact point they are
located now, but the resource availability in the spatial area surrounding them. They can be
(simplistically) thought of as having a foraging kernel, of higher density near their location, lower
density further away. This is precisely the biological meaning of the spatial kernel used by
smooth() – that is the foraging kernel, in this interpretation of the model. So this new smoothed
map is a map of the food availability for an animal at a given point, foraging out across the
landscape according to the given foraging kernel.

The only remaining issue is that blockiness of the map, which is just visible enough to be
unaesthetic, and might possibly bias the model in some way. We can remove that with a final
step:

6 late() {
 MAP.interpolate = T;
}

This event turns on the on-the-fly bilinear interpolation algorithm of SpatialMap. We could
have just set interpolate=T in our original call to defineSpatialMap(); that would not have
interfered with any of the preceding steps. It would, however, have interfered with our
visualization of those steps in SLiMgui – it would have been much harder to see what was really
going on under the hood. So we turn it on at the end. The map now looks like this, in its final
form:

Nice and smooth. Note that bilinear interpolation is no longer creating ugly “diamonds” (as it
did in section 16.11), because it is only interpolating between the very fine-scale grid values
already created by interpolate() with bicubic interpolation. Of course we could have done that
bicubic interpolation at a higher scale to begin with – perhaps a factor of 100 instead of 15 – but
that would have created a very large, very high-resolution spatial map. That would have been slow
to create, and even slower to smooth with the smooth() call. It’s (arguably) better to work with a
medium-resolution map like this one, which is fast and uses little memory, and then use bilinear
interpolation to do the fine-scale interpolation.

Now we have our final map! Of course this is just one possible way to algorithmically create a
high-quality map, and it shows only a couple of the methods now available on SpatialMap; you
can add and subtract maps, multiply and divide maps, blend maps together, and more. You can
also export the grid values for a spatial map back out to an Eidos matrix, perform whatever
calculations you wish upon it, and then import the matrix back into the spatial map again. All of
this makes it easy to model changing environments – changing human influences over time such
as urbanization or climate change, or changing vegetation patterns due to growth and succession,
or disturbances such as landslides or floods.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 466

With this spatial map in hand, we now get to the second part of this recipe. In tick 10, we set
random spatial positions for all of the individuals in the model:

10 late() {
 p1.individuals.setSpatialPosition(p1.pointUniform(K));
}

Remember we made 1000 randomly-colored individuals at the start, but we squished them all
into location (0,0)? (You can actually see them as a single red pixel in the lower left of all the map
snapshots above.) You might wonder why we created them early in the first place, rather than just
creating subpopulation p1 now, in tick 10. The reason is although SpatialMap is now a standalone
class, it is still always created by a Subpopulation, using defineSpatialMap(). This is because
spatial maps really only make sense in the context of a subpopulation, from which it gets the
dimensionality of the model, the spatial bounds of the subpopulation, the periodicity of the space,
and other such parameters. Especially in a multispecies context, where the spatial characteristics
of each species can be different, SpatialMap needs something to moor itself to. So we had to
create the subpopulation first. Normally that’s not a problem; it was only a bit weird in this model
because we wanted to take several ticks to construct the spatial map step by step.

Anyway, now our individuals are distributed all across the landscape:

It’s sort of like confetti, right? Suddenly this recipe feels rather festive. The last step is that we
want individuals to exhibit directed dispersal, towards the white areas that indicate the highest
resource availability. Here’s the event for that:

11:100000 late() {
 inds = p1.individuals;
 pos = inds.spatialPosition;
 pos = MAP.sampleNearbyPoint(pos, INF, "n", 0.002);
 inds.setSpatialPosition(pos);
}

Every tick, starting in tick 11, we get the positions of all individuals, crank them through a new
SpatialMap method called sampleNearbyPoint(), and set the resulting positions back into the
individuals. The x method again takes parameters that describe a kernel; in this case, it is
something like a dispersal kernel, or more accurately some sort of dispersal-search kernel. It is the
kernel across which the individuals look, to decide where they are going to choose to disperse.
The maximum distance for this kernel is INF; we don’t want it to cut off arbitrarily at a fixed
distance. It’s a Gaussian ("n") kernel again, although other kernel types are also supported; and it
has a standard deviation, or width, of 0.002 units. That’s a very short spatial scale; our goal here is
for individuals to move very short distances each tick, tending towards the higher-resources areas
but making journeys of many steps towards them. That’s just for visualization purposes here; in a

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 467

typical model, one would probably allow individuals to move longer distances per timestep,
especially if only a single juvenile dispersal event was modeled. Those are all model design
question that will be system-specific.

It’s fun to play this model in SLiMgui and watch the individual animals jitter around, skittering
towards better habitat. Given the very short dispersal scale, it takes a while for them to get there.
Here’s something close to equilibrium for the model, after 10000 ticks:

The individuals have very clearly moved out of the black regions and concentrated in the white
regions. You can play with the dispersal width to see the effect; with a value of 0.2 instead of
0.002, movement towards the landscape peaks is quite apparent after even just a single tick of
motion. Remember that because this is a smoothed map of resource availability, individuals are
not just moving towards locations with the most resources, they are moving towards locations for
which foraging, across the specified foraging kernel pass to smooth(), will tend to be most
productive. This approach can similarly be applied to other spatial ecological factors, such as
competition, local population density, predation, and so forth; a smoothed map can be used to
represent an average or typical condition felt across a local area of a larger spatial map. If the
maps used are not excessively high-resolution, the smoothing operation can be quite fast, and
bilinear interpolation can take care of the very fine-scale gradients between grid points.

This recipe uses the sampleNearbyPoint() method to choose a point for a given animal to
disperse to, and we have deliberately not gone into detail about precisely what that method does
under the hood. That is because there is a second method, sampleImprovedNearbyPoint(), that is
conceptually similar but uses a different algorithm and may produce different results. (It is
“improved” not in the sense of being an improvement over sampleNearbyPoint(), but rather in
terms of exactly how it chooses the new points.) If you are interested in using one of these
methods to implement directed dispersal, it is recommended that you now read the reference
documentation for both of them, in section 25.14.12, and carefully ponder their details and
differences to decide which algorithm you wish to use, from a biological perspective.

16.15 Spatial competition and spatial mate choice in a nonWF model
Earlier in this chapter a variety of spatial models were explored, (almost) all of which were WF

models. Those spatial modeling techniques work just as well in nonWF models – indeed, better in
some ways, as we will see. The model here is derived from the recipe of section 16.5, and
includes both spatial competition and spatial mate choice.

Let’s begin with the initialize() callback as usual:

initialize() {
 initializeSLiMModelType("nonWF");
 initializeSLiMOptions(dimensionality="xy", periodicity="xy");

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 468

 defineConstant("K", 300); // carrying capacity
 defineConstant("S", 0.1); // spatial competition distance

 initializeMutationType("m1", 0.5, "f", 0.0);
 m1.convertToSubstitution = T;

 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8);

 // spatial competition
 initializeInteractionType(1, "xy", reciprocal=T, maxDistance=S);

 // spatial mate choice
 initializeInteractionType(2, "xy", reciprocal=T, maxDistance=0.1);
}

We set up "xy" dimensionality with periodic boundary conditions for both dimensions, in order
to get a toroidal space (see section 16.12). We will still need density-dependent population
regulation of some kind, but since this is a continuous-space model our concept of density ought
to depend upon local density, not overall population size; K is the carrying capacity that we will
aim for by calibrating our local density function. We also define the maximum spatial competition
distance with the symbol S. We set up a neutral model with the usual boilerplate code, and
initialize spatial interactions for competition and mate choice.

Next let’s look at reproduction:

2: first() {
 // look for mates
 i2.evaluate(p1);
}
reproduction() {
 // choose our nearest neighbor as a mate, within the max distance
 mate = i2.nearestNeighbors(individual, 1);

 for (i in seqLen(rpois(1, 0.1)))
 {
 if (mate.size())
 offspring = subpop.addCrossed(individual, mate);
 else
 offspring = subpop.addSelfed(individual);

 // set offspring position
 pos = individual.spatialPosition + rnorm(2, 0, 0.02);
 offspring.setSpatialPosition(p1.pointPeriodic(pos));
 }
}

In a first() event, before reproduction() callbacks are called, we evaluate interaction i2; we
will use it to find a mate within the maximum mating distance. We haven’t seen first() events
much, but they are a convenient place to prepare for reproduction – particularly in nonWF
models, since early() events run after reproduction has completed.

If a mate is found, addCrossed() is used for biparental mating, otherwise addSelfed() is used
for selfing (note this variation in individual mating behavior based on spatial dynamics, which
would be quite difficult to achieve in a WF model). In either case, we draw a litter size using
rpois() with an expected mean size of 0.1, so individuals will reproduce relatively infrequently

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 469

and generations will be highly overlapping; if we’re at equilibrium and a new individual is born
from a given parent 10% of the time, then individuals ought to have an average lifespan of 10 ticks.
We loop over our litter size (note the use of seqLen(), so that if the litter size is zero we get the
correct behavior; using 1:rpois() instead would yield the sequence 1 0 when the litter size is
zero, erroneously producing two offspring). Each offspring is positioned a small distance from the
first parent, with accounting for the periodic boundaries.

Population initialization is very similar to the WF model:

1 early() {
 sim.addSubpop("p1", 1);

 // random initial positions
 p1.individuals.setSpatialPosition(p1.pointUniform(1));
}

Note that because individuals that can’t find mates turn to selfing, we can start the model with
just a single individual and let it grow to capacity. Next we have spatial competition:

early() {
 i1.evaluate(p1);

 // spatial competition provides density-dependent selection
 inds = p1.individuals;
 competition = i1.totalOfNeighborStrengths(inds);
 competition = (competition + 1) / (PI * S^2);
 inds.fitnessScaling = K / competition;
}

We evaluate i1, and then evaluate the effect of competition for all individuals in a vectorized
fashion. The call to totalOfNeighborStrengths() returns a vector of the interaction strength felt
by each individual, and we rescale these values to normalize them (discussed below). The fitness
effect on each individual is then calculated as the carrying capacity K divided by the rescaled
strength of competition felt by the individual. If that strength is equal to K, we are at equilibrium;
the individual will feel no fitness effect, positive or negative, from spatial competition. If the local
population density around the individual is higher than that equilibrium density, its fitness will be
lower, and vice versa; local density is what is actually enforced by this formula, not total
population size. If the population happens to be uniformly distributed in space, then its
equilibrium size will be equal to K; but if there are areas of space that are uninhabitable, or if
individuals tend to cluster for any reason, then the equilibrium population size may differ from K.

To understand how the rescaling works, let’s look at this in more detail. The maximum
competition distance, S, is set to 0.1 here, which means that the circle covered by the interaction
radius around a focal individual has a radius of 0.1. The term (PI * S^2) is the area of this
interaction circle (πr2), so in this case it would be 0.01π or about 0.03141593. The focal individual’s
interaction circle would then, on average, include about 3.1% of the individuals in the whole
model (since the area of the space defined by p1 is 1.0, since we didn’t change its dimensions
from a unit square; if that did change, the calculations here would have to be tweaked). The initial
value of competition will be the population size inside that interaction circle, minus one because
the focal individual is not itself included in the total interaction strength; we compensate by using
(competition + 1). For our situation in which the interaction circle has an area of ~0.031 and
contains, on average, 3.1% of the population, it can thus be seen that the fitness scaling value for
every individual will be approximately 1.0 when the local population density is at carrying
capacity. The same logic applies for other values of S. Note that this is only an argument about
local population density; a non-uniform spatial distribution might cause some regions to

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 470

experience a fitness greater than or less than 1.0 even when the population size as a whole is
exactly at carrying capacity. That is a good thing, and biologically realistic, as we will see.

Finally, note that periodic boundary conditions can be important when modeling competition in
this sort of way, because they provide a uniform strength of competition across space, without
edge effects. With a non-periodic boundary condition, the strength of spatial competition felt by
individuals at the edge of the space would be lower, and that would encourage the population
density to be higher at the edges than in the center (because, in effect, the local population density
being regulated by the competition function includes the empty areas beyond the edges of the
space). We will see a way to compensate for this undesirable edge effect without the use of
periodic boundaries in the next section, but for now we will use periodic boundaries to simplify
the situation.

So far so good. Since we have overlapping generations, it would be nice to model some
movement by the individuals in the model, rather than just representing them as motionless points.
To do that, we have a late() event that moves everybody around:

late()
{
 // move around a bit
 for (ind in p1.individuals)
 {
 newPos = ind.spatialPosition + runif(2, -0.01, 0.01);
 ind.setSpatialPosition(p1.pointPeriodic(newPos));
 }
}

This just deviates individual positions by a small random factor, with accounting for periodic
boundaries using pointPeriodic() (see section 16.12 for discussion of periodic boundaries).

Finally, we have a termination event:

10000 late() {
 sim.outputFixedMutations();
}

Something worth noting about this model is that it contains no modifyChild() callback.
Because nonWF models create their own offspring, we can fix the spatial positions of offspring
directly in the reproduction() callback. It would also work to do it in a separate modifyChild()
callback, as in section 16.5, but that would be a bit more complex and a bit slower. Often,
nonWF models can get away with fewer callbacks, or even no callbacks except initialize() and
reproduction(), as shown here.

When this recipe is run, it looks a lot like the recipe from section 16.5:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 471

There are differences from section 16.5’s recipe, though: individuals are moving around in
space during their lifetimes, and generations are clearly overlapping; there is much more
continuity from tick to tick. The population size is no longer fixed at K, either; it starts at 1 and
grows organically, with a natural pattern of population growth that spreads across space. Even
once it reaches carrying capacity it is not fixed at exactly K, as the WF model was, but fluctuates
around the carrying capacity stochastically, depending in part upon how non-uniform the spatial
clustering at any given moment happens to be. This added realism could be very important in
some models. For example, if something were to suddenly perturb the population – if a disease
outbreak in one corner of the space suddenly killed off all the individuals within a small radius,
say – the WF model would nevertheless force the total population size to be K in every tick, and so
the population density would increase in all the other areas of the space, which clearly makes no
sense. This model’s more robust implementation of population regulation based upon local
population density prevents that aberration; the population size would initially be depressed by the
perturbation, and the hole created by the disease outbreak would fill back in from its edges
naturally, over time.

It has been mentioned several times now that spatial clustering might cause this model to reach
an equilibrium population size different from K. In the snapshot above, it is not immediately
obvious that this is happening, but in fact it is, and the population size of this recipe fluctuates
around roughly 310, slightly above the intended carrying capacity of 300. This can be made much
more obvious by increasing S to 0.2; the model at equilibrium then looks like this:

Rather remarkably, the population has naturally clustered itself into fifteen clumps, equidistantly
arranged across the periodic space in a hexagonal pattern; this seems to be the optimal
arrangement for this value of S, and the model finds it fairly quickly every time it is run. The
equilibrium population size is now about 500 individuals. This can be caused by factors such as
competition, and has been explored somewhat in the literature (e.g., Sasaki, 1997). In the next
section, we will discuss this further, and look at a way of preventing it if it is undesirable.

For now, let’s just note that this is not a bug; this is the emergent behavior of the model, and it is
not necessarily unbiological. For one thing, some species are territorial, and what this model is
doing could be seen as a sort of territoriality; if the carrying capacity and other parameters were
adjusted appropriately, each cluster could contain the appropriate number of individuals for family
groups of the modeled species. For another, complex spatial clustering has been observed in
various natural systems; Vincenot et al. (2016) provide an overview of some examples in plants, for
instance, and discuss the modeling of such clustering. Of course these clusters might not behave
precisely as one might wish; they are probably almost completely genetically isolated from each
other, for one thing, so one might wish to model dispersal that would provide gene flow (such as
the way that young male lions leave their natal pride and head out to form their own pride). A

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 472

sufficiently large dispersal kernel would disrupt the clustering seen here enough to produce gene
flow; different dispersal kernel shapes (e.g., exponential) might also have interesting effects.

There is one more interesting aside to be explored here. We can modify this recipe a bit more,
by removing the periodic boundaries and instead implementing reprising boundaries following the
appropriate recipe from section 16.3. With S still set to 0.2, if we run this modified model we will
see a fairly different pattern of spatial clustering:

Twelve clusters are now arranged around the edges, and another eight clusters are packed into
the interior in an asymmetrical pattern. This is one way that the model can satisfy the constraints it
has been given, but it is not entirely stable, and there are several other configurations with either
nineteen or twenty clusters that are commonly observed. Here is another, with nineteen:

The equilibrium population size here is about 680 in the top configuration, and about 660 in the
bottom configuration. This is higher than it was with periodic boundaries, and of course the
nineteen or twenty clusters observed now is more than the fifteen observed with periodic
boundaries too. This difference occurs because reprising boundaries provide the model with more
elbow room; the clusters can now take advantage of the fact that they feel no competition from the
empty space beyond the edges, whereas periodic boundaries did not afford this luxury.

The overall point, then, is that the dynamics of spatial models are considerably more subtle than
one might initially appreciate, and that choices such as boundary conditions can have large
consequences that might not be immediately obvious. We shall explore this in the next section.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 473

16.16 A spatial model with carrying-capacity density
The previous section provided a recipe for a nonWF model with both spatial competition and

spatial mate choice. Spatial competition provided population regulation, since more individuals
would produce more competition, reducing absolute fitness. However, as we saw at the end of
the section, that model tends to produce spatial clustering that might often be undesirable. This
occurs because of the shape of the competition function. The competitive interaction strength felt
between two individuals in that recipe was constant out to the maximum interaction distance, and
then fell off abruptly to zero. This produces an incentive for clustering, for two reasons: (1) being
tightly clustered implies no more fitness penalty than being loosely clustered, since the interaction
strength is constant, and (2) clustering allows the empty spaces between clusters to be shared by
the clusters; if the clusters arrange themselves into a regularly spaced configuration, they can
efficiently share the empty spaces between them. That effect allows the mean interaction strength
felt by individuals to decrease, in turn allowing the model to exceed its nominal carrying capacity.

For this reason (and others), a Gaussian competition kernel is often preferred in this sort of
spatial model; it seems to produce fewer artifacts of this type. Earlier in this chapter we
constructed a series of models inspired by classic papers such as Dieckmann & Doebeli (1999)
and Doebeli & Dieckmann (2003), and here we return to that thread. Doebeli & Dieckmann
(2003) introduced a concept that they called “carrying-capacity density”, based upon a Gaussian
competition kernel; with the proper scaling, as set out in their paper, the population will
equilibrate at the intended carrying capacity if the environment is homogeneous, just as it did in
the previous recipe, but clustering artifacts driven by the shape of the competition kernel will be
minimized. Here, we will adjust the model of section 16.15 to implement this concept of
carrying-capacity density. We will make small changes and slowly evolve the section 16.15
recipe, one step at a time.

One part that requires changes is the initialize() callback:

initialize() {
 initializeSLiMModelType("nonWF");
 initializeSLiMOptions(dimensionality="xy", periodicity="xy");
 defineConstant("K", 300); // carrying-capacity density
 defineConstant("S", 0.1); // sigma_S, the spatial competition width

 initializeMutationType("m1", 0.5, "f", 0.0);
 m1.convertToSubstitution = T;

 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8);

 // spatial competition
 initializeInteractionType(1, "xy", reciprocal=T, maxDistance=S * 3);
 i1.setInteractionFunction("n", 1.0, S);

 // spatial mate choice
 initializeInteractionType(2, "xy", reciprocal=T, maxDistance=0.1);
}

We now call K the carrying-capacity density, and S the spatial competition width, which is
referred to with the symbol σs in Doebeli & Dieckmann (2003). The spatial competition function
now uses a Gaussian kernel (type "n"), with a maximum distance of three standard deviations (so
by the time it cuts off it should be very close to zero anyway). Otherwise this initialize()
callback is the same as in section 16.15, with "xy" periodicity and a carrying capacity of 300

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 474

individuals; in this recipe, that will become a carrying-capacity density of 300 individuals per unit
area, as we will see.

Another element that changes is the population regulation event:

early() {
 i1.evaluate(p1);

 // spatial competition provides density-dependent selection
 inds = p1.individuals;
 competition = i1.totalOfNeighborStrengths(inds);
 competition = (competition + 1) / (2 * PI * S^2);
 inds.fitnessScaling = K / competition;
}

This is similar to section 16.15’s code, but the rescaling of the competition strength has changed
in accord with the new Gaussian competition kernel shape. The new competition strength
rescaling is parallel to the rescaling that is applied in the standard formula for the normal
distribution, usually written as:

Without the rescaling constant, that formula would produce a maximum value of 1.0; rescaled,
it produces a lower maximum density, such that the total probability density – the integral under
the curve – is exactly 1.0 (as required by the definition of a probability density function). Now,
note that the Gaussian (type "n") interaction function we’re using here utilizes the same formula,
but without that rescaling factor; the correction factor in the code really just introduces that
rescaling factor, in order to normalize the Gaussian interaction function. This is parallel to the
reasoning followed in section 16.15 that led us to rescale using the formula for the area of a circle
of radius S. The rescaling factor is squared in this recipe (because there is no square root) because
we have two spatial dimensions; the spatial competition function is really the product of two
Gaussian functions, one for x and one for y. See Doebeli & Dieckmann (2003) and related papers
for further discussion, since a full derivation is beyond the scope of this manual. Note that, in
terms of the implementation, we could just rescale the maximum strength for i1 instead, supplying
the same rescaling constant directly to setInteractionFunction(), and that would run faster, too;
the design shown here is more explicit for pedagogical purposes.

When this script is run, the spatial distribution looks a lot like the recipe from section 16.10:

f (x | μ, σ2) =
1

2πσ2
e− (x − μ)2

2σ2

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 475

Close examination, however, shows that this spatial distribution is less regularly clustered than
that previous recipe’s distribution. Changing S to 0.2 shows that the clustering previously
observed at that interaction scale is all but gone too:

A little bit of clustering still occurs, as can be seen above. This occurs partly because offspring
land near their first parent, and partly just as a result of stochasticity (one would not expect a
stochastic process to produce a perfectly uniform spatial distribution, after all). But the
competition function is no longer contributing heavily to that clustering as it was before; indeed, it
may be working to smooth it away by favoring new offspring that land in relatively unoccupied
areas.

In section 16.15 we briefly tried replacing the periodic boundaries of the model with reprising
boundaries, and found that it strongly promoted clusters around the edge of the space due to an
“edge effect”: the uninhabited area beyond the edge of the spatial bounds artificially lowered the
local density felt by individuals on or near the edge of the landscape. Let’s try that again now that
we have replaced the fixed interaction function with the Gaussian kernel; and this time, let’s
actually switch the recipe over to using reprising boundaries. To do that we need to replace the
initializeSLiMOptions() call:

initializeSLiMOptions(dimensionality="xy");

and replace the new offspring positioning in the reproduction() callback:

// set offspring position
do pos = individual.spatialPosition + rnorm(2, 0, 0.02);
while (!p1.pointInBounds(pos));
offspring.setSpatialPosition(pos);

and finally, replace the movement code in the late() event:

// move around a bit
for (ind in p1.individuals)
{
 do newPos = ind.spatialPosition + runif(2, -0.01, 0.01);
 while (!p1.pointInBounds(newPos));
 ind.setSpatialPosition(newPos);
}

With all of those changed to switch to reprising boundaries, if we run this new model in
SLiMgui, here’s the result:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 476

The edge effect remains; we are no longer seeing clusters around the edge, but we still see a
border area with higher-than-average density, and within that a ring of lower-than-average density,
because the edge effect promotes survival at the edge and the resulting high density at the edge
decreases survival just inside that border region.

We are not quite done, then. The recipe thus far revealed the inner workings of how carrying-
capacity density is calculated, but we would very much like to get rid of this edge effect, since
periodic boundaries are not always desirable. To correct for this edge effect, we would like to
remove the area beyond the edge of the spatial bounds from the area considered “habitable” when
we calculate local density. Happily, there is a simple way to do this (as of SLiM 3.7).

Recall that the competition strength calculations in the early() event now look like this:

// spatial competition provides density-dependent selection
inds = p1.individuals;
competition = i1.totalOfNeighborStrengths(inds);
competition = (competition + 1) / (2 * PI * S^2);
inds.fitnessScaling = K / competition;

We will now replace that code with this new script:

// spatial competition provides density-dependent selection
inds = p1.individuals;
competition = i1.localPopulationDensity(inds);
inds.fitnessScaling = K / competition;

Before discussing this change in detail, let’s just look at what our model – which is now the final
recipe for this section – looks like in SLiMgui:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 477

We have gotten rid of the edge effect, even though we no longer have periodic boundaries.
This is therefore a complete spatial nonWF model using carrying-capacity density for local
population regulation without edge effects. But how does the code above work?

Essentially, the localPopulationDensity() method replaces the logic we had before and
improves upon it. Internally, it does the exact same calculation that totalOfNeighborStrengths()
does, tallying up the interaction strengths of all neighbors of each individual within the maximum
interaction distance. It also does the same thing that the + 1 in the previous version achieved: it
adds in the focal individual itself, since local density ought to include the individual itself. (Note
that this was + 1 because the maximum value of the interaction functions used has been 1.0, but
in general the maximum interaction function value should be added in to the total.) Finally, it does
the same thing as the division by (2 * PI * S^2) did: it divides by the integral of the interaction
function to get local population density. However, localPopulationDensity() is very smart about
this: it actually clips that integral to both the maximum interaction distance and the edges of the
spatial bounds, tailoring the integral of the interaction function to each individual’s local
circumstances so that the total interaction strength is divided by the correct estimate of the
“interaction field” present, correcting for the edge effect. With that, we are done!

Incidentally, these effects of interaction kernel shape that we have been looking at have been
explored in various papers; see Payne et al. (2011) for a model of this based upon the same
Dieckmann and Doebeli models that we have been exploring, although that paper concerns itself
more with clustering in phenotypic space than in the regular spatial dimensions (as we saw in
chapter 16, phenotype can in some ways be treated similarly to a spatial dimension). Payne et al.
(2011) found that a box-shaped (i.e., platykurtic) kernel encouraged clustering, just as did the cut-
off kernel we used in section 16.15, which was of course also platykurtic. Leimar et al. (2008)
explored competition kernel shape in more detail, and found that a characteristic of the Fourier
transform of the competition kernel was predictive of its effects upon clustering. A Gaussian
competition kernel does not promote clustering, according to their findings, and this is one reason
why this kernel shape is popular (although mathematical convenience also plays a role, as they
explain).

16.17 A spatial epidemiological S-I-R model
Epidemiological models are concerned with the spread of disease through a population, and the

effects of various public health interventions and behavioral changes on the course of that spread.
There is a large literature on one particular type of epidemiological model, the S-I-R (Susceptible,
Infectious, Recovered) model. Susceptible individuals have not previously encountered the
disease, and can contract it if exposed. Infectious individuals have contracted the disease and can
spread it to susceptible individuals they encounter. Recovered individuals have had the disease
and recovered, so they are no longer infectious, nor are they susceptible (since their immune
system is no longer naive). This model is very simple, but it provides a conceptual foundation and
can be extended in many ways to increase realism.

Simple non-spatial S-I-R models are quite trivial to put together, but spatial dynamics are
immensely important to epidemiology. Different countries or regions will have different healthcare
systems, different laws, and different cultures that may affect dynamics. Geographical barriers can
be important (such as oceans), as can movement patterns (such as air travel). Many diseases act
differently depending upon the climate, causing seasonal patterns of spread. Population density
matters immensely; disease spreads much more readily in urban areas, but zoonotic diseases often
start in rural areas. And so forth – many other types of spatial variation in epidemiologically
relevant variables might be important to model. Spatial epidemiological models are not so simple
to put together, so SLiM can be a useful tool in this domain. A SLiM model of S-I-R dynamics

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 478

should be a nonWF model, since population size needs to be emergent. Although we won’t delve
into it here, a nonWF model is also appropriate because age might matter a great deal –
individuals of different ages might differ in their susceptibility, their mortality, their behaviors, etc.

In this section, then, we will look at a very simple spatial S-I-R model in SLiM. Although this
model is being added while the COVID-19 pandemic is raging, please note that writing it has been
on my to-do list for ages. It is not a model of COVID-19; indeed, it is not even a model of
humans, or any other specific organism.

We will use periodic boundary conditions in a 2-D space to avoid edge effects (see section
16.12), and we’ll use the tag property of individuals to keep track of the S-I-R state of each
individual. Ticks will represent a fairly short amount of time compared to the lifespan of
individuals; individuals will have a maximum age of 100 ticks (with increasing mortality with age,
independent of infection). The model will be based strongly on the recipe of section 16.16, with
spatial competition using carrying-capacity density, and nearest-neighbor mate choice. Here’s the
initialization:

initialize() {
 initializeSLiMModelType("nonWF");
 initializeSLiMOptions(dimensionality="xy", periodicity="xy");

 defineConstant("K", 10000); // carrying-capacity density
 defineConstant("S", 0.01); // sigma_S, the competition width

 defineConstant("HEALTH_S", 0); // susceptible
 defineConstant("HEALTH_I", 1); // infectious
 defineConstant("HEALTH_R", 2); // recovered

 defineConstant("FERTILITY", 0.05);
 defineConstant("INFECTIVITY", 4);
 defineConstant("RATE_DEATH", 0.3);
 defineConstant("RATE_CLEAR", 0.05);
 defineConstant("MAX_AGE", 100.0);

 initializeMutationType("m1", 0.5, "f", 0.0);
 m1.convertToSubstitution = T;

 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8);

 // spatial competition
 initializeInteractionType(1, "xy", reciprocal=T, maxDistance=S * 3);
 i1.setInteractionFunction("n", 1.0, S);

 // spatial mate choice
 initializeInteractionType(2, "xy", reciprocal=T, maxDistance=0.05);
}

The population size is relatively large for this manual (a carrying-capacity density of 10000) so
that we can get some interesting and fine-grained spatial dynamics, and the interaction distances
defined are therefore relatively short-range. We define constants for the S-I-R states that we will
keep in the tag property, to make the code more self-documenting. We also define a set of
constants governing things like fertility, infectivity, and other dynamics.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 479

Notably, the model includes mutations, but only neutral mutations that don’t influence the
dynamics. For all practical purposes, then, this model is therefore non-genetic and non-
evolutionary; we are just using SLiM as a spatial agent-based modeling framework. However, all
the genetic machinery in SLiM is still available to us, so a natural extension would be to look at the
effects of resistance alleles or immunological genetic traits on the outcome of the model.

Reproduction in this model is quite straightforward:

1: first() {
 // look for mates
 i2.evaluate(p1);
}
reproduction() {
 litterSize = rpois(1, FERTILITY);

 if (litterSize)
 {
 mate = i2.nearestNeighbors(individual, 1);

 if (mate.size())
 for (i in seqLen(litterSize))
 {
 offspring = subpop.addCrossed(individual, mate);

 // set offspring position and state
 pos = individual.spatialPosition + rnorm(2, 0, 0.005);
 offspring.setSpatialPosition(p1.pointPeriodic(pos));
 offspring.tag = HEALTH_S;
 }
 }
}

As in sections 16.15 and 16.16, we begin by evaluating the mating interaction in a first()
event, prior to reproduction. Then we determine whether the focal individual is even a candidate
to reproduce this tick, since the fertility rate is so low. If it is, we choose the nearest mate within
the mating interaction distance, generate the litter of offspring (probably a single offspring, given
the low fertility), and handle dispersal for the new offspring, which begin as Susceptible.

The population setup sets individuals to be Susceptible, in addition to initializing positions:

1 early() {
 sim.addSubpop("p1", K);
 p1.individuals.setSpatialPosition(p1.pointUniform(K));
 p1.individuals.tag = HEALTH_S;
}

Seeding the initial infection is a matter of choosing a target and changing its state to Infectious:

100 early() {
 // seed the infection in a susceptible individual
 target = p1.sampleIndividuals(1, tag=HEALTH_S);
 target.tag = HEALTH_I;
}

We want to do some basic logging (for later display of the epidemic history in R), and we want
to detect when the infection has been lost:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 480

1:1000 late() {
 tags = p1.individuals.tag;

 cat(sum(tags == HEALTH_S) + ", " + sum(tags == HEALTH_I) + ", " +
 sum(tags == HEALTH_R) + ", ");

 if ((sum(tags == HEALTH_I) == 0) & (sim.cycle >= 100)) {
 catn("\nLOST in cycle " + sim.cycle);
 sim.simulationFinished();
 }
}

We want several forms of population regulation and mortality: spatial competition providing
basic density-dependence, age-related mortality providing a cap of the age of individuals, and –
most saliently – infection dynamics and death due to disease. We do all this in an early() event:

early() {
 i1.evaluate(p1);

 // spatial competition provides density-dependent selection
 inds = p1.individuals;
 competition = i1.totalOfNeighborStrengths(inds);
 competition = (competition + 1) / (2 * PI * S^2);
 inds.fitnessScaling = K / competition;

 // age-based mortality; at age 100 mortality is 100%
 age_mortality = sqrt((MAX_AGE - inds.age) / MAX_AGE);
 inds.fitnessScaling = inds.fitnessScaling * age_mortality;

 // SIR model
 infected = inds[inds.tag == HEALTH_I];

 for (ind in infected)
 {
 // make contact with random neighbors each cycle
 contacts = i1.drawByStrength(ind, rpois(1, INFECTIVITY));

 for (contact in contacts)
 {
 // if the contact is susceptible, they might get infected
 if (contact.tag == HEALTH_S)
 {
 strength = i1.strength(ind, contact);

 if (runif(1) < strength)
 contact.tag = HEALTH_I;
 }
 }

 // die with some probability each cycle
 if (runif(1) < RATE_DEATH)
 ind.fitnessScaling = 0.0;

 // recover with some probability each cycle
 if (runif(1) < RATE_CLEAR)
 ind.tag = HEALTH_R;
 }
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 481

The age-based mortality is implemented with a simple formula that makes the probability of
death 0% at age 0 and 100% at age 100; the sqrt() call transforms that probability scale so that,
within those boundary conditions, mortality rises more than linearly with age. (One could
implement an explicit life table instead, of course, as in section 15.2.)

The S-I-R model dynamics are implemented in the above code by getting a vector of all
infectious individuals and looping over them. For each infectious individual, nearby susceptible
individuals might become infected (with a probability that depends on their spatial proximity to
the focal individual, using strength()). Here the INFECTIVITY parameter governs how many
nearby individuals can be infected; one might want to scale the probability of infection instead.
After infecting nearby individuals, the focal infectious individual might die or recover, using the
defined probabilities for those state transitions.

We have a few final behaviors to define. For more realistic spatial dynamics we want
individuals to move around the landscape in each tick, changing which other individuals they are
interacting with (this actually makes a substantial difference to the epidemiological dynamics, by
changing the connectivity of the network through which the disease spreads). We also want to
color individuals according to their health status, so we can see the epidemic’s state visually in
SLiMgui. We do these things in a late() event:

late()
{
 inds = p1.individuals;

 // move around a bit
 for (ind in inds)
 {
 newPos = ind.spatialPosition + runif(2, -0.005, 0.005);
 ind.setSpatialPosition(p1.pointPeriodic(newPos));
 }

 // color according to health status; S=green, I=red, R=blue
 inds_tags = inds.tag;
 inds[inds_tags == HEALTH_S].color = "green";
 inds[inds_tags == HEALTH_I].color = "red";
 inds[inds_tags == HEALTH_R].color = "blue";
}

That’s the whole model; it’s a bit longer than most of the recipes in this manual, but really not so
bad considering its complexity. When run in SLiMgui, we can see the strong spatial dynamics of
the epidemic:

This snapshot is near the start of a run, as a wave of red infectious individuals spreads outward
and blue recovered individuals exist behind that wavefront.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 482

As the model runs, it produces a time series of S-I-R values like this:

..., 2470, 263, 607, 2501, 254, 611, 2539, 244, 614, 2585, 221, 610, 2603,
216, 603, 2653, 207, 589, 2699, 206, 596, 2752, 189, 585, 2815, 185, 577,
2860, 188, 572, 2910, 199, 568, 2956, 198, 558, ...

A little R scripting using these values gives us a plot of the epidemic’s dynamics:

In this run the dynamics are strongly cyclical, likely as a consequence of the spatiality of the
model (a conclusion that could be verified with a non-spatial version of the same model). The
dynamics turn out to be pretty sensitive to the parameter values used; it is easy to find regimes
where the epidemic sputters out after a short time due to insufficient infectivity, or where the
population goes extinct.

Again I want to emphasize that this is quite a simple toy model; it has no effects of genetics, no
spatial heterogeneity, only three individual states (S-I-R), no effects of age on infectivity or mortality
(or even reproduction – individuals here are fertile from birth), and so forth. One could imagine
extending it in all sorts of different ways; but with this foundation, such extensions ought to be
straightforward to implement using the techniques shown in other sections.

A final note: one particularly interesting way in which this model could be extended is by
making the infectious agent (let’s call it a virus) evolve, rather than just the host individuals. It
would not be easy to explicitly model the virus as individuals in SLiM, with explicit genetics.
However, one could certainly track properties of the strain of virus carried by any given infectious
individual – the strain’s infectivity, virulence, etc. – using a value or values associated with the
individual by setValue(). When that individual infected another individual, those strain
properties would be carried over to the new individual, with random modifications representing
mutation and evolution in the host. The strain values associated with an individual’s virus could,
with a little more scripting, actually influence the properties of the virus in the infected individual
– modifying the probabilities of infection, mortality, and recovery, for example. In this way, one
could easily model the evolution of the disease in response to different milieu in which it finds
itself. Furthermore, if the properties of the virus were affected by the host’s genetics as well –
evolution toward decreased sociality when infected, say – one could model the co-evolution of
host and disease. Since the virus’s evolution would not be based upon explicit genetics, but rather
just upon heritable and mutable strain properties, this would be less than fully realistic, but it
would probably still be quite interesting.

0 200 400 600 800 1000

0
20
00

40
00

60
00

80
00

Generation

C
ou
nt

S
I
R

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 483

16.18 A sexual, age-structured spatial model
In this section we will continue with the spatial model developed in the previous section,

extending it to show how separate sexes and age structure can be handled in a spatial nonWF
model. This will demonstrate the use of some relatively new features, including setting interaction
constraints with the setConstraints() method of InteractionType (added in SLiM 4.1), and the
use of the killIndividuals() method (added in SLiM 4.0) to manage age-related mortality
separately from spatial density-dependence. Note that we saw killIndividuals() previously in
section 15.5.

Although this model is based on that of section 16.16, there are quite a few differences, so
rather than presenting only differences we will look at the model in full, part by part. Here’s the
model initialization:

initialize() {
 initializeSLiMModelType("nonWF");
 initializeSLiMOptions(dimensionality="xy");
 initializeSex("A");
 defineConstant("K", 300); // carrying-capacity density
 defineConstant("S", 0.1); // sigma_S, the spatial interaction width

 // spatial competition
 initializeInteractionType(1, "xy", reciprocal=T, maxDistance=S * 3);
 i1.setInteractionFunction("n", 1.0, S);

 // spatial mate choice
 initializeInteractionType(2, "xy", reciprocal=T, maxDistance=0.1);
 i2.setConstraints("receiver", sex="F", minAge=2, maxAge=4);
 i2.setConstraints("exerter", sex="M", minAge=2);
}

This is a no-genetics model, unlike section 16.16, for simplicity; the setup of the genetic
structure has simply been deleted, making this an ecological model. (Of course, any genetics
desired could be added back in.) A call to initializeSex("A") has been added, making this a
sexual model.

The interesting change here, though, is the addition of the two calls to setConstraints() at the
end of the callback. These set up interaction constraints for i2, the interaction type used for mate
choice. These constraints restrict which individuals are candidates to be receivers and/or exerters
for i2 interactions. In this model, receivers must be females between the ages of 2 and 4, while
exerters must be males with an age of at least 2. We will look at the effect this has below, when
we get to the reproduction() callback. If only sex-specific constraints are needed, the
sexSegregation parameter to initializeInteractionType() can set up those constraints; using
setConstraints() allows constraints in addition to sex, and is the more modern approach.

The subpopulation setup for this model is almost the same, except that we start at population
size K for simplicity, rather than starting at size 1 and selfing at low density as section 16.16’s
recipe did:

1 early() {
 sim.addSubpop("p1", K);
 p1.individuals.setSpatialPosition(p1.pointUniform(K));
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 484

Now let’s look at the reproduction code:

2: first() {
 // look for mates
 i2.evaluate(p1);
}
reproduction(NULL, "F") {
 // choose our nearest neighbor as a mate, within the max distance
 mate = i2.nearestInteractingNeighbors(individual, 1);

 if (mate.size() > 0)
 subpop.addCrossed(individual, mate, count=rpois(1, 1.5));
}

As in section 16.16, we call evaluate() in a first() event prior to reproduction, to prepare the
interaction type for use. The logic of the reproduction() callback is greatly simplified. For one
thing, the focal individual doesn’t self if it cannot find a mate; it simply doesn’t reproduce. For
another, the count parameter of addCrossed(), new in SLiM 4.1, is used to generate a whole litter
of offspring in a single call, doing away with the for loop previously used. Also, the code does not
set the position of the offspring any more; as seen in section 16.3, in SLiM 4.1 the positions of
offspring are automatically set to the position of their first parent, and we will then deviate those
offspring positions in the early() event below – a more efficient design since it is vectorized.

Most importantly, though, this reproduction() callback is now aware of the separate sexes in
the model, and uses the mate choice constraints previously configured by setConstraints(). First
of all, it limits itself to focal reproducing individuals that are female, since it is declared with "F".
It then calls nearestInteractingNeighbors() to find a mate, rather than nearestNeighbors(). The
distinction here is subtle but crucial: nearestNeighbors() finds any neighbor, without regard to the
constraints set on the interaction type, whereas nearestInteractingNeighbors() finds only
interacting neighbors – those that are qualified to interact with the receiver, based upon the
constraints that have been set. The nearestInteractingNeighbors() method will therefore return
only males of at least age 2. It also applies the receiver constraints; so if a given female is not
between age 2 and 4, there will be no eligible mates for that female (or perhaps the female is
infertile at other ages), and an empty vector will be returned.

Let’s look now at how the model handles post-reproduction dynamics, in its early() event:

early() {
 // first, conduct age-related mortality with killIndividuals()
 inds = p1.individuals;
 ages = inds.age;

 inds4 = inds[ages == 4];
 inds5 = inds[ages == 5];
 inds6 = inds[ages >= 6];
 death4 = (runif(inds4.size()) < 0.10);
 death5 = (runif(inds5.size()) < 0.30);
 sim.killIndividuals(c(inds4[death4], inds5[death5], inds6));

 // disperse prior to density-dependence
 inds = p1.individuals;
 pos = inds.spatialPosition;
 pos = p1.pointDeviated(inds.size(), pos, "reprising", INF, "n", 0.02);
 inds.setSpatialPosition(pos);

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 485

 // spatial competition provides density-dependent selection
 i1.evaluate(p1);
 competition = i1.localPopulationDensity(inds);
 inds.fitnessScaling = K / competition;
}

The first section of this event handles age-related mortality. The logic here could be compared
to section 15.2, which uses a life table and influences fitness through the fitnessScaling property
of individuals. Here, instead, we explicitly manage the age-related mortality of ages 4, 5, and 6
using killIndividuals(). The virtue of this approach is that it gets the deceased individuals out of
the population immediately, so that the density-dependence logic later in the event is based upon
the survivors after age-related mortality; again, compare this to the approach in section 15.2. This
technique could easily be modified to use a life table, as in section 15.2, for greater generality.

The next section handles dispersal of all individuals – newly generated juveniles as well as
adults. It uses the pointDeviated() method, new in SLiM 4.1, to efficiently draw new positions
using a Gaussian dispersal kernel with reprising boundaries; see section 16.3 for discussion of this
method. Note that other dispersal kernels and boundary conditions could be used here instead.

The last section of the early() event manages density-dependent competition to regulate the
population size. This code is essentially unchanged from section 16.16.

Finally, we have an end event:

10000 late() { }

The dynamics of this model are not visually different from that of the previous section, so a
screenshot isn’t very revealing. The fact that reproduction requires a certain minimum age would
slow down the speed of genetic drift and evolution in the model, though, if all the genetics hadn’t
been removed. The equilibrium population size is a little below the nominal carrying capacity of
300 here, which perhaps makes sense upon reflection. A given female will generate a litter of
offspring nearby; those offspring will contribute to density-dependent selection, tending to kill
nearby adult males, but will not themselves become sexually mature for a couple of ticks. The
focal female will therefore be somewhat unlikely to find a mate in subsequent ticks – or may
herself die due to density-dependence. Either way, a clumping in the spatial structure that is
correlated with mating results due to the influx of juveniles, leading some areas to receive many
offspring while other areas receive none. Limited mating success combined with density-
dependent competition thus leads to a lower-than-nominal population size in the next tick. These
hand-wavy explanations are just hypotheses, though, and would require confirmation through
more detailed study.

The setConstraints() method used in this model allows other constraints as well, including
constraints based on the individual’s tag value, migrant property, and the logical tags tagL0
through tagL4. Using those logical tags, you can constrain interactions using virtually any criteria
you wish, simply by setting up the necessary logical tag values beforehand. This is therefore an
extremely powerful way of configuring an InteractionType to operate, not across entire
subpopulations, but across any designated subpopulation subset. In this model we use this facility
to constrain mate choice, but it could equally well be used to constrain competition or other
interactions.

One thing to note is that exerter constraints are applied when evaluate() is called, whereas
receiver constraints are applied at the time a query is made. If receiver constraints rule out a given
receiver at evaluate() time, but allow that receiver at query time, the receiver will be allowed; the
opposite is true for exerters. This behavior exists for performance and architectural reasons, but
arguably it can be regarded as a feature; it allows receiver constraints to be applied based upon

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 486

up-to-the-moment information that can be different from query to query. This difference is
something to be aware of, however, so that it doesn’t become the cause of bugs.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 487

17. Tree-sequence recording: tracking population history and true local ancestry

This manual has already discussed a variety of ways of tracking ancestry in SLiM models, such
as pedigree recording (section 14.1; see also section 15.10 for a related model) and using
mutations to mark the population of origin of chromosome positions (section 14.7). In this chapter
we will look at a very powerful way of tracking ancestry called tree-sequence recording. Tree-
sequence recording is a new feature added in SLiM 3, and is introduced in some detail in section
1.7; you should read that section now if you haven’t already. This is an advanced feature, and so
this chapter will assume a familiarity with general SLiM and Eidos topics and techniques.

The use of tree-sequence recording leans heavily upon Python, where the tree sequence saved
in a .trees file can be read, analyzed, and modified. To run most of the recipes in this chapter,
you will need to have Python installed (Python 3.7 or later is required; I am presently on Python
3.9.10). Some familiarity with Python will come in useful, but the Python scripts here will not be
extensive. You will also need to have three Python packages installed: msprime, tskit, and pyslim.
The recipes in this chapter are based upon SLiM 4.0, msprime 1.2, tskit 0.4.1, and pyslim 1.0.

The msprime and tskit packages are used to analyze tree sequences, overlay mutations onto a
tree sequence, and perform coalescent simulations, among other tasks (tskit is the foundation
upon which msprime is built). The msprime project lives at https://github.com/tskit-dev/msprime;
tskit lives at https://github.com/tskit-dev/tskit. The pyslim package essentially provides a bridge
between SLiM and msprime and tskit; most operations on SLiM-produced tree sequences are
done with tskit, while pyslim provides some additional methods to make common operations
more straightforward (e.g., recapitation or preparing an msprime simulation for reading in to SLiM).
The pyslim project lives at https://github.com/tskit-dev/pyslim. These packages have excellent
documentation, including tutorials; see section 1.10 for links to online resources.

In general, tree-sequence recording is compatible with all other SLiM features. It can be used
with both WF and nonWF models, with all types of callbacks, with any population structure, and
so forth. In this chapter we will not attempt to show a tree-seq version of every recipe we’ve
already seen; instead we will focus upon the usage of the tree-sequence recording feature itself, to
show what it is capable of and how it should be used. The early recipes will use only tskit and
msprime; later recipes will use pyslim for SLiM annotations and other advanced functionality.

17.1 A minimal tree-seq model
To begin, we will look at a minimal tree-sequence recording model based upon a simple

neutral model. This recipe enables tree-seq recording and then runs much as usual:

initialize() {
 initializeTreeSeq();
 initializeMutationRate(0);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 1e8-1);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 500);
}
5000 late() {
 sim.treeSeqOutput("./overlay.trees");
}

There are three notable differences here from the vanilla neutral model we have seen before.
First, we now call initializeTreeSeq() to turn tree-seq recording on. This is all that is needed;

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 488

https://github.com/tskit-dev/msprime
https://github.com/tskit-dev/tskit
https://github.com/tskit-dev/pyslim

SLiM will now record all tree-sequence information throughout the run, and will automatically
conduct simplification periodically (which can be customized with the simplificationRatio and
simplificationInterval parameters to initializeTreeSeq(); see sections 17.11 and 25.1).

Second, we now set the mutation rate to zero, because we don’t want to model neutral
mutations. Typically, when using tree-seq recording, neutral mutations are overlaid onto the
ancestry tree after forward simulation has completed; we will show that technique in the next
subsection, so in anticipation of that we have turned off neutral mutations here. Note that it is not
necessary to turn off neutral mutations; there is no problem with including them in a tree-seq
model, apart from the additional performance penalty of simulating them. It is just usually not
desirable, because avoiding the overhead of simulating neutral mutations is one of the primary
motivations for using tree-seq recording in the first place. Also, note that if the model had a mix of
neutral and non-neutral mutations we would probably want to remove only the neutral mutations
from the model, with a concomitant adjustment to the mutation rate; we will see an example of
this in 17.3. (We would not want to remove the non-neutral mutations, since they affect the
model’s dynamics and thus cannot be overlaid after simulation.)

Third, we call treeSeqOutput() to write out a .trees file containing the full tree sequence that
was recorded. This file is in a binary format defined by the tskit package (see section 27.4 for
some details). However, it can be loaded back into SLiM with readFromPopulationFile(), just
like a regular SLiM output file, and can also be read in Python using tskit; we will see examples
of both techniques in later recipes.

That’s all there is to it; we will use the .trees file generated here in the next recipe, but for now
we’re done. It's worth noting, though, that an informal test of this model indicates that it runs in
about 5 seconds, whereas the same model with tree-sequence recording turned off and a mutation
rate of 1e-7 took 294 seconds to run. This performance improvement is not atypical; this is one
major reason why tree-sequence recording is useful.

17.2 Overlaying neutral mutations
This recipe is actually a Python recipe, not a SLiM recipe. It depends upon having run the

previous recipe, in section 17.1, to generate a .trees file representing the execution of a simple
neutral model. Since mutation was turned off in that model, the .trees file contains no mutations;
but it contains all of the ancestry information needed to overlay them. Here’s the core of the
solution (we’ll add a little more to this recipe below):

import msprime, tskit

ts = tskit.load("./overlay.trees")
ts = ts.simplify()

mutated = msprime.sim_mutations(ts, rate=1e-7, random_seed=1, keep=True)
mutated.dump(“./overlay_II.trees")

First we import the msprime and tskit packages (which need to be installed). Then we load the
saved .trees file into a tree sequence object with tskit.load(); it used to be necessary to use
pyslim.load() instead, but now tskit can load SLiM tree sequences on its own without help from
pyslim.

We then call simplify() to simplify the loaded tree sequence. SLiM 3.1 produces .trees files
that contain the ancestry trees all the way back to the first-generation nodes in each new
subpopulation created by addSubpop(), as long as those nodes are still ancestral to extant
individuals. These first-generation nodes are useful for various purposes, such as tracing ancestry
(see section 17.5) and recapitation (see section 17.10), so they are retained by SLiM for

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 489

convenience. However, they are not marked as being part of the sample, so they disappear by
default when the tree sequence is simplified; this makes it easy to get rid of them when they are
not wanted. Section 17.5 discusses this in more detail, and the pyslim manual has excellent
discussion of this issue; see section 1.10 for relevant links. Here, our chosen goal is to overlay
mutations only back to the point of coalescence, and so we call simplify() to strip away all
ancestral information above the point of coalescence. (If we wanted to overlay fixed mutations as
well, past coalescence back to the start of forward simulation, then we would not call simplify().)

Next, we overlay mutations with msprime.sim_mutations() to generate a new tree sequence
(with a given mutation rate and random number generator seed), and finally we write the mutated
tree sequence out to a new .trees file. The keep=True parameter to msprime.sim_mutations()
indicates that any existing mutations should be kept, not overwritten; in this example there are no
mutations already present in the tree, but if there were, we would typically want to keep them.

This script runs in about 0.2 seconds. Why is it so much faster than modeling the neutral
mutations in SLiM? The key is that when mutations are overlaid after the forward simulation has
completed, they only need to be generated along those branches of the ancestry tree that led to
extant individuals at the end of the run. All of the branches of the evolutionary tree that went
extinct – the vast majority of branches, in most models – need not have mutations overlaid.

There is one detail that we’ve glossed over so far. As mentioned above, here we want to overlay
mutations only back to the point of coalescence – only mutations that are still segregating in the
population, in other words, rather than also including fixed mutations. To do that, we called
simplify() above to strip away the ancestry trees above coalescence. However, there is no
guarantee that our model, from section 17.1, will have coalesced in the first place; there might still
be segments of the chromosome that trace back to different first-generation ancestors because they
have not yet coalesced. In that case, the mutation overlay code above might not make much
sense; it would implicitly make the assumption that the first generation in SLiM is genetically
identical, with no segregating variation at all, since the subsequent mutation overlay would not
provide any mutations prior to that first generation.

There are three typical solutions to this problem. (1) Run the SLiM model for longer. However,
there is no number of generations that would guarantee that the model would fully coalesce, so
you would have to just choose a large number, and then cross your fingers and hope. You could
also explicitly run the SLiM model until it coalesces, using the techniques shown in section 17.6;
however, there are issues with that approach too, as discussed in that section. (2) Start the SLiM
simulation by loading a coalescent history, generated by msprime, from a .trees file to start the
first generation; this is discussed in sections 17.8 and 17.9. This might not be appropriate if you
want the history back to coalescence to involve non-neutral processes, however. (3) You could
recapitate your tree sequence in Python after forward simulation has finished, by adding on a
neutral coalescent history that starts at the first forward-simulated generation and goes backwards
in time until coalescence (see section 17.10). This solution is faster and more elegant than the
alternatives, but it assumes, like (2), that the history back to coalescence can be treated as neutral.

We won’t deal with this problem for now; instead, we’ll just check for coalescence and raise an
error if it hasn’t occurred. Insert this code into the Python recipe, after we load the tree sequence
with tskit.load() and before we overlay mutations with msprime.sim_mutations():

for t in ts.trees():
 assert t.num_roots == 1, ("not coalesced! on segment {} to {}".
 format(t.interval[0], t.interval[1]))

This code loops through the trees in the tree sequence and checks that they all have just a single
root, which means that they coalesce at a single ancestral node. If you run this code now, you
may find that the tree sequence generated by section 17.1’s recipe did not, in fact, coalesce. In

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 490

that case, if you want to see this recipe work before proceeding, try running that model again, but
out to 15000 ticks instead; that will usually coalesce.

We decided to simplify because the tree sequence contains lines of ancestry going back to the
first-generation nodes from whom the final generation are descended. You might wonder, at this
point: why are those first-generation nodes present in SLiM’s output in the first place? Doesn’t
SLiM simplify the tree sequence before saving? It does. However, the simplify() algorithm can
run in two different modes. With the default argument keep_input_roots=False, it provides the
behavior we’ve been working with in Python, above: it strips off history prior to coalescence.
SLiM, however, runs simplify() in the other mode, in which ancestors above coalescence are
retained in the tree sequence as long as they have extant descendants. By using this mode, SLiM
preserves the first-generation ancestors so they can be used for recapitation and other purposes.
This simplify() mode is available in Python by passing keep_input_roots=True. Since SLiM has
already performed this mode of simplification on the tree sequence there is usually no reason to
do it again; however, you might do so if, for example, you wanted to simplify down to a subsample
of the extant individuals, retaining the necessary first-generation nodes for later recapitation. The
pyslim documentation has an example of such simplification in its tutorial.

The new .trees file written out at the end could be read by a different Python script to perform
further analysis or modification, again using msprime and tskit. We could also, instead, simply
work with the new tree sequence object in further analysis code in this script; or we could write
out the mutation information to a different file format, such as MS or VCF format, if the ancestry
information encapsulated by the .trees file is no longer needed.

It should also be possible to read a .trees file with overlaid mutations back into SLiM with the
readFromPopulationFile() method, to use its state as the starting point for further forward
simulation. However, to do that the mutations provided by msprime would need to be annotated
by pyslim with additional data about them that is required by SLiM, such as their selection
coefficients and mutation types. The pyslim documentation has an example vignette showing this
technique at https://tskit.dev/pyslim/docs/stable/vignette_coalescent_diversity.html.

17.3 Simulation conditional upon fixation of a sweep, preserving ancestry
In the recipe of section 17.1 we saw a tree-seq version of a trivial neutral model, but this

method is not limited to neutral models. Here we will look at a model involving both neutral and
deleterious mutations, into which a beneficial mutation is introduced. We want the beneficial
mutation to sweep, and we want this model to run conditional upon a successful sweep. This will
be quite similar to the recipe of section 9.2, then; however, here we have a background of
deleterious as well as neutral mutations. When we convert the model to use tree-sequence
recording, we will remove the neutral mutations from the model (since they can be overlaid later,
as in section 17.2). The ancestry information for all of the individuals in the model will be
preserved, even though the model will restart itself repeatedly until fixation is achieved. We will
finish by looking at how to preserve tag information on individuals, as well.

First, here is the model without tree-sequence recording:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 0.5, "g", -0.01, 1.0); // deleterious
 initializeMutationType("m3", 1.0, "f", 0.05); // introduced
 initializeGenomicElementType("g1", c(m1, m2), c(0.9, 0.1));
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 491

https://tskit.dev/pyslim/docs/stable/vignette_coalescent_diversity.html

1 early() {
 defineConstant("simID", getSeed());
 sim.addSubpop("p1", 500);
}
1000 late() {
 target = sample(p1.genomes, 1);
 target.addNewDrawnMutation(m3, 10000);
 defineConstant("PATH", tempdir() + "slim_" + simID + ".trees");
 sim.outputFull(PATH);
}
1000:100000 late() {
 if (sim.countOfMutationsOfType(m3) == 0) {
 if (sum(sim.substitutions.mutationType == m3) == 1) {
 cat(simID + ": FIXED\n");
 sim.simulationFinished();
 } else {
 cat(simID + ": LOST - RESTARTING\n");
 sim.readFromPopulationFile(PATH);
 }
 }
}

Since this is very similar to the recipe of section 9.2, we won’t discuss it here; see that section
for discussion. Here, our goal is to convert it into a tree-seq model:

initialize() {
 initializeSLiMOptions(keepPedigrees=T);
 initializeTreeSeq();
 initializeMutationRate(1e-8);
 initializeMutationType("m2", 0.5, "g", -0.01, 1.0); // deleterious
 initializeMutationType("m3", 1.0, "f", 0.05); // introduced
 initializeGenomicElementType("g1", m2, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 defineConstant("simID", getSeed());
 sim.addSubpop("p1", 500);
}
1000 late() {
 target = sample(p1.genomes, 1);
 target.addNewDrawnMutation(m3, 10000);
 defineConstant("PATH", tempdir() + "slim_" + simID + ".trees");
 sim.treeSeqOutput(PATH);
}
1000:100000 late() {
 if (sim.countOfMutationsOfType(m3) == 0) {
 if (sum(sim.substitutions.mutationType == m3) == 1) {
 cat(simID + ": FIXED\n");
 sim.treeSeqOutput("slim_" + simID + "_FIXED.trees");
 sim.simulationFinished();
 } else {
 cat(simID + ": LOST - RESTARTING\n");
 sim.readFromPopulationFile(PATH);
 }
 }
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 492

We have added calls to initializeSLiMOptions(keepPedigrees=T) (for reasons we will soon
see) and to initializeTreeSeq(), and changed the file save and load code to use a .trees file
instead of a standard SLiM text output file. We also removed the neutral mutations from the
model; note that this required changing the mutation rate. Since 90% of the mutations in the
original model were neutral, the new model has a mutation rate one-tenth as high, so that the rate
of deleterious mutations remains unchanged. In this simple model, with only one genomic
element type, the adjustment to the mutation rate is very straightforward; in a model with a more
complex genetic architecture, the necessary adjustment to the mutation rate after removal of
neutral mutations might require switching to a mutation-rate map (see section 25.1).

Otherwise, the model is unchanged. This model will run in much the same manner as the first
version, restarting itself whenever the m3 mutation is lost until it achieves fixation. The deleterious
mutations present when the beneficial mutation is introduced will be saved to the .trees file and
restored each time the model restarts.

When this model achieves fixation, it writes out the final state of the model to a new .trees file
(not in the temporary directory, this time). This file can be loaded into Python with tskit, as in the
recipe of section 17.2, to overlay neutral mutations, or to perform any other analysis desired. Note
that since this model contains non-neutral mutations as well as neutral mutations, the mutation
rate used in neutral mutation overlay would not be the original rate of 1e-7, but instead the rate
specifically of neutral mutations along the chromosome, and that with a complex genetic
architecture this might necessitate the specification of a mutation-rate map rather than the use of a
single fixed rate, similarly to the issue with the mutation rate in SLiM discussed above.

There is an additional benefit of using tree-sequence recording to save and load population
data: it makes it extremely easy to save and load additional information about the simulation that
accompanies the tree-sequence data in the same .trees file. For example, individuals often have
auxiliary values, in their tag or tagF properties, that it is desirable to persist across the save and
load operations done in a model like this. For the recipe above, let’s assume that tag values have
been set up; we can use random values as a proof of concept, set up immediately before writing
out the checkpoint file:

1000 late() {
 // assign tag values to be preserved
 inds = sortBy(sim.subpopulations.individuals, "pedigreeID");
 tags = rdunif(size(inds), 0, 100000);
 inds.tag = tags;

 // record tag values and pedigree IDs in metadata
 metadataDict = Dictionary("tags", tags, "ids", inds.pedigreeID);

 target = sample(p1.genomes, 1);
 target.addNewDrawnMutation(m3, 10000);
 defineConstant("PATH", tempdir() + "slim_" + simID + ".trees");
 sim.treeSeqOutput(PATH, metadata=metadataDict);
}

The code above persists those tag values. It does so by first sorting the individuals in the model
into a reproducible order, by their pedigreeID property. The pedigreeID is a unique identifier of
each individual, and it is automatically persisted in the tree sequence for us, providing a
convenient way of indexing other per-individual data (this is why we added keepPedigrees=T
above). A metadata dictionary is constructed that contains the tag values of all individuals, in the
same sorted order, under the key "tags". We also record the pedigreeID values for all of the
extant individuals, under the key "ids", in the same order as the tag values. This metadata
dictionary is passed in to treeSeqOutput(), which writes it out to the .trees file.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 493

When we read the checkpoint file back in, we do the mirror of this operation, reading tag
values from the metadata and setting them back into the individuals:

1000:100000 late() {
 if (sim.countOfMutationsOfType(m3) == 0) {
 if (sum(sim.substitutions.mutationType == m3) == 1) {
 ...
 } else {
 cat(simID + ": LOST - RESTARTING\n");
 sim.readFromPopulationFile(PATH);
 metadataDict = treeSeqMetadata(PATH);
 tags = metadataDict.getValue("tags");
 inds = sortBy(sim.subpopulations.individuals, "pedigreeID");
 inds.tag = tags;
 }
 }
}

Here we use the treeSeqMetadata() function to read the metadata from the .trees file. We get
the vector of tag values from the metadata dictionary, from the "tags" key where we had saved it.
We sort the newly read individuals by their pedigree IDs (which should be the same as they were
at save time), and write the tag values back into them in that sorted order.

Notice that we simply set the saved tag values back into the individuals without even checking
that their pedigreeID values match. This is safe if the .trees file has not been manipulated or
modified in the interim; the extant individuals read in will be the same as those written out. The
pedigreeID information kept in the metadata might still be useful when working with the tree
sequence in Python after completion of the run, since it establishes which tag corresponds with
which pedigreeID. But what if the tree sequence has been changed in the interim? What if we
want to read in a modified tree sequence which might be missing some of the individuals that had
existed at save time – for example, due to some sort of simplification operation?

In this case, what we want is to find the individuals that do still exist, and set the correct tag
values into them according to their pedigree IDs, while being robust to missing individuals. This
requires a slightly more complex version of the else branch above. (We will still assume that new
individuals have not been added, since that is quite uncommon; that can be handled too, though,
with even a bit more code complexity.) Here’s the code:

1000:100000 late() {
 if (sim.countOfMutationsOfType(m3) == 0) {
 if (sum(sim.substitutions.mutationType == m3) == 1) {
 ...
 } else {
 cat(simID + ": LOST - RESTARTING\n");
 sim.readFromPopulationFile(PATH);

 // assign preserved tag values back into individuals
 metadataDict = treeSeqMetadata(PATH);
 tags = metadataDict.getValue("tags");
 ids = metadataDict.getValue("ids");
 inds = sim.subpopulations.individuals;
 matches = match(inds.pedigreeID, ids);
 inds.tag = tags[matches];
 }
 }
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 494

Here we read in the pedigree IDs as well as the tag values, using their respective keys in the
metadata dictionary that we saved out. We then use the match() function to look up the index, in
the metadata, of the pedigree IDs of the individuals that were read back in. If a given pedigree ID
doesn’t exist in the saved metadata, match() returns -1 (which we are assuming here does not
happen – individuals have not been added to the tree sequence). If the pedigree ID does exist,
match() returns the index, in the ids vector of the saved pedigree IDs, where that individual’s
information is found. We can use that index information to look up the saved tag values for the
individuals and assign them into their corresponding individuals, just as we did in the previous
version.

This version of the code is more complex, and that additional complexity is not needed for the
conditional sweep simulation we set out to present in this section; it is only needed if the tree
sequence is modified between the save and the subsequent load. The earlier version is thus the
canonical version of this recipe; this postscript is just a coda.

One important thing to note is that this technique is not limited to tag values; you could write
tagF values, values kept with setValue(), or any other values of interest. All you need to do is
write out those values, as a vector or even a Dictionary, into the metadata using the same order as
the pedigree IDs. The same could be done for models that don’t use tree-sequence recording,
actually, using one or several auxiliary files – just slightly less conveniently, since the metadata
dictionary would not make it so easy to automatically persist the values.

17.4 Detecting the “dip in diversity”: analyzing tree heights in Python
It has been mentioned several times that one can perform “other analysis” in Python using the

information saved in a .trees file. In this recipe and the next, we will look at two examples.
Because .trees files contain information about the true local ancestry of every location along the
genome of every extant individual, including the times when recombination and mutation events
occurred in the past, there are many interesting analyses that can be conducted.

The recipe in this section will model “background selection”, which is the effect of selection
against deleterious mutations upon nearby neutral sites. Background selection is, in a sense,
similar to “genetic hitchhiking”, which is the effect of selection for beneficial mutations upon
nearby neutral sites. Although they are different, both of these types of so-called “linked selection”
have been found to reduce genetic diversity in non-coding regions near genes; because mutations
within genes often have functional effects (whether positive or negative), they often exert linked
selection upon nearby neutral regions that reduces diversity. The reduction in diversity falls off as
distance to the nearest gene increases, producing a characteristic “dip in diversity” near genes
(Charlesworth et al. 1993; Hudson 1994; Sattath et al. 2011; Elyashiv et al. 2016).

The SLiM model for this is complicated only because, for higher statistical power, we want to
model many genes interspersed with many non-coding regions, so that a single run of the model
generates enough data for us to see the effect we’re interested in:

initialize() {
 defineConstant("N", 10000); // pop size
 defineConstant("L", 1e8); // total chromosome length
 defineConstant("L0", 200e3); // between genes
 defineConstant("L1", 1e3); // gene length
 initializeTreeSeq();
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8, L-1);
 initializeMutationType("m2", 0.5, "g", -(5/N), 1.0);
 initializeGenomicElementType("g2", m2, 1.0);

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 495

 for (start in seq(from=L0, to=L-(L0+L1), by=(L0+L1)))
 initializeGenomicElement(g2, start, (start+L1)-1);
}
1 early() {
 sim.addSubpop("p1", N);
 community.rescheduleScriptBlock(s1, 10*N, 10*N);
}
s1 10 late() {
 sim.treeSeqOutput("./diversity.trees");
}

The chromosome is defined as a set of genes of length L1, separated by non-coding regions of
length L0. The model doesn’t define the non-coding regions with genomic elements; we don’t
want mutations to occur in the non-coding regions, since we will not need any neutral mutations
to conduct our analysis (and even if we did, it would be better to overlay them afterwards in
Python). A subpopulation of size N is defined, and then the final output event is rescheduled to
tick 10N (a rough guess at a coalescence time for the model; the results will not be terribly
sensitive to the accuracy of this guess since diversity near the genes will be suppressed
continuously throughout the run of the model).

To run this model (which takes several hours!) and then conduct the analysis, we can run the
following Python script (assuming that we’re in the directory containing the SLiM model file):

import subprocess, tskit
import matplotlib.pyplot as plt
import numpy as np

Run the SLiM model and load the resulting .trees
subprocess.check_output(["slim", "-m", "-s", "0", "./diversity.slim"])
ts = tskit.load("./diversity.trees")
ts = ts.simplify()

Measure the tree height at each base position
height_for_pos = np.zeros(int(ts.sequence_length))
for tree in ts.trees():
 mean_height = np.mean([tree.time(root) for root in tree.roots])
 left, right = map(int, tree.interval)
 height_for_pos[left: right] = mean_height

Convert heights along chromosome into heights at distances from gene
height_for_pos = height_for_pos - np.min(height_for_pos)
L, L0, L1 = int(1e8), int(200e3), int(1e3)
gene_starts = np.arange(L0, L - (L0 + L1) + 1, L0 + L1)
gene_ends = gene_starts + L1 - 1
max_d = L0 // 4
height_for_left = np.zeros(max_d)
height_for_right = np.zeros(max_d)
for d in range(max_d):
 height_for_left[d] = np.mean(height_for_pos[gene_starts - d - 1])
 height_for_right[d] = np.mean(height_for_pos[gene_ends + d + 1])
height_for_distance = np.hstack([height_for_left[::-1], height_for_right])
distances = np.hstack([np.arange(-max_d, 0), np.arange(1, max_d + 1)])

Make a simple plot
plt.plot(distances, height_for_distance)
plt.show()

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 496

After importing packages, this runs the SLiM model (assumed to be named diversity.slim)
with subprocess.check_output(), which generates diversity.trees. We read that file in using
tskit.load() and gather tree heights, which are a proxy for diversity; let’s examine that process.

First of all, tskit.load() reads in the .trees file as a tree sequence, which is a collection of
ancestry trees (section 1.7 introduces these concepts, but we will quickly review them here). The
tree sequence thinks of the genome as being divided into successive intervals, each of which has a
particular pattern of ancestry. Because the ancestry at adjacent positions along the genome tends
to be highly correlated, this representation makes the tree sequence very compact and efficient.
When we loop over the trees in ts.trees, we are actually looping over these chromosome
intervals, getting the ancestry tree for each successive interval.

Second, the ancestry tree for a given interval is not quite a tree in the usual sense, because it
can have multiple roots. This is because a given position will not necessarily share a common
ancestor, in forward simulation; at the beginning of simulation every individual is an island unto
itself, with no known relationship to any other individual, and ancestral relationships will be
constructed by coalescence as the model runs forward. The tree for a given interval, in a
simulation of N individuals, might therefore have anywhere from one root (if coalescence has
produced a single common ancestor for the whole population) to N roots (if no coalescence has
occurred yet). When we loop over roots in tree.roots, we are looping over common ancestors
shared by subsets of the extant population.

The code gathers tree heights across all roots for the current interval, using tree.time(root),
and uses np.mean() to get the mean height. This is our metric of diversity for the interval. Since an
interval can span more than one base position, we replicate that mean height across the tree’s
interval in height_for_pos, which we want to have a height value for each base position.

Note that the simplify() of the loaded tree sequence here is essential; without it, every tree
would have a root in the first generation, in one or another original ancestor, and all the tree
heights would be the same. The simplify() strips away the original ancestors, giving us trees with
roots representing the most recent common ancestors for each tree. It should be emphasized that
this is a very unusual approach; most of the time, calling simplify() on a tree sequence from
SLiM is undesirable, and you should think very carefully before doing it since it throws away
information and makes correct recapitation impossible.

With that done, we now need to convert that vector of tree heights along the chromosome into
heights at a given distance from the nearest gene. This involves a sort of descrambling of the data
based upon the genetic structure of the model, which interleaved non-coding regions of length L0
with genes of length L1. The details of this descrambling aren’t worth getting into in detail; this is
just data analysis, and is fairly routine Python code with no dependency upon msprime or SLiM.
The end result of this analysis is a vector named height_for_distance that has mean heights for
the corresponding distances in the vector distances. This is what we wanted, so we can plot it
(this plot is prettified using R code not shown here, but the Python plot is essentially the same):

-50000 0 50000

25
00
0

35
00
0

distance from gene

m
ea

n
tre

e
he

ig
ht

 (g
en

er
at

io
ns

)

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 497

This plot is noisy; that could presumably be smoothed out with more genes on a longer
chromosome, a larger population size, and averaging across multiple runs of the model.
Nevertheless, the “dip in diversity” is very clear: the mean tree height drops to a clear minimum
value precisely at zero on the plot.

Note that this analysis is not based upon the patterns of neutral mutation diversity around the
simulated genes. Instead, the pattern of inheritance itself – the mean time to the most recent
common ancestor at each base position – is used to generate the plot. This is far more powerful
than using the pattern of neutral mutation diversity, because neutral mutations are sparse and
stochastic. You certainly could overlay neutral mutations onto the tree sequence, as we did in
section 17.2, and then feed that into the analysis methods used by empirical studies (and perhaps
that would be a useful thing to do, to test the power or accuracy of those empirical methods). But
the analysis here is, in a sense, the average across many such analyses – across an infinite number
of such mutation overlays, in fact – and so it is far more powerful.

Instead of calling simplify() to strip away ancestry above the most recent common ancestors,
an alternative approach would use tskit’s diversity() method to compute diversity on the tree
sequence without simplifying. Examples of using diversity() can be found in tskit’s
documentation. Similarly, instead of allowing multiple tree roots to occur, we could either (a) run
for long enough to coalesce at every site, or (b) recapitate the tree sequence to ensure
coalescence, as we will see section 17.10. Recapitation would perhaps be the best approach, but
we haven’t seen it yet, and seeing how to handle multiple tree roots is also a useful exercise.

This recipe shows an analysis using just one metric provided by msprime, the height of a given
root using tree.time(root). The ancestry information provided by the tree sequence could be
mined in countless other ways; we will see another in the next recipe.

17.5 Mapping admixture: analyzing ancestry in Python
It is often useful to be able to trace the true local ancestry at each location along the

chromosome. In section 14.7, a recipe was presented that provided this ability by introducing a
marker mutation at every base position along the chromosome in all of the individuals of one
subpopulation, while leaving the other subpopulation unmarked. After admixture of the two
subpopulations, the ancestry of each individual at each position could be determined by the
presence or absence of the marker mutation. That method works, but it comes at a cost of
considerable overhead in both runtime and memory usage. A chromosome of length 1e6 is close
to the practical limit for that recipe; a chromosome of length 1e8 is estimated by extrapolation to
take 7.2 days to run and – even worse – to require 8.1 TB of memory. Since the tree sequence is a
sparse data structure that records information about the ancestry at each chromosome position in a
highly compact form, one might suppose that it could provide information about true local
ancestry more efficiently, and indeed it can.

In this section we will look at a recipe very similar to that of section 14.7; refer back to that
section for further discussion of the design and motivation of that model. Here we will not use
marker mutations; instead we will use tree-sequence recording:

initialize() {
 defineConstant("L", 1e8);
 initializeTreeSeq();
 initializeMutationRate(0);
 initializeMutationType("m1", 0.5, "f", 0.1);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, L-1);
 initializeRecombinationRate(1e-8);
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 498

1 late() {
 sim.addSubpop("p1", 500);
 sim.addSubpop("p2", 500);
 sim.treeSeqRememberIndividuals(sim.subpopulations.individuals);

 p1.genomes.addNewDrawnMutation(m1, asInteger(L * 0.2));
 p2.genomes.addNewDrawnMutation(m1, asInteger(L * 0.8));

 sim.addSubpop("p3", 1000);
 p3.setMigrationRates(c(p1, p2), c(0.5, 0.5));
}
2 late() {
 p3.setMigrationRates(c(p1, p2), c(0.0, 0.0));
 p1.setSubpopulationSize(0);
 p2.setSubpopulationSize(0);
}
2: late() {
 if (sim.mutationsOfType(m1).size() == 0)
 {
 sim.treeSeqOutput("./admix.trees");
 sim.simulationFinished();
 }
}
10000 late() {
 stop("Did not reach fixation of beneficial alleles.");
}

Only two mutations ever exist in this model: the beneficial mutations introduced at 0.2L in p1
and at 0.8L in p2. After admixture to form p3, when both mutations have fixed, a .trees file is
written out to admix.trees. That .trees file will then be read and analyzed in Python, as we will
see below.

The only twist here is the call to sim.treeSeqRememberIndividuals(). Our goal is to trace the
ancestry at each position in each individual to either p1 or p2; treeSeqRememberIndividuals()
explicitly retains the first-generation individuals in p1 and p2 so that we can determine whether a
particular genomic region originated in p1 or p2. This call is not strictly necessary, because the
original genomes of each subpopulation created by addSubpop() are kept by SLiM automatically,
as discussed in section 17.2. However, these would be removed if simplify() were called at any
point during the post-processing in Python (unless the keep_input_roots=True flag were used), so
it’s good practice to explicitly remember them. Furthermore, explicitly remembering them retains
information about the individuals, not just the genomes; we don’t use that information in this
recipe, but it can be useful to have. Finally, explicitly remembering the first generation makes the
way that this recipe works more obvious and less magic. Note that you can remember any
individuals you wish, during SLiM simulation; this is not limited to individuals in the first
generation.

The run of the SLiM model, along with post-run analysis and plotting, is all done in a single
Python script, as before:

import subprocess, tskit
import matplotlib.pyplot as plt
import numpy as np

Run the SLiM model and load the resulting .trees file
subprocess.check_output(["slim", "-m", "-s", "0", "./admix.slim"])
ts = tskit.load("./admix.trees")

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 499

Load the .trees file and assess true local ancestry
breaks = np.zeros(ts.num_trees + 1)
ancestry = np.zeros(ts.num_trees + 1)
for tree in ts.trees():
 subpop_sum, subpop_weights = 0, 0
 for root in tree.roots:
 leaves_count = tree.num_samples(root) - 1 # the root is a sample
 subpop_sum += tree.population(root) * leaves_count
 subpop_weights += leaves_count
 breaks[tree.index] = tree.interval[0]
 ancestry[tree.index] = subpop_sum / subpop_weights
breaks[-1] = ts.sequence_length
ancestry[-1] = ancestry[-2]

Make a simple plot
plt.plot(breaks, ancestry)
plt.show()

After imports, the SLiM model (assumed to be named admix.slim) is run with subprocess, and
the .trees file saved by the model is then read in using tskit.load() as usual. (We could call
simplify() here if we wished, since we have explicitly remembered the ancestors we are
interested in (see discussion above), but there is no reason to – SLiM has already simplified with
keep_input_roots=True before saving). We then loop over the trees in the tree sequence, and over
the roots for each tree (see section 17.4 for discussion of these concepts). For each root, we want
to assess ancestry as tracing back to either p1 or p2; this can be done simply by calling
tree.population(root), since every node in the tree sequence is marked with its subpopulation of
origin. We average the ancestry of all roots for an interval to get the mean ancestry, but this is a
weighted average; each root is weighted according to the number of descendants it has, effectively
computing the average ancestry across all extant individuals, rather than across roots. The start
positions of the trees on the chromosome are recorded in parallel with these calculated mean
ancestry values, and a terminating entry in both vectors brings us to the end of the chromosome.

That’s it for the analysis; this model is much simpler structurally than the previous recipe. All
that is left is to plot the data, which is trivial with matplotlib. The final plot (produced by an R
script for polish, rather than by the Python code here) looks like:

This is much the same as what the recipe of section 14.7 provided. Since the two beneficial
mutations both fixed, the ancestry of the final population is pure, p1 or p2, at the points where they
were introduced. The ancestry then shades continuously (but stochastically) between those two
points due to recombination (see section 14.7 for further discussion). The SLiM model here took
only 0.415 seconds to run, however – somewhat of an improvement over 7.2 days. The post-run
analysis took about 62 seconds; looping over all of the roots of all of the trees in the tree sequence
is not entirely trivial, but is still far simpler than simulating 1e8 marker mutations in SLiM.

0e+00 1e+08

chromosome position

an
ce

st
ry

 p
ro

po
rti

on

p1
p2

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 500

This recipe will generalize easily to any number of ancestral subpopulations, as long as the
original founders of each subpopulation are remembered with treeSeqRememberIndividuals() so
that ancestry can be traced back to them (of course taking the mean of the subpopulations of the
tree roots wouldn’t be the right analysis then). Since every node knows the subpopulation to
which it belonged, the ancestral history at each position can be assessed by walking up the
ancestry chain from the extant nodes to the roots, as long as one ensures that the appropriate
ancestors are remembered forever; one might remember every individual that migrates to a new
subpopulation, for example, using the migrant property of Individual, so that the migratory
history through the ancestry tree can be traced. All of this goes far beyond what would be
reasonable to implement with marker mutations using the methods of section 14.7.

17.6 Measuring the coalescence time of a model
A common problem in forward simulation is deciding how to conduct model burn-in. A burn-

in period is a period of simulation executed in order to arrive at an appropriate starting state for the
model one wishes to execute; often this starting state is for a neutral model at equilibrium, but not
necessarily so. But how long should the burn-in period be, to provide such an equilibrium state?
Running until coalescence ensures that no genetic diversity in the population could date back to
the start of the simulation, so all polymorphic loci derive from after the start of the simulation.
However, to attain equilibrium takes longer: in a truly neutral population of constant size, a total of
two or three times the time required to reach coalescence should suffice. But that just kicks the
can down the road; how long does it take to achieve coalescence? A heuristic of 10N is often
used: run for ten times the population size (N), in generations. But this heuristic is less than
satisfactory; the model may not have coalesced even at 10N generations, or it may have coalesced
long before (meaning wasted simulation time). And with any additional complexity, such as
multiple subpopulations connected by migration, the 10N rule is potentially even more
problematic. What to do?

Tree-sequence recording provides a very easy solution, because the ancestry information that it
records is well-suited to determining whether the model has achieved coalescence. The only
complication is that coalescence can only be evaluated immediately after simplification has been
performed; the coalescence test requires that the tree sequence be in a simplified state. SLiM
largely hides this detail from the user; you can query the coalescence state at any time, but the
answer you get will actually be the coalescence state at the time that the last simplification was
performed, not the state at the present time. Sometimes, then, one will want to exert some control
over the simplification process, so that one knows at what granularity coalescence is actually
being assessed, as described below.

Here is a recipe demonstrating the coalescence-detection technique:

initialize() {
 initializeTreeSeq(checkCoalescence=T);
 initializeMutationRate(0);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 1e8-1);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 500);
}
1: late() {
 if (sim.treeSeqCoalesced())
 {

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 501

 catn(sim.cycle + ": COALESCED");
 sim.simulationFinished();
 }
}
100000 late() {
 catn("NO COALESCENCE BY CYCLE 100000");
}

This model turns on coalescence checking with checkCoalescence=T (see section 25.1);
coalescence checking needs to be turned on explicitly because there is a small performance
penalty associated with it. Then, every tick, we check whether coalescence has occurred with
sim.treeSeqCoalesced(). As mentioned above, this only tells us whether coalescence was
observed at the last simplification; when auto-simplification finds that coalescence has occurred,
treeSeqCoalesced() will then return T when it is next called. Usually it is not necessary to detect
coalescence in the exact tick in which it occurs; it is typically enough to know that it has occurred
at some recent time, as this model does.

When this model is run, typical output looks like this:

9984: COALESCED

Coalescence was probably achieved some time before tick 9984; 9984 is just the tick in which
auto-simplification noticed that coalescence. Note that this is higher than the 10N value of 5000
(and auto-simplification occurs every couple of hundred ticks in this model); so at tick 5000 the
model would not yet have coalesced. The time to coalescence is variable, depending as it does
upon stochastic events, but repeated runs of this model will show that in fact it typically coalesces
around 10000 ticks, or approximately 20N.

To control the granularity of coalescence checking more precisely, one may pass a
simplificationInterval value to initializeTreeSeq() to simplify (and check for coalescence) at
a regular interval, such as every hundredth tick. For even finer control, one may turn off auto-
simplification entirely, by passing simplificationRatio=INF to initializeTreeSeq(), and then
call treeSeqSimplify() to simplify on demand, after which treeSeqCoalesced() will return an up-
to-date assessment. See sections 17.11 and 25.1 for further details on the use of these optional
arguments to initializeTreeSeq().

Note that certain actions in script, such as adding a new subpopulation, can break the
coalescence of a model; all of the individuals in the population no longer share a common
ancestor, even though they previously did. The value returned by treeSeqCoalesced() will not
immediately reflect this; instead, as usual, that value will reflect the coalescence state after the last
simplification that was performed. If this poses a problem, one can always explicitly simplify
immediately after such model events, forcing the coalescence state to be re-checked.

Coalescence checking will work in all types of models (with the above caveats about timing and
granularity), regardless of selection, population structure, etc. However, coalescence is only a
useful indicator of the timescale needed for equilibration in fairly simple neutral models. If model
dynamics during burn-in change over time, or are substantially non-neutral, coalescence may be a
poor indicator of equilibration; indeed, such models may not even have an equilibrium state.
What constitutes a proper burn-in for such models is a difficult question.

It is worth noting that the point of coalescence, in a forward simulation, is not itself an unbiased
or equilibrium state. In particular, as a forward simulation runs the mean tree height will grow
over time until coalescence is reached, at which point it will drop suddenly (because a more
recent common ancestor has just emerged); then it will rise steadily again until the next
coalescence, at which point it will again drop, and so forth. A plot of mean tree height over time
therefore exhibits a “saw-tooth” pattern, and the moment of any given coalescence event is the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 502

bottom point of one saw-tooth – a special point in time, not a typical or average one. It is
therefore advisable to continue neutral burn-in well beyond the point of coalescence; this is why,
at the beginning of this subsection, we recommended running for two or three times the time
required to reach coalescence. For an even better solution to this problem of neutral burn-in, see
the “recapitation” technique described in section 17.10.

17.7 Analyzing selection coefficients in Python with tskit
So far we have used tree-sequences in SLiM-agnostic ways, just loading tree sequences,

overlaying mutations, and looking at their heights and ancestry. We will now start exploring uses
of the tskit and pyslim packages that are more SLiM-specific, related to the metadata stored in
the .trees file generated by SLiM and annotation of tree sequences with such metadata.

Let’s begin with a simple SLiM model of beneficial and neutral mutations on a uniform
chromosome:

initialize() {
 initializeTreeSeq();
 initializeMutationRate(1e-10);
 initializeMutationType("m1", 0.5, "g", 0.1, 0.1);
 initializeMutationType("m2", 0.5, "g", -0.1, 0.1);
 initializeGenomicElementType("g1", c(m1, m2), c(1.0, 1.0));
 initializeGenomicElement(g1, 0, 1e8-1);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 500);
}
20000 late() { sim.treeSeqOutput("./selcoeff.trees"); }

Beneficial mutations are drawn from a gamma DFE with a mean of 0.1, deleterious mutations
from a gamma DFE with a mean of -0.1. After the model has run for a while, the expectation
would be that the mutations generated as the model runs would indeed have those means, but that
the mutations fixed would be biased towards the higher end of the distribution for both mutation
types. This would be simple enough to evaluate in Eidos at the end of the model run, but let’s do it
in Python instead, using tskit, as a proof of concept. Here is a Python script that assumes that
a .trees file has been saved to the path used by the model above (we’ve shown already how to
run a SLiM model from inside Python using subprocess.check_output(), so there’s no need to
keep reiterating that point):

import tskit

ts = tskit.load("selcoeff.trees")

coeffs = []
for mut in ts.mutations():
 md = mut.metadata
 sel = [x["selection_coeff"] for x in md["mutation_list"]]
 if any([s != 0 for s in sel]):
 coeffs += sel

b = [x for x in coeffs if x > 0]
d = [x for x in coeffs if x < 0]

print("Beneficial: " + str(len(b)) + ", mean " + str(sum(b) / len(b)))
print("Deleterious: " + str(len(d)) + ", mean " + str(sum(d) / len(d)))

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 503

We start by loading the .trees file with tskit.load() as usual. We then loop through all of the
mutations in the tree sequence, provided by ts.mutations(). We are interested in the selection
coefficients of the mutations, which are not part of the base information provided by the .trees
format; instead, they are stored in SLiM-specific metadata attached to each mutation. To access
them, then, we ask for the metadata using the metadata attribute; this decodes the metadata from
the binary information stored in the .trees file using a standard “schema”. We can then fetch
selection coefficients (more on this in a moment) and append them to the coeffs list if they are
non-neutral (just for illustration – all selection coefficients in the SLiM model will be non-neutral
anyway). Once we have that list, it is a trivial matter to select the beneficial and deleterious
mutations from it and print a summary of each. A test run produces this output:

Beneficial: 3580, mean 1.0382685732466397
Deleterious: 103, mean -0.04902286211917154

A great many more beneficial mutations than deleterious mutations are present, even though
they arise at equal rates in the SLiM model, which is unsurprising. Furthermore, the mean of the
mutations present is considerably biased relative to the mean of the DFEs for these mutation types
(which were 0.1 and -0.1).

There are a few points to note here, regarding the way in which the selection coefficients are
gathered. First of all, the tree sequence retains fixed mutations, unlike SLiM. As the SLiM model
ran, mutations that fixed were converted to substitutions as usual in SLiM; but in the tree sequence
no such conversion occurs. The list of mutations provided by the tree sequence therefore includes
both fixed and segregating mutations; no distinction is made.

Second, note that the value of the metadata attribute is a dictionary with named keys. We get
the value for the key "mutation_list" from this; that is, as the name suggests, a list of dictionaries,
each containing information about a SLiM mutation. We fetch a selection coefficient from each.
The reason for this has to do with mutation stacking in SLiM (see section 1.5.3 for a review of this
concept). A “mutation”, as far as the tree sequence is concerned, is a unique mutational state at a
given position, which encompasses all of the mutations that have stacked at that position. When
we get the metadata from tskit, it helpfully deconstructs this stacked state into the component
mutations within it. If a particular mutation occurs in more than one configuration in the tree
sequence – by itself at a position and also stacked with another mutation at that position, in
different genomes, say – we will actually encounter that mutation more than once during this
process, and we will therefore overcount it. Since stacking will be extremely uncommon in this
model, we don’t worry about it much; it will not skew our results noticeably. If we wanted to be
more rigorous, however, we could use the mutation IDs from SLiM (also available through tskit)
to construct a uniqued list of mutations, with each mutation counted only once even if it is stacked
with other mutations in various ways, and could then do the rest of the analysis using that uniqued
list. Since that is just elementary Python wrangling, we will not go into that level of detail here.

Various other SLiM metadata information is also available in Python through tskit, such as the
age and sex of individuals, the “pedigree IDs” of genomes and individuals, and the mutation type
ids for mutations. Section 27.4 details the available metadata information.

17.8 Starting a hermaphroditic WF model with a coalescent history
In section 17.6, we saw how to assess whether a model has coalesced or not using

treeSeqCoalesced(), allowing us to run a model for an appropriate burn-in period rather than
relying upon the (problematic) 10N heuristic. If the burn-in period for a model is neutral and can
be run with msprime’s coalescent simulation, we can avoid running our burn-in with forward
simulation at all. Instead, we can run the burn-in period using the coalescent, save the result as

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 504

a .trees file (annotated with pyslim as needed), and load the result into SLiM where we continue
the simulation from the endpoint of the coalescent. This is actually quite simple to do.

However, note that starting a simulation with the coalescent in this way is often not the best
technique. In many cases, the “recapitation” technique presented in section 17.10 is superior, for
reasons that will be explained there. This recipe is for primarily for illustration.

We begin with a Python script:

import msprime, pyslim

ts = msprime.sim_ancestry(samples=5000, population_size=5000,
 sequence_length=1e8, recombination_rate=1e-8)
slim_ts = pyslim.annotate(ts, model_type="WF", tick=1)
slim_ts.dump("coalasex.trees")

The msprime.sim_ancestry() method (which has replaced the old simulate() method in
msprime) is used to run a coalescent simulation with a population size of 5000 diploids, a
chromosome of length 1e8, and a recombination rate of 1e-8. We do not overlay mutations onto
the simulated ancestry, since we only want the coalescent history, not mutations within it (those
can be overlaid later if needed). This returns a tree sequence object, but it is in msprime’s format; it
does not have any of the metadata annotations expected by SLiM. The next step is to use
pyslim.annotate() to add those annotations. We tell it to annotate the data for a WF SLiM model,
and to align the times in the tree sequence so that the current tick has index 1; when we load the
model into SLiM, it will start at tick 1 even though there are many generations of history stretching
back in time. After annotating, the .trees file is saved.

Now we can run a SLiM model that loads it and continues the run with some non-neutral
dynamics:

initialize() {
 initializeTreeSeq();
 initializeMutationRate(0);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 0.5, "f", 0.1);
 initializeGenomicElementType("g1", m2, 1.0);
 initializeGenomicElement(g1, 0, 1e8-1);
 initializeRecombinationRate(1e-8);
}
1 late() {
 sim.readFromPopulationFile("coalasex.trees");
 target = sample(sim.subpopulations.genomes, 1);
 target.addNewDrawnMutation(m2, 10000);
}
1: late() {
 if (sim.mutationsOfType(m2).size() == 0) {
 print(sim.substitutions.size() ? "FIXED" else "LOST");
 sim.treeSeqOutput("coalasex_II.trees");
 sim.simulationFinished();
 }
}
2000 early() { sim.simulationFinished(); }

At the end of this model (which produces fixation, ideally, but that depends upon the random
number seed), a new .trees file is saved out. This contains the full ancestry information for the
simulation – not just for the period simulated in SLiM, but also for the coalescent. Just to verify
here that the full history is present, let’s check the final tree sequence:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 505

import tskit

ts = tskit.load("coalasex_II.trees").simplify()

for tree in ts.trees():
 for root in tree.roots:
 print(tree.time(root))

This just prints the heights of the trees in the final tree sequence; in a test run, it prints a wide
range of values, ranging from less than 10,000 to more than 60,000. The simulation is fully
coalesced (that could be confirmed by checking that the number of roots per tree is always exactly
1), but it reached coalescence at different times at different positions along the chromosome, so the
tree heights are not all identical. However, all of the heights are considerably larger than the 324
generations that the SLiM model ran for; the rest is the height of the coalescent history, which has
indeed been preserved. We could now overlay neutral mutations upon the final .trees file as we
did in section 17.2, or perform ancestry analyses with it such as those we did in section 17.4 and
17.5, or whatever else we might wish to do.

17.9 Starting a sexual nonWF model with a coalescent history
In the previous recipe, we saw how to run an msprime coalescent simulation as a burn-in period

and save it as a SLiM-compliant .trees file which could then be used to run non-neutral dynamics
on top of the coalescent burn-in history. The scenario presented there was very simple, however: a
hermaphroditic WF model. What if we want to use msprime to construct a coalescent burn-in for a
more complex model? We will need to annotate the tree sequence appropriately for the type of
model that we intend to load it into in SLiM. Here we will see how to do this for a sexual nonWF
model. As mentioned in the previous recipe, however, starting a simulation with the coalescent is
often not the best technique; the “recapitation” technique presented in section 17.10 is usually
preferable, for reasons discussed there. This recipe is offered for illustration of the relevant
techniques.

To get SLiM to accept the .trees file from the burn-in as legitimate input for a sexual nonWF
model, we will need to assign sexes to each individual. We will assign ages too; if we didn’t do
so, all of the individuals would be given a default age of 0, but here we would like the initial
population to have some age structure. Finally, we will tell pyslim to mark the tree sequence as
being from a nonWF simulation, so that it matches SLiM’s expectations.

Here’s the first part of the Python script, which does the msprime simulation and pyslim
annotation that we’ve discussed so far:

import msprime, pyslim, random
import numpy as np

ts = msprime.sim_ancestry(samples=5000, population_size=5000,
 sequence_length=1e8, recombination_rate=1e-8)

tables = ts.dump_tables()
pyslim.annotate_tables(tables, model_type="nonWF", tick=1)

individual_metadata = [ind.metadata for ind in tables.individuals]
for md in individual_metadata:
 md["sex"] = random.choice(
 [pyslim.INDIVIDUAL_TYPE_FEMALE, pyslim.INDIVIDUAL_TYPE_MALE])
 md["age"] = random.choice([0, 1, 2, 3, 4])

ims = tables.individuals.metadata_schema

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 506

tables.individuals.packset_metadata(
 [ims.validate_and_encode_row(md) for md in individual_metadata])

As in section 17.8, we start by running a coalescent simulation with msprime, generating a tree
sequence. We want to modify the individual metadata here, so at this point we need to switch to
msprime’s table representation with ts.dump_tables(), which unpacks the tree sequence into
modifiable tables (tree sequences are immutable, for efficiency reasons, so modifications must be
made to tables). We can then perform the default nonWF annotation on those tables using
pyslim.annotate_tables(); this is parallel to our use of pyslim.annotate() in section 17.8. We
then extract a list of individual metadata records from the tables, and loop through it setting
random sexes and ages. (The age structure used here is just a placeholder for a more realistic
distribution, of course.)

We want our SLiM simulation to execute a selective sweep starting from this neutral history. In
section 17.8, we did this by adding a new beneficial mutation to one of the genomes in SLiM just
after loading the .trees file. Here, for the sake of introducing new techniques, we will add the
new beneficial mutation in Python instead, by further modifying the tree-sequence tables:

ind_id = random.choice(range(tables.individuals.num_rows))
node_id = random.choice(np.where(tables.nodes.individual == ind_id)[0])
node = tables.nodes[node_id]
mut_metadata = {
 "mutation_list": [{
 "mutation_type": 2,
 "selection_coeff": 0.1,
 "subpopulation": node.population,
 "slim_time": int(tables.metadata['SLiM']['tick'] - node.time),
 "nucleotide": -1
 }]
}
site_num = tables.sites.add_row(position=5000, ancestral_state='')
tables.mutations.add_row(
 node=node_id,
 site=site_num,
 derived_state='1',
 time=node.time,
 metadata=mut_metadata)

This is fairly straightforward (note that the snippet above is really only six lines of code; a lot of
line-wrapping is going on due to long lines). First we select a random extant individual from the
individuals table with random.choice(), and then choose a random node from that individual (one
of its two genomes, in SLiM terminology) by choosing a random node id and then looking up the
corresponding node object from the nodes table. (All of this low-level machinery for tree
sequence tables is discussed in detail in the tskit documentation.)

Next we put together a metadata dictionary for the new beneficial mutation we want to create.
It has a mutation list containing one dictionary, for the one mutation we will make. That dictionary
provides the mutation type (it will be of type m2 in SLiM), selection coefficient, and so forth. We
mark it with the time of the node it will be attached to, since that mutation conceptually arose
when the chosen individual was born.

Now we’re ready to create the mutation. We add an entry to the sites table, providing the
position the mutation occurs at, and an entry to the mutations table that gives the node, site, time,
and metadata for the new mutation. The value for derived_state is '1', which gives the ID of this
mutation as represented in SLiM (with the id property of Mutation). Since there are no other
mutations in this tree sequence, 1 is fine, but if other mutations were present you would need to

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 507

choose a new unique value to avoid a collision with an existing mutation; in that case, choosing
the largest value already used, plus 1, would suffice.

Now that the tables have been modified, they need to be used to create a new SLiM-annotated
tree sequence, which will be written out to a .trees file:

slim_ts = table.tree_sequence()
slim_ts.dump("coalsex.trees")

This is the typical workflow when modifying metadata: convert to tables, fetch the metadata
from the tables, modify it, load it back into the tables, and finally recreate a tree sequence from the
modified tables. This is necessary because the tree sequence is an immutable object, not designed
to allow modification of this sort.

Having produced a .trees file from the steps above, we can load it into a matching SLiM
model and run, as we did before. For clarity, we’ll leave everything else the same about this
model, so that the essential differences can be seen more easily:

initialize() {
 initializeSLiMModelType("nonWF");
 initializeTreeSeq();
 initializeSex("A");
 initializeMutationRate(0);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 0.5, "f", 0.1);
 m2.convertToSubstitution=T;
 initializeGenomicElementType("g1", m2, 1.0);
 initializeGenomicElement(g1, 0, 1e8-1);
 initializeRecombinationRate(1e-8);
}
reproduction(NULL, "F") {
 subpop.addCrossed(individual, subpop.sampleIndividuals(1, sex="M"));
}
1 early() {
 sim.readFromPopulationFile("coalsex.trees");
}
early() {
 p0.fitnessScaling = 5000 / p0.individualCount;
}
1: late() {
 if (sim.mutationsOfType(m2).size() == 0) {
 print(sim.substitutions.size() ? "FIXED" else "LOST");
 sim.treeSeqOutput("coalsex_II.trees");
 sim.simulationFinished();
 }
}
2000 early() { sim.simulationFinished(); }

Since this is a nonWF model, we have added a minimal reproduction() callback and an
early() event that provides population regulation through density-dependence, as well as a call to
initializeSLiMModelType() (see chapter 15 for discussion). Since it is a sexual model, we also
added a call to initializeSex().

The m2 mutation type defined here is used by the mutation we added in Python; we have to
define m2 here so that SLiM has something to hang its hat on, but the DFE for m2 is unimportant,
and need not match the selection coefficient of the m2 mutation from the .trees file. This is
because the DFE for a mutation type is used only for creating new mutations, and no further m2
mutations will be created by SLiM. We want the model to terminate upon fixation or loss, as

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 508

before, but in nonWF models mutations are not converted to substitutions automatically, so we
add m2.convertToSubstitution=T to ensure that; of course we could just adapt the termination
code to check the frequency of the introduced mutation instead. The rest of the model is
unchanged from section 17.8, apart from filenames.

Note that the subpopulation loaded in from the .trees file is p0, not p1; msprime starts counting
subpopulation IDs from zero. It is conventional in SLiM, in general, to number subpopulations
from p1, but of course it doesn’t really matter; it would be possible to reassign the subpopulation
index before writing out the .trees file, or to use the remapping facility provided by
readFromPopulationFile()’s subpopMap parameter, but we do not do so here.

The only important caveat here is that the coalescent was not run with separate sexes, nor with
overlapping generations, so it does not precisely reflect the dynamics involved in the non-neutral
portion of the simulation. The coalescent is an approximation anyway; in fact, this would have
been a concern in the previous recipe too, if exact Wright–Fisher dynamics were needed.
Whether these sorts of deviations from exact SLiM dynamics are a concern or not will depend
upon the nature of the analysis to be conducted downstream. If it is an issue, a further burn-in
period could be run in SLiM with the correct dynamics, prior to introducing the sweep mutation;
that burn-in would perhaps not need to be very long to wipe away any important traces of the
incorrect burn-in dynamics (but it would be a good idea to confirm that with appropriate tests, of
course). If absolutely exact dynamics are needed then the burn-in will have to be simulated in
SLiM; that can still be done with tree-sequence recording with neutral mutations turned off,
though, as in section 17.1, so it will still be much faster than a regular SLiM burn-in would have
been.

When this model is run, we see the sweep occur (if the mutation isn’t lost), and then a
new .trees file is written out. We could conduct the same post-run analysis as before, printing
out tree heights to verify that this burn-in procedure worked, but to avoid repetitiveness we will
just end here. It is worth noting, in closing, that pyslim allows all sorts of annotation; it would be
possible, with a similar strategy, to mark genomes as being X or Y chromosomes and then load
them into a sex-chromosome simulation in SLiM, or to set the spatial positions of individuals
before loading them into a spatial SLiM model, or whatever is needed. Of course, getting
coalescent simulation results for such complex scenarios, even without any selected loci, may be a
challenge.

17.10 Adding a neutral burn-in after simulation with recapitation
Very often, in forward genetic simulation, a “burn-in” period of neutral dynamics is desirable to

allow the model to reach an equilibrium state of mutation–drift balance before non-neutral
dynamics begin. Without a burn-in period, the pattern of neutral mutations observed at the end of
the simulation may depend as much upon the initial state of the model as on the model’s
dynamics, which can make it difficult to interpret results. The modeling of this burn-in period is a
persistent problem, however, because it is generally so time-consuming. An often-quoted rule of
thumb is that the burn-in period should run for 10N generations – ten times the initial population
size. For a model with 100,000 individuals, then, a million generations of burn-in is recommend,
which – with such a large population size – will take an exceedingly long time. Worse, the 10N
rule is often an underestimate of the time needed to equilibrate, particularly when simulating a
very long chromosome; and there is no number of generations at which coalescence is guaranteed.

To cope with this issue, a wide variety of techniques are attempted. One might try to rescale
the model during the burn-in period (see section 5.5), although this can introduce significant
artifacts; or one might initialize the model with the output from a coalescent simulation (see
sections 17.8 and 17.9); or one might run the burn-in period without neutral mutations, using tree-

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 509

sequence recording to preserve the ancestry information that will allow them to be overlaid late
(see sections 17.1 and 17.2). With SLiM 3.1, there is an option that is often better than any of
these, which we will examine in this section: recapitation.

Recapitation is the addition of a neutral coalescent history to a simulation after the fact. The
non-neutral portion of the simulation is run first, in SLiM, with tree-sequence recording enabled so
that the genealogical history of all extant individuals is preserved. The result is saved to a .trees
file, as in previous recipes. That .trees file is then loaded in Python, and msprime and pyslim are
used to construct a coalescent history stretching back in time from the original ancestors of the
simulation. The details of this are fairly conceptually complex; the pyslim manual has excellent
discussion of both the concepts and the practical implications, in both its Introduction and its
Tutorial. That is recommended reading for SLiM users doing recapitation (or any other work
involving tree sequences, in fact); see section 1.10 for relevant links. In general, if your forward
simulation does not need to actually depend upon any state from the burn-in period (converting an
existing neutral mutation from the burn-in into a selected mutation, say; see below for discussion
of such cases), and if the burn-in period is completely neutral and non-spatial, recapitation can
typically be used for greater speed.

Enough discussion; let’s see it in action. We will begin with a SLiM model of non-neutral
dynamics, specifically a selective sweep:

initialize() {
 initializeTreeSeq(simplificationRatio=INF, timeUnit="generations");
 initializeMutationRate(0);
 initializeMutationType("m2", 0.5, "f", 1.0);
 m2.convertToSubstitution = F;
 initializeGenomicElementType("g1", m2, 1);
 initializeGenomicElement(g1, 0, 1e6 - 1);
 initializeRecombinationRate(3e-10);
}
1 late() {
 sim.addSubpop("p1", 1e5);
}
100 late() {
 sample(p1.genomes, 1).addNewDrawnMutation(m2, 5e5);
}
100:10000 late() {
 mut = sim.mutationsOfType(m2);
 if (mut.size() != 1)
 stop(sim.cycle + ": LOST");
 else if (sum(sim.mutationFrequencies(NULL, mut)) == 1.0)
 {
 sim.treeSeqOutput("decap.trees");
 sim.simulationFinished();
 }
}

This is a pretty typical tree-sequence-based model, with a mutation rate of zero. It involves a
fairly large population size (1e5), and a reasonably long chromosome (1e6), so running the neutral
burn-in for this model in SLiM would take quite a long time. Incidentally, the size of this
simulation also means that simplification can take quite a long time, and so as well as recapitating,
we have also chosen to speed up the simulation by setting the simplificationRatio parameter of
initializeTreeSeq() to INF. We have not discussed the simplificationRatio option much
before: in general, it controls how often simplification occurs, and a value specifically of INF tells
SLiM not to simplify the tree sequence at all until a .trees file is generated (see sections 17.11 and
25.1). Although this speeds up the model’s execution considerably, it can greatly increase memory

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 510

usage, so it should be done with care; it is easy to exceed the space available to the process for
tree-sequence recording data (a matter of both memory usage and the limited number of rows of
data that can be recorded). As this example has a short runtime, we’re probably safe to ignore
those space limitations to achieve maximum simulation speed, but for larger simulations you will
want to tune the simplification interval rather than just disabling it. The other new parameter to
initializeTreeSeq(), timeUnit="generations", will be discussed later in this section.

This model involves a selective sweep, introduced in tick 100. We do not attempt to run this
simulation conditional on fixation (see chapter 9); for simplicity, we just detect fixation or loss in
the 100:10000 late() event. On fixation, the model produces a .trees file as output and stops.

So now, if we run the model repeatedly until we get a run in which the sweep mutation fixes,
we have a file named decap.trees that contains the genealogical history of that run. Now we run
a Python script that performs the recapitation:

import msprime, pyslim
import numpy as np
import matplotlib.pyplot as plt

Load the .trees file
ts = tskit.load("decap.trees") # no simplify!

Calculate tree heights, giving uncoalesced sites the maximum time
def tree_heights(ts):
 heights = np.zeros(ts.num_trees + 1)
 for tree in ts.trees():
 if tree.num_roots > 1: # not fully coalesced
 heights[tree.index] = ts.metadata['SLiM']['tick']
 else:
 children = tree.children(tree.root)
 real_root = tree.root if len(children) > 1 else children[0]
 heights[tree.index] = tree.time(real_root)
 heights[-1] = heights[-2] # repeat the last entry for plotting
 return heights

Plot tree heights before recapitation
breakpoints = list(ts.breakpoints())
heights = tree_heights(ts)
plt.step(breakpoints, heights, where='post')
plt.show()

Recapitate!
recap = pyslim.recapitate(ts, ancestral_Ne=1e5, recombination_rate=3e-10,
 random_seed=1)
recap.dump("recap.trees")

Plot the tree heights after recapitation
breakpoints = list(recap.breakpoints())
heights = tree_heights(recap)
plt.step(breakpoints, heights, where='post')
plt.show()

The first step is to load the .trees file. Note that we specifically do not call simplify() here,
because we need the first generation individuals to recapitate from; this is, in fact, precisely why
SLiM preserves those individuals for us by simplifying with the keep_input_roots=True flag.

Then we define a function that calculates tree heights along the chromosome. This is similar to
what we did in section 17.4, but here we have to be a bit smarter because of those original

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 511

ancestors preserved in the tree sequence. Every tree will have a root in one of those original
ancestors, but we are interested in whether the tree has coalesced below that original ancestor
(and if so, at what height), or if the tree still has multiple roots, indicating that it has not yet
coalesced. We therefore check the number of roots for the tree, and if there is just a single root,
we use the height of its child when the root has only a single child (indicating that coalescence
occurred in the child, not in the original ancestor).

We use that function to plot tree heights along the chromosome before recapitation. Then we
recapitate, which is very easy – just a single method call on our tree sequence, returning a new
tree sequence that has had a coalescent history traced backward from its original ancestors. The
recapitation process just needs to know the recombination rate to use, and the population size (Ne)
to use for the coalescent.

Finally, we plot again, after recapitation, to see what it has done. A combined plot of these
results, made in R, looks like this:

Note that the y-axis is rescaled according to the cube root of the number of generations, to
bring out detail at both the low and high ends of the scale. The red line here shows the tree
heights along the chromosome prior to recapitation. The area surrounding the sweep has
coalesced at the generation in which the sweep mutation was introduced, due to strong
hitchhiking in the vicinity of the mutation. The area further out has not coalesced, and therefore
has a tree height that dates back to the beginning of forward simulation, 100 generations before
the sweep began. The black line shows tree heights after recapitation; here the uncoalesced
regions farther from the sweep have been coalesced backward in time as far as a million
generations (reflecting the fact that we would have needed to run the burn-in in SLiM for at least a
million generations to have much likelihood of coalescence). Regions closer to the sweep tend to
coalesce more recently, reflecting the effect of the sweep on the diversity present at different
regions along the chromosome at the end of simulation.

In short, we can see that recapitation has provided us with a full neutral burn-in history for the
simulation, after the fact. Notably, this is very fast; this example run executed in 0.41 seconds. If
we wanted neutral mutations overlaid over the whole population history, including the recapitated
burn-in, that would also be extremely fast; using the technique shown in section 17.2, that
operation would take another 0.58 seconds. These times can be compared to an estimate,
obtained by extrapolation, of how long the burn-in would take in SLiM: more than 114 hours.

Recapitation, then, is optimal for computing burn-in for several reasons. One reason is that it is
extremely fast, as we have seen; the only branches that need to be coalesced are those leading to
the final individuals present at the end of forward simulation, which is generally a small minority
of the branches that were present at the beginning of forward simulation. Recapitation is therefore
much, much faster than simulating the burn-in period in SLiM, and should even be faster than
constructing an initial population state with the coalescent; it is based upon the coalescent, but
needs to do much less work since far fewer branches typically need to be coalesced. Then too,

0e+00 1e+06

chromosome position

m
ea

n
tre

e
he

ig
ht

 (g
en

er
at

io
ns

)

1
1e
4

1e
5

1e
6

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 512

recapitation is very convenient, since it can be done after forward simulation, even as an
afterthought on existing model output. In this way, it allows a focus on the non-neutral dynamics
of interest, with burn-in handled later. It also allows one to ignore the question of how long to run
burn-in for – the whole “10N” question – since recapitation will coalesce back in time as far as
necessary to achieve full coalescence.

Of course, recapitation can only be used in scenarios where a neutral coalescent process is
appropriate for burn-in. In some cases the burn-in period needs to itself be non-neutral; in this
case using tree-sequence recording to run without neutral mutations may be the best one can do
(see sections 17.1 and 17.2). But for many models, recapitation will enable modeling at a larger
scale than previously possible, by greatly reducing the overhead of the burn-in period.

A caveat that comes with the above recipe is that it recapitates a WF model, which means that
the simulation involves non-overlapping generations and that one tick equals one generation. We
told tree-sequence recording that explicitly, with the parameter timeUnit="generations" that we
passed to initializeTreeSeq(). Without that, the recapitation process would have produced a
warning in Python:

TimeUnitsMismatchWarning: The initial_state has time_units=ticks but time
is measured in generations in msprime. This may lead to significant
discrepancies between the timescales.

(As of SLiM 4, even WF models have a default timeUnit of "ticks" because in a multispecies
model, one tick may not equal one generation any more, even in WF models; see section 1.9.)
Recapitation can be used with nonWF models too, but if the model involves overlapping
generations, the timescale for recapitation needs to be matched carefully to the timescale of the
forward simulation by rescaling the recapitation parameters as appropriate, since recapitation is
performed assuming time units of “generations”. The pyslim documentation has an example of
how to deal with this timescale issue, at https://tskit.dev/pyslim/docs/latest/time_units.html. Note
that if your nonWF model does in fact simulate non-overlapping generations, you can signal that
to tskit/msprime by passing timeUnit="generations" to initializeTreeSeq() as we did here; this
will allow you to avoid the warning about timescale issues when you recapitate. (Of course, doing
that if the time unit is not generations would result in incorrect recapitation results.) The upshot is:
think carefully about time units, or you risk getting an incorrect result from recapitation.

One point was glossed over in the discussion above: why was the sweep mutation introduced in
tick 100, and not, say, in tick 2 immediately after the simulation has started? The easy answer is: to
make the plot look nice. In the mean tree height plot above, there is a nice stair-step in the red
line (showing mean tree height prior to recapitation), and that bump is there because of the delay
between starting forward simulation and introducing the sweep mutation. But there is a deeper
benefit as well: running a little bit of forward simulation after recapitation can smooth out
differences introduced by the coalescent burn-in. The standard Kingman coalescent, as simulated
here via the recapitate() command, produces evolutionary dynamics that are extremely similar
to a neutral forward Wright–Fisher simulation such as the model shown above; but the two are not,
in fact, exactly identical, and small differences introduced by the use of the coalescent could
conceivably produce detectable bias in simulation results if non-neutral dynamics commenced
immediately after the end of the coalescent. Doing a little extra neutral burn-in after the
recapitated period shuffles things around so that any such bias is minimized.

Indeed, this technique can sometimes be used even to approximate a non-neutral burn-in
period using the coalescent; one can forward-simulate the non-neutral burn-in dynamics in SLiM
for some relatively short period of time (like 100 or 1000 generations), and then add a coalescent
history to that using recapitation as a sort of convenient approximation to the truth. This is
obviously not ideal; but if forward-simulating the full non-neutral burn-in period would take a

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 513

https://tskit.dev/pyslim/docs/latest/time_units.html

prohibitively long time, it may be the only option available, and it may, for some models, prove to
produce acceptable results. Of course any approximation like this should be carefully tested to
ensure that any bias or artifacts introduced by it are within acceptable bounds.

If the forward simulation actually needs to do something with the mutations that exist from the
burn-in period, recapitation cannot be used. For example, you might want to model a soft sweep
in which a neutral mutation from “deep time”, back in the burn-in period, becomes non-neutral
due to an environmental change. The non-neutral time period must be forward-simulated in SLiM,
as usual. The burn-in needs to be simulated first, with the coalescent in msprime, and then needs
to have mutations overlaid onto it before forward simulation begins, so that those overlaid
mutations get imported into SLiM for its use. The pyslim documentation has a nice example of this
technique at https://tskit.dev/pyslim/docs/stable/vignette_coalescent_diversity.html.

Finally, it is worth noting that the recapitation technique described here, to add a neutral
simulation period prior to the time period run by forward simulation, has a complementary
technique that we could call “continuation”: adding a neutral simulation period subsequent to the
time period run by forward simulation. This could be useful, for example, to look at the genomic
signature left behind by a selective sweep, not immediately after the sweep has completed, but
many generations later, to understand how the initial sweep signature becomes obscured by
subsequent drift and mutation. We will not present a continuation recipe here, but the pyslim
documentation has a vignette at https://tskit.dev/pyslim/docs/stable/vignette_continuing.html.

17.11 Optimizing tree-sequence simplification
When running models with tree-sequence recording in SLiM, periodic simplification of the tree

sequence is usually needed (except for very small models); it keeps the size of the tree-sequence
data structures from growing so large that SLiM runs out of memory. In earlier sections we glossed
over this detail by relying upon SLiM’s default “auto-simplification” strategy, which automatically
simplifies the tree sequence for you on a heuristically determined schedule. However, that default
auto-simplification heuristic is not always optimal (although it does a good job for many models).
Simplification is a very slow process; for tree-seq models, the majority of the runtime is often spent
simplifying. Simplifying at a non-optimal frequency can thus be costly, and so it can be desirable
to control the frequency of simplification yourself.

We will explore this idea with a simple model:

initialize() {
 setSeed(0);
 initializeTreeSeq();
 initializeMutationRate(0);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 1e8-1);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 10000); }
50001 late() { }

This model, like that in section 17.1, uses SLiM’s default auto-simplification heuristic. It calls
setSeed(0) to use the same random number seed for all runs, so that timing runs are not affected
by variation in the evolutionary dynamics. This model runs in 1082.1 seconds on an Intel-based
Mac mini with 64 GB memory, with a peak memory usage of 1.94 GB. To explore the effects of
other simplification intervals on these metrics, we will use the simplificationInterval parameter
to initializeTreeSeq(), which requests that auto-simplification be performed periodically with a
given tick interval. (The default auto-simplification heuristic uses the simplificationRatio

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 514

https://tskit.dev/pyslim/docs/stable/vignette_coalescent_diversity.html
https://tskit.dev/pyslim/docs/stable/vignette_continuing.html

parameter instead; that alternative approach is not recommended in general, since it affords less
precise control. See section 25.1 for further discussion of different simplification approaches.)

Let’s start with a simplification interval of 500, with this replacement line of script:

initializeTreeSeq(simplificationInterval=500);

With this change, auto-simplification will now occur every 500 ticks (in ticks 500, 1000, …,
50000). The model now runs in 1009.1 seconds with a peak memory usage of 3.02 GB, so an
interval of 500 is slightly faster than the default heuristic, but with substantially higher peak
memory usage. To get a more comprehensive picture, we can do a survey of a variety of auto-
simplification intervals and look at the runtime and memory usage for each. Here are runtime
results from such a survey (on the same Mac mini):

The blue line shows the runtime for SLiM’s default auto-simplification heuristic. Note that the x
axis is on a log scale.

One important point to observe here is that there is actually an intermediate optimum for the
auto-simplification interval; if you simplify more frequently than that optimum it gets slower, but if
you simplify less frequently than that optimum, it also gets slower (although that is only just
beginning to be visible in the plot above). This is because the time taken by simplification is not a
linear function of the amount of work that has accumulated for it to do; if you go twice as long
before simplifying, it can take more than twice as long to perform the simplification. So to obtain
the best performance for your own tree-seq model, you can do exactly this sort of analysis: run
with a variety of intervals to find the intermediate optimum. Where that intermediate optimum is
located will depend upon the dynamics of your model, and must be determined empirically as we
have done here, but it is often between 500 and 5000 ticks.

Another important point illustrated above is that the default auto-simplification heuristic often
performs quite well. Here, the runtime of the model using the optimal interval of ~2500 is 956.2
seconds; with the default auto-simplification heuristic, it was 1009.1 seconds, so the optimal
interval provides a 5.2% speedup. Usually, the default heuristic is within 10% of the performance
of the optimal interval; sometimes, however, the default heuristic might make a very bad guess, so
if performance is crucial, it is a good idea to check.

Here are peak memory usage results for the same runs (the blue line shows the peak memory
usage for SLiM’s default auto-simplification heuristic, and again the x axis is on a log scale):

0
50
0

10
00

15
00

Simplification interval

Ru
nt

im
e

(s
ec

s)

50 100 250 500 1000 2500 5000 10000

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 515

This shows that there is a clear tradeoff with memory usage; the longer the simplification
interval, the higher the memory usage. If memory is limited and the peak memory usage for the
optimal interval is too high, you might need to simplify more frequently just to keep the memory
usage within bounds. Again, this will need to be determined empirically.

In general, however, the default auto-simplification heuristic will tend to keep memory usage
low; it is designed to do that, primarily, rather than to minimize runtime. The peak memory usage
for the optimal interval of 2500 is 14.43 GB; for the default heuristic it is only 1.94 GB, an 86.6%
reduction at the cost of a small increase in runtime. Whether this tradeoff is worthwhile will
depend upon your circumstances; if memory is not limited at all, perhaps you will prefer the faster
runtime.

The results of a survey like this of different simplification intervals can be highly platform-
dependent. To illustrate this, here is a runtime plot for the same model, with the same seed, on a
different Mac mini with only 16 GB of memory:

This is a much faster machine; it is M1-based, not Intel-based, and so for small intervals, the
runtimes are almost 3× faster. But the performance curve is much more U-shaped; the runtimes
get markedly worse for intervals above 2500, and the optimum is now at 1000 because of this
curvature. Why would the performance curve be so different on this different machine?

To understand this, we need to look at the memory usage plot for the same set of runs on the
M1 mini:

0
10

30
50

Simplification interval

Pe
ak

 R
SS

 (G
B)

50 100 250 500 1000 2500 5000 10000

0
10
0

30
0

50
0

Simplification interval

Ru
nt

im
e

(s
ec

s)

50 100 250 500 1000 2500 5000 10000

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 516

If you compare this to the previous memory usage plot, the memory usage on the M1 machine
is similar up to an interval of 2500 – but then it is very different, and much lower! This is because
the M1 machine has only 16 GB of memory, so macOS has to play tricks to get the tree sequence
to fit into memory. (By “tricks” I mean things like dynamic compression of memory pages, and
swapping of inactive memory pages out to disk.) Those tricks work – the memory usage for an
interval of 10000 was 57.0 GB for the Intel mini, but it is only 12.4 GB on the M1 mini. However,
those tricks have a fairly large impact on runtime, particularly for the intervals of 5000 and 10000
(when the tree sequence is the largest). Always time on the same machine you will do your
production runs on, and for good performance, keep your memory usage within bounds!

Finally, it is worth noting that the optimal schedule for simplification might be more complex
than just a fixed interval. Changes in key model parameters may cause corresponding changes in
the optimal simplification interval; but even with a simple neutral model, the optimal frequency
may change as the tree sequence gets larger over time. If you want to optimize at this level of
detail, you can turn off SLiM’s auto-simplification by passing simplificationRatio=INF to
initializeTreeSeq(). Then you can call the treeSeqSimplify() method yourself in script, on
whatever custom schedule you prefer at each point in your model’s run.

0
2

4
6

8
10

Simplification interval

Pe
ak

 R
SS

 (G
B)

50 100 250 500 1000 2500 5000 10000

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 517

18. Modeling explicit nucleotides

So far, the models we have explored have generally involved an abstracted concept of
mutations in which mutations have properties like their selection coefficient and their position in
the genome, but do not explicitly represent a change in the nucleotide sequence. In section 1.8,
however, it was mentioned that SLiM (in version 3.3 and later) supports models that track an
explicit nucleotide sequence. That section laid out many of the foundational concepts for such
models, and should be considered required reading as a prelude to this chapter. In this chapter,
we will look at examples of nucleotide-based models. Most of the concepts we have explored in
previous chapters continue to apply in nucleotide-based models; however, there are some major
differences (such as the mutational model), and there are some quirks and surprises.

18.1 A simple neutral nucleotide-based model
We will begin with a simple neutral WF model, very similar to the models we have seen before,

but converted to be nucleotide-based:

initialize() {
 defineConstant("L", 1e6);
 initializeSLiMOptions(nucleotideBased=T);
 initializeAncestralNucleotides(randomNucleotides(L));
 initializeMutationTypeNuc("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0, mmJukesCantor(1e-7));
 initializeGenomicElement(g1, 0, L-1);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 500);
}
2000 late() { sim.outputFixedMutations(); }

There are several important changes here. First of all, we tell SLiM up front that the model is
nucleotide-based, by passing nucleotideBased=T to initializeSLiMOptions(). This has various
downstream consequences, as we will see.

Next, we call initializeAncestralNucleotides() to supply an ancestral nucleotide sequence.
This call is required in all nucleotide-based models; SLiM needs to know the ancestral sequence in
order to correctly handle mutations, which are based upon the existing nucleotide sequence as we
will see below, so omitting it produces an error. Here we pass a random nucleotide sequence
generated by the randomNucleotides() function. This function simply generates a random
sequence of a given length, with equal probabilities for the four bases by default (or a vector of
probabilities may be supplied). For example, in the Eidos console:

> randomNucleotides(50)

"GAAGAATGAAATTTGCGAGGCTATGTCTAGCATATGCCACCGCCCTGACC"

Next we create a new mutation type, representing neutral mutations. We want this mutation
type to be nucleotide-based, so we call initializeMutationTypeNuc() instead of the usual call to
initializeMutationType(). The parameters to initializeMutationTypeNuc() are the same as for
initializeMutationType(); it simply creates a nucleotide-based mutation type instead of a non-
nucleotide-based mutation type. (It is legal to create non-nucleotide-based mutation types in a
nucleotide-based model, as we will see in section 18.6; the two can be freely mixed in the same
model.)

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 518

Then we set up a new genomic element type by calling initializeGenomicElementType().
Here, this call has an extra parameter at the end that we have never used before. The name of that
parameter is mutationMatrix, and we pass the result of a function call, mmJukesCantor(1e-7), for
it. Let’s look at what that function call returns, again in the Eidos console in SLiMgui:

> mmJukesCantor(1e-7)

 [,0] [,1] [,2] [,3]
[0,] 0 1e-07 1e-07 1e-07
[1,] 1e-07 0 1e-07 1e-07
[2,] 1e-07 1e-07 0 1e-07
[3,] 1e-07 1e-07 1e-07 0

This is a 4×4 matrix of type float, representing a specific instance, for α = 1e-7, of the Jukes–
Cantor (1969) mutational model with a mutation rate α to each alternative nucleotide at a given
site (see section 25.18.1):

We haven’t seen matrices in Eidos much in this manual, but matrices (and more generally
arrays) are built into the Eidos language, and work in much the same way as they do in R (see the
Eidos manual for details). This matrix specifies sequence-specific mutation rates that will be used
within genomic elements of this genomic element type. Each row of the matrix represents one
possible sequence state prior to mutation; there could be an A, C, G, or T present at the mutating
site, represented by rows 0 through 3 respectively. Each column provides the corresponding
mutation rates for the mutation of a given state to a new state: A, C, G, or T, as represented by
columns 0 through 3 respectively. For a mutating site that presently has a C in it (row 1), for
example, the probabilities of mutating to an A, G, or T are all given as 1e-7 (columns 0, 2, and 3).
The probability of an “identity” substitution, of a nucleotide by itself, must conventionally be
specified as zero, as it is here (the zero values along the matrix diagonal). Note that the overall
mutation rate in this model, per base position per gamete, will be 3e-7, not 1e-7; α is not the
overall mutation rate, but rather the rate at which a given nucleotide will mutate to a specific
alternative nucleotide.

Any mutation matrix may be supplied to SLiM. The Jukes–Cantor model involves equal
probabilities of mutation away from and toward every nucleotide state, but other mutational
models can be specified instead with, e.g., different rates for transitions versus transversions. It is
also possible to supply a 64×4 matrix instead of a 4×4 matrix, specifying the mutation rates for the
central nucleotide of every possible trinucleotide sequence (of which there are 64); this allows
mutational models in which, for example, CpG sites display a higher rate of mutation than other
sites (see section 18.5). This generality means that the realized mutation rate may actually be
sequence-dependent; a CpG-rich genome may mutate more rapidly than a CpG-poor genome, for
example. SLiM will manage these mutational details accurately, producing the mutation rates
requested by the matrix supplied (using a rejection sampling method under the hood).

It is also worth noting that the mutation matrix is not a global parameter, but a property of the
genomic element type. It is possible, therefore, to vary the mutation matrix along the
chromosome. One might wish the mutational properties of non-coding regions to differ from
those of coding regions, for example, if the process of transcription is thought to be mutagenic
within coding regions. That would be easily implemented using different genomic element types
for coding versus non-coding regions, utilizing different mutation matrices.

0 α α α
α 0 α α
α α 0 α
α α α 0

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 519

Conspicuous by its absence here is any call to initializeMutationRate(). We already
configured the mutation rate with mutationMatrix; in fact, calling initializeMutationRate() in
nucleotide-based models is illegal. It is still possible to configure non-sequence-based variation in
the mutation rate along the chromosome (i.e., mutational hot spots and cold spots), using a
“hotspot map” as we will see in section 18.10. Since we don’t need a hotspot map in this model,
though, the mutation rate is already fully configured.

The rest of the model contains no surprises. We set up the chromosome with a single g1
genomic element, set the recombination rate, create a new subpopulation of size 500, run to tick
2000, and output fixed mutations. The output of the model looks like this:

#OUT: 2000 2000 F
Mutations:
0 11796 m1 372475 0 0.5 p1 53 782 C
1 1698 m1 393353 0 0.5 p1 8 782 G
2 1842 m1 393686 0 0.5 p1 9 782 G
3 23624 m1 413964 0 0.5 p1 106 782 C
4 41111 m1 416291 0 0.5 p1 183 782 T
...

Note that each fixed mutation that is output here includes a designation of its nucleotide, at the
end of the output line; that output field is added when outputFixedMutations() is called from a
nucleotide-based model. Many of the other built-in output methods in SLiM similarly provide
additional nucleotide information in nucleotide-based models, as we will see in later sections.
Chapter 27 provides complete reference documentation for all output formats.

That is all there is to our introductory nucleotide-based model. We will explore some subtle
twists and complications in the rest of this chapter, but here we have seen the fundamentals of
defining a nucleotide-based model: declaring it with nucleotideBased=T, providing an ancestral
nucleotide sequence with initializeAncestralNucleotides(), designating nucleotide-based
mutation types with initializeMutationTypeNuc(), and setting up sequence-based mutation rates
with the mutationMatrix parameter to initializeGenomicElementType().

18.2 Reading an ancestral nucleotide sequence from a FASTA file
In the previous section we looked at a trivial nucleotide-based model that generated an

ancestral sequence using the randomNucleotides() function. Often the ancestral sequence will
instead come from a FASTA file; this use case is common enough that it is directly supported by
SLiM. Modifying the previous recipe, we can do:

initialize() {
 initializeSLiMOptions(nucleotideBased=T);
 defineConstant("L", initializeAncestralNucleotides("FASTA.txt"));
 initializeMutationTypeNuc("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0, mmKimura(1.8e-07, 6e-08));
 initializeGenomicElement(g1, 0, L-1);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 500);
}
2000 late() { sim.outputFixedMutations(); }

A path to the FASTA file is passed to initializeAncestralNucleotides(); that file happens,
here, to contain the following data:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 520

>HSBGPG Human gene for bone gla protein (BGP)
GGCAGATTCCCCCTAGACCCGCCCGCACCATGGTCAGGCATGCCCCTCCTCATCGCTGGGCACAGCCCAGAGGGT
ATAAACAGTGCTGGAGGCTGGCGGGGCAGGCCAGCTGAGTCCTGAGCAGCAGCCCAGCGCAGCCACCGAGACACC
ATGAGAGCCCTCACACTCCTCGCCCTATTGGCCCTGGCCGCACTTTGCATCGCTGGCCAGGCAGGTGAGTGCCCC
CACCTCCCCTCAGGCCGCATTGCAGTGGGGGCTGAGAGGAGGAAGCACCATGGCCCACCTCTTCTCACCCCTTTG
GCTGGCAGTCCCTTTGCAGTCTAACCACCTTGTTGCAGGCTCAATCCATTTGCCCCAGCTCTGCCCTTGCAGAGG
GAGAGGAGGGAAGAGCAAGCTGCCCGAGACGCAGGGGAAGGAGGATGAGGGCCCTGGGGATGAGCTGGGGTGAAC
CAGGCTCCCTTTCCTTTGCAGGTGCGAAGCCCAGCGGTGCAGAGTCCAGCAAAGGTGCAGGTATGAGGATGGACC
TGATGGGTTCCTGGACCCTCCCCTCTCACCCTGGTCCCTCAGTCTCATTCCCCCACTCCTGCCACCTCCTGTCTG
GCCATCAGGAAGGCCAGCCTGCTCCCCACCTGATCCTCCCAAACCCAGAGCCACCTGATGCCTGCCCCTCTGCTC
CACAGCCTTTGTGTCCAAGCAGGAGGGCAGCGAGGTAGTGAAGAGACCCAGGCGCTACCTGTATCAATGGCTGGG
GTGAGAGAAAAGGCAGAGCTGGGCCAAGGCCCTGCCTCTCCGGGATGGTCTGTGGGGGAGCTGCAGCAGGGAGTG
GCCTCTCTGGGTTGTGGTGGGGGTACAGGCAGCCTGCCCTGGTGGGCACCCTGGAGCCCCATGTGTAGGGAGAGG
AGGGATGGGCATTTTGCACGGGGGCTGATGCCACCACGTCGGGTGTCTCAGAGCCCCAGTCCCCTACCCGGATCC
CCTGGAGCCCAGGAGGGAGGTGTGTGAGCTCAATCCGGACTGTGACGAGTTGGCTGACCACATCGGCTTTCAGGA
GGCCTATCGGCGCTTCTACGGCCCGGTCTAGGGTGTCGCTCTGCTGGCCTGGCCGGCAACCCCAGTTCTGCTCCT
CTCCAGGCACCCTTCTTTCCTCTTCCCCTTGCCCTTGCCCTGACCTCCCAGCCCTATGGATGTGGGGTCCCCATC
ATCCCAGCTGCTCCCAAATAAACTCCAGAAG
>HSGLTH1 Human theta 1-globin gene
CCACTGCACTCACCGCACCCGGCCAATTTTTGTGTTTTTAGTAGAGACTAAATACCATATAGTGAACACCTAAGA
CGGGGGGCCTTGGATCCAGGGCGATTCAGAGGGCCCCGGTCGGAGCTGTCGGAGATTGAGCGCGCGCGGTCCCGG
GATCTCCGACGAGGCCCTGGACCCCCGGGCGGCGAAGCTGCGGCGCGGCGCCCCCTGGAGGCCGCGGGACCCCTG
GCCGGTCCGCGCAGGCGCAGCGGGGTCGCAGGGCGCGGCGGGTTCCAGCGCGGGGATGGCGCTGTCCGCGGAGGA
CCGGGCGCTGGTGCGCGCCCTGTGGAAGAAGCTGGGCAGCAACGTCGGCGTCTACACGACAGAGGCCCTGGAAAG
GTGCGGCAGGCTGGGCGCCCCCGCCCCCAGGGGCCCTCCCTCCCCAAGCCCCCCGGACGCGCCTCACCCACGTTC
CTCTCGCAGGACCTTCCTGGCTTTCCCCGCCACGAAGACCTACTTCTCCCACCTGGACCTGAGCCCCGGCTCCTC
ACAAGTCAGAGCCCACGGCCAGAAGGTGGCGGACGCGCTGAGCCTCGCCGTGGAGCGCCTGGACGACCTACCCCA
CGCGCTGTCCGCGCTGAGCCACCTGCACGCGTGCCAGCTGCGAGTGGACCCGGCCAGCTTCCAGGTGAGCGGCTG
CCGTGCTGGGCCCCTGTCCCCGGGAGGGCCCCGGCGGGGTGGGTGCGGGGGGCGTGCGGGGCGGGTGCAGGCGAG
TGAGCCTTGAGCGCTCGCCGCAGCTCCTGGGCCACTGCCTGCTGGTAACCCTCGCCCGGCACTACCCCGGAGACT
TCAGCCCCGCGCTGCAGGCGTCGCTGGACAAGTTCCTGAGCCACGTTATCTCGGCGCTGGTTTCCGAGTACCGCT
GAACTGTGGGTGGGTGGCCGCGGGATCCCCAGGCGACCTTCCCCGTGTTTGAGTAAAGCCTCTCCCAGGAGCAGC
CTTCTTGCCGTGCTCTCTCGAGGTCAGGACGCGAGAGGAAGGCGC

Note that this file contains two sequences; in such cases, initializeAncestralNucleotides()
always uses the first sequence defined in the file. The model needs to know the chromosome
length (here defined as the constant L); initializeAncestralNucleotides() returns the length of
the ancestral sequence it is given, so we use that to define L correctly without knowing the length
of the FASTA sequence ahead of time.

The FASTA format allows specifications such as R for a purine (A or G), as well as amino-acid
specifications such as F for Phenylalanine; those are not allowed in FASTA files read by SLiM.
Only the four DNA nucleotide bases – A, C, G, and T – are allowed. Lines may be of any length.
Description lines must begin with > or ;, and may contain any text; they are ignored.

For fun, we have also switched the mutational model from Jukes–Cantor (1969) to Kimura
(1980), which allows transition and transversion rates to differ. The mmKimura() function takes two
parameters, alpha and beta, for the transition and transversion rates desired (see section 25.18.1).
Here the values chosen will again produce an overall mutation rate of 3e-7, as in section 18.1,
since for the Kimura (1980) model the overall rate is α+2β. However, the transition/transversion
rate ratio κ = α/β is 3.0 here – a strong departure from the Jukes–Cantor model where κ = 1.0.
(Note that κ is the transition/transversion rate ratio, not the transition/transversion ratio!)

18.3 Sequence output from nucleotide-based models
When doing a nucleotide-based simulation, one often wants to obtain nucleotides for the

mutations in the simulation, as well as the nucleotide sequences of particular genomes. In section
18.1 we saw that outputFixedMutations() provides the nucleotides for fixed mutations in
nucleotide-based models; outputMutations(), outputFull(), etc. do as well. Here we will
explore several other ways of getting this type of information, with a very simple recipe:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 521

initialize() {
 defineConstant("L", 10);
 initializeSLiMOptions(nucleotideBased=T);
 initializeAncestralNucleotides(randomNucleotides(L));
 initializeMutationTypeNuc("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0, mmJukesCantor(2.5e-5));
 initializeGenomicElement(g1, 0, L-1);
 initializeRecombinationRate(1e-8);
}
1 early() {
 c = sim.chromosome;
 catn("Ancestral: " + c.ancestralNucleotides());
 catn("Ancestral: " + paste(c.ancestralNucleotides(format="char")));
 catn("Ancestral: " + paste(c.ancestralNucleotides(format="integer")));
 catn("positions: " + paste(0:(L-1)));
 catn();

 sim.addSubpop("p1", 500);
}
5000 late() {
 catn("Fixed: " + paste(sim.substitutions.nucleotide));
 catn("Fixed: " + paste(sim.substitutions.nucleotideValue));
 catn("positions: " + paste(sim.substitutions.position));
 catn();

 c = sim.chromosome;
 catn("Ancestral: " + c.ancestralNucleotides());
 catn("Ancestral: " + paste(c.ancestralNucleotides(format="char")));
 catn("Ancestral: " + paste(c.ancestralNucleotides(format="integer")));
 catn("positions: " + paste(0:(L-1)));
 catn();

 g = p1.genomes[0];

 catn("SNPs: " + paste(g.mutations.nucleotide));
 catn("SNPs: " + paste(g.mutations.nucleotideValue));
 catn("positions: " + paste(g.mutations.position));
 catn();

 catn("Derived: " + g.nucleotides());
 catn("Derived: " + paste(g.nucleotides(format="char")));
 catn("Derived: " + paste(g.nucleotides(format="integer")));
 catn("positions: " + paste(0:(L-1)));
}

The model itself is trivial – a chromosome ten bases long, with a high mutation rate so that we
get fixed mutations and genetic diversity quickly. The interesting thing is the output generated. In
tick 1 we print the ancestral sequence that the model begins with, by calling the
ancestralNucleotides() method on the chromosome:

Ancestral: TACTGTAAGC
Ancestral: T A C T G T A A G C
Ancestral: 3 0 1 3 2 3 0 0 2 1
positions: 0 1 2 3 4 5 6 7 8 9

By default ancestralNucleotides() returns a singleton string for the whole sequence, as
shown by the first call. Other formats for the return value are also supported, however, such as
"char" (a vector of single-character strings for the nucleotides) and "integer" (a vector of integers,

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 522

where 0=A, 1=C, 2=G, and 3=T), as shown by the next two calls. This method has several other
options not shown here; you can get just a subrange of the ancestral sequence by supplying a start
and/or end position, for example, and you can request the return value to be in "codon" format
(integers in [0,63] representing trinucleotide groups); see section 25.2.2 for details.

After producing that initial output, the model runs for 5000 ticks and then prints several further
pieces of information. The first is a list of the mutations that fixed during those 5000 ticks; those
fixed mutations have been converted to Substitution objects as usual in SLiM, and are available
through the substitutions property of sim. There are three of them in this example run. The
nucleotides of the substitutions are available through the nucleotide property (for strings) or the
nucleotideValue property (for integers), producing the output shown:

Fixed: T T C
Fixed: 3 3 1
positions: 9 8 6

An important point is that when nucleotide-based mutations fix and are converted to
substitutions, the ancestral sequence is updated to reflect the new ancestral state. When we print
the ancestral sequence again in tick 5000, in other words, it has a T at positions 8 and 9, and a C at
position 6, reflecting the substitutions that have occurred (as output earlier):

Ancestral: TACTGTCATT
Ancestral: T A C T G T C A T T
Ancestral: 3 0 1 3 2 3 1 0 3 3
positions: 0 1 2 3 4 5 6 7 8 9

The ancestral sequence in SLiM is not, in general, the sequence that the simulation started with
(although initially it is); it is the reference sequence currently used to represent the state of a
genome that contains no nucleotide-based mutations. As such, it changes when substitutions
occur.

Next we select a single genome from the model (for simplicity), and we print the SNPs that are
present in that genome:

SNPs: G C
SNPs: 2 1
positions: 4 8

Mutation, like Substitution, has nucleotide and nucleotideValue properties that provide the
nucleotide for the mutation as either a string or an integer. (Accessing these properties on
mutations or substitutions that are not nucleotide-based produces an error, if you are wondering.)

Finally, we obtain the full nucleotide sequence for the chosen genome using the nucleotides()
method. This method is very similar to the ancestralNucleotides() method we saw before; it
supports the same options and formats. The only difference is that after obtaining the ancestral
sequence, nucleotides() overlays all of the SNPs present in the genome to produce the derived
sequence:

Derived: TACTGTCACT
Derived: T A C T G T C A C T
Derived: 3 0 1 3 2 3 1 0 1 3
positions: 0 1 2 3 4 5 6 7 8 9

The sequences output here are the same as the ancestral sequence except that the two SNPs in
the genome – a G at position 4 and a C at position 8 – are overlaid.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 523

Those paying close attention will notice a surprising thing: the ancestral sequence at position 4
is G, and yet we have a mutation to G at that position segregating in the model, as shown by the
SNPs in the genome’s output. But SLiM does not allow a nucleotide to mutate to itself, and in any
case the Jukes–Cantor mutation matrix used here has zeroes along its diagonal to express that such
mutations cannot occur, as we saw in section 18.1. So how did we get a G segregating on an
ancestral background of G?

The answer is: back-mutation. At some point during the 5000 ticks of runtime, a mutation
occurred at position 4 that changed it to some non-G nucleotide, but that mutation did not fix (or
we would see it in the list of fixed mutations that we printed). Some time later, another mutation
occurred at position 4 on the background of the segregating non-G mutation, changing it back to a
G – which was still the base present at that position in the ancestral sequence. When back-
mutation like this happens, SLiM does not remove the non-G mutation and revert the location back
to the ancestral sequence by leaving it empty; instead, after removing the non-G mutation, SLiM
adds a new G mutation at the position in question, just as it would had the mutation been to any
other nucleotide.

This behavior may seem surprising at first glance, but it is more consistent (since a new
mutation is created in all cases), and it allows back-mutations to be differentiated from sites that
have not mutated at all (which can often be useful). It would be possible to “unique down” such
states, by checking for new mutations in each tick that are identical to the ancestral state
“underneath” them and removing them. However, this is not recommended in most cases. The
next section will discuss back-mutations and other unusual states in further detail. For further
discussion of back-mutations in nucleotide-based models, see also section 18.15.

18.4 Back-mutations, independent mutational lineages, and VCF output
In the previous section, we saw various ways to output nucleotides and nucleotide sequences

from a model. The output generated ended up revealing an important fact about modeling
nucleotides in SLiM: that back-mutations are represented with a new mutation object, not by
reversion of the genome sequence to an “empty” state at the back-mutated site. In this section we
will explore VCF output, another way to output nucleotide-based information from a model, and
we will use it to further examine the details of how nucleotide-based simulations in SLiM work
under the hood. (See section 18.15 for further discussion of back-mutations in nucleotide-based
models.)

The recipe we will use here is very straightforward:

initialize() {
 defineConstant("L", 10);
 initializeSLiMOptions(nucleotideBased=T);
 initializeAncestralNucleotides(randomNucleotides(L));
 initializeMutationTypeNuc("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0, mmJukesCantor(2.5e-5));
 initializeGenomicElement(g1, 0, L-1);
 initializeRecombinationRate(1e-8);
}
1 late() {
 sim.addSubpop("p1", 500);
}
5000 late() {
 g = p1.sampleIndividuals(5).genomes;
 g.outputVCF(simplifyNucleotides=F);
 g.outputVCF(simplifyNucleotides=T);
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 524

Again we are using a very short chromosome and a high mutation rate for simplicity. After 5000
ticks of neutral evolution, we take a sample of individuals from p1 and output it in VCF format in
two different ways.

The first outputVCF() call uses simplifyNucleotides=F, which is the default. The VCF output it
produces looks like this (call lines only):

1 2 . G T,C,G 1000 PASS MID=2904,3371,3778;S=0,0,0;DOM=0.5,0.5,0.5;PO=1,1,1;
TO=3814,4445,4963;MT=1,1,1;AC=5,4,1;DP=1000;AA=G GT 1|2 2|2 1|1 3|2 1|1
1 3 . A G,G 1000 PASS MID=2759,2854;S=0,0;DOM=0.5,0.5;PO=1,1;TO=3612,3756;
MT=1,1;AC=5,5;DP=1000;AA=A GT 1|2 2|2 1|1 2|2 1|1
1 8 . T A,C 1000 PASS MID=2584,3761;S=0,0;DOM=0.5,0.5;PO=1,1;TO=3346,4944;
MT=1,1;AC=2,3;DP=1000;AA=T GT 2|0 0|0 1|2 0|0 2|1
1 9 . A T 1000 PASS MID=3244;S=0;DOM=0.5;PO=1;TO=4282;MT=1;AC=5;DP=1000;AA=A
GT 0|1 1|1 0|0 1|1 0|0
1 10 . T C 1000 PASS MID=1303;S=0;DOM=0.5;PO=1;TO=1731;MT=1;AC=5;DP=1000;AA=T
GT 0|1 1|1 0|0 1|1 0|0

This is fairly standard VCF output, which we’re not going to discuss at length here; chapter 27
discusses output formats in detail, and of course a reference on the VCF format itself would be
useful for interpreting many aspects of this output. We have skipped the header lines to focus on
the call lines, which call the segregating alleles present in the five individuals sampled. Five
positions have segregating variation; the positions are given in the second column of the output, so
they are 2, 3, 8, 9, and 10.

Positions 9 and 10 are straightforward: position 9 represents the mutation of an ancestral A to a
derived T (present in five of the ten sampled genomes), and position 10 represents the mutation of
an ancestral T to a derived C (also present in five of the ten sampled genomes, so these two
mutations perhaps comprise a haplotype). The ancestral nucleotide is given in the fourth column,
and the derived allele(s) in the fifth. The rest of the lines give various state related to the mutations
– mutation IDs, selection coefficients, and so forth – and the calls for the sampled genomes (after
the GT marker). The details are not important for our purposes here.

The call line for position 8 is a bit more complex. The ancestral state is T, but the derived state
is A,C rather than a single nucleotide. This means there are two different segregating mutations at
position 8, one to A and one to C. Many of the fields in the remainder of the call line are doubled,
because there are two mutation IDs, two selection coefficients, etc. – one for each of the mutations
segregating at this position. The calls for the sampled genomes now use values of 0 (for the
ancestral state), 1, and 2.

The state at position 3 is similar but a bit odd; the ancestral nucleotide is A, with derived state of
G,G. This is somewhat unconventional in VCF output; what is the difference between G and G? The
difference is that these are separate mutational lineages, which are tracked separately in SLiM as
always (see section 1.5). It feels a bit more strange when there are nucleotides involved, because
we usually think that G is G is G; but each mutational lineage in SLiM is distinct. If the DFE for
these mutations is non-neutral, they could have different selection coefficients; or they could even
belong to different mutation types. This is often useful and desirable, and is unlikely to cause any
important departure from biological reality for typical mutation rates (remember, the mutation rate
in this model is extremely high precisely because we want to cause such phenomena to occur).
However, see section 18.14 for a technique to merge mutational lineages by “uniquing” mutations.

Finally, the call line for position 2 shows an ancestral state of G, with derived state of T,C,G. This
means that there are three segregating mutations at this position, with nucleotides of T, C, and G.
As in section 18.3, the G mutation segregating on an ancestral background of G represents a back-
mutation; a mutation arose earlier in the simulation at this position, to some non-G state, and then
a back-mutation occurred to the G state, represented by a new mutation rather than by reverting to
the “empty”ancestral state.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 525

That explains the output, then; but the fact remains that this style of VCF output is
unconventional, and some VCF processing tools may object to it; derived states are not usually the
same as ancestral states, and different derived states at the same position do not usually use the
same nucleotide. To allow easier processing by such VCF tools, SLiM allows for more standard
VCF output to be generated with the flag simplifyNucleotides=T. The second output call in this
recipe uses that flag, and the call lines it produces – for the same sample as before – look like:

1 2 . G C,T 1000 PASS AC=4,5;DP=1000;AA=G GT 2|1 1|1 2|2 0|1 2|2
1 3 . A G 1000 PASS AC=10;DP=1000;AA=A GT 1|1 1|1 1|1 1|1 1|1
1 8 . T A,C 1000 PASS AC=2,3;DP=1000;AA=T GT 2|0 0|0 1|2 0|0 2|1
1 9 . A T 1000 PASS AC=5;DP=1000;AA=A GT 0|1 1|1 0|0 1|1 0|0
1 10 . T C 1000 PASS AC=5;DP=1000;AA=T GT 0|1 1|1 0|0 1|1 0|0

Here the back-mutation is represented as simply belonging to the ancestral state, and the
independent G mutational lineages at position 3 are represented as a single derived G allele. This
means that in some cases one allele in the VCF file represents more than one SLiM mutation, so all
of the SLiM-specific information – mutation IDs, selection coefficients, etc. – is not available in this
format. If that information is needed, the simplifyNucleotides=F format must be used.

Again, chapter 27 has further information about output formats in SLiM. The goal of this recipe
was not so much to completely explain VCF output as to introduce it, and to use it to illustrate the
ways in which nucleotide-based SLiM simulations might differ from one’s expectations, specifically
with respect to back-mutations and independent mutational lineages.

18.5 Modeling elevated CpG mutation rates and equilibrium nucleotide frequencies
Thus far, the nucleotide-based models we have looked at have used pre-made mutation

matrices from the functions mmJukesCantor() and mmKimura(). It is possible, of course, to make
your own mutation matrix to represent more sophisticated mutational models. Also, the mutation
matrices we have used have been 4×4 matrices, expressing the rate of mutation from each of the
four possible initial nucleotides to each of the four possible final nucleotides; but as section 18.1
mentioned, one can instead supply a 64×4 mutation matrix that expresses the rate of mutation for
the central nucleotide of every possible trinucleotide (of which there are 64) to each of the four
possible final nucleotides (see section 25.1). In this section, then, we will construct a 64×4
mutation matrix and look at the effect it has on the equilibrium nucleotide frequencies in a model.

Let’s start out with a simpler model:

initialize() {
 defineConstant("L", 1e5);
 defineConstant("mu", 7.5e-6);

 initializeSLiMOptions(nucleotideBased=T);
 initializeAncestralNucleotides(randomNucleotides(L));
 initializeMutationTypeNuc("m1", 0.5, "f", 0.0);

 mm = matrix(c(0, mu, mu, mu, rep(0, 12)), ncol=4);
 initializeGenomicElementType("g1", m1, 1.0, mutationMatrix=mm);
 initializeGenomicElement(g1, 0, L-1);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 10);
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 526

1:10000000 early() {
 if (sim.cycle % 10000 == 1) {
 cat(sim.cycle + ": ");
 print(nucleotideFrequencies(sim.chromosome.ancestralNucleotides()));
 }
}

This model constructs a 4×4 mutation matrix, and then runs for 10000000 ticks, printing the
frequencies of the four nucleotides in the ancestral sequence every 10000 ticks. We can look at
what the mutation matrix looks like, in the Eidos console:

> g1.mutationMatrix

 [,0] [,1] [,2] [,3]
[0,] 0 0 0 0
[1,] 7.5e-06 0 0 0
[2,] 7.5e-06 0 0 0
[3,] 7.5e-06 0 0 0

Remember that each row gives rates for each initial nucleotide (A, C, G, T), and that each column
gives the rates for mutation of that initial nucleotide to each final nucleotide (A, C, G, T). This
matrix, then, says that A does not mutate at all in this model (the whole row is zero), whereas C, G,
and T do mutate – but only to A. As a result, the whole genome will slowly mutate to an all-A
sequence. We can see this in the frequencies that are output by the nucleotideFrequencies()
function, which tabulates the frequencies of nucleotides in a given sequence:

1: 0.25129 0.24927 0.25029 0.24915
10001: 0.30401 0.23187 0.23214 0.23198
20001: 0.35508 0.21558 0.21463 0.21471
30001: 0.40258 0.19961 0.19893 0.19888
40001: 0.44556 0.18466 0.18517 0.18461
50001: 0.48547 0.17126 0.17214 0.17113
...
300001: 0.91991 0.02725 0.026 0.02684
310001: 0.92594 0.02496 0.02414 0.02496
320001: 0.9311 0.02323 0.02247 0.0232
...
1360001: 0.99998 0 0 2e-05
1370001: 0.99998 0 0 2e-05
1380001: 0.99999 0 0 1e-05
1390001: 1 0 0 0
1400001: 1 0 0 0
...

Interestingly, the genome changes to A relatively rapidly at first – it gets from 25% to almost
50% in only 50,000 ticks – but that pace slows dramatically toward the end, making for an
asymptotic approach to the endpoint, which is finally reached at 1,390,000 ticks or so. This is
counterintuitive at first, since any given non-A site is mutating to A at the same rate at the end as it
was at the beginning – shouldn’t the rate of progress be the same throughout? The explanation is
that the mutations to A need not only to arise, but to fix; and since there are many more of them
segregating simultaneously at the beginning than at the end, the genome-wide rate of fixation is
much higher earlier, even though the per-non-A-site rate of mutation is the same. An intuitive
explanation might be that drift makes random genotypes win, and at the beginning any random
genotype is likely to have some mutations to A in it, but at the end almost all of the genotypes have
no segregating mutations in them.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 527

So far so good; we have developed our intuitions a little regarding how the equilibrium
nucleotide frequency is approached. Now let’s modify the model by replacing our one-line
mutation matrix setup, which looked like this:

mm = matrix(c(0, mu, mu, mu, rep(0, 12)), ncol=4);

with something more interesting:

mm = mm16To256(mmJukesCantor(mu / 3));
xcg = c("ACG", "CCG", "GCG", "TCG");
xcg_codons = nucleotidesToCodons(paste0(xcg));
mm[xcg_codons,3] = mm[xcg_codons,3] * 20; // rates to T
cgx = c("CGA", "CGC", "CGG", "CGT");
cgx_codons = nucleotidesToCodons(paste0(cgx));
mm[cgx_codons,0] = mm[cgx_codons,0] * 20; // rates to A

Let’s unpack what’s going on here. First of all, mmJukesCantor(mu/3) gives us this:

> mmJukesCantor(mu/3)

 [,0] [,1] [,2] [,3]
[0,] 0 2.5e-06 2.5e-06 2.5e-06
[1,] 2.5e-06 0 2.5e-06 2.5e-06
[2,] 2.5e-06 2.5e-06 0 2.5e-06
[3,] 2.5e-06 2.5e-06 2.5e-06 0

The mm16To256() function expands that 4×4 matrix into a 64×4 matrix:

> mm16To256(mmJukesCantor(mu/3))

 [,0] [,1] [,2] [,3]
 [0,] 0 2.5e-06 2.5e-06 2.5e-06
 [1,] 0 2.5e-06 2.5e-06 2.5e-06
 [2,] 0 2.5e-06 2.5e-06 2.5e-06
 [3,] 0 2.5e-06 2.5e-06 2.5e-06
 [4,] 2.5e-06 0 2.5e-06 2.5e-06
 [5,] 2.5e-06 0 2.5e-06 2.5e-06
 [6,] 2.5e-06 0 2.5e-06 2.5e-06
 [7,] 2.5e-06 0 2.5e-06 2.5e-06
...
[60,] 2.5e-06 2.5e-06 2.5e-06 0
[61,] 2.5e-06 2.5e-06 2.5e-06 0
[62,] 2.5e-06 2.5e-06 2.5e-06 0
[63,] 2.5e-06 2.5e-06 2.5e-06 0

Each row of this matrix provides the mutation rates for a given trinucleotide, counting upward
in base 4: AAA, AAC, AAG, AAT, ACA, ACC, ACG, ACT, AGA, AGC, and on up to TTT at row 64 (see section
25.1). The result is functionally equivalent to the 4×4 matrix; that means that the last nucleotide of
the trinucleotide doesn’t matter (so each row pattern repeats four times, for ACGT in the last
position), and the first nucleotide doesn’t matter (so the initial block of 16 rows repeats four times,
for ACGT in the first position). This gives us a foundation that we can modify to achieve our goal.

What is our goal? To model the high mutation rate of CpG sites. It turns out that a CG
dinucleotide mutates to a TG dinucleotide at an elevated rate in many organisms. Since a CG
dinucleotide on the focal strand is also a CG dinucleotide on its complementary strand (reading in
the opposite direction), one can also say that the CG dinucleotide on the focal strand mutates to a
CA dinucleotide at a very high rate (the complementary strand mutated to TG). So to accurately
model this process from the perspective of the focal strand we will model both of those changes.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 528

First we set up xcg to be a vector of the trinucleotides where a central C mutates to T at a high
rate because it is followed by a G: ACG, CCG, GCG, and TCG. We paste those trinucleotides together
into a single string, ACGCCGGCGTCG, and use nucleotidesToCodons(), a utility function, to convert
the sequence into integer codons in [0,63]; these are the rows in the mutation matrix that govern
the mutation rate of those four codons. Finally, we multiply the values in column 3 of those rows –
the mutation rate to T – by 20.

After doing a similar thing for the trinucleotides where a central G mutates to A at a high rate
because it is preceded by a C (because that means there is a CG on the complementary strand), we
end up with the mutation matrix we want, which we can print in the running model:

> g1.mutationMatrix
 [,0] [,1] [,2] [,3]
 [0,] 0 2.5e-06 2.5e-06 2.5e-06
 [1,] 0 2.5e-06 2.5e-06 2.5e-06
 [2,] 0 2.5e-06 2.5e-06 2.5e-06
 [3,] 0 2.5e-06 2.5e-06 2.5e-06
 [4,] 2.5e-06 0 2.5e-06 2.5e-06
 [5,] 2.5e-06 0 2.5e-06 2.5e-06
 [6,] 2.5e-06 0 2.5e-06 5e-05
 [7,] 2.5e-06 0 2.5e-06 2.5e-06
 [8,] 2.5e-06 2.5e-06 0 2.5e-06
 [9,] 2.5e-06 2.5e-06 0 2.5e-06
[10,] 2.5e-06 2.5e-06 0 2.5e-06
[11,] 2.5e-06 2.5e-06 0 2.5e-06
[12,] 2.5e-06 2.5e-06 2.5e-06 0
[13,] 2.5e-06 2.5e-06 2.5e-06 0
[14,] 2.5e-06 2.5e-06 2.5e-06 0
[15,] 2.5e-06 2.5e-06 2.5e-06 0
[16,] 0 2.5e-06 2.5e-06 2.5e-06
[17,] 0 2.5e-06 2.5e-06 2.5e-06
[18,] 0 2.5e-06 2.5e-06 2.5e-06
[19,] 0 2.5e-06 2.5e-06 2.5e-06
[20,] 2.5e-06 0 2.5e-06 2.5e-06
[21,] 2.5e-06 0 2.5e-06 2.5e-06
[22,] 2.5e-06 0 2.5e-06 5e-05
[23,] 2.5e-06 0 2.5e-06 2.5e-06
[24,] 5e-05 2.5e-06 0 2.5e-06
[25,] 5e-05 2.5e-06 0 2.5e-06
[26,] 5e-05 2.5e-06 0 2.5e-06
[27,] 5e-05 2.5e-06 0 2.5e-06
[28,] 2.5e-06 2.5e-06 2.5e-06 0
[29,] 2.5e-06 2.5e-06 2.5e-06 0
[30,] 2.5e-06 2.5e-06 2.5e-06 0
[31,] 2.5e-06 2.5e-06 2.5e-06 0
[32,] 0 2.5e-06 2.5e-06 2.5e-06
[33,] 0 2.5e-06 2.5e-06 2.5e-06
[34,] 0 2.5e-06 2.5e-06 2.5e-06
[35,] 0 2.5e-06 2.5e-06 2.5e-06
[36,] 2.5e-06 0 2.5e-06 2.5e-06
[37,] 2.5e-06 0 2.5e-06 2.5e-06
[38,] 2.5e-06 0 2.5e-06 5e-05
[39,] 2.5e-06 0 2.5e-06 2.5e-06
[40,] 2.5e-06 2.5e-06 0 2.5e-06
[41,] 2.5e-06 2.5e-06 0 2.5e-06
[42,] 2.5e-06 2.5e-06 0 2.5e-06
[43,] 2.5e-06 2.5e-06 0 2.5e-06
[44,] 2.5e-06 2.5e-06 2.5e-06 0
[45,] 2.5e-06 2.5e-06 2.5e-06 0
[46,] 2.5e-06 2.5e-06 2.5e-06 0
[47,] 2.5e-06 2.5e-06 2.5e-06 0
[48,] 0 2.5e-06 2.5e-06 2.5e-06
[49,] 0 2.5e-06 2.5e-06 2.5e-06
[50,] 0 2.5e-06 2.5e-06 2.5e-06
[51,] 0 2.5e-06 2.5e-06 2.5e-06
[52,] 2.5e-06 0 2.5e-06 2.5e-06
[53,] 2.5e-06 0 2.5e-06 2.5e-06
[54,] 2.5e-06 0 2.5e-06 5e-05
[55,] 2.5e-06 0 2.5e-06 2.5e-06
[56,] 2.5e-06 2.5e-06 0 2.5e-06
[57,] 2.5e-06 2.5e-06 0 2.5e-06
[58,] 2.5e-06 2.5e-06 0 2.5e-06
[59,] 2.5e-06 2.5e-06 0 2.5e-06
[60,] 2.5e-06 2.5e-06 2.5e-06 0
[61,] 2.5e-06 2.5e-06 2.5e-06 0
[62,] 2.5e-06 2.5e-06 2.5e-06 0
[63,] 2.5e-06 2.5e-06 2.5e-06 0

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 529

You might need a magnifying glass to read that, but eight entries have a twenty-fold increase in
their rates: [6,3], [22,3], [38,3], and [54,3] for the CG-to-TG mutations, and [24,0], [25,0],
[26,0], and [27,0] for the CG-to-CA mutations (which are CG-to-TG mutations on the
complementary strand). This model seems to equilibrate at least as quickly as the previous one:

1: 0.24866 0.25147 0.25051 0.24936
10001: 0.26807 0.23266 0.23179 0.26748
20001: 0.27538 0.22543 0.22402 0.27517
30001: 0.27899 0.22239 0.21949 0.27913
40001: 0.28241 0.21986 0.21724 0.28049
...
300001: 0.2935 0.20856 0.20556 0.29238
310001: 0.29249 0.20837 0.20564 0.2935
320001: 0.29305 0.2086 0.20462 0.29373
330001: 0.29351 0.2074 0.20494 0.29415
340001: 0.29409 0.20731 0.20522 0.29338
...
1220001: 0.29337 0.20553 0.20956 0.29154
1230001: 0.29271 0.20636 0.20966 0.29127
1240001: 0.29301 0.20627 0.20914 0.29158
1250001: 0.29237 0.20623 0.20929 0.29211
1260001: 0.29272 0.2058 0.20874 0.29274
...

It’s a bit harder to tell since the equilibrium here is dynamic, and the frequencies will fluctuate
stochastically forever; but certainly by generation 300,000 it is quite close to equilibrium, which
seems to be somewhere near 30% A and T, 20% C and G. If we run this model out to ten million
generations the frequencies appear unchanged, but we can do better: we can average the printed
frequencies for the whole ten-million-generation run over its last nine million generations. This
should be quite close to the expected equilibrium value from theory. For one run the result is
~29.3% A and T, ~20.7% C and G. Deriving the theoretical expectation is beyond the scope of this
manual.

In short, then, we have seen that it is straightforward to build a 64×4 mutation matrix that gives
custom mutation rates for particular trinucleotide sequences, and that the equilibrium nucleotide
frequencies resulting from such a mutation matrix can easily be assessed with the
nucleotideFrequences() function (a nucleotideCounts() function is also provided, if absolute
counts are needed). The recipes here used an artificially high overall mutation rate and a very
small population size in order to obtain quicker results, but those choices should not influence the
final outcome, only the runtime to reach it.

18.6 A nucleotide-based model with introduced non-nucleotide-based mutations
Many nucleotide-based models will want to use only nucleotide-based mutations; if a mutation

occurs, it ought to have an associated nucleotide, biologically, one might reason. That makes
some sense, but sometimes it will nevertheless be desirable to use non-nucleotide-based mutations
as well, in a “mixed model”. Non-nucleotide-based mutations can represent modifications to the
genome that are otherwise unrepresentable in SLiM, such as inversions, indels, and epigenetic
modifications (see, for example, section 14.4). It can also be convenient to model a mutation as
non-nucleotide-based if you simply don’t care what nucleotide is associated with it; that is what
we will model in this recipe.

The recipe here is quite simple, establishing a nucleotide-based mutation type (m1) for neutral
mutations and a non-nucleotide-based mutation type (m2) for a sweep mutation that is introduced
in tick 1:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 530

initialize() {
 defineConstant("L", 1e5);
 initializeSLiMOptions(nucleotideBased=T);
 initializeAncestralNucleotides(randomNucleotides(L));
 initializeMutationTypeNuc("m1", 0.5, "f", 0.0);
 initializeMutationType("m2", 0.5, "f", 0.1);
 m2.convertToSubstitution = F;
 m2.color = "red";

 initializeGenomicElementType("g1", m1, 1.0, mmJukesCantor(1e-7));
 initializeGenomicElement(g1, 0, L-1);
 initializeRecombinationRate(1e-8);
}
1 late() {
 sim.addSubpop("p1", 500);
 sample(p1.genomes, 10).addNewDrawnMutation(m2, 20000);
}
2000 late() {
 print(sim.mutationsOfType(m2));
}

If the m2 sweep mutation is not lost, it fixes, but is not converted to a substitution since
convertToSubstitution has been set to F for m2. Sometimes it will be lost due to drift, but after a
few runs one will generally see a run in which it fixes and is printed.

The interesting thing about this model is that it sets up a non-nucleotide-based mutation type in
a nucleotide-based model. Note that the non-nucleotide-based mutation is added with
addNewDrawnMutation(); this is the only way for non-nucleotide-based mutations to occur in a
mixed model, in fact (or addNewMutation(), equivalently, of course). It is not legal for a non-
nucleotide-based mutation type to be used as one of the mutation types contributing to a given
genomic element type; we could not provide something like c(m1,m2) and c(1.0,0.01) to
initializeGenomicElementType(), as we might otherwise do.

The reason for this restriction is that in nucleotide-based models the mutation rate at a given
position is sequence-dependent; as we saw in the previous section, the mutation rate at a CpG site
might be 20× higher than at a non-CpG site. What, then, would it mean to say that the relative
fractions of mutations of types m1 and m2 are 1.0 to 0.01 if m1 is nucleotide-based (and thus its
mutation rate is sequence-dependent) and m2 is not nucleotide-based (and thus its mutation rate is
not sequence-dependent)? The requested ratio between the mutation types could not be
guaranteed unless the mutation rate for m2 were also sequence-dependent; but that seems to make
little sense for a non-nucleotide-based mutation type. And what mutation rate would m2, the non-
nucleotide-based mutation type, even use given that in nucleotide-based models the mutation
rates are specified by the mutation matrix, in which the rates are sequence-dependent?

Of course it would be possible to decide upon some policy regarding these questions; but for
the time being, at least, the policy we decided upon was to simply make such models illegal.
Non-nucleotide-based mutations can be used in nucleotide-based models, but only by introducing
them in script – they are never auto-generated by SLiM.

If a nucleotide-based model wants non-nucleotide-based mutations to arise in a regular,
probabilistic fashion, similar to how they would in a typical non-nucleotide-based SLiM model,
that is quite easy to script: for each new offspring genome, just use rbinom() or rpois() to draw
the number of mutations that occurred (based on the rate and the genome length), draw random
positions for them (using rdunif() across the range of the genome’s length), and then call
addNewDrawnMutation() to add all of the drawn mutations to the genome. Unless a non-uniform
mutation rate map is needed, this should be just a couple of lines of code.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 531

18.7 Using standard SLiM fitness effects with nucleotides: modeling synonymous sites
Thus far, the nucleotide-based mutations we’ve modeled have been neutral, but the usual SLiM

fitness effects, due to selection coefficients, dominance coefficients, and mutationEffect()
callbacks, can be applied to nucleotide-based mutations too. In some cases one might want
fitness effects to be sequence-dependent in some specific way (see sections 18.8 and 18.9); but
often it may be enough, as in other SLiM models, for the effects of nucleotide-based mutations to
be drawn from some distribution of fitness effects (DFE). That is what we will look at here.

A nucleotide-based SLiM model can use whatever genomic structure and DFEs are wanted; the
recipes of previous chapters could generally be converted to be nucleotide-based easily. However,
when one starts to think of a model in terms of explicit nucleotides there are some ideas about
fitness effects that spring to mind, such as the phenomenon of “synonymous substitutions”.
Synonymous substitutions are mutations that have no effect upon the amino acid coded for by a
given trinucleotide, because of the degeneracy of the genetic code – the fact that many amino
acids are coded for by more than one trinucleotide sequence. For example, CAT and CAC both
code for histidine, so a mutation from T to C in that trinucleotide will have no effect upon the
amino acid generated (although it might still have some effect on fitness due to factors such as
translational efficiency). The pattern of the genetic code’s degeneracy is such that mutations in the
third position are much more likely to be synonymous than mutations in the first or second
positions. One could model that explicitly and precisely with a sequence-based strategy (see
section 18.9), but to a first approximation one might simply model it using different DFEs for the
first and second position versus the third position of each trinucleotide. The setup for such a
strategy might look like this:

initialize() {
 initializeSLiMOptions(nucleotideBased=T);
 initializeAncestralNucleotides(randomNucleotides(3e5));

 mm = mmJukesCantor(2.5e-8);
 initializeMutationTypeNuc("m1", 0.5, "f", 0.0); // neutral
 initializeMutationTypeNuc("m2", 0.1, "g", -0.03, 0.2); // deleterious
 initializeGenomicElementType("g1", c(m1,m2), c(3,3), mm); // pos 1/2
 initializeGenomicElementType("g2", c(m1,m2), c(5,1), mm); // pos 3
 initializeRecombinationRate(1e-8);

 types = rep(c(g1,g2), 1e5);
 starts = repEach(seqLen(1e5) * 3, 2) + rep(c(0,2), 1e5);
 ends = starts + rep(c(1,0), 1e5);
 initializeGenomicElement(types, starts, ends);
}
1 early() {
 sim.addSubpop("p1", 500);
}

This model defines a neutral mutation type (m1) and a deleterious mutation type (m2); we won’t
model beneficial mutations at all, for simplicity. Approximately two-thirds of mutations in the third
position are synonymous in the standard genetic code. If we assume that synonymous mutations
are always neutral, then about two-thirds of mutations that would be deleterious in the first or
second position should be neutral when in the third position (ignoring the few cases where
mutations in the first or second positions are synonymous). We set up the mix of m1 and m2
mutations accordingly for g1 (used for first and second positions) and g2 (used for third positions).

Then we need to set up the chromosome structure. In this model, we just assume that the
whole chromosome is a single big exon, so we alternate two g1 positions followed by one g2

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 532

position all down the length of the chromosome. A more complex model could, of course, model
non-coding regions and introns and so forth; the scheme should work fine as long as the exonic
portions of the genome are correctly tiled with g1 and g2 (perhaps using other genomic element
types for other kinds of genomic regions). Note that we make a single vectorized call to
initializeGenomicElement() here; this is more efficient since we are creating a large number of
genomic elements, especially since we provide the elements in ascending order by position.

All that remains is to implement an output event that allows us to see how well this scheme is
working:

1e6 late() {
 sub = sim.substitutions;
 pos3 = (sub.position % 3 == 2);
 pos12 = !pos3;

 catn(size(sub) + " substitutions occurred.");
 catn(mean(sub.mutationType == m1)*100 + "% are neutral.");
 catn(mean(sub.mutationType == m2)*100 + "% are non-neutral.");
 catn();
 catn(size(sub[pos12]) + " substitutions are at position 1 or 2.");
 catn(mean(sub[pos12].mutationType == m1)*100 + "% are neutral.");
 catn(mean(sub[pos12].mutationType == m2)*100 + "% are non-neutral.");
 catn();
 catn(size(sub[pos3]) + " substitutions are at position 3.");
 catn(mean(sub[pos3].mutationType == m1)*100 + "% are neutral.");
 catn(mean(sub[pos3].mutationType == m2)*100 + "% are non-neutral.");
 catn();
}

This gets the substitutions from the model, creates logical vectors pos12 and pos3 to allow the
substitutions at those positions to be selected easily with subsetting, and then prints out some very
basic summary statistics about the substitutions that occurred:

17990 substitutions occurred.
76.3591% are neutral.
23.6409% are non-neutral.

11019 substitutions are at position 1 or 2.
67.1114% are neutral.
32.8886% are non-neutral.

6971 substitutions are at position 3.
90.9769% are neutral.
9.0231% are non-neutral.

First of all, we can see that neutral mutations are more likely to fix; the DFE for the deleterious
mutations defines a fairly weak average effect (using a gamma distribution with a mean of -0.03),
but selection is certainly having an effect here. We can see this because about ~61% of new
mutations should be neutral according to the genetic model (from a little quick math), whereas
~76% of the mutations that actually fixed are neutral. This makes sense; selection is working;
good.

Second, we can see that the different DFEs for positions 1 and 2 versus position 3 are clearly
making a difference; ~91% of substitutions at position 3 are neutral, versus ~67% at positions 1
and 2. This is because the proportion of mutations that are neutral is much higher at the third
position to begin with, as we defined it to be.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 533

18.8 Defining sequence-based fitness effects at the nucleotide level
In the previous section, we saw how to define fitness effects for nucleotide-based mutations

using SLiM’s standard fitness machinery of selection coefficients drawn from some distribution of
fitness effects. For many models that is useful, but sometimes it is desirable to define a specific
nucleotide-based fitness effect: if the nucleotide at this position is such-and-such, the fitness effect
will be such-and-such. One would not generally want to try to define such specific nucleotide-
based fitness effects for a large number of positions, but at a particular locus of interest, where
perhaps the protein coded for by a gene is well-understood and the effects of mutations have been
characterized experimentally, it could certainly be desirable.

In this recipe, we will show how to model such an effect. We will model a chromosome that is
generally under neutral evolution, but that has one specific nucleotide that has selective effects we
wish to model explicitly. The recipe:

initialize() {
 defineConstant("L", 1e4);
 defineConstant("EFF", c(1.0, 0.1, 1.5, 3.0));
 initializeSLiMOptions(nucleotideBased=T);

 seq = randomNucleotides(100) + 'A' + randomNucleotides(1e4 - 101);
 initializeAncestralNucleotides(seq);

 initializeMutationTypeNuc("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0, mmJukesCantor(2.5e-7));
 initializeGenomicElement(g1, 0, L-1);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 500);
}
s1 fitnessEffect() {
 nuc1 = individual.genome1.nucleotides(100, 100, format="integer");
 nuc2 = individual.genome2.nucleotides(100, 100, format="integer");
 return EFF[nuc1] * EFF[nuc2];
}
10000 late() {
 subs = sim.substitutions[sim.substitutions.position == 100];

 for (sub in subs)
 catn("Sub to " + sub.nucleotide+ " in " + sub.fixationTick);
}

In the initialize() callback we define a constant, EFF, with the fitness effect we want to apply
to an individual carrying a given nucleotide. We will model the effects of the nucleotides in a
given individual’s two genomes as being independent and multiplicative, but this is not hard to
change. The four values in EFF correspond to the four nucleotides A, C, G, and T; the values chosen
mean that at the selected position an A will be neutral (1.0), a C will be nearly lethal (0.1), a G will
be beneficial (1.5), and a T will be strongly beneficial (3.0). We can therefore expect that the final
state of the model will have a T at the selected position, and that we might pass through an
intervening state of G en route to that final state; mutations to C are very unlikely to persist.

We then construct an ancestral sequence that contains random nucleotides everywhere but
position 100, which begins as an A. Apart from those changes, the initialization is predictable.
Note that there is only one mutation type, with a neutral DFE, and that the genome is uniform,
composed of a single genomic element; we are not treating the selected position specially in any
way in the genetic model apart from setting its initial nucleotide state to A.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 534

After creating the subpopulation, we have a fitnessEffect() callback named s1. Remember
that fitnessEffect() callbacks are called once per individual per cycle, giving an opportunity to
provide customized per-individual fitness effects (see section 26.3). In this callback, we get the
nucleotide that is present at position 100 in each genome of the focal individual. We get these
nucleotides with format "integer", so they will be integers in [0,3], representing A/C/G/T
respectively – perfect for subsetting our EFF vector to get a fitness effect. And so that’s what we do,
returning the product of the two EFF values since we want the fitness effect in this model to be
multiplicative. Notice that this fitnessEffect() callback looks only at the nucleotide sequences
of the genomes, not directly at the mutations present; it works exactly the same whether mutations
at position 100 are present or not.

The final output event just gets a vector of any substitutions that occurred at the selected
position and prints out their nucleotide and fixation tick. One run of the model produces:

Sub to G in 668
Sub to T in 5522

The model did, in this run, mutate to G first and then end up at T. In other runs, T is reached
first, or no substitution occurs at the selected position at all before the run ends. But we never see
back-mutation to A, or fixation of C, since those events are selected against so strongly.

The performance of this model is noticeably slower than for a vanilla neutral model without the
nucleotide-based fitness effect, because the fitnessEffect() callback runs in every cycle and
checks the nucleotide at position 100 of both genomes of every individual. Because this is a WF
model, where only relative fitness matters, we can eliminate this overhead quite easily with a little
trick:

late() {
 if (sum(sim.mutations.position == 100) == 0)
 s1.active = 0;
}

This late() event checks whether any of the mutations currently segregating in the model are at
position 100. If not, the effect of the fitnessEffect() callback would be uniform, altering the
fitness of every individual in exactly the same way, and in a WF model that makes no difference.
In that case, it therefore deactivates the callback, for that cycle, by setting its active property to 0.
(Re-activating the callback is not necessary, since SLiM automatically re-activates every script
block at the start of every tick.) With this addition, the model runs just about as fast as the
equivalent neutral model; the fitnessEffect() callback is used in only a few cycles.

In a nonWF model the same optimization could be used except that when s1 is deactivated,
p1.fitnessScaling should also be set to the appropriate value to produce the correct fitness effect
for the whole population, calculated from EFF given the nucleotide currently at the selected
position in the ancestral sequence.

Obviously the mechanics of this model would be a bit clunky if you wanted to implement
specific nucleotide-based effects at, say, n=100 different locations. In that event you would
probably want to generalize the code here to be driven by a vector of n positions and a matrix of
n×4 nucleotide effects. That wouldn’t actually be that painful to implement, but it might become
prohibitively slow since so much of the model’s logic would be happening in script. If the
positions that you want to give custom effects for are all at one locus, it would at least be faster to
fetch the nucleotides from genome1 and genome2 just a single time, using a start and end position
for the fetch that spans the whole region of interest, and then subset into the resulting vector of
integers to get the nucleotide state at a specific position; that should be faster than fetching each
nucleotide individually.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 535

18.9 Defining sequence-based fitness effects at the amino acid level
In the previous recipe, we saw how to make fitness dependent upon the nucleotide sequence of

an individual’s genomes. That method could be extended to model realistic effects of nucleotide
mutations on the amino acid sequence of a gene, but it would be rather cumbersome to
implement in practice. However, SLiM provides some support for operating directly at the level of
amino acids in a model, smoothing the way for models of this type. In this section we will explore
a model of amino-acid–based fitness. In particular, we will model neutral dynamics except that
any mutation that generates a stop codon within the coding sequence of a gene is lethal. Let’s start
with the initialize() callback and the subpopulation creation:

initialize() {
 defineConstant("L", 1e4);
 defineConstant("TAA", nucleotidesToCodons("TAA"));
 defineConstant("TAG", nucleotidesToCodons("TAG"));
 defineConstant("TGA", nucleotidesToCodons("TGA"));
 defineConstant("STOP", c(TAA, TAG, TGA));
 defineConstant("NONSTOP", (0:63)[match(0:63, STOP) < 0]);

 codons = sample(NONSTOP, 194, replace=T);
 seq1 = randomNucleotides(253);
 seq2 = paste0(codonsToNucleotides(codons, format="char")[0:417]);
 seq3 = randomNucleotides(200);
 seq4 = paste0(codonsToNucleotides(codons, format="char")[418:581]);
 seq5 = randomNucleotides(L-1035);
 seq = seq1 + seq2 + seq3 + seq4 + seq5;
 catn("Initial AA sequence: " + codonsToAminoAcids(codons));

 initializeSLiMOptions(nucleotideBased=T);
 initializeAncestralNucleotides(seq);
 initializeMutationTypeNuc("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0, mmJukesCantor(2.5e-6));
 initializeGenomicElement(g1, 0, L-1);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 500);
}

This model defines a chromosome of length 1e4, with a gene that is comprised of two exons,
one spanning [253,670] in the nucleotide sequence, the other spanning [871,1034]. The first exon
is 418 bases long, the second 164 bases long; neither is a multiple of three in length, but together,
when transcribed and spliced, the mRNA for the gene will be 582 bases long, which is a multiple
of three comprising 194 codons.

The first thing this model does is define a set of constants that will be useful for working with
codons. Codons are represented in SLiM as integers in [0,63], where AAA is 0, AAC is 1, AAG is 2,
AAT is 3, and thus upward, counting in base 4, to TTT which is 63. These integer values can be a
little confusing to work with, so we define constants TAA, TAG, and TGA to represent the codon
values of the three stop codons in the standard genetic code (which turn out to be represented by
48, 50, and 56). The integer values for the codons are provided by a utility function,
nucleotidesToCodons(). Once we have those codon values, we define a vector named STOP that
represents all three stop codons, and then derive a vector named NONSTOP that contains all the
codon values that are not stops. If you are curious, you can see the amino acids represented by
these vectors in the Eidos console using the codonsToAminoAcids() utility function, which converts
integer codon values to the standard amino acid letters:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 536

> codonsToAminoAcids(STOP)

"XXX"

> codonsToAminoAcids(NONSTOP)

"KNKNTTTTRSRSIIMIQHQHPPPPRRRRLLLLEDEDAAAAGGGGVVVVYYSSSSCWCLFLF"

The stop codons are represented by X; the rest have their usual letters as well.
So far, so good. Having gotten those ducks in a row, we then construct an ancestral sequence.

So as to not start the model in a lethal state, we have to create an ancestral sequence that, within
the two exons, contains no stop codons. We do this by drawing 194 random codons from NONSTOP
to represent the initial codon sequence, and translating it back into nucleotides with
codonsToNucleotides(), another utility function. Once we have done that, we assemble the
ancestral sequence as appropriate, with completely random nucleotides outside of the two exons.
Finally, we print the amino acid sequence for the gene, using codonsToAminoAcids(), for future
reference.

The rest of the initialization is unsurprising; we just set up a uniform chromosome using
nucleotide-based mutations with a high-mutation-rate Jukes–Cantor model.

Next let’s define a fitnessEffect() callback that makes stop codons lethal:

fitnessEffect() {
 for (g in individual.genomes)
 {
 seq = g.nucleotides(253, 670) + g.nucleotides(871, 1034);
 codons = nucleotidesToCodons(seq);
 if (sum(match(codons, STOP) >= 0))
 return 0.0;
 }

 return 1.0;
}

We loop over the two genomes of the focal individual (we deem a stop codon in either one of
the two to be lethal, in this model, but it would be easy to model dominance such that both
genomes must contain a stop codon to produce lethality). For each genome, we get the
nucleotides from the two exons, paste them together into a single sequence string, and convert the
sequence to codons with nucleotidesToCodons(). Finally, we use the match() function to find
any matches between the codon sequence and any of the stop codons in STOP. If any are found,
the callback returns 0.0; otherwise it returns a neutral fitness effect of 1.0.

Finally, we have an output event:

100000 late() {
 catn(sim.substitutions.size() + " fixed mutations.");

 as1 = sim.chromosome.ancestralNucleotides(253, 670, "integer");
 as2 = sim.chromosome.ancestralNucleotides(871, 1034, "integer");
 as = c(as1, as2);
 codons = nucleotidesToCodons(as);
 catn("Final AA sequence: " + codonsToAminoAcids(codons));
}

This prints the number of mutations and the final amino acid sequence (to be compared to the
initial sequence printed in the initialize() callback). The relevant output from this model looks
like this, for one sample run:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 537

Initial AA sequence: VRGSKRAYTVAWATTYDREEADLTRSPGGLPRANYFEDHFLTSPQLYSSRRSS
RWNLSVVSRVVEYRFCLGANGLIQYIPFSLLPVTPPREDKGLTANLQGLRVKRVLAPQPHLKTGVLTDIRFTLY
LATNMITSLQSGLATINVQHRGLLGRLGLSPNQNVYLWDTRCQIRLRIAAPTGAKHITIRHVDENHL

7211 fixed mutations.
Final AA sequence: ASSSTQSFTLENSRTPIRHGIDKPISQGCMTCATVYEVSRRRRQQHRSTRHASRL
TPGGVDHALGNPSCAGHSGVTRYILFILAPLMVSRDENGLSSIVVGLRQAPVHALQQRHKSVVYPLIQIPYSLA
TNIRTQLQTVCSTLETRETHGIGRACLPPMSPRYDWAPRFSLLLSVGVWRRPQKNTNLHMTSHRA

It can be seen that many, if not most, of the codons in the gene sequence have mutated (thanks
to the high mutation rate used); nevertheless, even though three of the possible 64 codon values
are stops, the final sequence contains no stop codon. The model has avoided stop codons because
they are lethal. Indeed, if you run this model under SLiMgui you will see the occasional individual
colored black instead of yellow; those are individuals that received a mutation that gave them a
stop codon within the gene, and so they have a fitness of zero. The operation of the lethality
mechanism can thus be seen graphically, as well as in the final sequence.

The fitness scheme here is simple: three codons are lethal, all others are neutral. There is no
reason that this model could not be extended to more complex fitness functions, however. In fact,
if one had a command-line program that evaluated a given amino acid sequence for its efficacy in
performing some enzymatic task – perhaps looking at the folded structure of the protein and so
forth – one could, in principle, use the system() function of Eidos to delegate fitness evaluation to
such an external program, evolving a gene sequence according to an algorithmic evaluation of the
fitness of the resulting protein by an external tool. This would probably not be fast, but it should
be possible! (Those feeling sufficiently adventurous could define a new built-in SLiM function, in
C++, for their evaluator instead; working in SLiM’s C++ code is not generally recommended, but
this might be a case where it would be worthwhile.)

18.10 Varying the mutation rate along the chromosome in a nucleotide-based model
The nucleotide-based models we have seen so far have involved a mutation rate that can be

sequence-dependent (as in section 18.5) but that is otherwise uniform along the chromosome,
without “hot spots” or “cold spots”. In non-nucleotide-based models, varying the mutation rate
along the chromosome is done with an explicit map of mutation rates set up with
initializeMutationRate() (as in, e.g., section 14.10; see also sections 6.1.1 and 6.1.2 for the
similar issue of setting up an explicit recombination rate map). In nucleotide-based models, it is
instead done with a map of mutation rate multipliers set up with initializeHotspotMap(). These
multipliers scale the local sequence-dependent mutation rate up or down within particular
genomic regions. The recipe here sets up a random hotspot map, in a similar manner to the
random recombination rate map of section 6.1.1:

initialize() {
 defineConstant("L", 1e5);
 initializeSLiMOptions(nucleotideBased=T);
 initializeAncestralNucleotides(randomNucleotides(L));
 initializeMutationTypeNuc("m1", 0.5, "f", 0.0);
 m1.color = "black";
 initializeGenomicElementType("g1", m1, 1.0, mmKimura(1.8e-07, 6e-08));
 initializeGenomicElement(g1, 0, L-1);
 initializeRecombinationRate(1e-8);

 ends = c(sort(sample(0:(L-2), 99)), L-1);
 multipliers = rlnorm(100, 0.0, 0.75);
 initializeHotspotMap(multipliers, ends);
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 538

1 early() {
 sim.addSubpop("p1", 500);
}
2000 late() { sim.outputFixedMutations(); }

The initialization here is generally familiar. The m1 mutation type is set to draw in black just for
better visual contrast in the screenshot below. A Kimura (1980) mutational model is used, as in
section 18.2, to illustrate that setting up a hotspot map is compatible with sequence-based
variation in the mutation rate; the realized mutation rate at a given position will be the
multiplicative product of the sequence-based rate at that position (as expressed by the
mutationMatrix of the governing genomic element type) and the hotspot multiplier at that position
(as expressed by the hotspot map).

The interesting bit is at the end of the initialize() callback, where we generate a hotspot
map. A total of 100 different hotspot map regions are generated, using endpoints drawn from the
set of possible positions along the chromosome (guaranteeing that L-1 is the final endpoint, so that
the map is complete). Multipliers are drawn from a lognormal distribution using rlnorm(), not
with any biological basis for that choice, but simply because it is a convenient choice of
distribution to provide values in (0,∞) with a known mean and standard deviation.

A snapshot of the end result (with display of the mutation rate map enabled in SLiMgui with the
 button to the right of the chromosome view):

Darker regions represent mutational cold spots, with multipliers as low as 0.2 in this run of the
model, and lighter regions represent hot spots, with multipliers as high as 7.0. The effect of the
hotspot map on the mutational dynamics can be seen clearly; the darkest regions show few
mutations, while the lightest regions show many. At any given site, the relative rates of transitions
versus transversions from the Kimura (1980) model is maintained, although that cannot be seen
here.

A hotspot map could easily be read in from a file instead of being generated randomly; see
section 6.1.2 for an example (reading in a recombination rate map, there, but the technique would
be the same).

18.11 Modeling GC-biased gene conversion (gBGC)
SLiM provides both a simple “crossover breakpoint” recombination model and a more

mechanistically detailed “double-stranded break (DSB)” model. The “DSB” model provides
support for gene conversion, including the phenomenon of biased gene conversion. These
foundational concepts are discussed in detail in section 1.5.6, and section 6.1.3 showed a recipe
for a simple model including unbiased gene conversion.

In SLiM 3.1, a recipe for biased gene conversion was introduced (section 14.19, at that time)
using the script-based simulation of nucleotides that was available at that time. That recipe is now
obsolete, and has been retired; in SLiM 3.3, since we now have built-in support for both
nucleotide-based models and biased gene conversion, a much better and simpler model can be
constructed. In this section, then, we will look at a model for a nucleotide-based model that
includes simulation of GC-biased gene conversion, and will see the effect that that has upon the
equilibrium nucleotide frequency – the average GC content of the genome, specifically.

The recipe is quite straightforward:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 539

initialize() {
 defineConstant("L", 1e5);
 defineConstant("alpha", 2.5e-6);
 initializeSLiMOptions(nucleotideBased=T);
 initializeAncestralNucleotides(randomNucleotides(L));
 initializeMutationTypeNuc("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0, mmJukesCantor(alpha));
 initializeGenomicElement(g1, 0, L-1);
 initializeRecombinationRate(1e-5);
 initializeGeneConversion(0.7, 1500, 0.80, 0.10);
}
1 early() {
 sim.addSubpop("p1", 500);
}
1:1000001 early() {
 if (sim.cycle % 1000 == 1) {
 cat(sim.cycle + ": ");
 print(nucleotideFrequencies(sim.chromosome.ancestralNucleotides()));
 }
}

A chromosome of length 1e5 is set up, and elevated mutation and recombination rates are used
so the model makes more rapid progress for demonstration purposes. A simple Jukes–Cantor
mutational model is used, so no nucleotide bias is introduced by the mutational model itself; with
no other source of bias, the nucleotide frequencies in the model should be equal (with some
stochasticity). The nucleotide frequencies in the ancestral sequence (which incorporates all fixed
mutations) are printed every thousand cycles until the model finishes (see section 18.5, which
similarly prints nucleotide frequencies, for discussion).

The interesting bit is the call to initializeGeneConversion(). This function takes four
parameters (although the last parameter is optional). The first, passed an argument of 0.7 here, is
the fraction of recombination events (i.e., double-stranded breaks or “DSBs”) that are non-
crossovers; so 70% of DSBs will be non-crossovers here (involving only a gene conversion tract)
and 30% will be crossovers (involving a gene conversion tract and a switch in the copy strand).
The second, passed 1500 here, is the mean gene conversion tract length, in bases. The third,
passed 0.80 here, is the fraction of gene conversion tracts that are “simple”, not involving any
heteroduplex mismatch repair; 80% of gene conversion tracts in this model will be “simple”.
Finally, the fourth parameter, passed 0.10 here, is the GC bias coefficient used to determine
whether, and to what extent, G/C alleles are preferred to A/T alleles during heteroduplex mismatch
repair. A bias of 0.0 (the default) expresses no preference, so the mismatch will be repaired
toward one or the other parental strand randomly, whereas 1.0 would represent an absolute
preference for the G/C allele, and -1.0 would represent an absolute preference for the A/T allele. In
this model, the bias of 0.10 means that the G/C allele will be preferred 55% of the time, a small but
important effect as we will see below. Section 1.5.6 describes the mechanistic consequences of
these parameters in detail, so we will not discuss them further here.

This model takes quite a while to run because it runs for so many ticks, but when it does
complete, the output generated looks something like this:

1: 0.24885 0.25057 0.2483 0.25228
1001: 0.24885 0.25055 0.24835 0.25225
2001: 0.2488 0.25072 0.24834 0.25214
...
498001: 0.20598 0.29034 0.29469 0.20899
499001: 0.20598 0.29027 0.29511 0.20864
500001: 0.20587 0.29046 0.29485 0.20882

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 540

This output shows the GC content of the ancestral sequence rising steadily from ~50% initially to
a more or less equilibrium level of ~59% by the end of the run. A quick plot of this in R shows the
trajectory of the rise:

An equilibrium GC content is approached, rather than the GC content just rising until it reaches
100%, for at least two reasons. First, as GC content increases the tendency of random mutation to
change G/C positions back to A/T gets stronger. If you imagine a sequence that was 100% G/C, two-
thirds of mutations would change a G/C position to an A/T, one-third would change a G to a C or
vice versa, and none would change an A/T to a G/C. Second, as GC content increases the number of
heteroduplex mismatch sites involving a G/C mismatched with an A/T decreases, and so the
frequency with which biased gene conversion promotes G/C alleles decreases. Again, if you
imagine a 100% GC sequence, mismatch repair would never have an opportunity to prefer G/C over
A/T; the effect of the gene conversion bias would completely disappear.

The equilibrium GC content, and the speed at which that equilibrium is reached, will depend
upon the gene conversion parameters, the recombination rate, and other model parameters. In
particular, as Duret & Galtier (2009) note, the strength of the evolutionary response in GC content is
expected to be proportional to the effective population size. The population size of 500 used here
leads to a smaller evolutionary response (but a relatively fast model runtime, for purposes of
illustration). Because of this dependency upon the effective population size, model rescaling (see
section 5.5) should be used with caution when biased gene conversion is enabled, as either the
speed of equilibration or the equilibrium GC content level may be distorted.

The parameter values used here are not intended to be a realistic depiction of biased gene
conversion in any particular species; however, they are loosely based upon empirical parameter
estimates. It would be simple to extend this model to be more biologically realistic; indeed,
isochore structure should emerge naturally if a variable recombination rate map along the
chromosome is used, with high GC content near recombination hotspots (where gene conversion is
more active) and lower GC content in the rest of the genome.

18.12 Reading VCF files to create nucleotide-based SNPs
One of the benefits of nucleotide-based models is the ability to simulate real populations down

to the level of the actual segregating SNPs. Such data is often represented with a VCF file that
contains the SNPs for the sequenced genomes, in addition to a FASTA file that contains the
“reference” sequence from which those SNPs differ. Given such files, SLiM can easily set up a
simulation of the population, as we will explore in this section’s recipe using human genomic data
from the 1000 Genomes Project. This recipe will be rather more empirically based than usual, so
we will first deal with obtaining and massaging the genomic data used.

Generation

%
 G

C
 c

on
te

nt

1 1e5 2e5 3e5 4e5 5e5

50
55

60

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 541

A prerequisite for this work is installing two open-source packages: samtools and VCFtools.
The procedure for installing these will be platform-specific. I installed samtools on macOS using
MacPorts (port install samtools), and used version 1.10. VCFtools was not on MacPorts, as of
this writing, so I downloaded the source and built it in Terminal following the instructions at
https://vcftools.github.io/examples.html, obtaining version 0.1.17.

Next, I went to http://www.internationalgenome.org/data and downloaded two files. One was
the sample information, a file named 20130606_sample_info.xlsx. The other was the Phase 3 VCF
file, named ALL.chr22.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf, for
chromosome 22. I decided to focus on the samples from people in Finland, and I filtered out
indels and mutations that were, in the Finnish samples, either fixed or absent, with the command:

vcftools --vcf
ALL.chr22.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf --
keep FIN_samples.txt --remove-indels
--mac 1 --recode --out chr22_filtered

This reduced the VCF file size from 11.2 GB to 67.9 MB, making it manageable for a quick
demo like this; 99 out of 2054 individuals were kept (all those specified as Finnish by the sample
information), and 155518 out of 1103547 segregating sites were retained. (SLiM would be able to
handle the full dataset; these reductions were made just to make the example quicker to run.)

Next, I downloaded the reference nucleotide sequence; this was specified in the ##reference
header field of the VCF file as being located at ftp://ftp.1000genomes.ebi.ac.uk//vol1/ftp/
technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz. Once it was
unzipped, I ran grep ">" /Users/bhaller/Desktop/1000Genomes.phase3/reference/hs37d5.fa to
see what headers it contained, and saw that chromosome 22 was listed with the header line
>22 dna:chromosome chromosome:GRCh37:22:1:51304566:1. I therefore extracted chromosome
22’s reference sequence into its own file by first running samtools faidx hs37d5.fa (to create an
index file) and then samtools faidx hs37d5.fa "22" > hs37d5_chr22.fa (to actually extract
chromosome 22 to a new file). The original FASTA file was 3.19 GB; the extracted sequence for
chromosome 22 was 52.2 MB.

The extracted reference nucleotide sequence contained a large number of sites, particularly at
the beginning and end of the chromosome, designated as N in the FASTA data, meaning that the
nucleotide at that position is unknown. SLiM requires that the ancestral sequence be composed
only of A/C/G/T nucleotides; N is not a legal option. For this reason, I changed all of the N positions
to A; those sites were not involved in SNPs anyway, so this was harmless for our purposes here.

After these steps, I had a FASTA file with the ancestral sequence (hs37d5_chr22_patched.fa),
and a VCF file with the SNPs (chr22_filtered.recode.vcf). Then it was time to load these files
into SLiM. First of all, the initialize() callback should read in the reference sequence and make
it the ancestral sequence used by the simulation, with initializeAncestralNucleotides():

initialize() {
 initializeSLiMOptions(nucleotideBased=T);
 length = initializeAncestralNucleotides("hs37d5_chr22_patched.fa");
 defineConstant("L", length);
 initializeMutationTypeNuc("m1", 0.5, "f", 0.0);
 initializeMutationTypeNuc("m2", 0.5, "f", 0.0);
 m2.color = "red";
 m2.convertToSubstitution = F;
 initializeGenomicElementType("g1", m1, 1.0, mmJukesCantor(0.0));
 initializeGenomicElement(g1, 0, L-1);
 initializeRecombinationRate(1e-8);
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 542

https://vcftools.github.io/examples.html

This reads the ancestral sequence from the FASTA file at the specified path, as we saw in section
18.2. We set up a chromosome of the right length (as determined by the FASTA sequence), using
neutral mutations of type m1. We also define an m2 mutation type, which we will use below, that
displays in red and has convertToSubstitution=F (see section 25.11.1). We intend to do a
simulation from standing genetic variation here, so the mutation rate is set to zero with
mmJukesCantor(0.0).

Next, in a 1 late() event we set up the initial population state by reading SNPs from a VCF file:

1 late() {
 sim.addSubpop("p1", 99);
 p1.genomes.readFromVCF("chr22_filtered.recode.vcf", m1);
 p1.setSubpopulationSize(1000);
}

This calls the readFromVCF() method of Genome on p1.genomes, which creates the SNPs from the
VCF file as mutations in the target genomes. The number of genomes in the target vector
(99×2 = 198) must match the number of genomes specified by the VCF file, and the length of the
simulated chromosome must encompass all of the SNPs. The created mutations will use the
nucleotides specified by the VCF file. The mutation type passed in, m1, is used for the created
mutations since there are no overriding MT fields in the INFO sections of the call lines; similarly,
selection coefficients are drawn from the mutation type (here neutral), since there are no
overriding S fields in the INFO sections providing selection coefficients. Finally, we scale up to
1000 individuals so that drift will have less of an effect on the simulation.

The result is a population that replicates the SNPs sampled in the empirical Finnish population.
We now want to model a specific scenario: one of those SNPs becomes strongly beneficial, and
may sweep, and we want to predict what other SNPs would be carried to fixation along with it by
hitchhiking. In tick 5, we randomly choose a SNP of interest and change its selection coefficient to
be beneficial:

5 late() {
 mut = sample(sim.mutations, 1);
 mut.setMutationType(m2);
 mut.setSelectionCoeff(0.5);
}

We also change it to use mutation type m2 (making it red in SLiMgui, and more importantly
preventing it from being substituted on fixation). Then at the end of the run we dump the SNPs
that fixed:

1:2000 late() {
 mut = sim.mutationsOfType(m2);
 if (mut.size()) {
 f = sim.mutationFrequencies(p1, mut);
 catn(sim.cycle + ": " + sim.mutations.size() + ", f = " + f);

 if (f == 1.0) {
 catn("\nFIXED in cycle " + sim.cycle);
 catn(sim.substitutions.size() + " substitutions.");
 catn(paste(sim.substitutions.nucleotide));
 sim.simulationFinished();
 }
 } else {
 catn(sim.cycle + ": " + sim.mutations.size());
 }
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 543

Of course in some runs of this model the beneficial SNP will be lost due to drift; but for a run in
which the SNP fixes, the model’s output looks like this:

1: 155787
2: 155787
3: 155772
4: 155655
5: 155446, f = 0.0375
6: 155221, f = 0.0455
7: 154303, f = 0.0515
...
54: 116697, f = 0.999
55: 116248, f = 0.9995
56: 115748, f = 1

FIXED in cycle 56
946 substitutions.
C T G G T C T G C G A T A C C C G A A A T ...

The SNP started in tick 5 at a frequency of 0.0375 – just a handful of occurrences in the original
VCF dataset. There was probably some variation among the carrier genomes at other sites, so this
was likely a “soft” selective sweep. Nevertheless, 946 mutations did get carried along to fixation
during the sweep, out of the original 155518 segregating sites in the Finnish population. Here is a
screenshot of the fixed mutations (in blue) with the beneficial mutation (the red line):

It looks like the frequency of fixation increases with proximity to the beneficial mutation, but it’s
hard to be sure without running some stats. This pattern, if real, is probably driven largely by the
pattern of linkage disequilibrium that existed in the initial population with respect to the mutation
chosen to be beneficial; but recombination would also have broken down the association between
the beneficial allele and more distant mutations during the course of the sweep. (The left third of
the chromosome is all N in the original FASTA file, and contains no SNPs.)

We haven’t really leveraged the nucleotides themselves in this model; indeed, we could do
much the same thing as this recipe without modeling nucleotides explicitly. But the nucleotides
are there, and could be used for whatever purpose we wish – sequence-dependent mutations,
codon-based fitness, etc., as we have seen in previous recipes. Or, if it were of interest, we could
simply emit the final nucleotide sequences of all of the individuals in the simulation.

This recipe has a somewhat magical component to it, which is the call to readFromVCF().
Section 27.2.3 and 27.2.4 contain details on the VCF format extensions used by SLiM that allow
specification of things like the mutation type and selection coefficient for each mutation; you can
supply these fields in the VCF files you read in, to configure the mutational state created by SLiM.
The details of what exactly readFromVCF() does are fairly complex; see section 25.4.2 for further
discussion of its mechanics. However, the recipe shown here should provide a good starting point
for simulations of SNPs in empirical populations.

One final note: many downstream tools for analysis of SNPs are apparently not prepared to
handle sites that are triallelic (with not just one, but two, segregating variants). You may wish to
filter such sites out of your input VCF file, or your output VCF file, or both. Zuxi Cui has a GitHub
repo covering solutions for this and many other issues related to whole-genome SLiM simulations,
at https://github.com/zxc307/GWAS_simulation_handbook.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 544

https://github.com/zxc307/GWAS_simulation_handbook

18.13 Tree-sequence recording and nucleotide-based models
We haven’t used tree-sequence recording with a nucleotide-based model yet, but the two

features are entirely compatible. When tree-sequence recording is enabled the nucleotides
associated with each mutation are kept as metadata in the tree-sequence tables, and are written
out to the .trees file along with the ancestral nucleotide sequence. That information is all
accessible with pyslim, as we will see in this section’s recipe.

Let’s start by running a very simple nucleotide-based SLiM model:

initialize() {
 defineConstant("L", 1e5);
 initializeSLiMOptions(nucleotideBased=T);
 initializeTreeSeq();
 initializeAncestralNucleotides(randomNucleotides(L));
 initializeMutationTypeNuc("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0, mmJukesCantor(1e-6));
 initializeGenomicElement(g1, 0, L-1);
 initializeRecombinationRate(1e-6);
}
1 early() {
 sim.addSubpop("p1", 1000);
}
1000 late() {
 sim.treeSeqOutput("recipe_nucleotides.trees");
}

This just churns out a bunch of mutation and recombination, and then dumps a .trees file at
the end for analysis. We will look at two short Python scripts that analyze the nucleotides
recorded in this tree sequence.

In nucleotide models, the mutation rate can depend on the nucleotide context: for instance,
transitions may be more common than transversions. From genetic data only we cannot tell for
sure whether an A/T polymorphism was due to an A-to-T or a T-to-A mutation. But, since tree
sequences record mutations in their genealogical context, we can tabulate the realized mutation
spectrum from a simulation – e.g., how many A-to-G mutations occurred during the simulation,
how many A-to-T mutations, and so forth. Actually, we won’t calculate the number of each type of
mutation that occurred during the entire simulation, but rather the number of mutations that have
occurred on the genealogical trees of the final population – and so, are segregating in the final
population, or would be if other mutations had not reversed their effects.

Doing this is simple: we iterate over all mutations, identify the nucleotide state before and after
the mutation, and add a count to the corresponding entry in the output table (below called M).
Suppose a particular mutation changed an A to a T. Since mutations record the “derived state”,
i.e., the allelic state of anyone who inherits that mutation, the mutation object itself knows about
the derived state of T. Since mutations can “stack” in SLiM, a single mutation as seen by pyslim
may correspond to a collection of SLiM mutations. The way this is recorded in the tree sequence is
that a mutation’s metadata contains a list of metadata dictionaries; we want the dictionary for the
most recent mutation contained in the derived state. The time that each mutation occurred is
associated with the slim_time key of the metadata. Therefore, the nucleotide resulting from
mutation mut is mut_list[k]["nucleotide"], where k is the value with the largest mut_list[k]
["slim_time"]. To find the A, i.e., the nucleotide state before that mutation occurred, we use the
mutation’s “parent mutation” property: the value of mut.parent is the index of the mutation on
whose background mut occurred. If the nucleotide state when the mutation mut occurred was not
determined by a prior mutation (and so it was still in the ancestral state), then mut.parent is -1,
telling us that we must look for the prior nucleotide state in the reference sequence. A final detail

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 545

is that the reference sequence is stored as a string of ACGT, while the nucleotide property of a
mutation is a number 0123.

Here’s the Python code to do that analysis:

import tskit, pyslim
import numpy as np

ts = tskit.load("recipe_nucleotides.trees")

M = [[0 for _ in pyslim.NUCLEOTIDES] for _ in pyslim.NUCLEOTIDES]
for mut in ts.mutations():
 mut_list = mut.metadata["mutation_list"]
 k = np.argmax([u["slim_time"] for u in mut_list])
 derived_nuc = mut_list[k]["nucleotide"]
 if mut.parent == -1:
 acgt = ts.reference_sequence.data[int(ts.site(mut.site).position)]
 parent_nuc = pyslim.NUCLEOTIDES.index(acgt)
 else:
 parent_mut = ts.mutation(mut.parent)
 assert(parent_mut.site == mut.site)
 parent_nuc = parent_mut.metadata["mutation_list"][0]["nucleotide"]
 M[parent_nuc][derived_nuc] += 1

print("{}\t{}\t{}".format('ancestral', 'derived', 'count'))
for j, a in enumerate(pyslim.NUCLEOTIDES):
 for k, b in enumerate(pyslim.NUCLEOTIDES):
 print("{}\t{}\t{}".format(a, b, M[j][k]))

So, line-by-line, the code above (1) sets up M, an empty 4x4 array to put the mutation counts in;
(2) loops over mutations; (3) gets the dictionary of metadata for the SLiM mutations contained by
each mutational “derived state”; (4) finds the most recent SLiM mutation; (5) finds the derived
nucleotide; (6) checks if the mutation occurred on the background of another; (7) if not, finds the
previous nucleotide in the reference sequence and (8) converts it to 0123; (9) otherwise, (10) finds
the index of the previous mutation, (11) double-checks this mutation is actually at the same site;
(12) finds the nucleotide resulting from the previous mutation; and finally (13) adds one to the
corresponding entry of M. Then, it prints out the table, telling you for each possible pair of
nucleotides X and Y, how many mutations converted an X to a Y.

The output from this analysis will look something like this:

ancestral derived count
A A 0
A C 667
A G 670
A T 710
C A 616
C C 0
C G 649
C T 670
G A 665
G C 645
G G 0
G T 616
T A 639
T C 633
T G 647
T T 0

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 546

This shows that A mutated to C a total of 667 times, for example, whereas C mutated to A only
616 times; since we know there is no mutational bias (because this model uses the Jukes–Cantor
mutational model), this difference must be due to chance. The counts for A-to-A, C-to-C, etc., are
zero since those types of mutations do not occur in SLiM’s nucleotide-based mutational model.

In nucleotide models, more complex context-dependence is possible: for instance, the
probability that a G mutates to a T might depend on whether there is a C to the left of the G (see
section 18.5). For our second Python analysis, we modify the code above to tabulate context-
dependent mutations according to the flanking nucleotides on the left and the right. For instance,
how many mutations turned a trinucleotide AAA to ATA? And, how many turned CAC to CTC?

Here is the Python code for the second analysis:

import tskit, pyslim
import numpy as np

ts = tskit.load("recipe_nucleotides.trees")
slim_gen = ts.metadata["SLiM"]["tick"]

M = np.zeros((4,4,4,4), dtype='int')
for mut in ts.mutations():
 pos = ts.site(mut.site).position
 # skip mutations at the end of the sequence
 if pos > 0 and pos < ts.sequence_length - 1:
 mut_list = mut.metadata["mutation_list"]
 k = np.argmax([u["slim_time"] for u in mut_list])
 derived_nuc = mut_list[k]["nucleotide"]
 pretime = mut.time + 1.0
 left_nuc = pyslim.nucleotide_at(ts, mut.node, pos - 1, time = pretime)
 right_nuc = pyslim.nucleotide_at(ts, mut.node, pos + 1, time = pretime)
 parent_nuc = pyslim.nucleotide_at(ts, mut.node, pos, time = pretime)
 M[left_nuc, parent_nuc, right_nuc, derived_nuc] += 1

print("{}\t{}\t{}".format('ancestral', 'derived', 'count'))
for j0, a0 in enumerate(pyslim.NUCLEOTIDES):
 for j1, a1 in enumerate(pyslim.NUCLEOTIDES):
 for j2, a2 in enumerate(pyslim.NUCLEOTIDES):
 for k, b in enumerate(pyslim.NUCLEOTIDES):
 print("{}{}{}\t{}{}{}\t{}".format(a0, a1, a2, a0, b, a2,
 M[j0, j1, j2, k]))

This code follows the same structure as before, except that the resulting counts are stored in a
four-dimensional (4x4x4x4) array, and we have to look up what the nucleotide state was before
each mutation occurred, using the pyslim function nucleotide_at(). After a little while, the result
is the array M, for which, for instance, M[0, 0, 0, 3] is the number of mutations that changed an
AAA to ATA, and M[0, 1, 2, 3] is the number of mutations that changed from ACG to ATG.

Then we print M, which produces output like this:

ancestral derived count
AAA AAA 0
AAA ACA 44
AAA AGA 43
AAA ATA 45
AAC AAC 0
AAC ACC 36
AAC AGC 42
AAC ATC 44
...

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 547

TTG TAG 37
TTG TCG 29
TTG TGG 33
TTG TTG 0
TTT TAT 43
TTT TCT 50
TTT TGT 35
TTT TTT 0

Here we can see that, for example, AAA changed to ATA a total of 45 times. As before, the counts
for nucleotides changing to themselves, such as AAA-to-AAA, AAC-to-AAC, etc., are all zero.

The original rationale for doing this analysis was to look at sequence-dependent variation in
mutation rates, so let’s go beyond the recipe a bit by changing mmJukesCantor(1e-6) to
mmKimura(1.8e-06, 6e-07). With these particular parameters, the Kimura 1980 mutational model
provides the same overall mutation rate as the Jukes–Cantor model did, but with an elevated
transition-to-transversion rate ratio (see section 18.2). When we run the first analysis again, it
produces this table:

ancestral derived count
A A 0
A C 414
A G 1236
A T 399
C A 371
C C 0
C G 386
C T 1176
G A 1190
G C 380
G G 0
G T 357
T A 393
T C 1125
T G 400
T T 0

This shows that transitions (between A and G, and between C and T) have occurred roughly three
times as often as transversions (all other mutations), as requested with the chosen parameters to the
Kimura 1980 model.

We won’t look at the results of the second analysis here, since we know that there is no
interesting variation in mutation rates that depends upon the trinucleotide sequence. If this
analysis were run on the output from a model with an elevated CpG mutation rate, however, such
as that of section 18.5, it would presumably reveal the higher mutation rate prevailing at those
positions.

18.14 Modeling identity by state (IBS): uniquing mutations with a mutation() callback
We have seen in previous sections (see sections 1.5.2 and 18.4, for example) that SLiM tracks

each “mutational lineage” with a separate Mutation object, so independent mutations will be
tracked separately even if they represent exactly the same genetic state. This can be particularly
surprising in nucleotide-based models, where it is easy to end up with, for example, multiple
mutations all representing a G at a particular position in the genome. These multiple mutations
might even end up having different selection coefficients, which is probably not what you want.
Even if that is not an issue (perhaps your mutation type uses a fixed DFE, providing a constant

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 548

selection coefficient), SLiM will not consider the model to be fixed for G at that position unless just
one of the G mutations fixes across the whole population. Dealing with these issues can be
troublesome.

Beginning with SLiM 3.5, there is a straightforward solution, which we will explore in this
section: writing a mutation() callback that uniques new mutations down to pre-existing mutations
to provide “identity by state” (IBS) rather than SLiM’s default behavior of “identity by descent”
(IBD). Before launching into the recipe, however, it is worth noting that there are good reasons for
SLiM’s default IBD behavior, so you should override it with caution, and be sure that you know
what you’re doing. In particular, if you are using tree-sequence recording, you should be aware
that the “same” mutation may then occur on different branches of the tree, as if it had jumped from
one lineage to another by horizontal gene transfer; make sure that you understand the
consequences for your analysis code.

With that caveat, let’s start with a truncated version of this section’s recipe, which is designed to
illustrate the problem that we plan to solve:

initialize() {
 initializeSLiMOptions(nucleotideBased=T);
 initializeAncestralNucleotides(randomNucleotides(100));
 initializeMutationTypeNuc("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0, mmJukesCantor(1e-4 / 3));
 initializeGenomicElement(g1, 0, 99);
 initializeRecombinationRate(1e-3);
}
1 early() {
 sim.addSubpop("p1", 500);
}
1000 late() {
 for (pos in 0:99)
 {
 muts = sim.subsetMutations(position=pos);
 nucs = muts.nucleotide;
 cat(pos + " : " + paste(nucs));
 if (size(nucs) != size(unique(nucs)))
 cat(" DUPLICATES!");
 catn();
 }
}

This is a very simple nucleotide-based model with a chromosome just 100 base positions long,
and a rather high mutation rate so that we get some duplicate mutations (i.e., mutations that are
distinct mutational lineages in SLiM, but would be considered “the same mutation” from an IBS
perspective). The only interesting code here is the output late() event in tick 1000. It loops
through the 100 base positions, fetches the mutations at that position, and prints out the
nucleotides for them. It then checks for any duplicates – segregating mutations at the same
position with the same nucleotide, which would be considered identical from an IBS perspective –
and if it finds any, it prints a "DUPLICATES!" warning.

If we run this model, the output indicates that there are indeed duplicates:

0 : A A A C DUPLICATES!
1 :
2 : A
3 : T T DUPLICATES!
4 : T
...

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 549

So far this is just a recap of what we covered in section 18.4. The interesting and new part is
that we can shift SLiM over to the IBS perspective by “uniquing down” mutations: using a pre-
existing mutation, for a given position and nucleotide, rather than making a new mutation,
whenever such a pre-existing mutation is present. To do this, we can just add a short mutation()
callback to the model:

mutation() {
 m = sim.subsetMutations(position=mut.position, nucleotide=mut.nucleotide);
 if (m.length())
 return m;
 return T;
}

We have seen mutation() callbacks a couple of times before, in sections 10.6, 13.5, and 14.4,
and they are fully documented in section 26.9. In brief, a mutation() callback is called whenever
SLiM is planning to create a new mutation while constructing a gamete during offspring
generation. The callback provides an opportunity for the script to approve or veto the proposed
mutation, or to modify it. These callbacks are therefore rather like modifyChild() callbacks, but
for new mutations instead of new offspring individuals. In SLiM 3.5 and later, a mutation()
callback can also choose to replace the proposed mutation with a pre-existing mutation, allowing
“uniquing down” of mutations in various ways, and that’s what we do here. We first call
subsetMutations() to get any pre-existing mutation at the same position, and with the same
nucleotide, as the mutation SLiM proposes to create (passed to the callback as the pseudo-
parameter mut). If any such mutation exists, we simply return it, which tells SLiM to add that
mutation to the gamete it is generating, rather than the mutation it had proposed. If, on the other
hand, no pre-existing mutation matches the specifications, we return T to tell SLiM to go ahead
with creating the new Mutation object.

Now when we run the model we no longer see any duplicates:

0 : T
1 : G T
2 : A C
3 : G
4 : A
...

Uniquing is working as planned, and we now have an IBS nucleotide-based model. Of course
the same technique can be used to provide IBS mutations in a non-nucleotide-based model, or to
“unique down” or replace mutations in other ways, based on other criteria. The only criterion that
must be upheld is that the replacement mutation must be at the same base position as the
originally proposed mutation.

There is one subtle point that requires a digression at this point. The mutation() callback was
declared as mutation(), not as mutation(m1); this means that it will be called for all new
mutations, regardless of their mutation type. If you want an IBS model, this is probably what you
want. If it were declared as mutation(m1) instead, it would be called only for new m1 mutations,
and that would mean that (in a model with multiple mutation types, with similar callbacks defined
for each type) you could, for example, still have more than one T mutation segregating at position
924 – one of type m1, one of type m2, and so forth. Maybe that could be what you want, but it
seems unlikely. By declaring the callback as mutation(), we have guaranteed that that will not
happen; there will be only one T mutation at 924 (whatever mutation type it might turn out to be).

However, uniquing down mutations of all types, as we have done here, does have an odd
consequence. Suppose we have two mutation types in a model: m1 is neutral, m2 is deleterious. If

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 550

the first mutation to T at position 924 happens to be an m1 mutation, a T at position 924 is now
“reserved” for m1 as long as that mutation is still segregating; any new mutations to T at position
924 will be uniqued down to the first, even if SLiM drew them as m2 mutations. This means that
the requested proportion of mutations in the genetic configuration of the model may not be
upheld; m2 mutations will be turned into m1 mutations by the uniquing mechanism (or, at a
different position, m1 mutations might be turned into m2). Biologically, this makes sense; it would
be surprising (without epigenetics) to have one T at position 924 be neutral while a different T at
position 924 was deleterious! Nevertheless, it does violate other assumptions that one might have
about how the model will behave, such as the proportion of new mutations of particular types.
And there is an aspect of this that is not biological, too: if the T mutation at 924 is lost from the
model, or is fixed and substituted, then a future mutation to T at 924 would be allowed to be an m2
mutation by the uniquing mechanism. We have prevented discrepancies that are simultaneous in
time, then, but we have not prevented discrepancies that are separated in time; to prevent those,
you would need to write some additional script that would remember, for the whole lifetime of the
model, that a T at 924 is supposed to be neutral, and would enforce that in some manner. All of
this gets quite complicated if you think about enough! Happily, for the vast majority of models
these issues can probably just be ignored; they are unlikely to occur, and unlikely to make a
significant difference for results. But they are good to be aware of, just in case they do matter for
you.

It might be worth playing around a little with both versions of the recipe in SLiMgui. You will
notice that the two models appear to do very different things, because fixation of mutations is far
more likely to occur in the IBS version of the model. In the IBD model, mutational lineages that
represent the same nucleotide at the same position are competing against each other, and fixation
does not occur until just one of those lineages fixes across the whole population. In the IBS
model, those mutational lineages are effectively merged, and fixation occurs whenever a given
nucleotide fixes at a given position, even if that outcome is actually the result of multiple
independent lineages fixing jointly. This illustrates that the conceptual shift here can have real
consequences, and needs to be taken into account in the analysis you do of model results; naively
computing a metric like “mean fixation events per generation” for these two models would
indicate that they were experiencing very different evolutionary dynamics, when in fact the
dynamics are identical – only the lens through which those dynamics are viewed differs.

This recipe still leaves in place in aspect of nucleotide-based modeling in SLiM that is
sometimes undesirable, having to do with back-mutations to the ancestral state. We will explain
that, and address it, in the next section.

18.15 Modeling identity by state (IBS): uniquing back-mutations to the ancestral state

In the previous section we saw how to “unique down” nucleotide-based mutations so that only
one mutation for a given nucleotide at a given position can be segregating at the same time,
effectively switching SLiM from its default “identity by descent” (IBD) model to an “identity by
state” (IBS) model. That worked nicely – but as was hinted at the end, it has a potential flaw
having to do with back-mutations to the ancestral state.

Suppose a particular position in SLiM has an ancestral nucleotide of A; if no mutation is present
at that position, then the assumed nucleotide, courtesy of the ancestral sequence, is A. Now
suppose that in some generation that A mutates to a G in a particular genome; now we have an
ancestral state of A and a segregating G mutation. Later, an individual carrying the G mutation
generates an offspring which experiences a mutation of the G to an A. This is a “back-mutation”, a
mutation from a derived state back to the ancestral state. By default in SLiM, this will result in a
segregating A mutation, which makes sense from the IBD perspective; the mutation to A represents

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 551

a new mutational lineage, and so it gets a new mutation. It is a different mutational state than that
of genomes that are empty (ancestral) at the position. It also makes sense from the perspective of
tree-sequence recording, where mutations normally apply across the tree sequence from the point
where they occur. Nevertheless, it may not be what you want! If you want an IBS model because
you want to be able to compare two genomes and know whether or not they are “the same”
(meaning “the same sequence of nucleotides”), having segregating mutation objects that represent
back-mutations is still inconvenient. Depending upon exactly what one means by IBS, the
previous section’s recipe did not get us all the way there. We will go the remaining distance here.
Thanks to Qiming Long for inspiring this recipe by asking good questions.

Let’s start with a modified version of the 18.4 recipe:

initialize() {
 initializeSLiMOptions(nucleotideBased=T);
 initializeAncestralNucleotides(randomNucleotides(100));
 initializeMutationTypeNuc("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0, mmJukesCantor(1e-4 / 3));
 initializeGenomicElement(g1, 0, 99);
 initializeRecombinationRate(1e-3);
}
1 early() {
 sim.addSubpop("p1", 500);
}
mutation() {
 m = sim.subsetMutations(position=mut.position, nucleotide=mut.nucleotide);
 if (m.length())
 return m;
 return T;
}
1000 late() {
 for (pos in 0:99)
 {
 muts = sim.subsetMutations(position=pos);
 nucs = muts.nucleotide;
 ancestral = sim.chromosome.ancestralNucleotides(pos, pos);
 cat(pos + " : " + paste(nucs));
 if (size(nucs) != size(unique(nucs)))
 cat(" DUPLICATES!");
 if (any(nucs == ancestral))
 cat(" BACK-MUTATION (" + ancestral + ")!");
 catn();
 }
}

This model is the same except for the final output event. That event adds an additional check,
using the ancestralNucleotides() method, to look for any mutation at a given position that has
the same nucleotide as the ancestral state at that position. If such a condition is found, that
represents the sort of back-mutation that we want to get rid of, so it logs.

If we run the model as it stands now, we will see occasional output lines like this:

17 : A C G BACK-MUTATION (C)!

or this:

23 : A BACK-MUTATION (A)!

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 552

Now let’s fix it! We will do this with a fairly simple late() event (which should be added
above the final output event in the script, so that it runs first):

late() {
 // unique new mutations down to the ancestral state
 muts = sim.mutations;
 new_muts = muts[muts.originTick == community.tick];
 back_muts = NULL;
 for (mut in new_muts)
 {
 pos = mut.position;
 if (mut.nucleotide == sim.chromosome.ancestralNucleotides(pos, pos))
 back_muts = c(back_muts, mut);
 }
 if (size(back_muts))
 sim.subpopulations.genomes.removeMutations(back_muts);
}

First this gets all of the mutations in the simulation, and narrows down to those that are new in
this tick; only those need to be checked, which will save a lot of time in large models. Then the
script loops over those new mutations and checks each against the ancestral nucleotide at its
position; if a mutation is a back-mutation to the ancestral state, it adds it to the accumulator vector
back_muts with c(). Finally, it removes the mutations in back_muts from all genomes in the
simulation.

That should do the trick! If we run the final recipe now, we see no “BACK-MUTATION” logs.
Mischief managed.

Now for the caveats. As in section 18.14, it must be noted that this is often not what you want;
do not reflexively add this code to every nucleotide-based model you write! One side effect of this
is that, as in section 18.14, it may distort the ratios and rates of new mutations; some fraction of
new mutations will be suppressed by this code, which, depending upon how you do your analysis,
might distort things.

A more worrisome side effect is that it will literally prevent any new mutation at a given site that
happens to go to the ancestral state. Suppose, for example, that you have a model in which every
mutation has a deleterious effect that is drawn from some DFE; there are no neutral mutations.
Now suppose that position 924 is ancestral for T. All back-mutations to a state of T at 924 will then
be converted into a removal of the derived mutation, reverting to a neutral state at that position
rather than allowing a new, deleterious T mutation to be created. Maybe that is what you want; it
does make biological sense if you have defined the ancestral sequence as “neutral” and every
derived state that departs from it as “deleterious”, as in a model of purifying selection acting upon
an optimal nucleotide sequence. But it might be surprising – and mess up your analysis – that
when a mutation to G at 924 has almost fixed, and the ancestral state of T is at a frequency of just
0.0000013, a mutation from G to T is nevertheless beneficial (removing a deleterious mutation to
revert to a neutral state), whereas a moment later, when G has fixed and is thus the new ancestral
state, a mutation from G to T is now deleterious (changing the neutral state of G to a deleterious
mutation of T). That is rather arbitrary!

The point here, with these caveats in both section 18.14 and here, is to say: there is no one right
answer for all models. SLiM has a default behavior of IBD, which may or may not be what you
want. Changing that default behavior with these recipes may or may not be what you want, too.
Tread carefully, and beware unintended consequences.

Finally, note that this IBS recipe and the previous one are orthogonal. You could unique down
mutations without uniquing down to the ancestral state; or you could unique down to the ancestral

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 553

state without uniquing down mutations otherwise; or you could do both, as we have done here.
Once again, there is no one right answer, and you will want to think carefully about what you
really want the behavior to be, for the model you are writing, which might be dictated by the
analysis you want to perform, or might be dictated by the scientific question you are trying to
answer.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 554

19. Multispecies modeling

So far – for the first 500-plus pages of this manual! – we have concerned ourselves with SLiM
models that involve only a single species (perhaps, at most, looking at the process of speciation, or
at reproductive isolation between closely related groups). However, beginning in SLiM 4, SLiM
also supports models of more than one species, even species with radically different genetics and
behavior – foxes and mice, say. Such models are termed multispecies models. Section 1.9
provided a quick conceptual overview of multispecies models in SLiM, and it is recommended that
you read that section before embarking upon this chapter. Furthermore, all of the preceding
content about single-species models will be assumed knowledge here; if unfamiliar topics arise,
you may wish to jump back to earlier chapters for review.

19.1 A simple multispecies model
We begin with an extremely simple multispecies model – so simple, in fact, that it actually

contains only one species:

species sim initialize()
{
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
ticks all 1 early()
{
 sim.addSubpop("p1", 500);
}
ticks all 2000 late()
{
 sim.outputFixedMutations();
}

This is technically a “multispecies” model, according to SLiM, because it uses an explicit
species declaration. That is this line:

species sim initialize()

whereas a single-species model would have:

initialize()

The explicit species declaration simply states that the species being initialized by this particular
initialize() callback is named sim. In itself, this is unexciting; but it opens the door to having
another initialize() callback that initializes some other species with some other name. Through
that door lies true multispecies modeling, as we shall see.

The only other thing to note here is that the early() and late() events are now declared with a
ticks specifier, the ticks all specification in their declarations:

ticks all 1 early()
ticks all 2000 late()

This tells SLiM that these events should run in every tick (within the range of ticks otherwise
specified – tick 1 for the early() event, tick 2000 for the late() event). It would also be possible
to use a different species specifier:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 555

ticks sim 1 early()
ticks sim 2000 late()

This would tell SLiM that these events should run only in ticks when species sim is active –
when that species is executing its cycle. By default, every species is active in every tick, so in this
simple model using ticks sim would make no practical difference; we will see the importance of
the ticks specifier for events later on, when we get into the topic of scheduling species.

When explicit species declarations are used – when writing a multispecies model – it becomes
mandatory to provide a ticks specifier for every event. This makes the scheduling policy for each
event explicit.

That concludes our first multispecies model. Of course this recipe is kind of silly; there is no
reason to explicitly declare a species if you only intend to model one species. For this reason,
multispecies models in SLiM will virtually always declare two or more species, and that is what we
will look at next.

19.2 A two-species model
Moving on from the trivial example of the previous section, let’s look at a simple two-species

model. This uses explicit species declarations to set up two different species, one representing
foxes, the other representing mice:

species fox initialize() {
 initializeSpecies(tickModulo=3, tickPhase=5, avatar="🦊 ");
}
species mouse initialize() {
 initializeSpecies(tickModulo=1, tickPhase=1, avatar="🐭 ");
}
ticks all 1 early() {
 fox.addSubpop("p1", 50);
 mouse.addSubpop("p2", 500);
}
ticks all 2000 late() {
 fox.outputFixedMutations();
 mouse.outputFixedMutations();
}

There are a couple of new things to notice here. This model declares two species, one with
species fox and one with species mouse, each with its own initialize() callback. Those
callbacks don’t set up any genetics at all; beginning in SLiM 4 it is legal to skip the genetic
initialization calls, in which case you get a zero-length chromosome with mutation and
recombination rates of zero. These species are called “no-genetics species”, and were briefly
introduced in section 4.1. No-genetics species tend to be more useful in a multispecies context,
since multispecies models are more likely to be interested in modeling ecology, and might thus
neglect the genetics (at least for one species; we could initialize the genetics of one species while
omitting the other, if we wanted just one of the species to evolve).

When a single-species model (such as we saw in previous chapters) implicitly defines the
species of the model, a global symbol named sim is automatically created by SLiM to represent
that species. When explicit species declarations are employed (as here), global symbols for each
species are automatically created to represent each declared species. In this model, we thus have
global symbols named fox and mouse that represent the two declared species, and we use those
symbols just as we would use sim, to create new subpopulations for each species:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 556

ticks all 1 early() {
 fox.addSubpop("p1", 50);
 mouse.addSubpop("p2", 500);
}

As in the previous section, a ticks specifier of ticks all is given. This event creates a new
subpopulation of 50 foxes, named p1, and a new subpopulation of 500 mice, named p2, by calling
the addSubpop() method on the global fox and mouse objects respectively. Both fox and mouse are
objects of class Species, just as sim is in single-species models, so we can do all the same things
with them that we could do before with sim.

The other thing to note is the two new initialization calls:

initializeSpecies(tickModulo=3, tickPhase=5, avatar="🦊 ");

initializeSpecies(tickModulo=1, tickPhase=1, avatar="🐭 ");

These calls, to a function named initializeSpecies() that we have not seen previously,
configure the two species to have different schedules. The fox species runs every 3 ticks
(tickModulo=3), starting in tick 5 (tickPhase=5), whereas the mouse species runs every tick
(tickModulo=1) starting in tick 1 (tickPhase=1). This might represent foxes having an annual
reproductive schedule, while mice reproduce more frequently. (Again, these biological details are
fictional, however, not empirical.) We can visualize what the species schedules would look like
for this example:

In many ticks, only one species is active, but in the ticks outlined in red, both species are active
and their cycles are interleaved – the Community runs the tick cycle simultaneously for all species,
which is why it is called a “tick cycle”, not a “species cycle”. Exactly what that entails will be
discussed later.

The other thing the initializeSpecies() calls do is set an avatar for each species. This is a
string value – typically a single emoji character, as here with 🦊 and 🐭 – that is used to represent
the species in output, particularly in SLiMgui. It is convenient that many emojis for animals and
plants already exist, but of course if your study species has no assigned emoji, you ought to
petition the appropriate body for relief; see https://unicode.org/emoji/proposals.html. It would be a
better world if there were emojis for bdelloid rotifers and stick insects! In the meantime, you can
use whatever emojis (or other single characters) you wish; 👽 for an invasive species, perhaps, or

species fox
modulo 3
phase 5

species mouse
modulo 1
phase 1

tick

1

2

3

4

5

6

7

8

9

generation 1

generation 2

generation 1

generation 2

generation 3

generation 4

generation 5

generation 6

generation 7

generation 8

generation 9

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 557

https://unicode.org/emoji/proposals.html

🥶 for a cold-adapted species, or whatever. Incidentally, if emojis don’t show up properly on your
machine, see section 2.7 for tips.

Now might be a good time to note that SLiMgui is aware of multispecies models. The above
model looks like this in SLiMgui, when run forward a little:

Note the new species tab bar above the population view, showing the two species that have
been declared. At the moment, the fox species is selected for display; the population view shows
fox subpopulations (i.e., p1), and the individuals view shows 50 foxes. Since we are about to
execute tick 13, the cycle counter is 4 indicating that the next fox cycle to execute will be cycle 4
(which may or may not happen in tick 13, depending on the schedule for fox; if fox is inactive in
tick 13, it will happen at some later time).

A click on the mouse tab in the species bar changes the display:

Now we see p2, with 500 mice, and the mouse cycle counter is at 13. The chromosome view’s
display also changes depending upon the selected species (not shown above). Finally, we can
click on the all tab to see both species:

This screenshot is bigger, to show that a separate chromosome view is displayed for each
species when on the all tab; they are in the same order as the tabs, so fox is on the left. Note that
the tick counter still shows 13, but the cycle counter is blank; the tick is a community property, so
it is always the same, but on the all tab there is no one selected species for which to show the
cycle. We will explore other aspects of multispecies modeling in SLiMgui in later recipes.

So now we have defined a two-species model. However, our two species do not interact in any
way – notably, the foxes don’t eat the mice. We will address that in the next section.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 558

19.3 A deterministic host–parasitoid model
In the previous section we defined a two-species model of foxes and mice, but the two species

did not interact at all – not terribly interesting. Now we will begin to build interactions between
species.

To begin with, we will do this in a top-down fashion, dictating a new population size to each
species in each cycle based upon the state of the previous cycle. This follows the approach of
traditional analytical models such as the Lotka–Volterra model, which does not explicitly model
individual-level interactions (a particular mouse being eaten by a particular fox), but simply gives
the change in population sizes as a function of the current state. This also fits well with the fact
that our recipe, thus far, has used the WF model type in which population size is a top-down
parameter of the model. We will see a more individual-based approach, using the nonWF model
type, in the next section.

It would be nice to continue with a Lotka–Volterra model of foxes and mice, but unfortunately
the Lotka–Volterra model is not stable in discrete time. There are modified versions of it in the
literature that are stable in discrete time, but rather than get into that, we will shift gears here to
model a host–parasitoid system instead. The mathematical model here was developed by
Sebastian Schreiber; thanks to him for his kind assistance in developing this recipe (and the next as
well).

The two equations that drive this model are:

x1[t+1] = x1[t] * exp(r − x1[t]/K − a*x2[t])

x2[t+1] = x1[t] * (1 − exp(−a*x2[t]))

where x1 is the host density and x2 is the parasitoid density, t is the time (in discrete time, not
continuous time), and a, r, and K are model parameters as described in Faure and Schreiber
(2014).

The biological motivations for these equations are that (in sequential order):

• with probability 1 − exp(−a*x2[t]) each host is killed by a parasitoid;

• with probability exp(−x1[t]/K) each host then escapes death via competition;

• each surviving host produces a Poisson number of offspring with mean exp(r);

• all hosts killed by a parasitoid turn into a parasitoid in the next year.

This assumes that parasitism acts before density dependence. Because x1 and x2 represent density
in this model, not population size, we will also use a model parameter S to represent the size of
the habitat; so if N1 is the population size for the host and N2 is the population size for the
parasitoid, then N1 = Sx1 and N2 = Sx2. If you want to read more about this model, see Faure and
Schreiber (2014), particularly the type of model discussed on their page 585. Sebastian also has a
link to talk slides about this model, here.

Translating this into a SLiM script is quite straightforward:

species all initialize() {
 defineConstant("K", 100);
 defineConstant("R", log(20));
 defineConstant("A", 0.015);
 defineConstant("S", 10^2); // larger is more stable, but slower
 defineConstant("N0_host", asInteger((135.6217 + 0.01) * S));
 defineConstant("N0_parasitoid", asInteger((109.3010 + 0.01) * S));
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 559

https://www.dropbox.com/s/3p0tsztfo30cccs/Berkeley.pdf?dl=0

species host initialize() {
 initializeSpecies(avatar="🐛 ", color="cornflowerblue");
}
species parasitoid initialize() {
 initializeSpecies(avatar="🦟 ", color="red");
}
ticks all 1 early() {
 host.addSubpop("p1", N0_host);
 parasitoid.addSubpop("p2", N0_parasitoid);
}
ticks all late() {
 x1 = p1.individualCount / S; // host density
 x2 = p2.individualCount / S; // parasitoid density

 x1′ = x1 * exp(R - x1/K - A*x2); // x1[t+1]
 x2′ = x1 * (1 - exp(-A*x2)); // x2[t+1]

 p1.setSubpopulationSize(asInteger(round(S * x1′)));
 p2.setSubpopulationSize(asInteger(round(S * x2′)));
}
ticks all 250 late() {
}

There are a few things to notice here. First of all, we have a type of initialize() callback here
that we haven’t seen before, declared with a species specifier of species all. This is the
appropriate place for initialization that is not species-specific, but community-wide; we are
therefore initializing our model parameters in this species all initialize() callback. The
parameter values come from Sebastian; the initial N0 for the two species is close to a stable
equilibrium point for the dynamics, slightly perturbed here (adding 0.01) to kick off the cyclical
behavior.

Second, notice that we’re now using a caterpillar emoji for the host. The parasitoid is
represented by a mosquito emoji, which looks somewhat similar to a parasitoid wasp; we’ll have
to live with that since the astoundingly diverse world of parasitoid wasps has been neglected by
the Unicode Consortium. Also, we are now providing a color argument to initializeSpecies();
this optional parameter tells SLiMgui what color to use to represent the species in its user interface.
For example, once you have the recipe open in SLiMgui, step once (so that the initialize()
callbacks are run, setting up the color properties for the species); you will see that SLiMgui’s script
editor now uses the species colors to attribute code in the script pane:

Script blocks that are species-specific (with either a species specifier or a ticks specifier, which
is not species all or ticks all) show the species they are associated with using the color of that
species. Of course the hope is that this will make it easier to navigate in your code. SLiMgui will
use species colors in other ways too, as we will see below.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 560

Third, since Sebastian’s model operates in terms of density while SLiM models actual
populations of individuals, we have to translate back and forth between the two by scaling by S.
Also, the new density values for the next cycle (represented in the equations as x1[t+1] and x2[t+1])
are represented in the Eidos code as x1′ and x2′. The ′ character is a prime, which is a Unicode
mathematical symbol commonly used to represent a new or modified version of a variable. Just as
Eidos allows variables names to contain emojis, accented letters, and so forth, it also allows such
Unicode mathematical symbols, which is useful in cases like this.

To see the cyclical population size dynamics for both species, we can open a graph. Let’s open
SLiMgui’s “Graph Population Size ~ Time” graph; here’s what we get:

Not what we wanted! Most of the graphs in SLiMgui are species-specific: they focus on just
one species (the currently selected species in SLiMgui’s user interface). Since this graph window
was opened when the host species tab was selected in SLiMgui, it shows the population size as a
function of time for the host species. You can tell that this is the case by looking at the avatar
shown in the lower left of the graph window; it is the caterpillar avatar that we set for host. This
graph window will remain targeted to the host species even if we switch tabs; indeed, if we switch
to the parasitoid tab and then choose “Graph Population Size ~ Time” again, we will now have
two plot windows, one showing population size dynamics for host, the other for parasitoid.
These plot windows will remember the species they are targeted to even across a recycle; they are
permanently associated with their target species.

So, we could open host and parasitoid population size plot windows in this way, and try to look
at the relationship between the two by lining up those two plot windows, one exactly above the
other. There is a much better alternative, however. Instead of doing that, let’s open the
“Multispecies Population Size ~ Time” graph, a new plot type added in SLiM 4. This plot is non-
species-specific and shows the size of all subpopulations across all species. That makes it much
easier to see the complex dynamics playing out in this model, since the plotted lines are
superimposed:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 561

Notice that the color we set for each species is being used in the plot; so the blue line is the
host species, while the red line is the parasitoid. They are both cycling quite vigorously; it looks
like the parasitoid’s cycles often mirror those of the host, but it is not always that simple.
Ssometimes the host has a cycle that reaches a particularly large population size, and yet the
parasitoid’s next peak is quite low, perhaps because it is recovering slowly from a particularly low
abundance. The system also takes a while to start cycling strongly, because it started so close to an
equilibrium point; in its later cycling, however, it never seems to return to the vicinity of that
equilibrium point (if it did, there would presumably be another period of stasis).

Sebastian has plotted these dynamics in what I hope I am correct in calling “phase space”, with
x1 plotted against x2:

This plot shows the rather interesting-looking “attractor” followed by this model. Colors
represent time; the most recent points are yellow, so the paths that are mostly yellow are the most-
visited paths in phase space. This plot was made over 10,000 iterations with S = 105, so it
probably shows a more exact picture of the attractor than our model with S = 102 would; the
smaller value of S will tend to cause noisier dynamics since the effects of rounding off to the
nearest integer in each cycle will be larger.

So, this is all quite nifty, but we are really just using SLiM as a glorified calculator; the
individuals in this model don’t matter at all. There is no individual-level behavior, and no genetics;
we are just iterating the equations in a deterministic model, which we could do just as well (and
much faster) in R or Python. In the next section we will move a step closer to a true
coevolutionary model by introducing individual-level behavior.

Tick

N
u
m
b
er
	o
f	
in
d
iv
id
u
al
s

0 125 250

0

20000

40000

60000

host

parasitoid

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 562

19.4 An individual-based host–parasitoid model
The previous section introduced a host–parasite model from Sebastian Schreiber. It didn’t

display any individual-level behavior, however, nor did it have any genetics; it simply used SLiM as
a backdrop against which the equations of the deterministic model were iterated. These dynamics
can be converted to a more individual-based form, however, and that is what we will explore in
this section. Again, the model shown here is discussed in more detail in Faure and Schreiber
(2014); and again, thanks to Sebastian for his help in putting together this recipe.

As discussed in section 19.3, this model is based upon a few simple behaviors:

• with probability 1 − exp(−a*x2[t]) each host is killed by a parasitoid;

• with probability exp(−x1[t]/K) each host then escapes death via competition;

• each surviving host produces a Poisson number of offspring with mean exp(r);

• all hosts killed by a parasitoid turn into a parasitoid in the next year.

Recall that x1 is the host density and x2 is the parasitoid density, t is the time (in discrete time,
not continuous time), a, r, and K are model parameters, and S is the habitat size (which converts
densities into population sizes). In section 19.3 those behaviors were encapsulated by non-
individual-based iterative equations. In this section, we will convert them to an individual-based
form.

There is one feature of this design that is unusual from the SLiM perspective: it begins with
mortality, and ends with reproduction. In SLiM, reproduction is the first thing to happen in the tick
cycle, and mortality happens towards the end, in both WF and nonWF models. We will discuss
that wrinkle more below, but keep it in the back of your mind.

Let’s start with the model’s initialization:

species all initialize() {
 defineConstant("K", 100);
 defineConstant("R", log(20));
 defineConstant("A", 0.015);
 defineConstant("S", 10^2); // larger is more stable, but slower
 defineConstant("N0_host", asInteger((135.6217 + 0.01) * S));
 defineConstant("N0_parasitoid", asInteger((109.3010 + 0.01) * S));

 initializeSLiMModelType("nonWF");
}
species host initialize() {
 initializeSpecies(avatar="🐛 ", color="cornflowerblue");
 // tag values in host indicate survival (0) or death (1)
}
species parasitoid initialize() {
 initializeSpecies(avatar="🦟 ", color="red");
 // tag values in parasitoid count successful hunts
}

This is essentially the same as for section 19.3; the parameters are all the same, as are the
species. I’ve added comments in the species-specific initialize() callbacks that note how tag
values will be used in each species; especially with the complexity of a multispecies model it is
nice to be very explicit about such things with comments. The only other change is the addition of
the call to initializeSLiMModelType("nonWF") in the species all initialize() callback; since
this will be a more individual-based model in which the population size cycling will be emergent,
rather than top-down, we need it to be a nonWF model.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 563

Next let’s add the population setup and the simulation end event:

ticks all 1 early() {
 host.addSubpop("p1", N0_host);
 parasitoid.addSubpop("p2", N0_parasitoid);
}
ticks all 250 late() {
}

These are identical to the same events in the previous recipe; nothing worth commenting upon.
Next – we are building carefully here, one step at a time, since it will get complicated at the end! –
we still want non-overlapping generations even though this is a nonWF model, so we’ll add
survival() callbacks that simply kill off the parental generation of each species (see section 15.13
for further discussion):

// non-overlapping generations: parents die, offspring live
species host survival() {
 return (individual.age == 0);
}
species parasitoid survival() {
 return (individual.age == 0);
}

If an individual’s age is 0 (a new juvenile), it survives; if it is older, it dies.
Next, let’s look at the reproduction() callbacks for both species. It is worthwhile to compare

and contrast them, so let’s look at them together:

species host reproduction() {
 // only hosts tagged 0 (survived) get to reproduce
 if (individual.tag != 0)
 return;

 // reproduce each host with a mean of exp(r) offspring
 litterSize = rpois(1, exp(R));

 if (litterSize > 0)
 {
 mate = subpop.sampleIndividuals(1, exclude=individual);
 for (i in seqLen(litterSize))
 subpop.addCrossed(individual, mate);
 }
}
species parasitoid reproduction() {
 // reproduce each parasitoid as many times as it parasitized
 litterSize = individual.tag;

 if (litterSize > 0)
 {
 mate = subpop.sampleIndividuals(1, exclude=individual);
 for (i in seqLen(litterSize))
 subpop.addCrossed(individual, mate);
 }
}

In the initialization code, it was mentioned that tag values play different roles in these species:

// tag values in host indicate survival (0) or death (1)
// tag values in parasitoid count successful hunts

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 564

These reproduction() callbacks are where those tag values get put to work. For host, the
reproduction() callback simply checks the tag value at the top; if the focal individual has a tag
value of 0 it gets to reproduce, but otherwise the callback returns immediately and that host does
not reproduce – because, conceptually, it is dead. (This binary state could easily use the logical
property tagL0 instead). The rest follows a familiar pattern: draw the number of offspring for the
focal individual from a Poisson distribution, choose a mate, and loop to create the offspring.

For parasitoid, the reproduction() callback works a bit differently. The number of offspring
for the parasitoids is not drawn from a Poisson distribution; instead, it is the number of successful
hunts that parasitoid had, which is stored in its tag. Each successful hunt results in one offspring,
so we loop over individual.tag to produce offspring.

Of course biological details such as the mating behavior of the host could be modified. For
example, the code above makes both species choose a single mate and produce all offspring with
that mate; simply moving the mate choice inside the for loop would make mate choice instead be
done independently for each offspring. Similarly, we could convert the model to a sexual model
and make only the females of both species reproduce, choosing a male mate. Such things have
been covered in previous chapters, though; here our focus is on the multispecies implementation.

There is only one piece left, and that is the event that implements hunting and competition. It is
a first() event, so it executes at the beginning of each cycle, prior to reproduction, and it sets up
the tag values that the reproduction() callbacks use to govern their behavior:

ticks all first()
{
 hosts = host.subpopulations.individuals;
 parasitoids = parasitoid.subpopulations.individuals;

 // assess densities
 x1 = hosts.size() / S; // host density
 x2 = parasitoids.size() / S; // parasitoid density

 // hunt: each parasitoid counts its successes, and
 // each host tracks whether it was killed
 parasitoids.tag = 0;
 P_parasitized = 1 - exp(-A * x2);
 killed = rbinom(hosts.size(), 1, P_parasitized);
 hosts.tag = killed; // 1 means killed
 hunters = sample(parasitoids, sum(killed), replace=T);
 for (hunter in hunters)
 hunter.tag = hunter.tag + 1;
 survivors = hosts[killed == 0];

 // competition: kill a fraction of survivors; note
 // that this is based on pre-parasitism density
 P_survives = exp(-x1 / K);
 survived = rbinom(survivors.size(), 1, P_survives);
 dead = survivors[survived == 0]; // 1 means survived
 dead.tag = 1; // mark as dead
}

It starts by getting the hosts and parasitoids and calculating their densities, using S. Then, in
vectorized fashion, it uses rbinom() to determine which hosts get parasitized, and marks their fates
in their tag values. For each host that got parasitized, it uses sample() to draw the parasitoid that
did it, and it loops over those parasitoids and increments their tag values for each kill. Finally, for
the hosts that survived, it implements competition as simple density-dependent selection, using
rbinom() with the calculated probability of survival, and again uses tag to mark hosts that died.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 565

Note that, following the deterministic equations, the strength of competition depends upon the
pre-parasitism density of the host. I think this might make biological sense: the hosts that have had
an egg laid in them by a parasitoid will eventually die, but before that happens they will live for a
while, eating leaves and exerting competition upon their fellow hosts. They have been marked for
death, but they are not yet dead.

The design of this model is a bit odd; we “kill” hosts in the first() event by setting their tag
values, and those “deaths” affect the model because the “killed” hosts do not reproduce (because
the reproduction() callback checks each focal individual’s tag value). The only actual death that
occurs in the model, however, is due to the survival() callbacks, which run after reproduction
has finished. We structured the model this way because of the order of events specified at the
beginning – remember when I said you should keep that in the back of your mind? The design of
the model mirrors that order of events, and so it begins with death and ends with reproduction.
Since SLiM’s tick cycle begins with reproduction and ends with death, we needed to model the
deaths of hosts due to predation and competition using tag. You might be thinking: we could
simply shift our perspective, since the model actually cycles, death-birth/death-birth/death-birth –
we could instead cycle birth-death/birth-death/birth-death. Yes! The mathematics would be the
same, and it would work fine. The only problem would be that the population size plot in SLiMgui
would no longer show what we want it to; to match the plot for the deterministic model, we want
it to show population size after birth, not after death, and so we need to model death-birth/death-
birth/death-birth (since SLiMgui plots the state of the model at the end of each cycle). Here is the
behavior event for that second version of the model:

ticks all early()
{
 hosts = host.subpopulations.individuals;
 parasitoids = parasitoid.subpopulations.individuals;

 // first, kill off the parental generation
 host_age = hosts.age;
 hosts[host_age > 0].fitnessScaling = 0.0;

 parasitoid_age = parasitoids.age;
 parasitoids[parasitoid_age > 0].fitnessScaling = 0.0;

 // narrow down to the juveniles and assess densities
 hosts = hosts[host_age == 0];
 parasitoids = parasitoids[parasitoid_age == 0];

 x1 = hosts.size() / S; // host density
 x2 = parasitoids.size() / S; // parasitoid density

 // next, hunt; each parasitoid counts its successes
 parasitoids.tag = 0;
 P_parasitized = 1 - exp(-A * x2);
 luck = rbinom(hosts.size(), 1, P_parasitized);
 dead = hosts[luck == 1];
 dead.fitnessScaling = 0.0;
 hunters = sample(parasitoids, dead.size(), replace=T);
 for (hunter in hunters)
 hunter.tag = hunter.tag + 1;
 hosts = hosts[luck == 0];

 // finally, competition kills a fraction of survivors
 // this is based on pre-parasitism density
 P_survives = exp(-x1 / K);

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 566

 luck = rbinom(hosts.size(), 1, P_survives);
 dead = hosts[luck == 0];
 dead.fitnessScaling = 0.0;
}

Note that it is now an early() event, which runs after reproduction in nonWF models. We are
now doing birth-death/birth-death/birth-death. Since we want the parents to die before any other
behavior occurs, we now do that at the top of the event, rather than in survival() callbacks
(again, section 15.13 discusses these varying approaches to implementing non-overlapping
generations). We now use fitnessScaling to manage all deaths, and at each stage we narrow
down to focus upon the survivors of the previous step. SLiM will then automatically kill all
individuals with fitnessScaling == 0 during the viability/survival cycle stage. This version of the
model still uses tag for the parasitoids, to count their kills, but does not use tag for the hosts since
their mortality is managed directly with fitnessScaling. The only other change needed for this
second version of the model, then is to remove the check of the tag value at the top of the host
reproduction() callback; if the hosts make it that far, they get to reproduce. (The full recipe is
available online and in SLiMgui, as usual.)

Note that the order in which these two reproduction() callbacks are declared in the script does
not matter. If you look back to the timing diagram in section 19.2, that discussion mentions that
when the tick schedule for two species coincide in a given tick, “both species are active and their
cycles are interleaved”. It’s time to talk about what that really means.

The tick cycle for WF models was introduced in section 1.3, and you may have also seen the
tick cycle diagrams for WF and nonWF models in chapters 23 and 24. Until SLiM 4 those
diagrams were black and white, though, so you may not have seen the new color versions:

1. Execution of early() events

3. Removal of fixed mutations

4. Offspring become parents

6. Fitness recalculation using
mutationEffect() and

fitnessEffect() callbacks

7. Tick/cycle count increment

2. Generation of offspring:

2.1. Choose source subpop

2.2. Choose parent 1

2.3. Choose parent 2
(mateChoice() callbacks)

2.4. Generate the offspring
(including mutation() and
recombination() callbacks)

2.5. Suppress/modify child
(modifyChild() callbacks)

5. Execution of late() events

The WF model’s tick cycle

2. Execution of early() events

5. Removal of fixed mutations

4. Selection (incl. survival())

3. Fitness recalculation using
mutationEffect() and

fitnessEffect() callbacks

7. Tick/cycle count increment,
individual age increments

1. Generation of offspring:

1.1. Call reproduction()
callbacks for individuals

1.2. The callback(s) make
calls requesting offspring

1.3. Generate the offspring
(including mutation() and
recombination() callbacks)

1.4. Suppress/modify child
(modifyChild() callbacks)

6. Execution of late() events

The nonWF model’s tick cycle

0. Execution of first() events 0. Execution of first() events

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 567

In single-species models, the colors shown here are unimportant; the tick cycle works just as it
did in SLiM 3. In multispecies models, the colors tell you how each stage is managed when more
than one species is active in the same tick. Stages that are colored red run events: first() events,
early() events, and late() events. These stages run their events in definition order: the order in
which the events are defined, from top to bottom in the model script, just as in SLiM 3. Stages that
are colored blue involve callbacks having to do with reproduction, fitness calculation, and
survival. Each of these stages will execute, for multiple species, in species declaration order: the
order in which the species are declared, with species name initialize() declarations, from top
to bottom in the model script. In this model species host is declared first and species parasitoid
is declared second; when executing the reproduction stage of the WF tick cycle, SLiM therefore
reproduces all of the hosts first, and then reproduces all of the parasitoids second. The order in
which the reproduction() callbacks are defined does not matter at all (but it is good practice to
define them in the same order as the species declarations, to reduce confusion). Finally, stages
that are colored green will be run in whatever order SLiM chooses; these stages do not involve the
execution of any Eidos script, and the order in which they process their work does not matter since
the effect on each species is independent.

OK, that was a lot of discussion. Does the model work? If we run it (the first version of it, with
the death-birth/death-birth/death-birth life cycle, so that SLiMgui’s multispecies population size
graph shows what we want it to show), here’s what we get:

If you compare this to the plot of the deterministic model’s dynamics in section 19.3, you can
see that they are extremely similar; we do seem to have captured the model correctly. One
difference, though, is that the model diverges from steady-state dynamics into cycling much more
quickly; the deterministic model was approximately steady for perhaps 25 ticks, whereas this
individual-based version of the model starts cycling almost immediately. This is because the
individual-based version includes stochasticity, both in the parasitism and the competition; that
moves the host population size away from the steady-state equilibrium more rapidly.

We have an even better way to check that this model matches the deterministic model, though:
we can replicate the phase-space diagram that we saw in section 19.3. To do so, let’s increase S to
10^3 (to make the dynamics more accurate and decrease the effect of stochasticity), and change
the end tick to 100000 (so we get lots of data points). Recycle and run to completion, which will
take a while (several hours) – with S = 10^3 the population sizes are often as high as half a
million, so this is a pretty big model. Then open the multispecies population size graph. Click the

 “action button” at lower right in the graph window, choose Export Data… from the menu that
pops up, and save the data for the graph to a file. We won’t go through the remaining steps in
detail here, but in short, you can bring the exported data into R or Python, and plot x1 versus x2
(host density versus parasitoid density) to get a phase space diagram as in section 19.3:

Tick

N
u
m
b
er
	o
f	
in
d
iv
id
u
al
s

0 125 250

0

20000

40000

60000

host

parasitoid

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 568

It looks pretty much the same as the deterministic model’s attractor (except for the color scheme
used by Sebastian, which indicates the time at which each point was visited):

This indicates that the model is following the same attractor – following the same dynamics, in
other words.It would likely look even better at S = 10^4, but that would take quite a bit of time
and memory!

There is lots more we could do to make this model more realistic. We could convert the host
and parasitoid species to be sexual, and have the females reproduce after finding a male mate. We
could add genetics to the host that govern some kind of resistance to the parasitoid (altered
cuticular hydrocarbons?), and add genetics to the parasitoid that can evolve to counter the host’s
evolution (altered olfactory preferences?); this could then enable coevolutionary dynamics where
the host evolves to evade the parasitoid, and the parasitoid “chases” the host’s evolution. We
could also introduce a spatial element to the model, so that the density of hosts and parasitoids
can vary across the landscape. With such changes, we could see whether the dynamics tend to
stabilize or destabilize the cycling behavior of the model, whether they make extinction of one of
the species more or less likely, and so forth. All of these are interesting angles! Since we have
never scripted spatial interactions between individuals in different species, however, that seems
like the most interesting problem to explore next.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 569

19.5 A continuous-space host–parasitoid model
The previous two sections explored a host–parasite model from Sebastian Schreiber, as

described in Faure and Schreiber (2014). The first version of the model was deterministic, while
the second version was individual-based; in other respects, as we saw with various plots, the two
models behaved similarly. We will now depart from Sebastian’s prior work to build a derivative of
the previous recipe that adds continuous space, to see what that does to the dynamics of the
model. The techniques used will be similar to those employed for continuous-space models in
previous chapters; you may wish to review those concepts before continuing (see, for example,
chapter 16 and section 16.15).

The model is quite similar to the first recipe of section 19.4, just with spatiality added. Here are
the initialize() callbacks for the recipe:

species all initialize() {
 defineConstant("K", 100);
 defineConstant("R", log(20));
 defineConstant("A", 0.015);
 defineConstant("SIDE", 10); // one side length; square root of S
 defineConstant("S", SIDE*SIDE);
 defineConstant("N0_host", asInteger((135.6217 + 0.01) * S));
 defineConstant("N0_parasitoid", asInteger((109.3010 + 0.01) * S));

 defineConstant("S_P", 0.5); // parasitoid hunting/mating kernel width
 defineConstant("S_H", 0.2); // host competition/mating kernel width
 defineConstant("D_H", 0.2); // host dispersal kernel width
 defineConstant("CROSS_SCRIPT", "subpop.addCrossed(individual, mate);");

 initializeSLiMModelType("nonWF");

 // parasitoids looking for things (long search distance)
 initializeInteractionType(1, "xy", maxDistance=S_P);
 i1.setInteractionFunction("l", 1.0);

 // hosts looking for things (short search distance)
 initializeInteractionType(2, "xy", maxDistance=S_H);
 i2.setInteractionFunction("l", 1.0);
}

species host initialize() {
 initializeSpecies(avatar="🐛 ", color="cornflowerblue");
 initializeSLiMOptions(dimensionality="xy");
 // tag values in host indicate survival (0) or death (1)
}
species parasitoid initialize() {
 initializeSpecies(avatar="🦟 ", color="red");
 initializeSLiMOptions(dimensionality="xy");
 // tag values in parasitoid count successful hunts
}

We’ve added one InteractionType using a long maximum interaction distance for parasitoid
searches (for mates and prey), and another with a shorter distance for host searches (for mates).
Note that the interaction types are defined in the species all initialize() callback; this is
required, since interaction types are not species-specific (although they might be used in a species-
specific way, as i2 will be used only for hosts to search for mates). One design decision to note

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 570

here is that both interactions use a linear (type "l") interaction function. This is substantially faster
to calculate than, for example, a Gaussian kernel, although perhaps less biologically accurate.

Several new parameters were added to support those spatial behaviors, too, such as the
interaction and dispersal kernel widths. The parasitoids don’t get a dispersal kernel width because
they will be born at the location of the host they hatched from. Of course we also declare the
dimensionality of both species to be "xy" now; we will use reflecting boundaries (for greater
speed), so we don’t declare any periodicity. Hopefully edge effects will not be too strong, since
the landscape size is fairly large compared to the interaction distances; if they prove to be a
problem, it would be trivial to switch to periodic boundaries (see section 16.12).

We now define S, the total habitat size, as a derived parameter; it is now the square of SIDE,
which is the length of one side of the (square) landscape we will set up. In fact the model no
longer uses S at all, though, so it is defined just for comparison with the previous models.
(Remember that we used S to convert from population sizes to densities; but now all densities will
be local densities, computed using InteractionType).

The only other change is the addition of a defined lambda, CROSS_SCRIPT, that we will use for
bulk reproduction, as shown below.

Here’s the population setup and the end event:

ticks all 1 early() {
 host.addSubpop("p1", N0_host);
 p1.setSpatialBounds(c(0, 0, SIDE, SIDE));
 p1.individuals.setSpatialPosition(p1.pointUniform(N0_host));

 parasitoid.addSubpop("p2", N0_parasitoid);
 p2.setSpatialBounds(c(0, 0, SIDE, SIDE));
 p2.individuals.setSpatialPosition(p2.pointUniform(N0_parasitoid));
}
ticks all 250 late() {
}

We now set up the bounds of the SIDE×SIDE landscape with a call to setSpatialBounds() for
each subpopulation. Then the initial individuals of each subpopulation get distributed randomly
across the landscape using pointUniform().

Age-based mortality is exactly the same as it was in the previous recipe, using survival()
callbacks to kill off non-juveniles:

// non-overlapping generations: parents die, offspring live
species host survival() {
 return (individual.age == 0);
}
species parasitoid survival() {
 return (individual.age == 0);
}

Let’s look at the parasitoid’s reproduction() callback next, since it is simpler:

species parasitoid reproduction() {
 // reproduce each parasitoid as many times as it parasitized
 litterSize = individual.tag;

 if (litterSize > 0)
 {
 mate = i1.drawByStrength(individual);

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 571

 if (mate.size())
 {
 offspring = sapply(seqLen(litterSize), CROSS_SCRIPT);

 // vectorized set of offspring positions to prey positions
 offspring.setSpatialPosition(individual.getValue("PREY_POS"));
 }
 }
}

We now find a mate using drawByStrength(). All offspring are generated with a single call to
sapply() using CROSS_SCRIPT; this gathers the returned offspring into a vector for us, making it
easy to set their positions from state saved under the "PREY_POS" key of the parasitoid (as we will
see) using a single vectorized call. Now here is the host’s reproduction() callback:

species host reproduction() {
 // only hosts tagged 0 (survived) get to reproduce
 if (individual.tag != 0)
 return;

 // reproduce each host with a mean of exp(r) offspring
 mate = i2.drawByStrength(individual);

 if (mate.size())
 {
 litterSize = rpois(1, exp(R));

 if (litterSize > 0)
 {
 offspring = sapply(seqLen(litterSize), CROSS_SCRIPT);

 // vectorized set of offspring spatial positions, based
 // on the first parent position plus dispersal D_H
 positions = rep(individual.spatialPosition, litterSize);
 positions = positions + rnorm(litterSize * 2, 0, D_H);
 positions = p1.pointReflected(positions);
 offspring.setSpatialPosition(positions);
 }
 }
}

As before, the tag of the focal individual indicates whether it survived to reproduce; see the
previous section for discussion of this design. We use drawByStrength() to find a mate, and do a
bulk reproduction with sapply(), just as we did for the parasitoids. Here, however, we set
offspring positions based upon the position of the first parent (individual.position) plus a
random dispersal drawn with rnorm() from a Gaussian dispersal kernel of width D_H, with
reflecting boundaries. All of that can be done with vectorized calls for greater efficiency; this is
somewhat important since the mean litter size of the hosts is so large.

Finally – saving the best for last! – here is the behavior event that handles hunting and
competition:

ticks all 2: first()
{
 host_pop = host.subpopulations;
 hosts = host_pop.individuals;
 parasitoid_pop = parasitoid.subpopulations;
 parasitoids = parasitoid_pop.individuals;

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 572

 // assess densities, per individual
 i1.evaluate(c(host_pop, parasitoid_pop));
 i2.evaluate(host_pop);
 parasitoid_density_byhost = i1.localPopulationDensity(hosts, parasitoid_pop);

 // hunt: each parasitoid counts its successes,
 // and remembers the positions of its prey;
 // each host tracks whether it was killed
 parasitoids.tag = 0;
 parasitoids.setValue("PREY_POS", NULL);
 P_parasitized_byhost = 1 - exp(-A * parasitoid_density_byhost);
 killed = (runif(hosts.size()) < P_parasitized_byhost);
 hosts.tag = asInteger(killed); // T/1 means killed
 preys = hosts[killed];
 for (prey in preys)
 {
 hunter = i1.drawByStrength(prey, 1, parasitoid_pop);
 preyPos = prey.spatialPosition;
 preyPos = c(hunter.getValue("PREY_POS"), preyPos);
 hunter.tag = hunter.tag + 1;
 hunter.setValue("PREY_POS", preyPos);
 }
 unhunted = hosts[!killed];

 // competition: kill a fraction of unhunted; note
 // that this is based on pre-parasitism density
 host_density_by_unhunted = i2.localPopulationDensity(unhunted, host_pop);
 P_survives_by_unhunted = exp(-host_density_by_unhunted / K);
 survived = (runif(unhunted.size()) < P_survives_by_unhunted);
 dead = unhunted[!survived]; // T means survived
 dead.tag = 1; // mark as dead
}

The logic of this code is parallel to that of the previous recipe; it has just been “spatialized”.
We start off by evaluating each interaction for the subpopulations that will be used in queries (both
in this event and in the reproduction() callbacks that execute after this event). To assess densities,
we now use the localPopulationDensity() method to assess the local density of parasitoids in the
vicinity of each host. This gives us a vector of density values, one per host; the variable name
parasitoid_density_byhost is a reminder of that. We use that to compute a vector of parasitism
probabilities, one for each host; and then to draw, with runif(), the actual fate (parasitized or not)
of each host. We set the tag values of the hosts accordingly; those values will be checked in the
host reproduction() callback, as we already saw above.

Next we loop over the hosts that were killed. For each one, we choose the parasitoid that got
the kill using drawByStrength() and we credit the kill to that individual by incrementing its tag
value, as before. Now we do an additional bit of bookkeeping as well: we get the spatial position
of the prey, and save it under the "PREY_POS" key on the parasitoid. As we saw above, the
parasitoid reproduction() callback will use that information to generate its offspring at the
position of the killed host, a nice bit of biological accuracy that might actually matter to the
dynamics since it causes the offspring of the parasitoids to, in effect, disperse towards the nearest
groups of hosts.

Finally, we implement spatial competition. Instead of basing this upon overall density, it is now
based upon the local density of hosts around each individual, using localPopulationDensity().

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 573

The competition equation is otherwise unchanged, but the probabilities and outcomes are
calculated as vectors by host, just as the parasitism dynamics were earlier.

It is worth emphasizing the vectorized design of this code, because it is quite important for
performance. It is possible to vectorize most uses of InteractionType, as well as most code for
getting and setting of positions, enforcing of boundary conditions, and so forth. It is worth the
effort to do so; as well as improving runtimes, it also makes your code simpler, and thus less likely
to contain bugs. (It would be nice to be able to vectorize the for loop over the preys as well; the
setValue() call is hard to convert to a vectorized design, though, unfortunately.)

So, how does this model look in practice? First of all, here’s a snapshot of the individuals view,
on the all tab, showing the host (left) and parasitoid (right) distributions in a typical tick:

Their distributions are fairly clumpy. They look inversely correlated to me, but it is not really
clear – it’s hard to accurately judge such things by eye, since the human brain is so finely tuned for
finding patterns (even where none exist). Happily, when on the all species tab SLiMgui can assist
us. If we click on the action button for either of the subpopulations displayed in the individuals
view, we can choose “Display spatial (unified)” from the resulting menu. That shows us this view
of the individuals instead (after resizing vertically to make the view bigger):

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 574

The individuals here are colored using the colors previously set in initializeSpecies() – the
same colors that SLiMgui has been using for the multispecies population size plots – so that the
two species can be easily distinguished. In this view it is at least somewhat easier to see that the
distributions of the two species are indeed inversely correlated. If you step forward, you see that
the distributions change rapidly; presumably the parasitoids are fairly effective at hunting in dense
clusters of hosts.

A plot of population sizes over time shows that the population dynamics have been markedly
stabilized by spatiality:

Of course this may depend upon the particular parameter values used; quite a bit of work
would need to be done before drawing any general conclusions about this model. Still, this result
is in line with expectations (since spatiality allows each local area to “decouple” from other areas
and do its own thing, stabilizing the overall population size since it is summed across multiple
decoupled areas).

Finally, let’s look at the phase space diagram for this version of the model (using SIDE == 10,
and thus S == 10^2, and a total time of 100000 ticks) to see what has happened to the attractor:

It is now very blurry and ill-defined. This is probably again due to the “decoupling” of local
areas, each of which can progress somewhat independently. It may be that local areas on the
landscape still follow the same attractor, more or less; the more decoupled that local areas become
(due to shorter dispersal and interaction distances, for example), the more that might be true.
Ironically, the more well-defined that local areas become due to decoupling, the more that
averaging the dynamics across all of those local areas will tend to produce shapeless mush, as
above. On the other hand, the more tightly coupled that local areas are (due to longer dispersal

Tick

N
u
m
b
er
	o
f	
in
d
iv
id
u
al
s

0 125 250

0

20000

host

parasitoid

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 575

and interaction distances, for example), the more the whole landscape will presumably follow the
mathematical dynamics in unison, producing a sharper phase space plot. At the limit of panmixia
(or perhaps I should call it “paninteraxia”?), one would expect to recapture the behavior of the
non-spatial model seen in the previous section.

19.6 A coevolutionary host–parasitoid trait-matching model
We have been exploring the host–parasitoid model of Faure and Schreiber (2014) in the past

several sections. We will continue that exploration here, returning to the simple individual-based
model of section 19.4 (in other words, not bringing forward the continuous-space dynamics of
section 19.5) and then adding genetics. The end result will be a model of coevolution between the
host and the parasitoid, with the host trying to evolve a phenotype that escapes from the predation
of the parasitoid, and the parasitoid evolving in response to continue to hunt the host despite its
changing phenotype.

Let’s start, as usual, with the initialization code:

species all initialize() {
 defineConstant("K", 100);
 defineConstant("R", log(20));
 defineConstant("A", 0.015);
 defineConstant("S", 10^2); // larger is more stable, but slower
 defineConstant("N0_host", asInteger((135.6217 + 0.01) * S));
 defineConstant("N0_parasitoid", asInteger((109.3010 + 0.01) * S));

 defineConstant("S_M", 1.0); // parasitoid/host matching width
 defineConstant("S_S", 2.0); // stabilizing fitness function width

 initializeSLiMModelType("nonWF");
}
species host initialize() {
 initializeSpecies(avatar="🐛 ", color="cornflowerblue");
 // tag values in host indicate survival (0) or death (1)
 // tagF values in host are QTL-based additive phenotypes

 // one short QTL controlling parasitism avoidance
 initializeMutationType("m1", 0.5, "n", 0.0, 0.1);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 9999);
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8);
}
species parasitoid initialize() {
 initializeSpecies(avatar="🦟 ", color="red");
 // tag values in parasitoid count successful hunts
 // tagF values in parasitoid are QTL-based additive phenotypes

 // one short QTL controlling host trait matching
 initializeMutationType("m2", 0.5, "n", 0.0, 0.1);
 initializeGenomicElementType("g2", m2, 1.0);
 initializeGenomicElement(g2, 0, 9999);
 initializeMutationRate(1e-7);
 initializeRecombinationRate(1e-8);
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 576

This is similar to what we have seen in previous iterations of this model, setting each species
avatar and color with initializeSpecies(). However, each species now has genetics: a mutation
type, a genomic element type, a chromosome defined by a single short genomic element
(representing one gene, a single QTL 10,000 bases long that controls a single quantitative trait in
each species), and mutation and recombination rates. We also define a couple of new model
parameters, S_M and S_S, that control the phenotypic effects in the model.

Since the genetics we are modeling here are quantitative, we define mutationEffect()
callbacks that set the fitness effect of m1 and m2 to neutral:

species host mutationEffect(m1) { return 1.0; }
species parasitoid mutationEffect(m2) { return 1.0; }

This technique may be familiar by now, but if not, see chapter 13 for discussion of quantitative trait
modeling in SLiM.

Next let’s look at the population setup:

ticks all 1 early() {
 host.addSubpop("p1", N0_host);
 parasitoid.addSubpop("p2", N0_parasitoid);

 log = community.createLogFile("host-parasite log.txt", logInterval=1);
 log.addTick();
 log.addPopulationSize(host);
 log.addMeanSDColumns("host", "p1.individuals.tagF;");
 log.addPopulationSize(parasitoid);
 log.addMeanSDColumns("parasitoid", "p2.individuals.tagF;");
}

This is the same except that we create a LogFile object that we use to log out information in
each tick: the size of the host population and the mean and standard deviation of its quantitative
trait value, and the size of the parasitoid population and the mean and standard deviation of its
quantitative trait value. We’ve seen LogFile several times before, so that should be review.

The termination event is exactly the same as before:

ticks all 10000 late() {
}

Remember that section 19.4 actually had two versions of its recipe; the first used survival()
callbacks to implement non-overlapping generations, while the second used fitnessScaling in an
early() event. We will follow the second version, using an early() event; however, as discussed
in section 19.4, this means that the population sizes plotted in SLiMgui (and those logged out by
LogFile’s automatic logging facility, which happens at the end of each tick) will not be directly
comparable to those in the deterministic model. We will do it nevertheless; it makes for a simpler
and more efficient model design. So just keep in mind that we can’t make that direct comparison
to previous results.

In addition to enforcing non-overlapping generations, the version of this early() event in this
recipe now exerts stabilizing selection upon the quantitative traits of both species, keeping them in
bounds. We want the traits to be under stabilizing selection so they don’t just run off to infinity;
but in any case, most biological traits are subject to some kind of constraint and cannot just evolve
directionally forever.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 577

The script for the early() event:

ticks all early() {
 // calculate phenotypes and implement stabilizing selection
 scale = dnorm(0.0, 0.0, S_S);

 hosts = host.subpopulations.individuals;
 phenotypes = hosts.sumOfMutationsOfType(m1);
 hosts.fitnessScaling = dnorm(phenotypes, 0.0, S_S) / scale;
 hosts.tagF = phenotypes;

 parasitoids = parasitoid.subpopulations.individuals;
 phenotypes = parasitoids.sumOfMutationsOfType(m2);
 parasitoids.fitnessScaling = dnorm(phenotypes, 0.0, S_S) / scale;
 parasitoids.tagF = phenotypes;

 // non-overlapping generations: parents die, offspring live
 hosts[hosts.age > 0].fitnessScaling = 0.0;
 parasitoids[parasitoids.age > 0].fitnessScaling = 0.0;
}

We calculate phenotypic trait values with sumOfMutationsOfType() as usual (see chapter 13),
and put those values into the tagF property of the individuals for later use. Stabilizing selection is
implemented with dnorm(), as in, for example, section 13.6; we scale the results of dnorm() so that
an individual whose phenotype is at the optimum (a value of 0.0, for both species) has a fitness
that is neutral, 1.0. Again, all of this is more or less review, so let’s move on.

The interesting part is how the logic in the first() event changes. Here’s the new script for
that event:

ticks all 2: first()
{
 hosts = host.subpopulations.individuals;
 parasitoids = parasitoid.subpopulations.individuals;

 // assess densities
 x1 = hosts.size() / S; // host density
 x2 = parasitoids.size() / S; // parasitoid density

 // assess matches between hosts and the mean parasitoid
 host_values = hosts.tagF;
 parasitoid_values = parasitoids.tagF;
 mean_parasitoid = mean(parasitoid_values);
 scale = dnorm(0.0, 0.0, S_M);
 host_match = dnorm(host_values, mean_parasitoid, S_M) / scale;

 // hunt: each parasitoid counts its successes, and
 // each host tracks whether it was killed
 parasitoids.tag = 0;
 P_parasitized_byhost = 1 - exp(-A * x2 * host_match);
 killed = rbinom(hosts.size(), 1, P_parasitized_byhost);
 hosts.tag = killed; // 1 means killed
 hunters = sapply(hosts[killed == 1], "sample(parasitoids, 1, " +
 "weights=dnorm(applyValue.tagF - parasitoid_values, 0.0, S_M));");
 for (hunter in hunters)
 hunter.tag = hunter.tag + 1;
 survivors = hosts[killed == 0];

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 578

 // competition: kill a fraction of survivors; note
 // that this is based on pre-parasitism density
 P_survives = exp(-x1 / K);
 survived = rbinom(survivors.size(), 1, P_survives);
 dead = survivors[survived == 0]; // 1 means survived
 dead.tag = 1; // mark as dead
}

This version starts off the same, calculating the density of each species, since those values feed
into the equations below. Next we have some new code that uses dnorm() to assess the matches
between hosts and parasitoids – or more specifically, between the quantitative trait value of each
host and the mean trait value of the parasitoids. A host with a trait value close equal to the
parasitoid mean has a match value of 1.0; the more different the host trait value is from the mean,
the smaller the match value. (This sort of model is often called a trait-matching model, in fact.)

Those match values, in host_match, feed in to the calculation of the probability that a given host
will be parasitized. In section 19.4, we calculated a value P_parasitized that was the probability
for every host – there were no individual differences. Now we instead calculate a vector of
probabilities, P_parasitized_byhost, that has the probability for each host depending upon its
match value. A vectorized call to rbinom() determines which hosts get parasitized, using that
vector of host-specific probabilities. Remember that x2 is the density of parasitoids; in effect, hosts
with a low match score experience a lower effective density of parasitoids, since x2 is now
multiplied by the match value for each host.

Next we determine which parasitoid killed each host. Again, in section 19.4 there were no
individual differences; the code there thus drew all of the parasitoids with a single call to
sample(), with equal probabilities for every parasitoid. Now, we need to make a separate call to
sample() for each host, with a specially calculated vector of weights that represent the trait-based
match between the focal host and every parasitoid. We use the sapply() function to do that
relatively efficiently, although this is still by far the predominant bottleneck in this model – it takes
almost 98% of the runtime of this model. (Note that a continuous-space version of this model
would probably actually run much faster than this version, because only spatially local interactions
would need to be considered – the number of possible parasitoid matches for a given host would
only be a small fraction of the whole population!)

At the end, we give successful hunters their reproduction boost by incrementing their tag value,
and handle density-dependent competition between hosts; this code is essentially unchanged.

Finally, we need to reproduce both species. The code for reproduction is unchanged from
section 19.4; each host generates a litter of mean size exp(R), while each parasitoid generates an
offspring for each host it killed. We’ll show that reproduction code again here for completeness:

species host reproduction() {
 // only hosts tagged 0 (survived) get to reproduce
 if (individual.tag != 0)
 return;

 // reproduce each host with a mean of exp(r) offspring
 litterSize = rpois(1, exp(R));

 if (litterSize > 0)
 {
 mate = subpop.sampleIndividuals(1, exclude=individual);
 for (i in seqLen(litterSize))
 subpop.addCrossed(individual, mate);
 }
}

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 579

species parasitoid reproduction() {
 // reproduce each parasitoid as many times as it parasitized
 litterSize = individual.tag;

 if (litterSize > 0)
 {
 mate = subpop.sampleIndividuals(1, exclude=individual);
 for (i in seqLen(litterSize))
 subpop.addCrossed(individual, mate);
 }
}

So, how does this model behave? Well, first let’s look at a plot of the model’s dynamics with the
trait-based matching in the hunt code turned off (following recipe 19.4). Stabilizing selection is
still on, so both phenotypic traits drift constrained by that stabilizing selection, producing a sort of
“random walk”. Note that we are now plotting mean phenotype on the y axis against time (ticks)
on the x, with shading to show the standard deviation around the mean:

This plot was made in R using the data logged by LogFile. Now let’s compare the dynamics
shown by the full model, with parasitoid hunting efficacy depending upon the match to the host:

The dynamics are completely different. We now see the host’s mean trait value evolve away
from that of the parasitoid, and the parasitoid’s mean trait value chases after it. However, as the
host’s value gets further from 0.0 the pressure back towards 0.0 exerted by stabilizing selection
gets stronger and stronger. At a certain point, it becomes worthwhile for the host to actually jump
across the parasitoid and run back towards 0.0 and beyond into negative values. The two species
therefore oscillate back and forth between positive and negative trait values in an endless “Red
Queen” chase. Phenotypic variance stays low, because both species are under strong directional
selection much of the time.

0 2000 4000 6000 8000 10000

-0
.2

-0
.1

0.
0

0.
1

0.
2

Tick

Ph
en
ot
yp
e

host
parasitoid

0 2000 4000 6000 8000 10000

-2
-1

0
1

2

Tick

Ph
en
ot
yp
e

host
parasitoid

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 580

Finally, it is interesting to look at the population size plot for the full model (remembering that
this plot is not directly comparable to those of previous sections, because population sizes in this
model are logged after the parental generation has died):

Whenever the host population gets pushed hard against the wall of stabilizing selection, its
population size crashes; individual fitness is greatly diminished by the distance from the
phenotypic optimum, and meanwhile, hosts are still being killed by the parasitoids as well. This
bottleneck persists, with a diminished parasitoid population size as well (since there are so few
hosts to lay eggs in), until the hosts find the solution of jumping over the parasitoids; presumably
each such jump involves a new mutant of large effect size that rapidly sweeps to fixation, but that
would be interesting to confirm by looking at the history of the mutations. There are also a couple
of times in this run of the model when the hosts jump over the parasitoids without first being
pushed all the way to the wall; those jumps do not involve a population bottleneck.

So, with about two pages of code we have a two-species model of coevolutionary dynamics
involving quantitative traits that influence the ecological interactions between the species to
produce “Red Queen” phenotypic chasing. Of course this could be taken in any number of
directions to explore a wide variety of interesting research questions. One obvious step would be
to combine it with the recipe of section 19.5 to add in spatiality; since that should be quite
straightforward, it will be left as an exercise for the reader.

As mentioned above, this type of genetic interaction between species is called a trait-matching
model, because the strength of the interaction depends upon the degree to which the phenotypic
trait values of individuals match. Of course interspecies interactions can depend upon genetics in
other ways too, as we will see in the next section.

19.7 A coevolutionary host–parasite matching-allele model
In the previous section we included genetics in a multispecies model for the first time, looking

at a trait-matching model in which phenotypic traits governed by quantitative genetics determined
the strength of interaction between individuals. Here we will look at a simpler type of genetic
interaction called a matching-allele model. In such models the genetics involve simple Mendelian
alleles, rather than quantitative traits, and the strength of interaction between individuals of
different species depends upon the match (or lack thereof) between the alleles they carry.

At this point, we will also move on from the host–parasitoid models of previous sections to
explore some other possibilities. Here, we will shift from parasitoids (which kill their host to gain
an offspring) to parasites (which just derive some benefit from their host, to the host’s detriment).
We will model ungulates, such as deer, infected by parasitic worms. In each tick, the parasites will
try to infect one particular host. If that host carries an allele that matches their own, the infection

0 2000 4000 6000 8000 10000

0
10
00
0

30
00
0

50
00
0

Tick

N
um

be
r o

f i
nd

iv
id

ua
ls

host
parasitoid

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 581

will be more successful, giving the parasite a fitness boost while decreasing the fitness of the host.
This model was originally written by Bob Week; thanks Bob!

Let’s start as usual with initialization:

species all initialize() {
 defineConstant("L", 1);
}
species host initialize() {
 initializeSpecies(avatar="🦌 ");

 // one nucleotide controlling infection
 initializeSLiMOptions(nucleotideBased=T);
 initializeAncestralNucleotides(randomNucleotides(L));
 initializeMutationTypeNuc("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0, mmJukesCantor(1e-3));
 initializeGenomicElement(g1, 0, L - 1);
 initializeRecombinationRate(1e-8);
}
species parasite initialize() {
 initializeSpecies(avatar="🐛 ");

 // one nucleotide controlling resistance
 initializeSLiMOptions(nucleotideBased=T);
 initializeAncestralNucleotides(randomNucleotides(L));
 initializeMutationTypeNuc("m2", 0.5, "f", 0.0);
 initializeGenomicElementType("g2", m2, 1.0, mmJukesCantor(1e-3));
 initializeGenomicElement(g2, 0, L - 1);
 initializeRecombinationRate(1e-8);
}

The parasitic worms are represented by the caterpillar emoji since the version of macOS I’m on
does not have the recently-added worm emoji; such is life. We start by defining a constant L that
is the length of the genetic locus, in nucleotides, that governs the allele matching. Here we use a
length of just 1; I think the mechanics of the model ought to work if L is increased, but the logging
code we will see below will not work, so that has not been tested. In any case, if a long matching
locus is used then a match between the two species will become less likely, so to drive strong
dynamics we will stick with L of 1 here.

Then we initialize the two species. They are both nucleotide-based, with a single locus of
length L that begins with random nucleotides. A high mutation rate is used here to decrease
waiting time, but the model will work similarly with a lower rate.

The other thing to note here is that this is a WF model, unlike the previous couple of sections.
Because of that choice, the population size of each species will be fixed throughout, modeling
“soft selection”. This means that the extent to which hosts are infected by parasites will affect their
relative mating success, but will not influence their overall population size. This could be
biologically realistic, if population regulation is due to extrinsic factors such as the amount of
available food or territory. It also means that how successful the parasites are at infecting their
hosts will not affect their population size either, but only their relative reproductive success; this
seems a bit harder to justify biologically. In any case, it would be easy to convert this recipe to a
nonWF model, and there are lots of other things about it that are biologically unrealistic too! Our
focus here is on how to implement the matching-allele model.

Next let’s look at the population setup:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 582

function (float$)nucleotideFreq(o<Species>$ species, s$ nuc) {
 nucs = species.subpopulations.individuals.genomes.nucleotides();
 return mean(nucs == nuc);
}

ticks all 1 early() {
 host.addSubpop("p0", 1000);
 parasite.addSubpop("p1", 1000);

 log = community.createLogFile("host-parasite log.txt", logInterval=1);
 log.addTick();
 log.addCustomColumn("hA", "nucleotideFreq(host, 'A');");
 log.addCustomColumn("hC", "nucleotideFreq(host, 'C');");
 log.addCustomColumn("hG", "nucleotideFreq(host, 'G');");
 log.addCustomColumn("hT", "nucleotideFreq(host, 'T');");
 log.addCustomColumn("pA", "nucleotideFreq(parasite, 'A');");
 log.addCustomColumn("pC", "nucleotideFreq(parasite, 'C');");
 log.addCustomColumn("pG", "nucleotideFreq(parasite, 'G');");
 log.addCustomColumn("pT", "nucleotideFreq(parasite, 'T');");
}

Each species has a fixed size of 1000 individuals; unexciting. We also set up a LogFile object
that will log out nucleotide frequencies for the host and parasite in each tick, using a function
called nucleotideFreq() that we define. (This is the part of the model that won’t work properly
with L > 1; we would have to think of a better frequency-logging strategy.)

Here’s the end event:

ticks all 2000 late() {
}

As usual we’ve saved the best for last. Here’s implementation of the matching-allele model:

ticks all late() {
 // each parasite will pick a random host and try to infect it
 parasites = p1.individuals;
 chosen_hosts = sample(p0.individuals, size(parasites), replace=T);

 for (index in seqAlong(parasites))
 {
 // infection depends upon a match (diploid matching-allele model)
 p = parasites[index];
 h = chosen_hosts[index];
 all_nucleotides = c(p.genomes.nucleotides(), h.genomes.nucleotides());

 if (size(unique(all_nucleotides, preserveOrder=F)) == 1)
 {
 // parasite and host are both homozygous for the same nucleotide(s)
 // with a match, the parasite's fitness increases, the host's decreases
 p.fitnessScaling = 1.5 * p.fitnessScaling;
 h.fitnessScaling = 0.5 * h.fitnessScaling;
 }
 }
}

This late() event executes just before fitness calculations, since this is a WF model. It starts by
choosing a host for each parasite, using random sampling. This random sampling mimics biology
in which a parasite simply attacks the first host it encounters in the environment. One could make

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 583

the choice of host be governed by the allele-matching mechanism instead, to mimic biology in
which the parasite actively seeks out a host that is vulnerable to it, but we have not done that here;
the previous sections illustrate some strategies for that type of implementation.

Then we loop over the parasites and their chosen hosts. For each host–parasite pair, we retrieve
their nucleotide sequences; this results in a vector containing four string elements, two for the
(diploid) parasite and two for the (diploid) host. In this particular model we want to require an
exact diploid match between host and parasite, so we use unique() to check that all four
sequences are identical; if you want different matching logic you would just implement that
instead. This matching criterion basically means that the matching mechanism is recessive, and so
both alleles of the host and parasite must be the same for that recessive allele to be expressed; you
could instead model complete dominance, or some kind of incomplete-dominance scheme, by
replacing the call to unique().

Finally, if the host and parasite have a complete diploid match then we model increased fitness
for the parasite, by scaling up its fitnessScaling value, and decreased fitness for the host. We do
this by multiplying the existing fitnessScaling value; this produces multiplicative effects for hosts
that are involved in multiple successful infections. In this implementation we do not modify the
fitness of a parasite that does not match its host; it remains 1.0, whereas parasites with a successful
match get 1.5. This means that all parasites have a chance to reproduce; the ones with a match
are just more likely to reproduce. One could instead set the fitnessScaling of non-matched
parasites to 0.0, reflecting biology in which they fail to reproduce. As usual, start with the biology
of your system and write model logic that implements that biology (without overcomplicating your
model with biological details that are unimportant to your research question, of course).

That’s the whole model; since it doesn’t involve spatiality or quantitative traits it is quite simple
really – about a page of code, most of which is the setup of the genetic structure and the logging.
What does it do? Here are plots of allele frequencies over time:

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tick

N
uc

le
ot

id
e

fr
eq

ue
nc

y
(h

os
t)

A
C
G
T

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tick

N
uc

le
ot

id
e

fr
eq

ue
nc

y
(p

ar
as

ite
)

A
C
G
T

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 584

If you look closely, you can see a general pattern: whatever nucleotide is highest frequency in
the host soon becomes the highest-frequency nucleotide in the parasite, and then the host moves
to a different nucleotide. These are “Red Queen” chasing dynamics as seen in the previous section
also. These plots are not terribly easy to read, though. Here is a different style of plot in which
only the nucleotide of highest frequency is shown, allowing us to plot host and parasite together
without rendering the plot unreadable (I believe Tony Long calls this a “Pollock plot”):

Perhaps it is easier here to see that the highest-frequency allele in the host (circles without
outlines) is soon matched by the highest-frequency allele in the parasite (circles with outlines).

Finally, for those who think that this pattern might just be a coincidence – seeing a pattern
visually where none really exists – here is the same recipe run neutrally, simply by commenting
out the late() event that changes the fitness of matching hosts and parasites:

Here there is clearly no “chasing” of the host species by the parasite species; each species is just
doing a random walk in allele frequencies. The qualitative difference between the neutral model
and the selective model is very clear, although one could also develop a statistical test of temporal
correlation to show it more quantitatively.

As an aside: this model allows four different allelic values at the locus, following the biology of
DNA, but often one might want the model to be biallelic to match analytical models that assume
that (or perhaps one’s biological system is actually biallelic for some biological reason). It’s easy to
modify this recipe to be biallelic – particularly since it compares nucleotide strings to assess
matching, rather than mutation objects (so you don’t need to worry about separate mutational
lineages or back-mutations). To do that, start out by ensuring that the ancestral nucleotide at
initialization is one of the two possible nucleotides (A or T, say). Then ensure that new mutations
are only to A or T as well; you could write a mutation() callback for each species that rejects all
new mutations that are not mutations to either A or T, or you could use a custom mutation-rate
matrix that only models A-to-T and T-to-A mutations, rather than using the Jukes–Cantor model as

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tick

N
uc

le
ot

id
e

fr
eq

ue
nc

y

A
C
G
T

host
parasite

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tick

N
uc

le
ot

id
e

fr
eq

ue
nc

y

A
C
G
T

host
parasite

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 585

this recipe does. Either way, if you constrain the model to only use A and T, it ought to work nicely
as a biallelic model; making it triallelic would be similarly easy.

Many other ways of modeling the genetics of coevolutionary species interactions are possible,
of course, but with this recipe and the previous one we have covered a lot of the basic choices –
quantitative versus Mendelian, trait-based versus allele-based, nucleotide-based versus non-
nucleotide–based, nonWF versus WF. Hopefully this methodological survey helps you to craft the
genetic interactions you want for your biological system.

19.8 Within-host reproduction in a host–pathogen model
We have looked at host–parasitoid and host–parasite models in previous sections, but in these

models the parasitoid or parasite was free-living, finding a new host in every generation. There is
an alternative life history in which the dependent species actually colonizes a host and reproduces
within it for multiple generations. This is particularly typical of pathogens, so we will call this
section’s recipe, which explores such dynamics, a host–pathogen model. Such a model could
involve genetics, with local adaptation to a particular host occurring over multiple generations of
the pathogen inside that host; this could also bring in complex tradeoffs between transmissibility
and virulence, for example, as well as adaptation of the host to resist the pathogen. However, we
will not model such genetics for simplicity; here we are primarily concerned with the question of
how to construct a model of multiple generations of within-host reproduction of a pathogen, so we
will keep other aspects of the model simple.

To begin with, here’s the initialization code, and the termination event:

species all initialize() {
 initializeSLiMModelType("nonWF");

 defineConstant("K_MONKEY", 100); // monkey carrying capacity
 defineConstant("F_MONKEY", 3.0); // monkey fecundity
 defineConstant("G_MONKEY", 20); // relative generation timescale
 defineConstant("P_TRANSMISSION", 0.0001); // probability of transmission
 defineConstant("SUPPRESSION_μ", 30000); // optimal size for suppression
 defineConstant("SUPPRESSION_σ", 10000); // width for suppression
 defineConstant("SUPPRESSION_STRENGTH", 0.4); // strength of suppression
 defineConstant("DEATH", 100000); // level for certain death
}
species monkey initialize() {
 initializeSpecies(tickModulo=G_MONKEY, avatar="🐵 ", color="tan3");
 initializeSLiMOptions(keepPedigrees=T);
 initializeSex("A");
 // pedigree IDs are used to identify host-pathogen matches
 // colors: blue == uninfected, yellow -> red == infected, black == dead
}
species pathogen initialize() {
 initializeSpecies(avatar="🦠 ", color="chartreuse3");
 // pathogen.tag is a counter of the next subpop ID to use
 // subpopulation.tag is the pedigree ID of the host for the subpop
}

ticks all 2000 late() { }

This is a nonWF model. That is convenient because we want to control the transmission of
pathogens from host to host with some precision; we will use the takeMigrants() method to do
that, which is only available in nonWF models. We also want to be able to kill hosts sometimes,

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 586

when they succumb to infection; we will use the killIndividuals() method to do that, which is
again only available in nonWF models. This model also involves overlapping generations, which
is… well, you know.

We set up various constants that govern the model’s dynamics; the comments give some
indication of their function, and we will discuss them further as they arise in the code. We have
two species, monkey and pathogen. This model uses different timescales for the two species (last
seen in section 19.2); for every monkey cycle we will model 20 pathogen cycles, as governed by
the G_MONKEY parameter. The monkeys are also modeled as being sexual, and will reproduce
through biparental mating, whereas the pathogens are not, and will reproduce clonally.

The only other thing to note is that, as explained in the comments above, this model keeps track
of which pathogens are living in which hosts using the pedigreeID property of the monkeys. We
pass keepPedigrees=T for the monkeys so that each monkey has a unique pedigreeID value. For
each monkey host that is infected by the pathogen, there will exist a separate pathogen
subpopulation containing all of the pathogens that are living in that host; if fifteen of the monkeys
are infected, there will be fifteen pathogen subpopulations. For a given host with a particular
pedigreeID, the corresponding pathogen subpopulation’s tag value will be equal to the host’s
pedigreeID. This scheme allows us to find the host for a given pathogen (it is the host with a
pedigreeID equal to the host’s subpopulation’s tag value), and to find the pathogens infecting any
given monkey (they are the ones in the pathogen subpopulation with a tag value equal to the
monkey’s pedigreeID). It’s a bit confusing at first, but we will soon see how it is used in practice,
which should make things clearer.

Next, let’s look at the initial population setup, in a ticks all 1 early() event:

ticks all 1 early() {
 monkey.addSubpop("p1", K_MONKEY);

 // choose initial hosts carrying the infection
 initial_hosts = p1.sampleIndividuals(5, replace=F);
 pathogen.tag = 3;

 for (initial_host in initial_hosts)
 {
 // make a pathogen subpop for the host
 pathogen_subpop = pathogen.addSubpop(pathogen.tag, 1);
 pathogen_subpop.tag = initial_host.pedigreeID;
 pathogen.tag = pathogen.tag + 1;
 }

 // log some basic output
 logfile = community.createLogFile("host_pathogen_log.txt", logInterval=1);
 logfile.addTick();
 logfile.addSubpopulationSize(p1);
 logfile.addPopulationSize(pathogen);
 logfile.addCustomColumn("host_count", "pathogen.subpopulations.size();");
 logfile.addMeanSDColumns("monkeyAge", "p1.individuals.age;");
}

We make a single monkey subpopulation, p1, for all the monkeys, which starts at the monkey
carrying capacity of K_MONKEY. Then we start an initial infection by choosing five monkeys at
random (a size chosen because it makes early stochastic extinction of the pathogen relatively
unlikely, but if you were interested in such establishment dynamics you could start with a single
infected individual). Those monkeys each receive a single pathogen. This is done by creating a
new pathogen subpopulation of size 1 for each target monkey, with a tag value for the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 587

subpopulation equal to the target monkey’s pedigreeID. This establishes the correspondence
between the hosts and the pathogens infecting them. Each new pathogen subpopulation gets a
new id – p3, p4, p5, etc. – based upon the value of the tag value on the pathogen species; that tag
value gets incremented after each new subpopulation is created, providing unique identifier
values.

Finally, we set up a LogFile object to log out some basic information so we can see what’s
going on; we’ll see plots from this dataset below. Now let’s look at some population management
code, including extinction, reproduction, and population regulation:

ticks all 2: first() {
 if (p1.individualCount == 0)
 stop(monkey.avatar + " extinct");
 if (pathogen.subpopulations.size() == 0)
 stop(pathogen.avatar + " extinct");
}

species monkey reproduction(p1, "F") {
 // monkeys reproduce sexually, non-monogamously
 litterSize = rpois(1, F_MONKEY);

 for (i in seqLen(litterSize))
 {
 mate = subpop.sampleIndividuals(1, sex="M");
 subpop.addCrossed(individual, mate);
 }
}
species pathogen reproduction() {
 // the pathogen reproduces clonally
 subpop.addCloned(individual);
}

ticks monkey early() {
 // monkey population regulation
 p1.fitnessScaling = K_MONKEY / p1.individualCount;
}

The first() event just detects extinction of either species and, if it has occurred, stops with a
diagnostic message. The message includes the avatar of the extinct species (🐵 or 🦠) just for fun.

The reproduction code is totally unsurprising: monkey females find a male mate and reproduce
sexually (non-monogamously) with a mean fecundity of F_MONKEY, while the pathogens reproduce
clonally. Keep in mind that the monkey species is active only every twentieth tick, due to its
tickModulo value, so these two reproduction() callbacks are running on different timescales! As
usual, the biology here is not intended to be realistic; the actual generation time and fecundity of
monkeys, the effects of their social structure on mate choice, etc., are all neglected.

Finally, we have an early() event that implements population regulation for the monkeys. This
works in the usual way that we have used in this manual, with fitnessScaling influenced by the
population size relative to the carrying capacity of K_MONKEY. Note that this event is declared with
ticks monkey, and thus will only execute every twentieth tick; if it were ticks all it would
execute every tick, but in the ticks when the monkey species was inactive it wouldn’t actually have
any effect, since survival/mortality would not occur for monkey in those ticks.

All of the above, except the setup of the initial infections, was pretty routine. Now it’s time to
get into the meat of the recipe. There’s a fair bit of code involved, but it really isn’t as complicated
as it looks. Basically, in every tick we run three early() events, one after the other, to manage

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 588

horizontal transmission of pathogens between hosts (the first event), disease outcomes of death or
suppression (the second event), and coloring of monkeys by their infection level for visualization
in SLiMgui (the third event). We’ll discuss them with fairly broad brush strokes, since a line-by-
line dissection would just be too long.

Here’s the first one:

ticks all early() {
 // horizontal transmission
 if (p1.individualCount > 1)
 {
 pathogenSubpops = pathogen.subpopulations;
 allPathogens = pathogenSubpops.individuals;
 isTransmitted = (rbinom(allPathogens.size(), 1, P_TRANSMISSION) == 1);
 moving = allPathogens[isTransmitted];

 for (ind in moving)
 {
 // figure out which host we are in
 hostID = ind.subpopulation.tag;
 currentHost = monkey.individualsWithPedigreeIDs(hostID);

 // choose a different host and get its ID
 newHost = p1.sampleIndividuals(1, exclude=currentHost);
 newHostID = newHost.pedigreeID;

 // find/create a subpop for the new host and move to it
 newSubpop = pathogenSubpops[pathogenSubpops.tag == newHostID];

 if (newSubpop.size() == 0)
 {
 newSubpop = pathogen.addSubpop(pathogen.tag, 0);
 pathogen.tag = pathogen.tag + 1;
 newSubpop.tag = newHostID;

 // need to incorporate the new subpop in case it receives another
 pathogenSubpops = c(pathogenSubpops, newSubpop);
 }
 newSubpop.takeMigrants(ind);
 }
 }
}

For horizontal transmission to occur, we need at least two monkeys. Given that, we use
rbinom() to decide whether each individual pathogen will be transmitted to a new host or not,
with a constant probability of P_TRANSMISSION. For each pathogen that is being transmitted, we
first figure out which host it is in, currentHost, by looking up the monkey with the right
pedigreeID. Then we choose its new host, newHost, with sampleIndividuals(). That host might
already contain pathogens; if so, a pathogen subpopulation will already exist for it, and we just
call takeMigrants() to move the target pathogen over. If not – if the lookup of newSubpop returns
an empty vector – we need to create a new pathogen subpopulation for newHost. That is done in
the same way as it was for the initial infection, and then takeMigrants() moves the pathogen into
the new subpopulation. Whenever we create a new pathogen subpopulation we add it to
pathogenSubpops, so that that variable is up to date and the subpopulation lookup code continues
to work correctly as the loop continues.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 589

Next comes the event that handles disease outcomes:

ticks all early() {
 // disease outcomes: either suppression or mortality
 suppress_scale = SUPPRESSION_STRENGTH / dnorm(0.0, 0.0, SUPPRESSION_σ);

 for (pathogenSubpop in pathogen.subpopulations)
 {
 popsize = asFloat(pathogenSubpop.individualCount);
 P_supp = (dnorm(popsize, SUPPRESSION_μ, SUPPRESSION_σ) * suppress_scale);
 P_death = popsize / DEATH;

 if (runif(1) < P_supp)
 {
 // the infection is suppressed; host lives, pathogen dies
 pathogenSubpop.removeSubpopulation();
 }
 else if (runif(1) < P_death)
 {
 // the host has died; kill it and its pathogens
 host = monkey.individualsWithPedigreeIDs(pathogenSubpop.tag);
 monkey.killIndividuals(host);
 pathogenSubpop.removeSubpopulation();
 }
 }
}

This loops through the pathogen subpopulations one by one, and determines their fate – and the
fate of the hosts that contain them. For each one, we calculate the probability of two possible
outcomes: suppression (meaning that the host’s immune system kicks in and gets rid of the
infection) and death (meaning the host dies, and its pathogen subpopulation with it).

The probability of suppression follows a Gaussian function, as modeled with dnorm(): the
probability of suppression is highest when the infection is at an intermediate optimum level of
SUPPRESSION_μ, with a width for the Gaussian function of SUPPRESSION_σ that governs how quickly
the likelihood of suppression falls off with a non-optimum infection level. The overall strength of
suppression is governed by SUPPRESSION_STRENGTH; this is the probability that a host with an
infection at exactly the optimum level will suppress it. Overall, what we are trying to (loosely)
model here is the idea that a very slight infection is unlikely to be suppressed because the host’s
immune system has not yet had time to detect the infection and learn to combat it, while a very
large infection has probably just gotten so out of control that even a full-scale immune response by
the host is unlikely to clear it; at some intermediate level, suppression is most likely. Of course this
is all just hand-waving, without any basis in empirical data, but it shows an approach that might be
useful.

The probability of death is more straightforward. It is directly proportional to the size of the
infection, and reaches a probability of 1.0 when the infection level is equal to the parameter
DEATH. The bigger the infection, the more likely you are to die.

Of course all of this could be modeled with much more biological detail: the health level of the
individual monkey, the strength of its immune response (including a faster and more vigorous
response in monkeys that have been previously infected), recovery via a slow battle between
immune system and pathogen rather than instantaneous suppression, and so forth. That is all just
scripting detail, not worth getting into here; and of course, remember that you will never succeed
in modeling every biological detail, so you should focus on the processes that are important to
your question of interest and strive to keep other aspects of your model as simple as possible.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 590

Anyhow, the rest of the event implements the decision for the given pathogen subpopulation. If
its host suppressed it, we use removeSubpopulation() to remove the pathogen subpopulation from
the model entirely. If, on the other hand, the host was killed by the pathogen, we look up the host
and kill it by calling killIndividuals() for it, while also removing the pathogens that it was host
to. We saw killIndividuals() before in sections 15.5 and 15.16; we will discuss it more below.

The third early() event is just for SLiMgui visualization purposes:

ticks all early() {
 // color monkeys by their infection level
 pathogenSubpops = pathogen.subpopulations;

 for (host in p1.individuals)
 {
 hostID = host.pedigreeID;
 pathogenSubpop = pathogenSubpops[pathogenSubpops.tag == hostID];

 if (pathogenSubpop.size() == 1)
 {
 pathogenCount = pathogenSubpop.individualCount;
 hue = max(0.0, 1.0 - pathogenCount / DEATH) * 0.15;
 host.color = rgb2color(hsv2rgb(c(hue, 1, 1)));
 }
 else
 host.color = "cornflowerblue";
 }
}

It loops through all the monkeys, looks up their corresponding pathogen subpopulation to
determine the size of their infection, and colors them either blue (if uninfected) or a shade from
yellow to red corresponding to increasing levels of infection (up to the threshold of DEATH).

Besides dying from infection, monkeys also die of natural causes, as a result of the density-
dependent fitnessScaling implemented earlier. When that happens, the pathogen subpopulation
for the monkey that died needs to be removed. We do that with a survival() callback:

species monkey survival(p1) {
 // when a monkey dies, any pathogens in it die
 if (!surviving)
 {
 hostID = individual.pedigreeID;
 pathogenSubpops = pathogen.subpopulations;
 pathogenSubpop = pathogenSubpops[pathogenSubpops.tag == hostID];
 pathogenSubpop.removeSubpopulation();
 }
 return NULL;
}

This checks whether SLiM plans to kill the focal individual monkey, using the surviving
pseudo-parameter; if so, it looks up the corresponding pathogen subpopulation and removes it. It
ends by returning NULL, which tells SLiM to proceed with its planned action. We thus never
change SLiM’s survival decision for the monkeys; we just react to it, to update our bookkeeping.

That’s the whole model. What does it do? Sometimes it just goes extinct fairly quickly. When it
doesn’t, though, the dynamics it shows can be kind of interesting. Once the infection gets
established the model’s dynamics are generally pretty stable, although bad luck – stochasticity in
the demographics, transmission, etc. – can bump the monkeys over the edge to extinction. Here
are two plots generated from the data logged out by LogFile:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 591

On the top is the abundance of monkeys through time. The cycling here is not a product of the
interspecies interaction, exactly; it is a consequence of the monkey’s life history, in which (in this
model) they reproduce in a synchronized fashion every 20 ticks and then, if they exceed their
carrying capacity, get cut back by density-dependent fitness. The top of each sawtooth is the
moment after reproduction, when the population is at its peak; then deaths due to infection whittle
away the population until the next reproduction event. There are two times, near ticks 500 and
1700, when the population crashes for no obvious reason.

On the bottom is the mean pathogen load per monkey (including uninfected monkeys).
Interestingly, this cycles with the same periodicity even though it is pathogen load per monkey; the
infection load is cycling in synchrony with the monkey’s life history dynamics. To examine this
further, we can zoom in on a representative period of time and overplot the data (the y-axis range
for each line is the same as in the plots above):

0 500 1000 1500 2000

Tick

A
bu

nd
an

ce
 (m

on
ke

y)

0
15
0

0 500 1000 1500 2000

Tick

M
ea

n
pa

th
og

en
 lo

ad

0
10
00
0

1000 1050 1100 1150 1200 1250

Tick

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 592

What we can see here is that the pathogen load spikes, and the mortality rate of the monkeys is
increasing, a little before each monkey reproduction event. The pathogen load usually drops a
little bit before the monkey reproduction event; this seems to be due to a tranche of the most
heavily-infected monkeys dying. The monkeys then reproduce, which generates a new batch of
juveniles that are uninfected, further decreasing the mean pathogen load.

It seems like there are interesting questions to investigate here. One obvious question is: why
do this model’s dynamics tend to be stable, with neither the monkeys nor the pathogens going
extinct unless a particularly unlucky set of chance events occurs, even though the model is not
stabilized by spatiality as we saw in section 19.5? I think this might be due to the Gaussian
function that governs the suppression of infection in hosts. The fact that suppression is unlikely
when at low levels gives a helping hand to the pathogen when its abundance is low, preventing
the monkeys from eradicating it, while the per-pathogen probability of transmission remains
constant; this encourages the pathogen to survive and spread to new hosts. When the pathogen’s
abundance is high, on the other hand, the Gaussian function’s shape tends to force the pathogen
even higher, until all of the hosts with high levels of infection are rapidly killed off and the
pathogen’s abundance crashes again, leaving behind monkeys (and soon, juveniles) that have little
or no pathogen load. But that is just a tentative hypothesis; lots of work would be needed to
confirm this mechanistic explanation!

More importantly, the take-home point here is that the model appears to be working; you can
observe in SLiMgui that infected monkeys change color according to their infection load, and you
can examine the dynamics of the pathogen subpopulations and the temporary monkey graveyard.
There is one feature of SLiMgui we haven’t seen before that is also helpful for verifying that the
model is working as intended, given the complexity of the timing of the two species and the
various events in the tick cycle. If you open the debugging output viewer with the button , you
will see a tab named Scheduling that you can select. Here’s an example of what it shows:

 ...
 viability/survival: species pathogen
tick 1980: species monkey INACTIVE, species pathogen active (cycle 1980)
 event: ticks all 2: first() [line 27]
 offspring generation: species pathogen
 event: ticks all early() [line 78]
 event: ticks all early() [line 113]
 event: ticks all early() [line 138]
 fitness recalculation: species pathogen
 viability/survival: species pathogen
tick 1981: species monkey active (cycle 100), species pathogen active (cycle 1981)
 event: ticks all 2: first() [line 27]
 offspring generation: species monkey
 offspring generation: species pathogen
 event: ticks monkey early() [line 74]
 event: ticks all early() [line 78]
 event: ticks all early() [line 113]
 event: ticks all early() [line 138]
 fitness recalculation: species monkey
 fitness recalculation: species pathogen
 viability/survival: species monkey
 viability/survival: species pathogen
tick 1982: species monkey INACTIVE, species pathogen active (cycle 1982)
 event: ticks all 2: first() [line 27]
 ...

For every tick, it provides a summary of which species are active, what their cycle counters are,
and then the sequence of events and other occurrences during the tick cycle. This allows us to
verify that the overall design of the model is working as intended.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 593

Finally, as promised, let’s discuss the use of killIndividuals() above, because it’s more tricky
than it appears. The trickiness is caused by the different timescales of the two species and the way
that infection kills monkeys. The monkey species is active only every twentieth tick, and that means
that is executes its survival/mortality phase only every twentieth tick. On the other hand, the
pathogen species multiplies in every tick – exponentially, no less. When the infection in a given
monkey gets out of control, we want that monkey to die immediately. (If it didn’t die until the next
monkey cycle, it would be a sort of zombie, continuing to transmit pathogens to the other monkeys;
we don’t want that here, although for some diseases it might actually be kind of realistic.) We
could set its fitnessScaling to 0.0, but that wouldn’t actually kill it until the next monkey cycle.
What to do?

One possible solution would be to change the design of the model to make the monkeys active
in every tick, and just decrease their fecundity by a factor of 20 to compensate, or set up their
reproduction code to only run every twentieth cycle (while allowing mortality to occur in every
cycle). That would be perfectly reasonable for some models; however, sometimes you really do
want the modeled species to run on different timescales, so let’s consider this solution to be
unacceptable for our purposes here.

Initially, I solved this problem by creating a special subpopulation I called the “temporary
graveyard”. I used takeMigrants() to move dead monkeys from p1 into it, and there they would
rest – perhaps not entirely in peace, but without spreading disease or otherwise participating in
model dynamics – until monkey was next active, at which time they would be killed by a
survival() callback. However, ecology-induced mortality is very common, so this felt like a
general problem for which a simpler and more intuitive solution was needed; and so the
killIndividuals() method was born.

You might wonder why I’ve explained all of this. Partly, it seems important to explain why using
fitnessScaling would not work well in this recipe, due to the timescale difference between the
species. Also, though, even though the “temporary graveyard” got replaced by killIndividuals()
in the end, I feel like I should preserve the idea for posterity. Its strategy was reminiscent of the
“cold storage” subpopulation used in section 15.19, which stored dead individuals in order to be
able to continue to use their sperm, obtained before their death by females, to posthumously
fertilize eggs. As section 15.19 discusses, the same strategy can be useful for modeling “resting
eggs” in Daphnia, or segregating individuals into “reproductive” and “non-reproductive” groups
that behave and interact differently, or many other purposes. The “temporary graveyard” was a
nice demonstration of the flexibility of using subpopulations to partition individuals for model-
specific purposes. That’s a worthwhile lesson to keep in mind, even if this recipe has evolved
towards a simpler design in the end.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 594

20. Runtime control

In this chapter we’ll look at topics related to what might be called “runtime control”:
manipulating the random number generator, saving simulation snapshots and data to files,
executing “lambdas” as a way of making code dynamic and/or reusable, and debugging your
models in SLiMgui. We will no longer be looking at complete recipes for models as we did in the
previous chapters; instead, we will use shorter snippets of code to briefly explore a few topics
likely to come up when you are developing models of your own.

20.1 The random number generator
We have encountered the (pseudo-)random number generator in various recipes, but it is worth

focusing on it briefly since random numbers are quite important for SLiM simulations.
SLiM and Eidos primarily use a random number generator that is part of the GNU Scientific

Library (GSL), the GSL’s taus2 generator. It is possible to change this by modifying Eidos’s internal
code, but it is not recommended since Eidos and SLiM rely heavily on various properties of this
generator, such as the number of random bits it outputs per draw, and the independence of the bits
within each draw. It is a good generator with a long period, and should be suitable for most
purposes. Starting in SLiM 3.0, a 64-bit Mersenne Twister (MT64) generator is also used, for
purposes where 64-bit random numbers are needed (since the taus2 generator is only a 32-bit
generator, but is significantly faster than the Mersenne Twister generator); the seeds of the two
generators are synchronized, and the fact that there are two independent generators used under
the hood should be essentially invisible to users of SLiM and Eidos; it can, for practical purposes,
be considered a single generator.

The random number generator is seeded at the very beginning of each simulation run (each
press of the Recycle button, in SLiMgui) using a combination of the current Un*x process ID and
the clock time. This is not a particularly robust way to seed the generator; if you are doing
production runs of a model, you will generally want to ensure that each run uses a different seed
value. Perhaps the simplest way to ensure this is to pass a seed value to SLiM on the command
line via the -seed or -s option; for example:

slim -seed 12345 ./script.txt

If you write a Un*x script (or an R script, or whatever) to launch all of your SLiM model runs,
that script can use this command-line option to set up each model run with a distinct seed value.

Within the code for a model, it is also possible to manipulate the random number generator’s
seed value; the recipe in section 9.2 did this in order to re-run the model from the same starting
point with different seeds, for example. The getSeed() function returns the last seed value set, and
the setSeed() function sets a new seed value. Note that calling setSeed(getSeed()) generally
changes the state of the random number generator; the seed returned by getSeed() is the last seed
value set to initiate a random sequence, but since random numbers may have been generated
since that seed was set, the seed does not necessarily reflect the current state of the generator.

The recipe of section 9.2, and some other recipes in the cookbook, change the random number
seed with a particular formula:

setSeed(rdunif(1, 0, asInteger(2^62) - 1));

This is a useful way to change to a new seed (allowing the subsequent run to be reproduced
directly by starting at the saved simulation point with the same new seed value) while still
preserving a dependency upon the original seed value. These recipes used to do
setSeed(getSeed() + 1)) instead, but that could be problematic if a set of replicate runs are done

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 595

using sequential initial seed values; the replicate run starting with seed 1 will graduate to
successive seeds of 2, 3, etc., and will thus end up using exactly the same pseudorandom
sequence as the replicate runs that started with (or graduated to) those higher seed values. Since
the identical pseudorandom sequences would be used in conjunction with a different simulation
state, it might not end up mattering; but there is no point in taking the risk of accidental correlation
between runs, so it is best to follow this new strategy, which should avoid this issue. (Thanks to
Matthew Hartfield for pointing this out.)

The rdunif() call generates a seed within the range of the MT64 generator (probably rather
conservatively, with 2^62), aiming to avoid any repetition of sequences that might occur if a given
seed happens to lead to drawing the very same seed again and thus repeating the same sequence
over and over (thanks to Graham Gower for pointing this issue out). The taus2 generator has only
an unsigned 32-bit range for seeds; values outside this range still work, however (they are taken
modulo 232). There is still a risk, then, that the taus2 generator will exhibit a repetition of
sequences, but for many models the involvement of the MT64 generator in some aspects of SLiM’s
dynamics will nevertheless kick the model out of its previous path. Seeding random number
generators is a tricky business; if you do it, be very careful and check that your results are not
distorted by such effects.

When running a SLiM model, the seed value set when the simulation is initialized is
automatically printed to the output. For example, you might see:

// Initial random seed:
1455193095666

If a particular model run catches your interest and you wish to reproduce it, you can copy that
initial seed value and add a call to the beginning of your model’s initialize() callback like:

setSeed(1455193095666);

If you recycle the model after adding such a line, you will see a different initial seed value
printed; but after you step over the initialize() phase, you should see the model repeat its
previous sequence, because the different initial seed value was replaced by the setSeed() call.

20.2 Defining constants on the command-line
It is common to want to run a model many times, perhaps varying some of the basic parameters

that define the model, or perhaps just varying the random number seed in a predictable way in
order to produce independent replicates of the simulation. To make this simpler, SLiM provides a
command-line option, -define (or just -d) that allows you to specify definitions for Eidos constants
that your script can then use. For example, consider this simple script:

initialize() {
 setSeed(seed);
 initializeMutationRate(mu);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(r);
}
1 early() {
 sim.addSubpop("p1", N);
}
2000 late() { sim.outputFixedMutations(); }

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 596

This is just a simple neutral drift model, as we have used for the basis of many recipes in this
cookbook. However, it references four undefined variables: the random number seed seed, the
mutation rate mu, the recombination rate r, and the population size N. Run “as is”, the script
would therefore fail with an “undefined identifier” error.

But when invoking this model at the command line, these values can be defined as Eidos
constants using the -d command-line option. Assuming that slim and the script test_defines.txt
are at findable paths, this would be an example invocation of the model:

slim -d seed=7 -d mu=1e-7 -d r=1e-8 -d N=500 test_defines.txt

The values would then be defined and available to the script. (Note that setting the random
number seed at the command line can also be achieved with the -seed command-line option; see
section 20.1). With this mechanism, it is easy to set up a script that runs a large number of slim
jobs on a computing cluster, for example, to produce replicated runs across a whole parameter
space. A call to catn() at the beginning of your script could output the values for all of the
constants defined externally, so that the output from each run of SLiM is marked with the
parameter values that generated it.

Incidentally, one might wish to write the above model such that the final tick depends upon the
defined value of N; it is common, for example, to run a neutral burn-in period for 10N generations
(although this widespread practice is not without problems). It would be nice to be able to write:

10*N late() { sim.outputFixedMutations(); }

Unfortunately, this does not work; the tick range for script blocks must use simple integer
constants. (This is difficult to fix because the values of constants may not be known at the time the
script is parsed, such as when they are defined with defineConstant().) Instead, the standard
“trick” is to define the script block with a symbol, like this:

s1 2000 late() { sim.outputFixedMutations(); }

The symbol s1 now refers to this script block. Then the script block can easily be rescheduled
to the desired tick (or tick range) using the rescheduleScriptBlock() method, as in this rewritten
tick 1 early() event:

1 early() {
 sim.addSubpop("p1", N);
 community.rescheduleScriptBlock(s1, start=10*N, end=10*N);
}

The s1 event will now run in tick 10*N as desired. Note that the tick declared for s1 – 2000,
here – is no longer important, since s1 will be rescheduled anyway. The only caveat is that the
declared tick should be after the tick in which the rescheduling occurs, to ensure that s1 does not
get executed before the rescheduling takes place. See section 26.1 for further discussion on the
declaration of event script blocks.

One might wish to supply definitions of constants in this manner when running at the command
line, but have the model still run properly under SLiMgui, with default values for constants, rather
than producing an “undefined identifier” error. Here is a version of the initialize() callback for
the above model that achieves this:

initialize() {
 if (exists("slimgui"))
 {
 defineConstant("seed", 1);
 defineConstant("mu", 1e-7);

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 597

 defineConstant("r", 1e-8);
 defineConstant("N", 1000);
 }

 setSeed(seed);
 initializeMutationRate(mu);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(r);
}

The slimgui object, which provides an Eidos interface to SLiMgui (see section 25.13), is defined
only when running under SLiMgui, so the constants will be defined only in that case.

One could similarly use exists() to test for the existence of each constant, and define their
values only if they are undefined; this would allow the model to run at the command line with no
-d definitions supplied, using default values, but would allow those default values to be overridden
with a -d command-line flag when desired. For example, this defines seed only if it has not
already been supplied:

if (!exists("seed"))
 defineConstant("seed", 1);

Defined constants can be of type logical, integer, float, or string; defining string constants
probably requires playing quoting games with your Un*x shell, such as:

slim -d "foo='bar'" test.txt

The fact that Eidos strings such as 'bar' can be enclosed in either single or double quotes
comes in useful here. If the -l[ong] command-line option is supplied (turning on more verbose
output from SLiM), the argument for each -d[efine] command-line option will be printed as it
was received by SLiM after processing by the shell, making it somewhat simpler to diagnose
quoting issues.

In fact, the values for defined constants can be any Eidos expression, and can even reference
previously defined constants. For example, one may accomplish scaling of model parameters by
the population size with an invocation such as:

slim -d N=1000 -d THETA=5 -d "mu=THETA/(4*N)" model.txt

Here the mutation rate mu is calculated from the population size N and the scaled model
parameter THETA (note that time would also need to be rescaled, and that various other rescaling
issues might need to be addressed; see section 5.5). Note that with such expressions, as with
string literals, quoting is probably necessary to avoid issues with your Un*x command shell, as
shown above. Expressions of any kind are allowed, including calls to Eidos functions, and the
result of the expression need not be a singleton. The random number generator will be initialized
(with the supplied -seed value, if any; see section 20.1) before the command-line definition
expressions are evaluated, so functions that rely upon random numbers will use values based upon
the model’s initial seed.

It is a good idea to use unique names for defined constants that do not collide with any symbols
defined by Eidos or SLiM. Some such names will be flagged as errors; others, such as collisions
with the names of pseudo-parameters that SLiM provides to callbacks, may just cause confusion.
You might wish to employ a naming convention for your constants to avoid all possibility of
collisions, such as using names that begin with d_.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 598

See section 14.6 for an example of defining constants on the command line with ABC-MCMC
parameter estimation.

20.3 Other command-line options
Previous sections have touched upon a few of the command-line options for SLiM. In

particular, section 20.1 showed how to pass a seed for the random number generator using the -s
or -seed option, and section 20.2 showed how to define Eidos constants on the command line
with the -d or -define option. There are a few other command-line options supported by SLiM,
which we will briefly summarize here.

First of all, there are options that are not related to running simulations. The -v or -version
option prints out the version number of the slim executable you are using:

$ slim -v
SLiM version 3.2, built Nov 6 2018 09:41:03

The -u or -usage option causes SLiM to print out a summary of how it can be invoked on the
command line (i.e., more or less the same information we’re summarizing here), in case you forget
an option and want a quick reminder.

The -testEidos or -te option makes SLiM run a self-test of the Eidos language interpreter.
Similarly, the -testSLiM or -ts option runs a self-test of the SLiM core. Typically you would use
these after building SLiM to verify that the built executable is functioning properly (see section
2.6):

$ slim -te
SUCCESS count: 5439
$ slim -ts
SUCCESS count: 68424

The success counts are not important, and will depend upon the version of SLiM being run; the
important thing is that no failed tests are reported.

Then there are command-line options that influence a simulation run in some way. Setting the
random number seed with the -s / -seed option, and defining Eidos constants at the command
line with the -d / -define option, have already been discussed; several other options also exist.

The -l or -long option enables “long” output, which provides additional information about the
run. At the moment this is primarily useful for getting information about mutation run usage (see
section 21.4); other long output may be added in future. The -l option can actually take an option
level argument, -l <level>; the default level is 1, and using -l with no argument sets the level to
2, requesting greater verbosity. Levels greater than 2 produce no additional output. You can also
set the level to 0, with -l 0, which turns off all of SLiM’s normal output (echoing configuration
settings, etc.), so that only output explicitly generated by your script will be emitted.

The -t or -time option enables output of the total runtime of the simulation (see section 21.2).
When this option is enabled, a final line will be printed showing the CPU usage of the process (in
seconds), like:

// ********** CPU time used: 0.11412

The -m or -mem option similarly enables output about the memory usage of the simulation (see
section 21.3). When this option is enabled, final lines will be printed showing the initial and peak
memory usage of the simulation (in bytes, K, and MB), like:

// ********** Initial memory usage: 1069056 bytes (1044K, 1.01953MB)
// ********** Peak memory usage: 4325376 bytes (4224K, 4.125MB)

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 599

The -M or -Memhist option provides more extensive output regarding the memory usage of the
process as it runs, in the form of a final dump of usage statistics encapsulated within R code that
can be copied and pasted into an R interpreter to produce a plot of memory usage over time (see
section 21.3). This is not likely to be useful to end users; it is mostly a tool for debugging SLiM
itself.

The -x option disables some of SLiM’s runtime checks for consistency and safety. It is not
recommended for general use, since it may mean that error conditions are not caught and
reported. However, it may occasionally be useful if one of SLiM’s runtime checks is actually faulty
and needs to be disabled (see section 21.3).

When running a simulation, the path to the SLiM script file is typically supplied at the end of
the command line. After SLiM 3.2, this may be omitted if a script file is instead piped in to SLiM’s
standard input (“stdin”, in Un*x parlance). In other words, this invocation of SLiM:

$ slim ~/Desktop/foo.slim

may instead be written as:

$ cat ~/Desktop/foo.slim | slim

This allows the input script to be assembled dynamically (in Python, say) and passed to SLiM via
stdin, without having to create a temporary script file on disk to pass to SLiM.

20.4 File input and output
Output generated by a simulation with print(), cat(), and similar output functions goes into

SLiM’s output stream, which (assuming you are running at the command line) can be redirected to
a file to save the results of the model run. Often, however, you will want a model to explicitly
write output to a file. Eidos provides a few simple functions for file input and output, as well as
operators and functions for string manipulation, and SLiM adds to those capabilities with some
model-specific output functions. It should be possible for you to use these facilities to achieve
whatever sort of customized output you wish; it is trivial, for example, to output information about
the current state of a model as a comma-separated value (CSV) file that can be read by R and other
such software in order to perform further analysis.

The simplest way to output simulation state to a file is to use the Species method outputFull(),
such as by calling:

sim.outputFull("~/model_output.txt");

This produces a population dump in a standard format that is compatible with the Species
method readFromPopulationFile(); these two methods can thus be used to save and restore the
population state at any point in time, as discussed further in section 9.2.

But suppose this standard output format is not suitable; instead, you want to save a CSV file
with a list of all of the mutations currently active in the simulation, listing their positions and
selection coefficients. A recipe to achieve that might look like:

lines = NULL;
for (mut in sim.mutations)
{
 mutLine = paste0(mut.position, ", ", mut.selectionCoeff, "\n");
 lines = c(lines, mutLine);
}
file = paste0(lines);
file = "position, selcoeff\n" + file;

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 600

if (!writeFile("~/out.txt", file))
 stop("Error writing file.");

This recipe assembles a vector of output lines, naturally called lines, starting with NULL and
adding new lines with c(lines, mutLine). A for loop is used to loop over all the mutations in the
simulation, and for each mutation an output line is assembled using paste0(). Each line ends with
a newline pasted on to the end with "\n".

After the for loop, the next line uses paste0() to join all of the lines produced by the loop into
a single string, and the following line prepends a header line with column names for the output.
At this point, file contains the string to be written to a file in the filesystem. Writing it out is
achieved simply by calling writeFile(), passing the filesystem path for the first parameter and the
string to write as the second. The writeFile() function returns a logical value: T if the file was
written successfully, or F if a filesystem error occurred. It is a good idea to check the return value,
as shown here, so that you are aware if your model’s output is not working as expected.

The recipe above will work fine, but the use of the for loop is quite inefficient and is not true
Eidos style; Eidos is a vectorized language, and it is generally better to use vectorized solutions
when possible. Similarly, assembling a long vector with a series of c() calls to add one element at
a time is highly inefficient in Eidos, requiring memory allocation and bulk copying of data with
each successive addition. A better recipe to achieve the same result, then, would be:

lines = sapply(sim.mutations, "paste0(applyValue.position, ', ',
 applyValue.selectionCoeff, '\\n');");
file = paste0(lines);
file = "position, selcoeff\n" + file;
if (!writeFile("~/out.txt", file))
 stop("Error writing file.");

The first statement (wrapped onto two lines in the code shown above, but entered as a single
line of code without the newline in the middle of the string literal) uses the sapply() function to
assemble a vector containing string output lines for each mutation in the simulation.
Conceptually, this is similar to the for loop across sim.mutations in the previous example, with
applyValue as the index variable for the loop, and executing the Eidos code within sapply()’s
second parameter as the for loop’s body. However, sapply() also collects the result of each
iteration of the loop and assembles all of those results in a single vector, here assigned into the
variable lines; it thus does the work that lines = NULL and c(lines, mutLine) did above, but
much more efficiently. The sapply() function is immensely useful for bulk processing of data, and
should be a part of every Eidos programmer’s toolbox; see the Eidos manual for documentation.

Note that because we want the code executed by sapply() to paste a newline at the end of
each line using the escape sequence \n, we have to escape the backslash; \\n in the original code
becomes \n in the string literal representing the code run by sapply(), which becomes a newline
in the string literal passed to paste0(). Similarly, the double-quoted parameters to paste0() in
the first version of the recipe are now single-quoted, allowing the quotes to nest without escaping
issues. Confusing, yes; section 20.5 below will show a different approach that may be clearer and
easier.

20.5 Lambda execution
A few recipes have touched on the ability of Eidos to execute code that was dynamically

assembled as a string. For example, section 9.5.3 added new script blocks to the running
simulation to schedule future mutation events, and section 20.4 passed a string representing an
executable code block to the sapply() function. Such dynamic execution can be very powerful.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 601

The first step in this technique is simply to assemble a string containing the Eidos code you wish
to execute. This is generally done with the + operator, which performs string concatenation when
given at least one string operand, and the paste() function, which pastes together a vector of
strings joined by a fixed separator string. Sometimes, as in section 20.4, the string can even just be
a literal; this technique does not necessarily involve dynamically generated code. Usually the
main difficulties in this step involve correct escaping of special characters, and the related issue of
quoting and nested quotes. The fact that Eidos allows strings to be quoted with either single or
double quotes can be helpful; see, for example, the way that section 20.4 avoids having to escape
quote characters by using single quotes inside the double-quoted code string. Another useful
technique for handling quoting and escaping difficulties is the so-called “here document” style of
string literal in Eidos (a terrible term, which I did not invent), documented in the Eidos manual.
For example, section 20.4 used a small snippet of code:

lines = sapply(sim.mutations, "paste0(applyValue.position, ', ',
 applyValue.selectionCoeff, '\\n');");

This could be rewritten with the “here document” style as:

lines = sapply(sim.mutations, <<---
paste0(applyValue.position, ", ", applyValue.selectionCoeff, "\n");
>>---);

Note that double quotes can now be used without any escaping issues, and that the newline
escape sequence desired in the string literal can be given directly as \n, without the necessity of
quoting it as \\n to prevent an actual newline character from being inserted in the string. It is
worth getting used to this string literal style if you work with Eidos code as string literals.

In any case, once the code string in this example is assembled, it is passed to sapply(), and
sapply() treats it as Eidos code – the string gets parsed and interpreted just like the code in your
model’s script. The sapply() function is one of several functions in Eidos that executes a string as
code in this manner; another is the executeLambda() function, which simply executes the string it
is passed as code. This can be used, to some extent, in a similar way to how functions are used in
many other programming languages, but with a more dynamic twist. For example, suppose we
wanted to write code that performed an operation on pairs of operands – but we don’t know what
operation we want to perform ahead of time; it might be +, -, *, /, or ^. All we have is a string
for the desired operation. Without executeLambda(), we would have to do:

[... code that sets up operand1, operand2, and operator somehow ...]

if (operator == "+")
 result = operand1 + operand2;
else if (operator == "-")
 result = operand1 - operand2;
else if (operator == "*")
 result = operand1 * operand2;
else if (operator == "/")
 result = operand1 / operand2;
else if (operator == "^")
 result = operand1 ^ operand2;

With executeLambda(), this becomes trivial:

[... code that sets up operand1, operand2, and operator somehow ...]

result = executeLambda(paste("operand1", operator, "operand2;"));

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 602

This is a rather contrived example, admittedly, but such situations do arise from time to time; it
is worth being aware of this facility.

SLiM leverages this facility in Eidos to allow you to add new script blocks to a simulation
dynamically, with code that can be assembled dynamically as a string and passed in to the SLiM
engine. Both Eidos events and callbacks can be added, using the Community methods
registerFirstEvent(), registerEarlyEvent(), and registerLateEvent(), and the Species
methods registerMateChoiceCallback(), registerModifyChildCallback(),
registerRecombinationCallback(), registerMutationCallback(),
registerMutationEffectCallback(), registerSurvivalCallback(), and
registerReproductionCallback(). It is also possible to create a mutation type that draws
selection coefficients by calling a lambda that generates them; see the type "s" DFE in section
25.11, which is used in the recipe of section 13.3.

20.6 Debugging
One of the weaker points of the Eidos language is its facilities for debugging. There is no

runtime debugger for Eidos – no ability to pause executing code at an arbitrary point in order to
examine variables. However, there are still several ways to debug your code.

Perhaps the most important was added in SLiM 3.6: debug points. These are points in your
code that you have flagged in SLiMgui. Here’s a simple model with two debug points set:

The debug points, shown with little ladybug icons, were set simply by clicking in the left-hand
margin of the script area, where the icons are shown. They request that SLiMgui generate
additional debugging output regarding these lines of code. (Note that debug points are a feature of
SLiMgui; there is no analogous feature available when running at the command line.)

If we now run the model by clicking the Play button, debugging output will be generated. It
doesn’t go into the main output area on the right of SLiMgui’s window, because we don’t want to
clutter up the model output with the debugging logs (which can be quite extensive). Instead, they
go into a dedicated debugging output window in SLiMgui. That window is accessed through a
button, marked with the same ladybug icon , just above the output area:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 603

This button doesn’t usually have a red background as shown here; but when new debugging
output is generated, the button pulses red a couple of times to call your attention to the presence
of new output. The screenshot above catches it in mid-pulse, after the debug points were triggered
by execution of the script.

If we click on this button, the debugging output viewer opens:

First of all, notice that this window displays a tab view, with tab buttons across the top, to
present all the different output streams from your simulation. Above you can see the output from
debug points, under the Debug Output tab. The Run Output tab shows the same simulation output
stream that is shown in the output area of the main SLiMgui window; if you prefer to have more
space for scripting, you can use the splitter in the main window to hide that output area, and view
the simulation’s output stream in this output viewer instead. Each LogFile object in use in the
simulation (see section 25.9) will be shown under its own separate tab here, presenting the logged
data in tabular form, as seen in section 4.2.5. Finally, each file that the simulation writes to with
the writeFile() function will also appear as its own tab in the output viewer. The output viewer
window thus acts as the central clearinghouse for all simulation output in SLiMgui, and LogFile
and writeFile() can be useful for debugging in SLiMgui since the output they generate is easily
viewed here.

Looking at the screenshot above, you can see that the debug point on the for loop emits a
#DEBUG FOR line for each iteration of the loop, stating the new value for the loop iterator variable,
i. Similarly, the debug point on the call to sim.addSubpop() emits a #DEBUG CALL line each time
that statement is executed, logging out the values of the parameters passed to addSubpop(),
including the default value of 0.5 passed for the optional sexRatio parameter since we didn’t
supply a different value. Another #DEBUG CALL line gets output when each call to addSubpop()
returns, giving the value of the object returned – in this case, the new Subpopulation object that

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 604

was created. The indentation of the output indicates the nesting of the code during execution; the
call to addSubpop() occurs inside the for loop, so its output is indented inside of the for loop’s
output.

You can add debug points to almost every line of code in your script (except empty lines), and
they will usually produce useful output for you when that line executes. A debug point on an
assignment, like x = 1:10;, will log out a #DEBUG ASSIGN line giving the value that was assigned to
x, for example. A debug point on the declaration of an Eidos user-defined function, or on the
declaration of a SLiM event or callback, will produce a log each time that function, event, or
callback is called. Debug points on most other types of statements will similarly log out something
informative. Experiment with it to see what you get; it won’t break anything, and indeed, debug
points have no effect at all on the running SLiM model.

Beyond debug points, there are a couple of other debugging strategies you might try. The first is
simply the ability to print to the output console at any point in your code. If you are wondering
whether a calculation you have written produces the correct value, simply add a call to print() or
cat() to see the value in the output. This is primitive, admittedly, but still powerful, and in fact is
often quicker and simpler to produce an answer than a debugger would be. Note that beginning
in SLiM 3.6 you can send output from cat(), catn(), and print() to the SLiMgui output viewer’s
Debug Output tab (shown in the screenshot above), instead of to the main Eidos output stream
(i.e., to the output viewer’s Run Output tab), by passing error=T to the function. When you are not
running under SLiMgui, such output will go to the Unix stderr stream instead of the Unix stdout
stream; you can redirect stderr output to a different file from the stdout output, if you wish, using
the usual shell facilities for doing such things (see your manual for bash, csh, zsh, or whatever
shell you are using in your terminal window).

The variable browser, opened with the Show Eidos Variable Browser button in SLiMgui’s
main window, is another useful debugging facility. This is described in section 3.4, and is quite
useful since it can browse into SLiM’s state as well as your own variables. Unfortunately it can
only show you the state of things in between ticks; there is no way to pause while inside the
execution of a mutationEffect() callback, say, and browse the variables at that moment in time.
Nevertheless, it is a powerful tool.

The console window, opened with the Show Eidos Console button in SLiMgui’s main
window, provides a third debugging facility. This is described in section 3.3. In the console
window, you can work with Eidos interactively, defining your own variables and executing your
own code. All of SLiM’s top-level variables are available to you in the console, so you can test out
code that manipulates genomes and mutations and so forth. If you set up some dummy variables
with the same names that SLiM uses in callbacks (such as mut, homozygous, effect, etc., for a
mutationEffect() callback), you can test out your callback code interactively in the console. It’s
not quite the same as working in a debugger, but it’s not bad. Note that all of the variables you
define in the console are visible in the variable browser, too. You can even use the console
window to change the state of the running SLiM simulation; code executed in the console is
executed in the same Eidos context as the simulation to which the console is attached.

Often the help documentation, available through the Script Help button , is an overlooked
tool for debugging. If your code isn’t doing what you think it should do, often the best approach is
to examine your underlying assumptions: is your mental model correct regarding all of the objects,
methods, properties, functions, etc., used by your code? There is a reason why RTFM is often the
first debugging advice given by experienced programmers. The help window is documented
further in section 3.2.

A key step in debugging is often to find a reproducible case. A bug that crops up rarely and
unpredictably can be terribly hard to track down; a bug that you can make happen over and over,

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 605

while examining it from different angles, is usually much more tractable. In SLiM, since so much
of what happens is usually guided by the random number generator, using setSeed() to make a
simulation follow the same path in each run is often an important step in debugging. See section
20.1 for more information on working with the random number generator.

Debugging is never easy; it is detective work, often reminiscent of the thought process
advocated by Sherlock Holmes: eliminate hypotheses one by one until only one possibility
remains, and that must be the answer. Except that actually it usually turns out to be some other
possibility that one never even dreamed of – a problem that never seemed to happen to Sherlock
Holmes. He must have been very good at debugging. Good luck!

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 606

21. Implementation and performance

Following the lead of the previous chapter, this chapter will also present shorter snippets of
Eidos code, rather than complete models, to illustrate selected topics in model development. In
this chapter, we will focus on topics related to technical considerations in model implementation
and performance: speed, memory usage, and evaluation of performance.

21.1 Writing fast SLiM simulations
Evolutionary simulations are often limited not by ideas (there are always lots of interesting

questions to explore), and not by the difficulty of writing the models to test those ideas (especially
when using tools such as SLiM and Eidos that facilitate that process), but rather by time and
processing power. Individual-based modeling is computationally intensive, and since it is usually
not practical to spend years of computer time on a single problem, it often becomes necessary to
limit the scope of one’s investigation. Naturally this is undesirable, and so squeezing every last bit
of speed out of one’s simulation is beneficial; it may allow you to ask a broader question, or
explore a larger parameter space, or use a larger population size.

When using a high-level modeling framework like SLiM, the most important thing in gaining
high performance is to understand the design of the framework; often there are different ways to
solve the same problem that provide vastly different performance. For example, SLiM allows you
to define a mutationEffect() callback with an optional subpopulation constraint. Without using
that optional constraint, you might write:

mutationEffect(m2) {
 if (subpop == p2)
 return 0.5;
 else
 return effect;
}

Using the optional constraint feature, you would instead write:

mutationEffect(m2, p2) {
 return 0.5;
}

These are identical in their behavior, but the second version will perform orders of magnitude
(literally) better than the first version. There are a bunch of reasons for this. The first version
requires that the mutationEffect() callback be called for every mutation in every subpopulation,
rather than just for the mutations in subpopulation p2, and the setup and teardown costs for
running a callback are non-trivial, so that in itself has a large impact. Looking up the values of
variables such as effect and subpop is also time-consuming. Doing the (subpop == p2) test in
interpreted Eidos code is vastly slower than doing the same test internally in SLiM, since SLiM’s
core code is compiled and optimized C++. Even beyond all of those considerations, however,
there is also the fact that the second callback above is specifically optimized by SLiM: a callback
that does nothing except return a constant value gets short-circuited by SLiM’s internal machinery
completely. In that case, there is no setup and teardown for an Eidos interpreter to run the
callback, because there is no interpreted execution of the callback’s code at all; SLiM is smart
enough to know to simply use the value 0.5 for the relative fitness in the cases where that callback
would execute. The same optimization cannot be done (well, is not done) for the first version.

To some extent, these sorts of implementation details of the SLiM engine are private and should
not be relied upon; they might change from version to version of SLiM. But an overall take-home

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 607

point is clear: whenever possible, write as little Eidos code as possible, and let the internals of
SLiM and Eidos do as much work for you as possible.

There are lots of other examples of this principle. For example, you should use the vectorized
facilities of Eidos whenever possible. To add a bunch of numbers, use one call to sum(), not a for
loop performing sequential addition with the + operator. Similarly, to perform some repetitive
operation on every element of a vector, consider using sapply() instead of a for loop. If the
repetitive operation involves a conditional – if you’re considering writing a for loop with an if
statement inside it – consider using ifelse() instead (or at least, again, using sapply()). In
general, it is safe to say that whenever you start writing a for loop in Eidos you should stop and
ask yourself, “Can this be vectorized instead?”

Another example is the problem of looking up mutations of a given type in SLiM. Often you
want to get a list of all mutations in the simulation that are of type m2 (for example). To do this, the
natural Eidos idiom, as in R, would be to subset with a logical vector, like:

muts = sim.mutations[sim.mutations.mutationType == m2];

To execute this statement for a simulation with N active mutations, Eidos must (1) fetch the
mutations property from sim, assembling a vector of size N, (2) fetch the mutationType property of
that vector, constructing a new vector with size N, (3) do an == comparison with m2, constructing a
logical vector of size N, (4) fetch the mutations property from sim a second time, again
assembling a vector of size N, and (6) do a size-N subset operation with the [] operator, using the
two vectors constructed in the previous steps, to produce the final result. This is a huge amount of
work, often to construct a result vector that might have just one element in it (since often the
mutation type of interest involves a single introduced mutation). Precisely because this is such a
common task, SLiM provides a shortcut:

muts = sim.mutationsOfType(m2);

Conceptually, this does the same thing as the previous version, but it does it in C++, inside
SLiM’s internal code, and that allows it to be orders of magnitude faster. When SLiM offers you
facilities like this, use them! On Species, another such method is countOfMutationsOfType(),
which is even faster than taking the size() of the result of mutationsOfType() if you just need to
know how many there are without getting the objects themselves. Similar methods exist on some
other SLiM classes, such as Genome.

Eidos itself also has quite a few such time-saving functions, from standard fare like min() and
max() to more esoteric functions like cumProduct(), unique(), and sapply(). Indeed, most of the
functions defined by Eidos are technically unnecessary; the tasks they perform could be written in
pure Eidos code without the use of any functions. Eidos nevertheless provides a large library of
predefined functions, for convenience, clarity, reuse, and speed; learn and use this toolkit. If you
find yourself writing out some operation in lengthy and inefficient Eidos code, it might be time to
take a step back and ask whether some or all of that operation could be recast in terms of built-in
Eidos functions. Some Eidos functions, such as which() and sapply(), take some effort to learn to
use effectively, but the payoff can be large.

Another performance consideration is that defining and looking up variables in Eidos code is
relatively slow. This is not an issue most of the time, but in code that gets executed a lot (a
mutationEffect() callback on a common mutation type, for example) it can make a large
difference. Using variables to represent temporary, intermediate computations can make code
much easier to understand, but unfortunately it can also run much more slowly. For example,
consider this code to compute the Euclidean distance between two points, (x1,y1) and (x2,y2),
and execute some code only if that distance is less than a constant threshold distance:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 608

dx = x1 - x2;
dx_sq = dx * dx;
dy = y1 - y2;
dy_sq = dy * dy;
dist = sqrt(dx_sq + dy_sq);
if (dist < 4.0)
 ...

Don’t do that unless you don’t care at all how slowly it runs (which often is true – optimize only
when you need to optimize). Instead, if you care about speed, do this:

if (sqrt((x1 - x2)^2 + (y1 - y2)^2) < 4.0)
 ...

Sometimes, of course, defining a temporary variable can improve performance, if the temporary
value is used more than once. If the value of that Euclidean distance computation will be used
more than once, then by all means assign it into a variable; looking up variable values may be
slow, but it’s not nearly as slow as performing a complex, multistep calculation. But at least avoid
defining the temporary variables dx, dx_sq, dy, and dy_sq if those values are used only once.

Of course it also pays to actually think about the necessity of the calculations you’re
performing. In the above example, there is actually no point to calculating the square root;
instead, you can just compare the square of the distance to the square of the threshold:

if ((x1 - x2)^2 + (y1 - y2)^2 < 16.0)
 ...

Learning to see such opportunities for optimization is largely a matter of patiently and
methodically examining each line of your code to think about how steps might be folded together
or eliminated entirely. A few hours of such effort might save you weeks or months of runtime.

These tips provide some general approaches and rules of thumb for improving simulation
performance. The following sections will discuss more concrete tools that can be brought to bear.

21.2 Performance evaluation
Sometimes you want to know exactly how long a piece of code or a whole simulation takes to

run; this can be useful when trying to optimize the performance of a model, for example, by
comparing alternative formulations of the model quantitatively. SLiM and Eidos provide several
tools for this purpose. (See also section 21.5, on profiling simulations in SLiM and SLiMgui.)

First of all, to measure the total execution time of an entire simulation run on the command
line, you can pass the command-line option -time or -t to SLiM and it will print a total time
measurement to the output at the end of the run. When using the -time option, keep in mind that
a given model may exhibit a wide variance in execution time depending upon the random number
sequence used by a run; comparing runs using a fixed random number seed is therefore wise. See
section 20.1 for details on using -seed or setSeed() to set up a reproducible model run.

If you want to measure the performance of Eidos code, the clock() function can be useful. This
function returns the amount of CPU time used by the running process; the difference between the
result of clock() at one point versus another point is thus the amount of CPU time that was used
between the two points. Measuring a chunk of code is therefore trivial:

start = clock();
for (i in 1:100000)
 q = i;
cat("Elapsed: " + (clock() - start));

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 609

Measuring the performance of code that spans multiple code blocks (such as the full execution
time of a SLiM model) is just a little more complicated, because the start variable would not be
persistent for long enough. Using the defineConstant() function of Eidos to store the start time
fixes that problem. So in the initialize() callback of your model, you could put this:

defineConstant("start", clock());

And then in a late() event in the final tick, you could write:

cat("Elapsed: " + (clock() - start));

The elapsed time printed is in seconds, but not of user (i.e. wall-clock) time; rather, it is in CPU
time (the amount of time your computer’s processor actually dedicated to running the model,
which might be much less than the wall-clock time, particularly if your computer is busy doing
other things as well).

For measuring the performance of just a small block of code, the executeLambda() function has
a timing option that can also be useful. Just pass T as the second, optional parameter to
executeLambda() and it will print a time measurement for the lambda. For example, suppose we
wanted to measure the time it takes to execute this code:

mean(runif(10000000) * 10);

We could simply execute it inside an executeLambda() call, like so:

executeLambda("mean(runif(10000000) * 10);", T);

On my machine, this produces this output:

// ********** executeLambda() elapsed time: 1.07904
5.00037

The return value of the call is 5.00037, and running the lambda took 1.07904 seconds.
Supposing that to be unacceptable, we could try a simple optimization, changing the range of the
runif() call, which draws random deviates from a uniform distribution, rather than reshaping the
drawn values with multiplication afterwards. Since we’re drawing ten million values, it is
reasonable to wonder whether this might make a difference, so let’s try it:

executeLambda("mean(runif(10000000, 0, 10));", T);

This produces this output:

// ********** executeLambda() elapsed time: 0.644127
4.99945

So incorporating the scaling into the runif() call sped up the code by about a third; not bad.
The final result in the two cases is different, of course, because the random number generator is
not in the same state; you could use setSeed() to do tests with identical random number
sequences if you wished, but it should be irrelevant in this case.

Section 20.5 has further advice about how to use the executeLambda() function, including a
discussion of the “here document” string literal style, which makes it much less painful to convert
Eidos code into the form of a string literal that can be passed to executeLambda().

Section 21.5 provides an overview of profiling simulations in SLiM and SLiMgui, which
provides a particularly useful way of evaluating simulation performance.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 610

21.3 Memory usage considerations
Sometimes memory usage is a major concern when running individual-based simulations.

SLiM has been engineered to keep its memory usage relatively low, but simulations involving large
population sizes and large numbers of mutations can burn through megabytes and even gigabytes
of memory. Reducing memory usage can be difficult, unless you are willing to change the
parameters of your simulation, but it is at least possible to assess SLiM’s memory usage.

Several tools are provided to assess SLiM’s total memory usage, including SLiM’s code,
operating system overhead, and so forth. The first tool is the -mem or -m command-line option,
which causes SLiM to keep track of the high-water mark of its memory usage and print out that
high-water mark when the model finishes. The second tool is the -Memhist or -M command-line
option, which causes SLiM to track and print the memory usage of the simulation over time, rather
than just the high-water mark. A third tool is the Eidos function usage(), which returns the current
or peak memory usage of the running process, or its virtual memory usage, in megabytes (MB).

To get more detail about SLiM’s internal memory usage, the outputUsage() method of
Community provides a breakdown of the current memory usage by the simulation (see section
25.3.2), and the same information is available in profile reports (see section 21.6). The usage()
method of Community returns the same internal memory usage, without printing the usage
breakdown. These facilities do not assess SLiM’s total memory usage; instead, they provide a
picture of the memory that SLiM itself allocates and has direct control over. For large simulations
this should be the large majority of total memory usage, however, so this should not prove limiting
in practice. More importantly, they do not capture transient spikes in memory usage (such as
caused by tree-sequence simplification). These features are covered in more detail in section 21.6.

It is often the case that the large majority of the memory used by SLiM is for the references kept
by Genome objects to the Mutation objects that the genomes contain (by MutationRun objects,
internally, beginning in SLiM 2.4, but those objects are not visible to the user of SLiM; see section
21.4). Genomes refer to mutations using 32-bit indexes (4 bytes), for memory efficiency (pointers,
by comparison, are typically 64-bits, or 8 bytes, on modern systems). A single genome containing
1000 mutations thus takes about 4K of memory, a diploid individual with that mutational density
would take ~8K, and a population of 1000 such individuals would take ~8MB (although if shared
haplotypes were common that overhead might be reduced by MutationRun’s ability to share
mutation references between genomes). It is easy to see that with very large population sizes or
very large numbers of active mutations the memory overhead becomes quite large (particularly if
genetic diversity is high so that haplotype sharing is minimal). This overhead is more or less
unavoidable, since a genome simply must keep a list of the mutations it contains; there would be
possible ways to compress the memory footprint of that list, but such schemes would inevitably
make SLiM much slower. If your simulation is taking too much memory, you typically really have
only a few options: (1) make your population size and/or chromosome size smaller, (2) change
your model to have a lower mean number of active mutations per genome (modeling fewer
background neutral mutations, for example – or none at all, as tree-sequence recording can allow;
see section 1.7), (3) change your model to have more haplotype sharing (with a lower
recombination rate, for example), or (4) buy more memory.

Note that, interestingly, it is the references to the mutations that burn the memory, in most
typical simulations, not the Mutation objects themselves. This is because in a typical simulation
one mutation is often contained by a large number of individual genomes. A single Mutation
object presently takes up 80 bytes on macOS (implementation details like this are of course
subject to change). If a single reference to that Mutation object takes 4 bytes, as we saw above,
then once 20 genomes contain that mutation, the memory footprint of the references is already as
large as the footprint of the Mutation object itself. A mutation near fixation in a population of only
1000 diploid individuals would use the same 80 bytes for the Mutation object, but 4*1000*2 = 8K

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 611

bytes for the references to the object (again, potentially reduced by haplotype sharing through
MutationRun). That footprint is so large that all other memory usage is typically irrelevant.

Beginning in SLiM 2.1, runtime checks of SLiM’s memory usage are performed periodically, if
and only if SLiM is running under a process memory limit (as indicated by the results of the Un*x
function getrlimit()). Such memory limits are often enforced for jobs running on computing
clusters, and exceeding the limits causes immediate termination of the process by the operating
system. To make such memory overflow terminations easier to debug, SLiM will print a diagnostic
message if its memory usage approaches within 10 MB of the limit, stating what SLiM was doing
when the overflow occurred; if the operating system kills the process soon after that point, this
diagnostic message may prove useful for determining the problem. This runtime checking should
not add significant performance overhead to SLiM, but it can be disabled with the -x command-
line flag if so desired. Note that some systems will report that there is no memory limit, even when
a limit is actually in force, so this feature may or may not work on a given system.

21.4 Mutation runs and runtime optimization
Beginning in SLiM version 2.4, a change was made to SLiM’s core engine. With this change,

each genome in the simulation can be broken into multiple “mutation runs”, each of which
contains the mutations that occur within a given subsection of the genome. A simulation might
use four mutation runs per genome, for example, in which case every genome is divided into four
roughly equal-sized chunks – the mutation runs – that are stored separately. This is an internal
implementation detail that is not visible to SLiM models in Eidos, and normally it is of no concern.
However, in some circumstances an awareness of the existence of mutation runs can allow a
model to be optimized to run faster than it otherwise would.

The purpose of mutation runs is to allow some operations performed by SLiM to be performed
faster than they otherwise could be. For example, suppose a gamete needs to be produced by
recombination of the two parental genomes, and a single recombination breakpoint has been
drawn. Without mutation runs, generating the gamete would require copying all of the mutation
pointers from the first parental genome up to the breakpoint, and then copying all of the mutation
pointers from the second parental genome from the breakpoint onward; if a typical genome
contains 1000 mutations, generating a gamete will require copying 1000 pointers. Now suppose
the genomes are divided into 10 mutation runs each. The breakpoint occurs inside one of those 10
runs, and mutation pointers will need to be copied from the parental mutation runs for those; that
will be about 100 pointer copies. But for the other nine runs – this is the crucial bit – only the
pointer to the mutation run itself needs to be copied to the gamete, because the gamete can share
the mutation runs with other genomes. That makes 109 pointer copies total – a big improvement
on 1000. Similar gains can be realized in other parts of the SLiM core engine as well. Using
mutation runs adds in some bookkeeping overhead, but it usually at least breaks even in terms of
performance, and often it results in a substantial speedup. It also improves memory usage, since
long runs of pointers to mutation objects can be shared among many genomes.

The tricky question is: how many mutation runs should be used? If too few are used, then most
of the benefits evaporate. If too many are used, SLiM spends most of its time just handling the
bookkeeping involved; if every genome contains 1000 mutation runs, there are now 1000 times
more objects involved in the simulation than there were, with immense performance implications.
Choosing the right number of mutation runs to use can thus be very important; the performance of
the simulation can change dramatically depending upon this value. Unfortunately, there is no
general way to make this choice; factors such as the chromosome length, mutation rate, and
population size are important, but so are things like population dynamics, the type of selection
being experienced, and the effects of custom Eidos events and callbacks in the SLiM script.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 612

In order to manage this problem, SLiM 2.4 and later actually conducts little experiments
continuously: it times every tick, while occasionally varying the number of mutation runs being
used. As it collects datasets, it compares those datasets against each other (using t-tests, in fact!) to
determine the optimal number of mutation runs. These experiments take very little time, and run
continuously in the background. This means that the end user of SLiM usually doesn’t have to
think about all of this; the optimal number of mutation runs is used most of the time, and
simulations run a little bit (or a lot) faster with no effort on the part of the user. It also means that if
simulation dynamics change partway through – perhaps a neutral burn-in ends and a regime of
strong selection begins – SLiM will notice the changed dynamics and automatically adjust the
number of mutation runs to be optimal in each part of the simulation.

So far, so good. However, all of these experiments do have a small effect on performance. This
can be particularly true for models for which the optimal number of mutation runs is not clear or
changes frequently, as well as models with a very short wall clock time per tick. Sometimes,
telling SLiM to use a fixed number of mutation runs can be beneficial – but you need to know how
many.

As an example, let’s look at a very simple neutral model:

initialize() {
 initializeMutationRate(1e-5);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 1e5-1);
 initializeRecombinationRate(1e-5);
}
1 early() { sim.addSubpop("p1", 500); }
10000 late() { sim.outputFixedMutations(); }

In SLiM 2.3, this model takes approximately 205 seconds to run (on my machine). In SLiM 2.4,
if a single mutation run is used, this model runs in approximately 77 seconds, thanks to other
performance optimizations added to version 2.4. If 32 mutations are used in SLiM 2.4, on the
other hand, it runs in approximately 24 seconds – more than three times faster! As it happens, 32
is the optimum for this model, for most of its runtime (a smaller number of runs is better early on,
when neutral diversity is still building). Actually, the optimum might be different in a different
hardware/software environment (things like how much processor cache memory is available can
be very important), so to be precise, 32 is the optimum on my machine at the present moment.

Running the model in SLiM 2.4 with no mutation run count specified, and therefore allowing
SLiM to perform its “experiments” continuously in the background, results in a runtime of 30
seconds, with 78.5% of the ticks in the simulation using 32 mutation runs (in one trial run; this will
vary from run to run, even with the same random number seed, since it depends upon timing
information). SLiM therefore does a reasonably good job of finding the optimum, but telling it
explicitly to use 32 mutation runs rather than conducting experiments results in even better
performance – about a 20% speedup.

So in practice, how could we arrive at this result? The first step is to run the model at the
command line with a few extra command-line options:

$./slim -m -t -l -s 0 ~/neutral.slim

This command runs, at the $ prompt in my Un*x terminal, the slim executable in the current
directory (.), executing the model named neutral.slim in my home directory (~). The “-s 0”
option tells SLiM to use a random number seed of 0 (see section 20.1); I chose this so that all of my
test runs use exactly the same modeled sequence of events, which you may or may not want to do
as well. The “-m” flag turns on memory monitoring (see section 21.3), and the “-t” flag turns on

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 613

timing of the overall runtime (see section 21.2); that is how I collected the timing information
given above. Finally, the “-l” flag (short for “-long”) tells SLiM to output long (i.e., verbose)
output. Exactly what gets added to verbose output is version-specific (so try not to make
assumptions about it, and probably don’t use it in your production model runs), but one of the
things added is information about the mutation run experiments conducted by SLiM. When the
model finishes executing, among the verbose output is a snippet like this:

// Mutation run modal count: 32 (78.5% of cycles)
//
// It might (or might not) speed up your model to add a call to:
//
// initializeSLiMOptions(mutationRuns=32);
//
// to your initialize() callback. The optimal value will change
// if your model changes. See the SLiM manual for more details.

This tells us what we want to know: 32 is the optimal mutation run count for this model, at least
according to SLiM’s internal “experiments”. Again, that is on this hardware in the present software
environment; if you plan to do your production runs on a computing cluster, for example, you
should ascertain the optimal mutation run count on the cluster – ideally when it is busy running
other tasks on its other cores – since the optimum there may be different than on your local
machine. (Note that similar, and even more detailed, information on mutation run usage can be
obtained in SLiM and SLiMgui using their profiling feature; see section 21.5. However, in SLiMgui
this might or might not indicate the optimum number of mutation runs for command-line runs,
since the runtime environment for SLiM is somewhat different when it is running inside SLiMgui.)

Knowing that 32 is the optimal mutation run count, we can now modify our model as the
output above suggests by adding an initializeSLiMOptions() configuration call at the beginning
of the initialize() callback that tells SLiM how many mutation runs to use (see section 25.1):

initializeSLiMOptions(mutationRuns=32);

This will yield the desired 20% speedup, because SLiM will no longer conduct mutation run
experiments, and will instead simply use 32 mutation runs throughout the model’s execution.

Note that in some cases this could actually make a model perform worse! Earlier, for example,
we mentioned the possibility of a model involving a neutral burn-in period followed by a period of
strong selection. The optimal number of mutation runs might be very different in those two phases
of the model – 64 in the first half and 1 in the second half, say – but if SLiM is conducting its own
mutation run experiments, it should be able to adjust to that fact. If you specify a fixed number of
runs, however, then either the first half or the second half of the model might perform quite poorly.
It is not possible to change the number of mutation runs dynamically in Eidos, at present, so in
such cases the best option is to allow SLiM to run its experiments and do its runtime optimization.
Such cases can be detected simply by looking at the total runtime of the model with and without a
specified number of mutation runs; if specifying the number of runs makes the model run more
slowly, then you probably shouldn’t do it.

In summary, the ability to specify the mutation run count is an advanced feature, the correct use
of which requires some experimentation and careful timing using the appropriate hardware and
software. If done properly, however, it can produce performance gains of as much as 20%, or
probably even more for some models. For very large models with long runtimes, it is therefore an
important tool.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 614

21.5 Profiling simulations in SLiMgui
The previous sections have provided some pointers and tips regarding measuring and

optimizing the memory usage and performance of a SLiM model. SLiMgui added a particularly
useful performance tool, called profiling, beginning in SLiM version 2.4, and beginning in version
5.0 this profiling feature is also available in SLiM at the command line. Here we will discuss
profiling in SLiMgui; we will discuss how to profile at the command line in section 21.7.

For the purposes of this section, we will reuse the recipe from section 12.4, which shows how
to use a modifyChild() callback to disable incidental selfing in hermaphroditic models (defined as
occurring when the same individual happens to be chosen for both the first and second parent in a
biparental mating event). Note that this recipe has been deprecated, since there is now a
configuration flag for SLiM that disables incidental selfing more easily and efficiently (see section
12.4). Nevertheless, this recipe still works, and is a good one for our purposes here:

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() { sim.addSubpop("p1", 500); }
modifyChild()
{
 // prevent hermaphroditic selfing
 if (parent1 == parent2)
 return F;
 return T;
}
10000 late() { sim.outputFixedMutations(); }

This is a very simple neutral simulation; the only twist is the modifyChild() callback that checks
whether the two parents of the focal offspring are the same, and if so, rejects the offspring by
returning F. The recipe has been changed here to run for 10000 ticks, to provide more accurate
measurements that are more focused on the steady state of the model rather than its initialization.

To profile this model in SLiMgui, simply click the profiling button that is overlaid with the play
button in the SLiMgui main window (shown here in red, as it appears during profiling):

This will play the simulation forward from the current tick, just as the Play button would; the
only difference is that SLiMgui will tabulate performance information about the simulation while it
is running. You can start profiling at any point in a simulation run; for example, you can play up to
the tick in which a critical section of your model begins, and then profile from there onward.
Similarly, you can stop profiling at any time by clicking the profiling button again; you do not need
to wait for the model run to complete. When the current profiling operation completes, a new
window opens that shows a profile report. This report contains several sections; we will discuss
them one by one.

The first section is the report header:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 615

The header contains general information: the title of the model, when the profiling run began
and ended, and some overall timing and memory usage information. (i) The first “wall clock time”
listed is the actual time spent running the model in SLiMgui; in this case, 2.27 seconds. (ii) The
second wall clock time is time spent inside SLiM’s core code; this excludes time spent in SLiMgui,
doing things like updating the user interface. It is also stated to be “corrected”; what this means is
that an attempt has been made to subtract out time spent inside the profiling code itself, reading
the system clock and tabulating profiling results. This number is thus SLiMgui’s best guess as to
how long the model would take if it were run at the command line with the slim command
instead. Since this is the runtime that is generally of interest, it is used as a baseline in the profile
report; later in the report, when timing percentages are reported, they are always percentages out
of this corrected wall clock time. (iii) Third comes the elapsed CPU time inside the SLiM core;
CPU time is time spent keeping the processor of the computer busy. This time can be quite
different from the other times reported, as it is here. On the one hand, it excludes time spent in
SLiMgui, so it is generally lower than the total elapsed wall clock time. On the other hand, it is
uncorrected – it does not exclude time spent inside the profiling code itself – so it is typically
longer than the corrected wall clock time. And then, too, CPU time is often different from wall
clock times anyway, particularly if your machine is busy with other tasks that are also occupying
the processor. (Incidentally, to obtain optimal profiling results it is a good idea to quit all other
applications and run the profile when your machine is otherwise idle.) (iv) Next is shown the
number of ticks over which the profile ran, including the initialize() phase. (v) Finally, two
lines provide information about the measured overhead and lag of the profiling code; these
numbers are used to produce the corrected wall clock time, and are not generally of interest to end
users of SLiMgui. (Note that in SLiM 3.2 another two lines were added at the end, providing
information about SLiM’s overall memory usage; these will be discussed in section 21.6.)

The next section is the “Cycle stage breakdown”:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 616

This is a tabulation of where SLiM is spending its time, broken down according to tick cycle
stage. The fact that 72.77% of SLiM’s time is being spent in offspring generation is a red flag; that
tick cycle stage does often take quite a bit of time, but not typically this much. So this is
something to note – depending upon the model it is not necessarily an indication of a problem,
since different models do just show different profiles depending upon what parts of the SLiM
engine they exercise more or less, but it is certainly an indication of where you ought to focus your
optimization efforts.

Next is the “Callback type breakdown” section:

This section shows a tabulation of where SLiM is spending its time, broken down according to
callback types. This does not add up to 100% because SLiM is spending about 60% of its time
outside of callbacks, in the SLiM core engine. But it is spending 38.30% of its time inside
modifyChild() callbacks – again, an indication of where to focus optimization efforts. You might
also wonder why 38.30% is different from 72.77%. This is because the additional time, above
38.30%, is being spent by SLiM in offspring generation, but not inside modifyChild() callbacks.
This time would be spent doing mutation generation and recombination, for example.

The next section is titled “Script block profiles (as a fraction of corrected wall clock time)”:

This shows the model’s code, with color highlighting indicating where time is being spent.
Colors range from white (essentially no time spent here) through yellow and up to orange and
finally red (most of the simulation’s time spent here). This section colors the code according to the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 617

time spent as a fraction of the total corrected wall clock time. We can see that the modifyChild()
callback is taking 15.60% of SLiM’s time, and two parts of it are responsible: the test for the two
parents being identical, and the returning of T to indicate that the child should be generated. The
callback does occasionally return F, but that is so rare that that line is more or less white. Again
you might wonder: why is 15.60% different from 38.30%? The reason is that 15.60% is spent
specifically on interpreting the lines of code inside the callback – inside the Eidos interpreter –
whereas 38.30% is spent overall on calling the callback. Calling out to callbacks involves a
certain amount of overhead in SLiM; the Eidos interpreter environment for the callback must be set
up, variable values for it must be initialized, and so forth. The difference between 15.60% and
38.30% reflects all of this overhead. The overhead is very high in this case because the callback is
so simple; the more complex a callback’s code is, the less this constant overhead will matter. But
in this case, the profile report is telling us that it is not so much the callback’s code that is hurting
us – it is the fact that we have a callback at all.

As the italic comment at the bottom of the section notes, only script blocks that take more than
a certain amount of time are shown, since script blocks that take a tiny fraction of the total time are
generally not of interest from an optimization perspective. The 10000 late() event is listed here,
but takes only 0.01% of total time, which is not interesting for optimization.

Following that section, we next have “Script block profiles (as a fraction of within-block wall
clock time)”:

This section shows a similar view of the model’s code, but here the colors are scaled to the time
spent within each block. Even a block that takes up almost none of the total time, therefore, will
show “hotspots” that may be close to red. Here the two hotspot lines we noticed before in the
modifyChild() callback are colored more strongly, but the first line is an orange that is almost red,
indicating that it takes more time than the second line in yellow. This can also be seen in the
shades of yellow used in the previous section of the report, but it is much more subtle; the point of
this section, with colors according to within-block time, is precisely this: to increase the visibility
of the hotspot lines. However, this section is usually of less interest than the previous section,
since the proportion of the total corrected wall clock time is what ultimately matters. Underlining
that fact, note that the 10000 late() event has a line that is colored brick red, since that line takes
100% of the time inside that event – but it still takes only 0.01% of total time, as we noted before,
so it is irrelevant. Take care when interpreting this section.

Finally, the last section is “MutationRun usage”:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 618

This section contains fairly technical information about some of SLiM’s internal bookkeeping
mechanisms: mutation runs and their caching of fitness-related information, optimization of fitness
calculations for neutral or constant-fitness mutations, and so forth. Section 21.4 of this manual
describes the basic idea behind mutation runs, and so may shed some light on the meaning of
some aspects of this section. Mostly, however, this section of the profile is intended for internal
use by the developers of SLiM (the royal we, in other words); if you send us a profile report from
your simulation, this section will help us diagnose the situation. We will not discuss this section
further here.

Overall, this report focuses our attention very clearly on the source of the performance problem
with this model: the modifyChild() callback. Happily, as section 12.4 discusses, we can eliminate
that callback now with a call to initializeSLiMOptions(preventIncidentalSelfing=T), which
sets a configuration option that causes SLiM to block incidental selfing internally instead. If we
add that call to the model, remove the modifyChild() callback, and profile the model again, the
header of the report now looks like this:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 619

The total runtime is much shorter now – 0.64 seconds of corrected wall clock time inside the
SLiM core, instead of 1.19 seconds! If we look at the tick cycle stage breakdown, it now shows a
healthier mix of time spent in various cycle stages:

Offspring generation is now 52.32% instead of 72.77%, so SLiM is busier doing other things
now; and even more encouraging, the total time spent in offspring generation is now 0.33 seconds
instead of 0.87 seconds, so we have shaved off quite a bit of the actual time spent.

The callback type breakdown shows we are now spending very little time inside callbacks:

None is over 0.03% of the total time, so they are all basically irrelevant. What this says is that
SLiM is no longer spending a significant amount of time inside the model’s Eidos code; virtually all
of the time is being spent inside the SLiM core. If you still wanted to make this model faster, you
would therefore have to decrease SLiM’s core workload, by doing things like reducing the
population size, reducing the recombination rate or mutation rate, etc. If such revisions to the
model are not possible, then the model might be running about as fast as it possibly can (assuming
there are no design flaws in the model that are causing it to waste time).

The first script block profile section confirms this; there are no hotspots in the code at all:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 620

The second script block profile section shows some hotspots:

Remember, however, that in this section the coloring indicates the time spent as a fraction of the
within-block time. These lines might be taking 100% of the within-block time; indeed, they could
hardly fail to do so, since each block is only one line long! But the fact remains that their fraction
of the total runtime is inconsequential, so they should be ignored.

Particularly perspicacious readers may have noticed that if the original model took 1.19
seconds, 38.30% of which was dealing with modifyChild() callbacks, one might expect the
modified model to take 0.73 seconds, but in fact it took only 0.64 seconds, so we got an even
larger speedup than expected. Why is this?

One likely reason is probably that when callbacks are present, SLiM is often forced to take a
slower code path, which adds runtime even beyond the overhead of handling the callbacks
themselves. When modifyChild() callbacks are in force, for example, SLiM has to generate
children in a random order, to eliminate possible order-dependency bugs that could otherwise
crop up. When no such callbacks are active, SLiM can generate offspring in a fixed order –
females before males, migrants before residents, etc. – which is substantially faster since it doesn’t
require randomization.

Another common reason is that the profiling itself is imprecise, due to various confounding
factors, from measurement difficulties inside SLiMgui, to the simple fact that the exact same
model, with the exact same random number seed, will be somewhat inconsistent in its runtime
due to things likely how busy the operating system is, disk latency, memory cache performance,
and a million other reasons. Measuring the runtime of software with precision is just hard. To
compensate for this, you ought to do two things. First of all, you might take multiple profiles from
your model if you are concerned about the precision of the profile results. Second, you ought to
configure your model to run for a relatively long time. The example here runs for only a fraction of
a second, which is silly; probably nobody would care about profiling and optimizing such a fast
model, and the stochasticity in the runtime of the model will make the profile quite imprecise. If
you can profile your model for several minutes, or even an hour or more, the profile will be more
more accurate since the imprecision will tend to average out. (Of course, if you modify your
model to make it run longer, you have to be careful that that modification does not shift the profile
of the model away from its usual behavior!)

All of this might prompt the question: “OK, I’ve got all this profile information, so what?” Well,
in some cases it might allow you to see a way to modify your model to avoid the hotspot in
question; if your profile showed that you were spending an inordinate amount of time doing
addition in a for loop, for example, you might question why you are doing so much addition, and
whether you could use sum() instead – or whether perhaps you don’t need to do all that addition
at all. Eidos also provides quite a few functions that can perform various tasks very quickly; using
functions like unique(), setSymmetricDifference(), which(), and so forth can lead to much faster
code than attempting to code such logic in Eidos by hand.

In other cases, it will allow you to start a conversation with us about the performance problem
you’re seeing; if you say “I’ve got this model and it’s spending 80% of its time inside the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 621

mateChoice() callback running the second for loop, I’ve tried x and y and z but they didn’t help
much; what can I do about that?”, that’s a much better starting point than “My model is slow,
help”. If you are having to perform a multistep algorithm in Eidos for a task that is common, we
might be able to add a new utility method to SLiM to perform this task for you with a single call.
This can often result in a big speedup for the code in question, and it benefits all of SLiM’s users for
such utility methods to exist. The sumOfMutationsOfType() method, for example, was added in
response to a performance-related question from a SLiM user, and is now available to speed up a
wide variety of QTL-based models that need to calculate the additive effects of all mutations of a
given type (see chapter 13).

21.6 Profiling memory usage in SLiMgui, or with outputUsage()
The previous section introduced SLiMgui’s profiling feature, with an extended example showing

how it can be useful for improving the runtime of a simulation. Beginning in SLiM 3.2, the
profiling feature has been extended to include information about memory usage as well; we will
discuss that extension in this section. As for section 21.5, discussion of profiling at the command
line is deferred to section 21.7. Note that sections 21.3 and 21.4 cover some important ideas
about SLiM’s memory usage; you may wish to read those sections first.

First of all, when running SLiM 3.2 or later the header section of a profile report will be a bit
longer due to a subsection added at the end. For a somewhat large spatial simulation with tree-
sequence recording enabled, the report might show something like this:

These lines report statistics about SLiM’s overall memory usage. The first line gives the average
usage, across samples taken once per tick during the profiling period. The second line gives the
sampled usage in the final tick profiled. Note that these memory usage samples are always taken
at the end of each tick; if memory usage spikes within a tick but decreases again before the tick’s
end that will not be reflected in any of the profiling statistics discussed in this section (but would
be captured by the overall usage statistics discussed in section 21.3). Also, importantly, these
samples – which provide all of the information to be discussed in this section – reflect only
memory allocated and directly controlled by SLiM. Memory can be used by other factors too:
SLiM’s own executable code takes up memory, the operating system has memory overhead of
various types, the C++ standard library makes allocations that SLiM has no way to measure, etc.
However, in large simulations where memory usage is a concern, the memory allocated and
directly controlled by SLiM is typically the large majority of the total memory usage, so this caveat
should not prove limiting in practice.

So here we discover that in an average tick SLiM was using 0.56 GB of memory, but that at the
end of the simulation the usage was 1.17 GB in the final tick. That suggests that the memory usage
was increasing over the course of the simulation, which is typical since genetic diversity often
builds up over time. Since the peak memory usage is typically the main concern, the final tick’s
statistics may usually be of the most interest. One might also wish to profile only the last 100 ticks
of a model, for example, in order to get averaged statistics that are not biased downward by the
low memory usage toward the beginning of a run.

So far, so good; but these are only summary statistics. How does the memory usage by SLiM
break down? What is all that memory actually being used for? A new section at the end of the
profile report gives much more information:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 622

Each line in this section gives average and final-tick usage statistics, separated by a slash, as
suggested by the header. Usage is in bytes, KB, MB, GB, or potentially TB; since the units are
mixed they must be noted carefully when comparing numbers. To make it easier to pick out the
areas of highest impact, the usage statistics are color-coded in a similar way to the coloring of
timing statistics earlier in the profile report; white is the lowest proportional usage (inconsequential
in the big picture), and then shades of yellow, orange, and finally red reflect increasing proportions
of total memory usage.

The report is broken down by the object responsible for the usage, sorted alphabetically;
Chromosome comes first, Substitution last, with a small section on memory usage by Eidos at the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 623

end. The first line of each of these subsections gives the memory usage for the objects themselves;
for the Chromosome section it gives the memory used by the one Chromosome object present in the
simulation, for example. Subsequent lines give additional memory usage, by those objects, for
particular purposes. For Chromosome, for example, the memory used by mutation rate maps and
recombination rate maps is listed, as well as the usage by the ancestral nucleotide sequence in
nucleotide-based models (not shown above because the screenshot is old). This memory is not
part of the Chromosome object itself; it is allocated by the Chromosome object. Each line thus stands
on its own; the usage reported by lines under a given object type is not included in the first line.
In other words, the hierarchy here is a conceptual hierarchy, not a breakdown of totals into sub-
totals and sub-sub-totals. For most object types the number of objects allocated is also reported in
parentheses; for example, there were 404963.41 mutation objects allocated in an average tick, and
497883 allocated in the final tick.

This breakdown shows that the majority of memory is taken up by MutationIndex buffers
allocated by MutationRun; some are being used by currently allocated MutationRun objects, while
others are attached to currently unused MutationRun objects in a pool of reusable mutation runs
kept by SLiM for speed. These MutationIndex buffers are the way that SLiM keeps track of which
mutations are present in each genome; they are like pointers to Mutation objects, but more
compact since they are 32-bit indexes instead of 64-bit pointers. The Mutation objects themselves
take up far less space, and are colored just a light yellow here; this is unsurprising and typical, for
reasons discussed further in section 21.3.

Quite a substantial amount of memory is also taken up by the tree-sequence recording tables
kept by SLiM, since tree-sequence recording is enabled in this model (see section 1.7). Tree-
sequence recording can take up quite a bit of memory, but that memory usage can often be
controlled (at the price of longer runtimes) by controlling the frequency of simplification of the
tree-sequence tables; see the simplificationRatio and simplificationInterval parameters to
initializeTreeSeq() in sections 17.11 and 25.1. The model profiled here includes neutral
mutations even though tree-sequence recording is enabled, which is usually not desirable or
necessary, so it is paying a hefty price in memory usage (for illustration purposes).

In nucleotide-based models the ancestral sequence (shown under Chromosome) can take quite a
lot of memory, if the chromosome is long. The model shown here is not nucleotide-based,
however, and so no memory is used for that.

Finally, a faint yellow tinge tells us that the sparse arrays kept by InteractionType are taking up
a small but noticeable amount of memory. In SLiM 3 (when these screenshots were taken), these
sparse arrays kept track of the distances and interaction strengths between individuals, and could
use a lot of memory – even accounting for the large majority of SLiM’s memory usage, in models
with many individuals interacting. In part to mitigate this memory overhead, SLiM 4 has switched
to a different data structure, sparse vectors, for which the memory overhead is typically much
lower. If this model were run under SLiM 4, the memory overhead of InteractionType would
likely no longer be noticeable.

These memory usage statistics can, in some cases, provide a clear picture of how SLiM’s
memory usage could be reduced. This report, for example, could serve as a reminder that we
probably want to turn off neutral mutations in the model, since tree-sequence recording would
allow us to overlay them after simulation has completed (see section 17.2). If most of the memory
usage of a simulation is in the MutationIndex buffers kept by MutationRun, that would similarly
suggest that the simulation might benefit from the use of tree-sequence recording. When that is
not possible – when the mutations being simulated are non-neutral, for example – it may be
necessary to reduce the scale of the model, in terms of population size, chromosome length,
mutation rate, recombination rate, etc. Sections 5.5 and 21.3 have some further discussion of this.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 624

21.7 Profiling in SLiM at the command line
Sections 21.5 and 21.6 showed how to profile the runtime performance and memory usage of a

SLiM model using SLiMgui. Beginning in SLiM version 5.0, profiling is also supported at the
command line, and that is the topic of this section. Profiling at the command line is quite similar
to profiling in SLiMgui, so this section will be brief.

Profiling at the command line is desirable for several reasons. One is that it doesn’t require
SLiMgui, or the Qt widget kit upon which it depends, to be installed at all. Profiling at the
command line allows you to profile your model as it executes on a computing cluster, for
example. This might provide results that are more accurate for that platform (since performance
metrics can change markedly between hardware platforms).

Another reason is that running under SLiMgui distorts the behavior of SLiM in some ways, under
the hood, and so profiling measurements taken in SLiMgui might not accurately represent the
performance of the model when run at the command line, even on the same hardware platform.
Profiling in SLiMgui is usually accurate enough for most purposes, but if you want the most precise
profile possible, you should do it at the command line.

Profiling at the command line requires slim to be built with a special flag passed to CMake,
-DPROFILE=ON. For example, if your build procedure before was:

cd build
cmake ../SLiM
make -j10

you should do:

cd build
cmake -DPROFILE=ON ../SLiM
make -j10

to build slim with support for profiling. Profiling is not enabled by default because it slows down
SLiM substantially and uses additional memory.

If that modified build procedure works, executing slim with no parameters should print a
diagnostic message indicating that the build has profiling enabled (among lots of other messages).
For example:

bhaller@lanois build % ./slim
SLiM version 4.0.1, built Jan 23 2023 15:49:27.
Git commit SHA-1: 22f4a4edf9000060fb7c4650ff72a01063be19a0
This is a RELEASE build of SLiM.
This is a PROFILING build of SLiM.
...

Note that profiling can only be enabled for Release builds. It is not supported for Debug builds
because they have internal consistency-checking enabled which changes the performance metrics
of Eidos and SLiM; profiling metrics taken from a Debug build would not be accurate.

Profiling is enabled automatically for Release builds of SLiMgui; it is an intrinsic feature of
SLiMgui, and the fact that it makes SLiMgui run slightly more slowly is unimportant.

Once you have a profiling-enabled build of slim, it will automatically profile runs. For
example, suppose default.slim is the default model shown by SLiMgui:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 625

initialize() {
 initializeMutationRate(1e-7);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 99999);
 initializeRecombinationRate(1e-8);
}
1 early() {
 sim.addSubpop("p1", 500);
}
1000 late() { p1.outputSample(10); }
2000 late() { p1.outputSample(10); }
2000 late() { sim.outputFixedMutations(); }

We can run this model at the command line with our profiling-enabled build:

bhaller@lanois build % ./slim default.slim

It works as usual, apart from two additional lines of output at the end:

// profiled from tick 0 to 2001
// wrote profile results to slim_profile.html

A file named slim_profile.html was created in the current directory (whichever directory was
the working directory in the Terminal application from which slim was run). If you open that
HTML file in your preferred browser, you should see a profile report very similar to that created by
SLiMgui:

See sections 21.5 and 21.6 for discussion of the contents of profile reports.
The behavior of command-line profiling can be configured with a few options that appear only

for profiling-enabled builds of slim, as seen here:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 626

bhaller@lanois slim-profiling % ./slim --usage
usage: slim -v[ersion] | -u[sage] | -h[elp] | -testEidos | -testSLiM |
 [-l[ong] [<l>]] [-s[eed] <seed>] [-t[ime]] [-m[em]] [-M[emhist]] [-x]
 [-d[efine] <def>] [<profile-flags>] [<script file>]

 ...
 <profile-flags>:
 -profileStart <n> : set the first tick to profile
 -profileEnd <n> : set the last tick to profile
 -profileOut <path> : set a path for profiling output (default profile.html)
 ...

To profile the same default.slim model from tick 10 to tick 20 (inclusive), and write the profile
report to the path ~/Desktop/profile_default.html instead of the default path and filename
(where ~ is the user’s home directory), you would do (all typed as a single command on one line):

./slim -profileStart 10 -profileEnd 20 -profileOut
 ~/Desktop/profile_default.html default.slim

Now, at the end of the run, we see:

// profiled from tick 10 to 20
// wrote profile results to /Users/bhaller/Desktop/profile_default.html

Note that execution of the model was halted at the end of tick 20, since profiling was completed
at that point. When profiling, it is assumed that the goal of the model run is simply to produce a
profile report, and that further execution of the model after the end of profiling is unnecessary.
This makes it easy to profile just a portion of a long-running model without having to wait for it to
complete.

That’s all there is to show. Profiling at the command line is essentially the same as profiling in
SLiM, except more portable and more accurate, making profiling of runs of SLiM easy even on
computing clusters.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 627

22. This space intentionally left blasnk

This chapter is a placeholder for future expansion. Stay tuned.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 628

PART II: THE SLIM REFERENCE

 629

23. SLiM architecture (WF models)

By default, SLiM uses a Wright–Fisher model of evolution,
known in SLiM as a WF model (see section 1.6). This chapter
will discuss the details of the tick cycle in WF models; chapter 24
provides the same type of discussion for nonWF models, a more
advanced type of SLiM model.

Section 1.3 presented a summary of the tick cycle followed by
SLiM within each tick in WF models. The figure shown in that
section is reproduced at right, but with colors to indicate the way
in which each tick cycle step is handled by SLiM in multispecies
models (see below). In this chapter, we will examine each of
these tick cycle stages in more detail, in order to provide a more
complete specification of the internal mechanics of SLiM.

In single-species models the colors in the tick cycle diagram at
right may be ignored, and this paragraph may be skipped. In
multispecies models (see section 1.9 and chapter 19), however,
more than one species might be active in the same tick. In this
case, the tick cycle is executed for all active species in an
interleaved fashion. Steps in red, which involve execution of
Eidos events, execute those events in definition order, as the
events are defined from top to bottom in the SLiM script, just as
in single-species models; this is true even if some events have a
ticks specifier (except that such events might not be active in the
current tick). Steps in blue, which involve execution of Eidos
callbacks, execute one species at a time, in species declaration
order, as the species are declared from top to bottom in the SLiM
script. Steps in green, which involve neither events nor
callbacks, are executed in whatever order SLiM wishes; there are
no dependencies between species in these steps, so the
execution order is arbitrary and unspecified. Given those
execution order rules for multispecies models, the remainder of
this chapter will largely focus on the single-species case for
simplicity.

23.0 Step 0: Execution of first() Eidos events
The very first thing that happens in each tick is that the active

property of all script blocks is reset to -1 at the beginning of the
tick, activating all script blocks for the remainder of the tick
unless they are explicitly deactivated again. This is followed by
the execution of first() Eidos events defined by the user, if any.
Details on how to specify an Eidos event are given in section 26.1, with some further details in
section 26.11 regarding their scheduling and the active property.

The salient point here is primarily that these events occur first in each tick, prior to the
generation of offspring, and prior even to early() events. This provides a good opportunity to set
the active property of other script blocks, call skipTick() in multispecies models, and do other
tasks related to planning the work for the tick. If you wish to execute an Eidos event after offspring
generation has completed, you should use a late() event; see section 23.5. Since the details of
this step depend entirely upon the event script you write, there is little more to say about it.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 630

1. Execution of early() events

3. Removal of fixed mutations
unless convertToSubstitution==F

4. Offspring become parents

6. Fitness recalculation using
mutationEffect() and

fitnessEffect() callbacks

7. Tick/cycle count increment

2. Generation of offspring;
for each offspring generated:

2.1. Choose source subpop
for parental individuals,
based on migration rates

2.2. Choose parent 1, based
on cached fitness values

2.3. Choose parent 2, based
on fitness and any defined
mateChoice() callbacks

2.4. Generate the candidate
offspring, with mutation
and recombination
(including mutation() and
recombination() callbacks)

2.5. Suppress/modify the
candidate, using defined
modifyChild() callbacks

5. Execution of late() events

The WF model’s tick cycle

0. Execution of first() events

23.1 Step 1: Execution of early() Eidos events
After first() events have executed, early() events are run next. Again, details regarding these

events and their scheduling are in section 26.1 and 26.11. In general, early() events are more
commonly used as a catch-all place to do things before generation of offspring occurs; first()
events tend to be used rarely, for tasks that really need to happen first – before any other work is
done for the tick. This distinction is fairly arbitrary, however; you may choose to divide tasks
between these two event stages in whatever way you wish.

23.2 Step 2: Generation of offspring
This is the most complex step in SLiM’s architecture, and it is broken down into five sub-steps

that are executed for each offspring generated, as shown in the tick cycle diagram. Processes
involved in the generation of offspring include migration, mate choice, mutation, recombination,
and the actual production of offspring individuals. Four different types of callbacks can be
involved in modifying the offspring generation process in WF models.

23.2.1 The order of offspring generation
For each offspring generated, there are generally several decisions to be made: (1) is the

offspring local, or if not, from which other subpopulation are its parents drawn, (2) is it male or
female (in sexual simulations), and (3) is it produced by cloning, selfing, or biparental mating? In
WF models in SLiM, the sex ratio specified for a subpopulation is deterministic; SLiM will produce
that exact sex ratio in each tick (so as to avoid the possibility of extinction due to the chance
production of a single-sex child generation). The other decisions are made stochastically;
migration rates, selfing rates, and cloning rates are all probabilities, not deterministic ratios, and
you can think of SLiM as rolling the dice to make these decisions for each offspring individual.
This means that the sex ratio of a subpopulation does not fluctuate over time, but the fraction of
offspring that are migrants, or clones, or selfed, will vary stochastically around the specified rates.

The order in which offspring are generated, with respect to these decisions, depends upon the
details of your simulation. In the base case, SLiM produces offspring in deterministic tranches; for
example, migrants before locals, and within that, males before females, and within that, cloned
before selfed before biparental. The specifics of this ordering are not guaranteed; the main point is
that you should not rely on the order of offspring being random. In particular, you should
randomly select genomes when doing things like inserting new mutations, to overcome the
possibility of order-dependency and bias (as shown in the recipe in section 9.1). If mateChoice(),
modifyChild(), or recombination() callbacks are defined, SLiM switches its behavior to generate
offspring in a randomized order, rather than in these deterministic tranches. This presents mating
and offspring decisions to those callbacks in a random order, so that bias is not inadvertently
introduced by callbacks.

SLiM is, for WF models, fundamentally a model of juvenile migration, not migration at the adult
stage. This has several consequences for these decisions that are made for each offspring. First of
all, if the offspring is a migrant produced biparentally, it should be noted that both parents will be
drawn from the same source subpopulation; matings between parents in different subpopulations
never occur in WF models in SLiM, since adults do not migrate. Second, it should be noted that
the parental source subpopulation is “in charge” of most of the decisions made regarding the
offspring, since the offspring is produced within that source subpopulation by the mating of
parents in that subpopulation. In particular, the source subpopulation determines the cloning rate
and selfing rate, as well as the mateChoice(), modifyChild(), recombination(), and mutation()
callbacks used. The only exception is sex ratio; the sex ratio of the destination subpopulation
governs the ratio of males to females produced in that subpopulation, regardless of the sex ratios

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 631

specified by the various source subpopulations contributing migrants. If these policies seem
restrictive, you may want to use a nonWF model instead (see section 1.6).

23.2.2 Mate choice
Once the decisions outlined in the previous section have been made for a given offspring

(parental subpopulation, sex, clonal/selfed/biparental), the next step in offspring generation is
choosing the parent(s) for the offspring. The precise way in which this is done depends upon the
type of offspring being produced:

(1) If the offspring is to be clonal, a single parent is drawn randomly, according to probabilities
proportional to fitness, from the source subpopulation. Any mateChoice() callbacks defined are
not called; there is presently no way to influence the choice of clonal parents except by modifying
fitness values – with a mutationEffect() or fitnessEffect() callback, and/or by changing
individual fitnessScaling values. Offspring generation proceeds along a different path in the
clonal case, introducing mutations as usual (see below) but without recombination.

(2) If the offspring is to be selfed, a single parent is drawn according to fitness, as with cloning.
That parent is then considered to be a forced choice for the second parent; mateChoice() callbacks
are not used. Offspring generation proceeds thereafter as with biparental mating.

(3) If the offspring is to be the result of biparental mating, a first parent is drawn according to
fitness; in sexual simulations the first parent will always be female, since WF models assume
female choice. If no mateChoice() callbacks are defined, a second parent is then drawn according
to fitness – in sexual simulations, always a male. If mateChoice() callbacks are defined, on the
other hand, those callbacks will be called to determine mating weights for all eligible parents
given the chosen first parent, as detailed in section 26.4, and a second parent will then be drawn
with probabilities proportional to those mating weights. If the mateChoice() callbacks completely
reject the first parent, offspring generation will go back to almost the beginning of the process; the
source subpopulation will remain unchanged, as will the sex of the offspring to be produced, but
the cloned/selfed/biparental decision, and the choice of the first parent, will be made over from
scratch.

23.2.3 Mutation and recombination
Once a parent or parents have been successfully selected, as detailed in the previous

subsection, a candidate offspring is generated from the chosen parent(s). Note that for biparental
crosses, the offspring’s first genome will be generated by recombination from the first parent’s
genomes (the female parent, in sexual simulations) and the offspring’s second genome will be
generated by recombination from the second parent’s genomes (the male parent, in sexual
simulations). For cloning, the offspring’s first genome will be cloned from the parent’s first
genome, and the offspring’s second genome will be cloned from the parent’s second genome. For
selfing, both offspring genomes are generated by recombination from the parent’s genomes.
Whenever recombination occurs between two genomes, which genome is the initial copy strand is
chosen randomly.

As the first step in this process, the mutations to be introduced into each of the two offspring
genomes are generated. The number of mutations is determined by the current mutation rate,
using a draw from the appropriate Poisson distribution. The particular mutations are then
generated one by one, each with a position drawn at random from within all of the defined
genomic elements in the chromosome. Given that position, the identity of the genomic element
and thus the controlling genomic element type is determined. Using the list of mutation types and
associated probabilities for the genomic element type, a particular mutation type is chosen
probabilistically. Finally, a selection coefficient is drawn from the chosen mutation type (see
section 25.11), and a new Mutation object is constructed with that selection coefficient. If

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 632

mutation() callbacks are defined, they will be called immediately after each new mutation is
generated (assuming they apply to the source subpopulation generating the offspring), providing an
opportunity for the new mutation to be modified or suppressed (see section 26.9). In this manner,
all of the new mutations to be introduced into each of the two offspring genomes are generated.

In SLiM 3.5 and later, this procedure is modified slightly. The procedure described above, used
in SLiM versions prior to 3.5, makes each mutational event completely independent of all others,
and therefore it is possible for two new mutations to occur at the same base position during the
generation of the same offspring genome. This turned out to cause some minor issues for things
like mutation() callbacks, and so in SLiM 3.5 mutational events are no longer completely
independent. Specifically, all of the positions for new mutations in a given gamete are now drawn
up-front by SLiM, and are then sorted and uniqued. After that, mutations are then generated one
by one, from the uniqued positions, as described above. It is therefore no longer possible to get
two new mutations at the same position during the generation of a single offspring genome. (This
only applies to new mutations; it is still possible, by design, to get “stacked” mutations in SLiM
when a new mutation stacks on top of an existing mutation, as discussed in section 1.5.3). This
new mutational procedure means that sometimes – very rarely, for typical mutation rates – a
mutational event will be rejected by the uniquing step, because its drawn position matches
another drawn position in the same gamete-generation process. If SLiM didn’t compensate for this,
the effective mutation rate would be less than the requested mutation rate; it would be the
probability that a draw from Poisson(µ) is greater than zero, which is 1 − exp(−µ). To prevent this
discrepancy, SLiM 3.5 now adjusts the mutation rate upward, internally, so that the realized rate
after position uniquing equals the requested rate. The adjusted rate, used internally and not visible
to the running script, is −log(1 − µ), computed as −log1p(−µ); for typical mutation rates the
difference is negligible (differing from µ by on the order of µ2/2), but for a very high mutation rate
like, e.g., µ = 0.1, the rate used internally would be −log1p(−0.1) = 0.1053605, so the correction is
significant at that point. These rate adjustments are performed internally for each segment of the
supplied mutation rate map or hotspot map. Note that this implies that mutation rates of µ ≥ 1 are
no longer legal in SLiM, because they would entail an infinite adjusted rate.

In nucleotide-based models, the mutation process is somewhat different. The overall mutation
rate is determined by the highest sequence-based rate expressed by any genomic element type’s
mutation matrix; if CpG sites, for example, have a particularly high mutation rate, SLiM begins
with the assumption that every site is a CpG site, and generates a number of mutations and then a
vector of positions for new mutations based upon that assumption. (If a hotspot map is defined, a
mutation rate map is used that is the multiplicative product of the highest sequence-based rate and
the hotspot map.) Given the mutation positions, the genomic element and thus the controlling
genomic element type are determined as usual. At this point, SLiM compares the highest
sequence-based rate to the actual sequence-based rate that exists at the mutation’s location in the
relevant parental genome. If the rates are not the same – if the parental genome’s sequence turns
out not to be a CpG site, in our hypothetical example – then the proposed mutation will be
rejected with the appropriate probability to produce the correct sequence-based rate of mutation
(a strategy called rejection sampling). If the rates are the same, then the mutation is never rejected.
Proposed mutations that are not rejected will be generated as usual (drawing the mutation type
probabilistically from the genomic element type’s list, then drawing a selection coefficient for the
mutation, as described above). In this way, SLiM produces the requested sequence-based mutation
rate without having to recalculate the overall mutation rate and the mutation rate map every time
the nucleotide sequence changes.

If the offspring is to be produced clonally, what follows is then relatively simple: conceptually,
the parental genomes are replicated exactly in the offspring, and then the mutations are interleaved
into the offspring genomes at their particular positions.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 633

If the offspring is to be produced by selfing or biparentally (which are identical at this stage of
the process), recombination is also involved, making the process somewhat more complex. The
first offspring genome is produced via recombination between the two genomes of the first parent,
and the second offspring genome is produced via recombination between the two genomes of the
second parent (mimicking the process of meiosis to produce haploid gametes that merge to form a
fertilized egg). For each offspring genome, the number of recombination breakpoints is drawn
from a Poisson distribution based upon the overall recombination rate (computed internally by
SLiM). The position of each breakpoint is then drawn, based upon the recombination ranges and
rates set on the chromosome. If the “crossover breakpoints” model is being used, these
breakpoints are then used directly as crossover points; if the “double-stranded breaks (DSB)”
model is being used, these breakpoints are double-stranded breaks that will become the basis of
gene conversion tracts, crossovers, and heteroduplex mismatch repair (see section 1.5.6 for
details).

If recombination() callbacks are defined, they are called at this point to allow them to modify
the crossover breakpoints. Then, given the two genomes from the parent, the list of crossover
breakpoints, and the set of mutations to be introduced, SLiM weaves together the final genome of
the offspring, alternating between the two parental genomes as dictated by the recombination
breakpoints, and introducing mutations at the chosen positions. If complex gene conversion tracts
exist, resolution of any heteroduplex mismatches is the final step (see section 1.5.6).

By default, SLiM allows multiple mutations to exist at the same site in a single individual –
“stacked” mutations, as they are called in SLiM (see section 1.5.3). This behavior is often
desirable, but sometimes it is useful to prevent stacked mutations of a given mutation type. The
stacking policy of a given mutation type can be changed using MutationType’s
mutationStackPolicy and mutationStackGroup properties, as documented in section 25.11.1. The
chosen stacking policy will be applied as mutations are overlaid during the process of weaving
together the offspring genomes.

Beginning in SLiM 4.1, in spatial models the spatial position of the offspring will be inherited
(i.e., copied) from the first (or only) parent; more specifically, the x property will be inherited in all
spatial models (1D/2D/3D), the y property in 2D/3D models, and the z property in 3D models.
Properties not inherited will be left uninitialized, as they were prior to SLiM 4.1. The parent’s
spatial position is probably not desirable in itself; the intention here is to make it easy to model the
natal dispersal of all the new offspring for a given tick with a single vectorized call to
pointDeviated().

23.2.4 Child modification
Once the two genomes of the candidate offspring have been generated, as described in the

previous section, child modification by modifyChild() callbacks occurs (described in section
26.5), if any callbacks are active. These callbacks are called regardless of whether the offspring
was the product of cloning, selfing, or biparental mating; all types of offspring may be modified.

These callbacks may modify the candidate offspring in any way desired. For our purposes here,
the only complication arises with the possibility that a modifyChild() callback will suppress the
candidate offspring altogether, rather than just modifying it. This can be thought of as representing
juvenile mortality, if you wish; it could also represent postmating reproductive isolation, such as
infertility or developmental inviability. In some cases, suppression of a candidate offspring can
also be thought of as representing a type of mate choice.

When a candidate offspring is suppressed, generation of the offspring goes back almost to the
beginning of the process, as with rejection of the first parent by a mateChoice() callback. In fact,
in this case the process goes back even further; a new source subpopulation for the offspring is
chosen, in addition to re-making the cloned/selfed/biparental decision and re-choosing the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 634

parents. The only aspect of the offspring generation process that is not re-decided in this case is
the sex of the planned offspring individual; that remains fixed since the sex ratio is deterministic,
not stochastic. Note that this means that if a modifyChild() callback suppresses a candidate
offspring, the next time it is called the new candidate will always be the same sex as the previously
suppressed candidate. Because of this, it is not possible for a modifyChild() callback to influence
the sex ratio of a subpopulation in WF models; attempting to do so will produce an infinite loop.

23.2.5 Child generation
Once a candidate offspring has been generated and modified, and was not suppressed by a

modifyChild() callback, it is added to the target subpopulation. Note that the newly added child
will not be visible as a member of the subpopulation until the point in the tick cycle when the
child generation becomes the parental generation (see section 23.4). This prevents order-
dependencies in which the first children generated might otherwise influence the remainder of the
child generation process.

23.3 Step 3: Removal of fixed mutations
After all offspring have been generated for all subpopulations, SLiM performs bookkeeping

regarding the mutations in the simulation. In particular, it scans through every genome in every
individual in every subpopulation, and tallies up how many times each of the mutations in the
simulation is actually present in the child generation.

The results from this scan are used to clean house. If a mutation is no longer referenced by any
genome in the simulation, that mutation has been lost (whether due to selection or drift), and SLiM
forgets about it. If, on the other hand, a mutation is now contained by every genome in the
simulation, that mutation has fixed. In this case, SLiM normally creates a new Substitution
object as a placeholder, to record the details of the fixed mutation, and then removes the mutation
from the simulation. This is essentially an optimization for efficiency; if fixed mutations were not
removed, a long-running simulation would accumulate ever more mutations needing to be
tracked. In general the substitution is harmless; a fixed mutation cannot generally decrease in
frequency, and generally no longer influences fitness in a WF model (since it is possessed by all
individuals, and thus has an identical effect on the relative fitness of all individuals).

However, there are specific circumstances in which the removal of fixed mutations is not
desirable. In particular, if the fixed mutation would continue exerting a varying effect on fitness
among individuals (because of epistasis, for example), the substitution of the mutation would result
in incorrect fitness values. Also, if the script for a simulation intends to remove the mutation from
some genomes later in the simulation run (perhaps simulating a back-mutation) then it would be
desirable to prevent the substitution of the mutation. To accommodate these possibilities, the
convertToSubstitution property of a mutation type can be set to F to suppress substitution of
mutations of that type; see section 25.11.1.

When nucleotide-based mutations fix and are converted to Substitution objects in a
nucleotide-based model, the ancestral nucleotide sequence kept by the Chromosome object is
updated with the new, fixed nucleotide.

23.4 Step 4: Offspring become parents
As mentioned in section 23.2.5, newly generated offspring are kept by SLiM as members of a

child generation that is not visible to the model mechanics (or to your Eidos scripts), to avoid
order-dependencies and other confusion. After mutations that are fixed in the child generation
have been found and substituted, as described in the previous section, the child generation

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 635

becomes the new parental generation, and the old parental generation is discarded. Generations
are always non-overlapping in WF models.

23.5 Step 5: Execution of late() Eidos events
After the child generation is promoted to the parental generation, the next step is to execute

late() Eidos events defined by the user, if any. Details on how to specify an Eidos event are given
in section 26.1, with some further details in section 26.11 regarding their scheduling and the
active property. Eidos late() events are most often used when output is being generated (since
you typically want to output the state of the simulation at the end of a tick, not at the beginning),
and when adding or removing mutations (since you want those changes to be reflected in the
fitness values calculated for individuals, prior to the next offspring generation step). Changing of
selection or dominance coefficients should also typically be done in a late() event, for the same
reason. See sections 4.2.1, 9.1, and 9.6.1 for discussion and examples.

23.6 Step 6: Fitness value recalculation
After any active late() events have executed, the next step is to compute fitness values for the

new parental generation, including the effects of any mutationEffect() and fitnessEffect()
callbacks. Fitness values computed at the end of one tick are actually used during mating in the
following tick; this is something to keep in mind if you are designing mutationEffect() or
fitnessEffect() callbacks that you want to be active only across a specific tick range. The reason
SLiM does this has to do mostly with running in SLiMgui; it is desirable that SLiMgui should show
newly-calculated fitness values for the new parental generation when single-stepping through
ticks. If fitness values were not calculated until the beginning of the next tick, they would not yet
be available for display.

If mutationEffect() callbacks are not active for a given subpopulation, calculating the fitness of
an individual is relatively straightforward. SLiM uses a model of multiplicative fitness between
sites. An initial relative fitness w of 1.0 is assumed for the individual (unless fitnessScaling
values have been set; in fact, the initial fitness w is the product of the individual’s fitnessScaling
property and its subpopulation’s fitnessScaling property, but these properties are 1.0 by default).
Then, each mutation possessed by the individual is evaluated as to whether it is present in just one
of the individual’s genomes (i.e., is heterozygous) or is present in both genomes (i.e., is
homozygous). If a mutation is homozygous, the individual’s relative fitness is updated as:

w = w * (1.0 + selectionCoefficient),

whereas if the mutation is heterozygous, the relative fitness is updated as:

w = w * (1.0 + dominanceCoeff * selectionCoeff).

where the dominance coefficient of the mutation is defined by the mutation’s mutation type. If the
new relative fitness is zero or less, the mutation just evaluated was lethal, and so the final relative
fitness of the individual is 0.0. Otherwise, SLiM proceeds with evaluating the next mutation, until
all mutations have been evaluated to produce a final relative fitness value.

There is a wrinkle here to be explained, however: a mutation can be heterozygous in one of
two different ways. If the individual being evaluated has two non-null genomes – two autosomes,
say, or two X chromosomes – then the dominance coefficient used for this fitness calculation is the
usual one, defined in MutationType as the dominanceCoeff property and supplied as a parameter
to initializeMutationType(). This is the situation that will be relevant for 99% of models. If the
individual being evaluated has a “null genome” for one of its genomes, on the other hand – the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 636

other 1% of cases – then the dominance coefficient used is defined in MutationType as the
haploidDominanceCoeff property; this property is 1.0 by default, but may be changed by setting
that property. This will arise in several situations: for example, if you are simulating the X
chromosome (see initializeSex(), section 25.1) then XY males will have a null genome in place
of the Y, so haploidDominanceCoeff will be used to evaluate the fitness effects of X-linked
mutations in XY males (whereas in XX females, dominanceCoeff will be used). Similarly, if you are
simulating the Y chromosome then XY males will have a null genome in place of the X, and so
haploidDominanceCoeff will be used to evaluate the fitness effects of Y-linked mutations in XY
males (whereas XX females will have two null genomes, and thus no mutations at all). This also
arises in nonWF simulations of haploids (see section 15.11 and 16.15); typically (but not
necessarily), in such models the second genome of every haploid individual is a null genome, and
so haploidDominanceCoeff is used when evaluating the fitness effects of mutations in such
haploids. (Haploids in WF models do not use null genomes, since that feature is not available to
them, so dominanceCoeff would be used.) This may all seem overly complicated, but the point of
it is to allow the fitness effect of mutations to be different depending upon whether they are truly
heterozygous (present in only one of two copies of a given gene) or hemizygous or haploid
(present in the single copy of the gene that the individual possesses).

If mutationEffect() callbacks are defined (as described in section 26.2), this procedure is
modified slightly. In this case, the multiplicative effect on relative fitness that would be produced
by a given mutation is calculated, exactly as above, but instead of simply multiplying w by that
fitness effect, SLiM calls out to applicable mutationEffect() callbacks to allow them to modify the
relative fitness value. After callbacks, w is multiplied by the final fitness effect for the mutation.
The mutationEffect() callback calculates the relative fitness of the mutation in the individual,
whether the mutation is heterozygous or homozygous; if you want the calculated fitness value to
be different in those two cases, then the mutationEffect() callback needs to explicitly take the
heterozygosity of the mutation into account (which is part of the information provided to the
callback by SLiM, so doing so is not difficult; see section 26.2).

In SLiM version 2.3 and later, it is also possible to define fitnessEffect() callbacks, which are
applied exactly once to every individual without reference to a focal mutation or a particular
mutation type (see section 26.3). The fitness values returned by fitnessEffect() callbacks are
multiplied into the fitness value previously computed for the individual, as:

w = w * fitnessEffect.

The fitness effects of fitnessEffect() callbacks thus combine multiplicatively with all of the
fitness effects of mutations, and multiple fitnessEffect() callbacks may be defined. Unlike other
types of callbacks, the order in which fitnessEffect() callbacks are called is formally undefined,
both relative to other fitnessEffect() callbacks and relative to mutationEffect() callbacks. Also
note that fitnessEffect() callbacks might not be called at all for a given individual if that
individual’s fitness has already been determined, by previous callbacks or fitness effects, to be
equal to (or less than) zero. Models should therefore be extremely cautious in making any
assumptions regarding the timing or order in which fitnessEffect() callbacks will be executed,
or whether they will be executed at all; fitnessEffect() callbacks that have external side effects,
such as changing the active property of script blocks or defining Eidos constants, are not
recommended.

In SLiM 3.0 and later, the fitnessScaling property may be set on the subpopulation or the
individual (or both) to multiplicatively influence individual fitness values, as mentioned above.
This is often a more efficient and simpler alternative to defining a fitnessEffect() callback.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 637

By default (unless the randomizeCallbacks parameter to initializeSLiMOptions() is set to F),
fitness calculations are done in a random order for all of the individuals within each
subpopulation. Nevertheless, it is generally a good idea for mutationEffect() and
fitnessEffect() callbacks to be written in such a way as to make each fitness computation
independent of all others, and independent of the order in which they are done, unless you
actually want such non-independent fitness effects. If randomizeCallbacks is F, individuals within
each subpopulation will have their fitness evaluated in sequential order, which is more prone to
order-dependency issues (but is slightly faster); see section 25.1.

See section 8.4 for further discussion of fitness in SLiM and SLiMgui.

23.7 Step 7: Tick/cycle count increment
The final step in each tick is that the cycle counter is incremented for each species that was

active during the tick, and the tick counter kept by the Community is incremented. SLiM then
checks whether the simulation is over; if there are no events or callbacks scheduled to execute in
the new tick or any subsequent tick (not counting events and callbacks with no specified end tick),
the simulation is deemed to be over, and execution halts.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 638

24. SLiM architecture (nonWF models)

By default, SLiM uses a Wright–Fisher model of evolution,
known in SLiM as a WF model – but an alternative non-Wright–
Fisher, or nonWF, model type may be chosen instead (see section
1.6 and chapter 15). This chapter will discuss the details of the
tick cycle in such models. Chapter 23 provides parallel
discussion for WF models; to avoid a lot of duplicated verbiage,
this chapter will assume familiarity with the WF tick cycle as
described in chapter 23, and will make reference to that chapter
rather than spelling out every detail a second time.

The figure shown at right is a summary of the tick cycle
followed by SLiM within each tick in nonWF models. As in
chapter 23, this tick cycle diagram uses colors to indicate the
way in which each tick cycle step is handled by SLiM in
multispecies models (see section 1.9 and chapter 19); these
colors can be ignored when working with single-species models.
For multispecies models, when more than one species in active
in a given tick, red represents steps involving events, which are
executed in definition order; blue represents steps involving
callbacks, which are executed one species at a time in species
declaration order; and green represents steps in which the
ordering makes no difference and is thus arbitrary and undefined
(see chapter 23 for further discussion). Given those execution
order rules for multispecies models, the remainder of this chapter
will largely focus on the single-species case. In this chapter, we
will examine each of these tick cycle stages in more detail, in
order to provide a more complete specification of the internal
mechanics of SLiM.

24.0 Step 0: Execution of first() Eidos events
As in WF models, the first thing to happen in the tick cycle is

resetting of the active property of all script blocks (see section
23.1), followed by execution of first() events. This event stage
(added in SLiM 3.7) provides a point at which script can be
executed prior to reproduction in nonWF models. The use of
first() events is relatively rare; since fitness values have already
been calculated at the end of the previous tick, in preparation for
reproduction, first() events in nonWF models should not do
anything that modifies fitness, and so they are somewhat
constrained. However, first() events can be useful as an
opportunity to prepare for reproduction. They also provide a good opportunity to make top-level
decisions about what will happen in the tick that is about to execute, such as setting the active
property of other script blocks, or calling skipTick() in multispecies models.

24.1 Step 1: Generation of offspring
After first() events, offspring generation occurs. This is the most complex step in SLiM’s

architecture, and in nonWF models it is broken down into four sub-steps that are executed for

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 639

2. Execution of early() events

5. Removal of fixed mutations
unless convertToSubstitution==F

4. Viability/survival selection,
based on fitness values and

survival() callbacks

3. Fitness recalculation using
mutationEffect() and

fitnessEffect() callbacks

7. Tick/cycle count increment,
individual age increments

1. Generation of offspring;
for each extant individual:

1.1. Call reproduction()
callbacks defined for each
reproducing individual

1.2. The callback(s) make
Subpopulation method calls
requesting new offspring

1.3. Generate the candidate
offspring, with mutation
and recombination
(including mutation() and
recombination() callbacks)

1.4. Suppress/modify the
candidate, using defined
modifyChild() callbacks

6. Execution of late() events

The nonWF model’s tick cycle

0. Execution of first() events

each offspring generated, as shown in the tick cycle diagram. Processes involved in the generation
of offspring include mate choice, mutation, recombination, and the actual production of offspring
individuals. (In WF models, migration is also effected during offspring generation, but this is not
necessarily the case in nonWF models, although it is possible.)

24.1.1 The order of offspring generation
For each offspring generated, there are generally several decisions to be made: (1) what are its

parents, (2) is it male or female (in sexual simulations), and (3) is it produced by cloning, selfing, or
biparental mating? In WF models, these decisions are made by SLiM’s core engine, as described in
section 23.2.1, based upon parameters such as the sex ratio, cloning rate, and selfing rate, as well
as upon individual fitness values and the results from mateChoice() callbacks. In nonWF models,
in contrast, all of these decisions are made by the model’s script: reproduction() callbacks are
called once for each individual in the model, to request that each individual should then generate
its own offspring to be added to the population.

The order in which individuals are asked to generate their offspring is somewhat complex.
Subpopulations will reproduce sequentially; all of the individuals in a given subpopulation will
reproduce, by receiving a reproduction() callback, before the next subpopulation begins to
reproduce. The order in which subpopulations reproduce – which subpopulation goes first,
second, etc. – is undefined and should not be relied upon. Within a given subpopulation, by
default (unless the randomizeCallbacks parameter to initializeSLiMOptions() is set to F)
individuals will reproduce in a randomized order to try to prevent order-dependencies from
biasing offspring generation. If randomizeCallbacks is F, individuals within each subpopulation
will reproduce in sequential order, which is more prone to order-dependency issues (but is slightly
faster); see section 25.1. Even when the reproduction order is randomized, however, it is
important to design your reproduction() callbacks to be independent; in general, the reproductive
behavior of each individual should probably be independent of the reproductive behavior of every
other individual, so that whether A is asked to reproduce before B, or B before A, does not bias the
outcome of the model. There are certainly cases where you might violate this principle; in a
model of monogamous mating, for example, the first female asked to reproduce might be able to
claim her choice of males, whereas the last female asked to reproduce might have little or no
choice since most males would already be claimed. Sometimes such asymmetries are acceptable
or even desirable; sometimes, however, they would constitute a bug. So the message of this
subsection is primarily: think carefully about the order of offspring generation, and about the
independence of each reproductive event (or the lack thereof), and make sure your model does
what you really want it to.

24.1.2 Individual-based reproduction with reproduction() callbacks
As mentioned above, reproduction() callbacks are called for each individual in the model.

The task of each callback is to generate the offspring from one focal individual. In sexual models,
perhaps females would generate offspring and males would not (or perhaps the opposite, if males
are the choosy sex in the biological system being modeled); the focal sex of a reproduction()
callback can therefore be specified (see section 26.8). In monogamous-mating models, a single
mate might be chosen and then a litter of offspring would be generated through crosses with that
mate; in a non-monogamous model each offspring generated might be with a different mate.
Some offspring might be generated via cloning or selfing, rather than biparental mating. The sex of
offspring in sexual models might be equally likely to be male or female, or there might be some
sex-ratio bias. Most importantly, in nonWF models all of these decisions can depend upon the
genetics and other state of each individual, rather than being dictated by overall parameters as in
WF models.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 640

Regardless of how a given model makes these decisions, it always expresses them to SLiM in
one way: by making method calls on Subpopulation objects, requesting the addition of new
offspring. There are five methods that can be called: addCrossed() to add an offspring resulting
from a biparental cross, addSelfed() to add an offspring resulting from selfing (i.e., sexual self-
fertilization in a hermaphroditic individual), addCloned() to add an offspring resulting from clonal
reproduction, addEmpty() to add an offspring with no parents and empty genomes (presumably to
be filled in some special way by script, subsequently), or addRecombinant() to add an offspring
using explicitly specified parental genomes and recombination breakpoints. Each such method
call made sets off the chain of events described in the following subsections: mutation and
recombination, child modification, and child generation.

24.1.3 Mutation and recombination
Mutation and recombination occur in nonWF models exactly as they do in WF models; see

section 23.2.3 for details.
Beginning in SLiM 4.1, in spatial models the spatial position of the offspring will be inherited

(i.e., copied) from the first (or only) parent. In nonWF models this is done automatically by the
addCloned(), addCrossed(), addRecombinant(), and addSelfed() methods; see the documentation
for those methods for further details.

24.1.4 Child modification
Child modification, via modifyChild() callbacks, occurs in nonWF models largely as it does in

WF models; see section 23.2.4 for details. The important difference is that whereas WF models
have a target subpopulation size to reach, and thus must keep generating offspring until that target
is reached, the same is not true of nonWF models. In nonWF models, therefore, if a
modifyChild() callback returns F to indicate that a given offspring should not be generated (due to
postmating reproductive isolation or genetic incompatibility, for example), that is the end of it.
That offspring will simply not be generated; there will be one fewer offspring individual, in the
end, than there would have been if the modifyChild() callback had returned T. In this case, the
Subpopulation method call that initiated offspring generation, such addCrossed(), will return NULL
to its caller. This is generally desirable; see section 26.8 for further discussion of how this behavior
interacts with reproduction() callbacks.

24.1.5 Child generation
Once a candidate offspring has been generated and modified, and was not suppressed by a

modifyChild() callback, it is queued for addition to the target subpopulation. Note that the newly
added child will not be visible as a member of the subpopulation until the end of offspring
generation for the entire community. This prevents newly generated offspring from being chosen
as mates, or otherwise influencing the remainder of the child generation process.

For multispecies models, the wording above – “the entire community” – is actually important.
The implication is that reproduction in multispecies models is, in some sense, actually two
separate tick cycle stages, under the hood, although it is not treated that way in this
documentation: all species do their reproduction work, including all callbacks and such as
described previously, and then all species merge the generated offspring that have been queued for
addition. This design allows multispecies interactions using InteractionType to work properly
during reproduction, since the evaluated interaction does not need to be invalidated (due to the
addition of new individuals to a subpopulation) until all reproduction has completed. It also
means that newly generated individuals of one species will not influence the reproduction process
in another species (through, for example, density-dependent effects on fecundity), which is usually
desirable.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 641

24.2 Step 2: Execution of early() Eidos events
Offspring generation is followed by the execution of early() Eidos events defined by the user, if

any. The mechanics of this are the same as in WF models, but the semantics of early() versus
late() events are fairly different in nonWF models, in some ways.

In WF models, early() events occur just before offspring generation and late() events happen
just after. In nonWF models this positioning is different, because offspring generation has been
moved earlier in the tick cycle – now, first() events occur just before offspring generation and
early() events happen just after. In WF models, an early() event thus provides an opportunity to
execute script immediately before reproduction (but after fitness calculations); in nonWF models,
first() events offer that same opportunity.

Similarly, in WF models late() events are usually the best place to add new mutations, because
the next tick cycle stage is fitness evaluation, which immediately incorporates the fitness effects of
the new mutations; but in nonWF models early() events are usually the best place to add new
mutations, for the same reason.

In WF models, late() events are generally the best place to put output events so that they
reflect the final state at the end of a tick; in nonWF models, however, output can make sense in
either an early() or a late() event, depending upon whether you want to see the state of the
population before or after viability selection. However, reading in a previously written output file,
or otherwise setting up new population state, is generally best done in an early() event in nonWF
models so that fitness values are recalculated immediately after the change (just as with adding
new mutations). So if you call outputFull() with the intention of reading the output back in with
readFromPopulationFile() later, you will probably want to do the output in an early() event so
that you can, correspondingly, do the read in an early() event as well without skipping or
doubling any tick cycle stages.

For those who are curious: the reason for this reordering of the tick cycle in nonWF models is
the addition of the viability/survival tick cycle stage, which does not exist in WF models. It is
desirable to have an opportunity for scripted events between offspring generation and selection,
and then between selection and the next offspring generation stage. It is also desirable for
selection to happen after offspring generation in the cycle, so that the population state at the end
of each tick (as displayed in SLiMgui, for example) is after selection has occurred. These
constraints, taken together, dictate the order of the tick cycle in nonWF models.

24.3 Step 3: Fitness value recalculation
After the execution of early() events, the next stage in nonWF models is to compute fitness

values for all individuals, including the effects of any mutationEffect() and fitnessEffect()
callbacks. The mechanics of this are exactly the same in nonWF models as in WF models; see the
extensive discussion in section 23.6.

However, because of the reordering of the tick cycle, the semantics of fitness evaluation in
nonWF models are a bit different. In WF models, as section 23.6 explains, the fitness values
calculated in tick X are actually used to influence mating in tick X+1. In nonWF models, however,
fitness values calculated in tick X are then used immediately, in tick X, to influence survival (see the
next subsection). This oddity of WF models is therefore not present in nonWF models, making
them a bit conceptually simpler.

The actual meaning of individual fitness values is also fundamentally different between WF and
nonWF models; see the next section for discussion. See also section 8.4 for further discussion of
fitness in SLiM and SLiMgui.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 642

24.4 Step 4: Viability/survival
After fitness values have been recalculated for all individuals, viability selection then occurs

immediately. In WF models, viability selection does not exist (or you could consider new offspring
to have a survival rate of 100%, and the parental generation to have a survival rate of 0%, if you
like). In nonWF models, in contrast, viability selection is the primary way in which differential
fitness is expressed; individual fitness values influence survival, not mating success.

Viability selection in nonWF models is mechanistically simple. For a given individual, a fitness
of 0.0 or less results in certain death; that individual is immediately removed from its
subpopulation. A fitness of 1.0 or greater results in certain survival; that individual remains in its
subpopulation, and will live into the next tick cycle. A fitness greater than 0.0 and less than 1.0 is
interpreted as a survival probability; SLiM will do a random draw to determine whether the
individual survives or not.

This change in the way individual fitness is used has large consequences. First of all, it means
that in nonWF models fitness is absolute fitness, whereas in WF models fitness is relative fitness.
Second, it means that in nonWF models selection is generally hard selection, reducing the size of
the population proportionate to mean population fitness, whereas in WF models it is generally soft
selection, changing the relative success of particular individuals but not changing the size of the
population. Third, it means that in nonWF models the population is not automatically regulated –
both extinction and unbounded exponential growth are very real possibilities – whereas in WF
models SLiM automatically regulates the population size. These three observations are really
different ways of looking at the same basic fact.

Because of this shift, nonWF models need to treat individual fitness differently than WF models.
For one thing, there is often a need to introduce some sort of density-dependent fitness, using
fitnessScaling or a fitnessEffect() callback, that prevents exponential growth by decreasing
individual fitness as the population size gets larger. (Density-dependent fecundity or emigration
could similarly regulate population size.) Second, there may be a need to rethink how beneficial
mutations work, since increasing the fitness of an individual above 1.0 has no effect in nonWF
models (since guaranteed survival is as good as it gets); it may be desirable to have a baseline
fitness, for individuals possessing empty genomes, of less than 1.0 so that beneficial mutations can
increase the probability of survival above that baseline. This could also be achieved with
fitnessScaling or a fitnessEffect() callback; this might be done in conjunction with density-
dependence (or might simply result from density-dependence, if it is strong enough to reduce
mean fitness sufficiently by itself). All of this is entirely up to the model’s script.

Finally, it is worth noting that it is certainly possible to have genetics and other individual state
influence mating success and/or fecundity in nonWF models, as in WF models. In nonWF models
that is done by influencing the dynamics of the offspring generation stage in script, however, as
expressed in reproduction() callbacks; it is not an automatic consequence of the fitness values
calculated by SLiM.

Beginning in SLiM 3.7, the fitness-based decisions made by SLiM in the viability/survival tick
cycle stage can be modified in script, with the use of a survival() callback. This is an advanced
feature that should be used with caution, since if SLiM’s default decisions are overridden fitness
may no longer influence survival, density-dependence may no longer regulate population size, and
so forth. For models that do require this facility, survival() callbacks are documented in section
26.10. The basic operation of this tick cycle stage is the same when survival() callbacks are
active; however, it should be noted that survival() callbacks will be called for all individuals
without any modification of the population state, and then once that process is complete, only
then will SLiM enact the decisions that were made by killing and/or moving individuals as
requested.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 643

As with reproduction (see section 24.1.1), survival() callbacks are called one subpopulation
at a time. Within a given subpopulation, by default (unless the randomizeCallbacks parameter to
initializeSLiMOptions() is set to F), survival() callbacks will be called in a randomized order
to try to prevent order-dependencies from biasing the process. If randomizeCallbacks is F,
survival() callbacks within each subpopulation will be called in sequential order, which is more
prone to order-dependency issues (but is slightly faster); see section 25.1. Even when the order is
randomized, however, it is usually a good idea to design your survival() callbacks to be
independent; in general, the survival outcome of each individual should probably be independent
of the survival outcome of every other individual, so that the processing order does not bias the
outcome of the model. There are certainly cases where you might violate this principle; in a
model of predation, for example, the first prey individual evaluated might be likely to be eaten by
a hungry predator, whereas the last prey individual evaluated might be unlikely to be eaten by the
now-sated predators. Sometimes such asymmetries are acceptable or even desirable; sometimes,
however, they would constitute a bug. As always, think carefully about the biology of the system
you are modeling and what you really want your model to do.

24.5 Step 5: Removal of fixed mutations
After viability selection, SLiM tallies mutation frequencies and removes fixed and lost

mutations. The mechanics of this are essentially the same as in WF models; see section 23.3.
However, there is one important difference here between WF and nonWF models. In WF

models, fixed mutations can generally be removed because they no longer influence evolutionary
dynamics, as a consequence of fitness values reflecting relative fitness. If every individual in the
population is fixed for a given mutation, then that mutation has no effect on relative fitness,
regardless of what its selection coefficient might be; the only exceptions are cases where the fitness
effect of the mutation varies from individual to individual, such as when epistatic interactions with
other segregating mutations are present. In WF models, the convertToSubstitution property of
mutation types therefore defaults to T, allowing SLiM to remove fixed mutations by default; when
that is not desirable, models need to set convertToSubstitution to F to prevent that automatic
removal.

In nonWF models, in contrast, the convertToSubstitution property defaults to F; since fitness
values in nonWF models reflect absolute fitness, in general it is not safe for SLiM to remove fixed
mutations. For this reason, nonWF models need to set convertToSubstitution to T to allow
automatic removal of fixed mutations. Generally, in nonWF models automatic removal of fixed
mutations only makes sense if several conditions are all met: (1) the mutation is neutral, (2) the
mutation has no direct non-neutral effects due to any mutationEffect() callback, and (3) the
mutation has no indirect non-neutral effects on the model through epistasis, mate choice,
fecundity, or any other such influences on the model. If these conditions are met – as is
commonly the case for simple neutral background mutations – it is very important to set
convertToSubstitution to T; the effect on SLiM’s performance can be very large!

24.6 Step 6: Execution of late() Eidos events
Once fixed mutations have been removed, the next step is to execute any defined and active

late() events. This works identically to WF models (see section 23.5). The only important
difference is the way in which the semantics and common uses of first(), early(), and late()
events differ between WF and nonWF models; see the discussion in section 24.2.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 644

24.7 Step 7: Tick/cycle count increment
As in WF models, the last stage of each tick cycle is the incrementing of the cycle counter for all

active species, the incrementing of the tick counter kept by the Community, and the check for the
simulation being finished (see section 23.7). In nonWF models, the age of all surviving individuals
in active species is also incremented by one during this stage.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 645

25. SLiM classes and built-in functions

This chapter presents reference documentation for all of the Eidos classes and functions that are
built into SLiM. It assumes an understanding of the syntax of type-specifiers and function/method
signatures, including the use of optional arguments and default values. It also assumes an
understanding of how classes are used in Eidos, including how properties are accessed and how
methods are called. Part I of this manual attempts to introduce those topics to some degree, but
see the Eidos manual for more extensive discussion and documentation of these fundamental
language features.

The same color-coding scheme used in the rest of the manual also applies here:

sections that apply only to WF models
sections that apply only to nonWF models
sections that apply only to nucleotide-based models

25.1 Simulation initialization: initialize() callbacks
Before a SLiM simulation can be run, the various classes underlying the simulation need to be

set up with an initial configuration. Simulation configuration in SLiM is done in initialize()
callbacks that run prior to the beginning of simulation execution. Eidos callbacks are discussed
more broadly in chapter 26, but for our present purposes, the idea is very simple. In your input
file, you can write something like this:

initialize()
{
 ...
}

The initialize() declaration specifies that the script block is to be executed as an
initialize() callback before the simulation starts. The script between the braces {} would set up
various aspects of the simulation by calling initialization functions. These are SLiM functions that
may be called only in an initialize() callback, and their names begin with initialize to mark
them clearly as such. You may also use other Eidos functionality in these callbacks; for example,
you might automate generating a complex genetic structure containing many genes by using a for
loop.

In general, it is required for a species to set up its genetic structure in an initialize() callback
with calls to initializeMutationRate(), initializeRecombinationRate(),
initializeMutationType(), initializeGenomicElementType(), and
initializeGenomicElement(); species must call all of these, setting up at least one mutation type,
at least one genomic element type, and at least one genomic element. The exception to this
general rule is for species that have no genetics at all – species that are modeled purely on an
ecological/behavioral level. Such species may be defined by calling none of those initialization
functions; in this case, SLiM will default to a zero-length chromosome with mutation and
recombination rates of zero. A middle ground between these two configuration paths is not
allowed; either a species has no genetics, or it fully defines its genetics.

One thing worth mentioning is that in the context of an initialize() callback, the sim global
representing the species being simulated is not defined. This is because the state of the simulation
is not yet constructed fully, and accessing partially constructed state would not be safe. (Similarly,
in multispecies models, the community object and the objects representing individual species are
not yet defined.)

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 646

The above initialize() callback syntax implicitly declares a single species, with the default
name of sim, and therefore sets up a single-species model. It is also possible to explicitly declare a
species, which is done with this extended syntax (using a species name of fox as an example):

species fox initialize() { ... }

This sets up a multispecies model (although it might, in fact, declare only a single species, fox;
the term “multispecies”, in SLiM parlance, really means “explicitly declared species”, but
multispecies models almost always do contain multiple species, so the distinction is unimportant).
See section 1.9 and chapter 19 for further discussion of multispecies models; in most respects they
work identically to single-species models, so we will tend to focus on the single-species case in
the reference documentation, with a species name of sim, for simplicity and clarity.

In single-species models all initialization can be done in a single initialize() callback (or you
can have more than one, if you wish). In multispecies models, each species must be initialized
with its own callback(s), as shown above. In addition, multispecies models also support an
optional community-level initialization callback that is declared as follows:

species all initialize() { ... }

These callbacks, technically called non-species-specific initialize() callbacks, provide a
place for community-level initialization to occur. They are run before any species-specific
initialize() callbacks are run, so you might wish to set up all of your model parameters in one,
providing a single location for all parameters. In multispecies models, the initialization functions
initializeSLiMModelType() and initializeInteractionType() may only be called from a non-
species-specific initialize() callback, since those aspects of model configuration span the entire
community. In single-species models, these functions may be called from an ordinary
initialize() callback for simplicity and backward compatibility.

Without further ado, then, here are the initialization functions provided by SLiM:

(integer$)initializeAncestralNucleotides(is sequence)
This function, which may be called only in nucleotide-based models (see section 1.8), supplies an
ancestral nucleotide sequence for the model. The sequence parameter may be an integer vector
providing nucleotide values (A=0, C=1, G=2, T=3), or a string vector providing single-character
nucleotides ("A", "C", "G", "T"), or a singleton string providing the sequence as one string
("ACGT..."), or a singleton string providing the filesystem path of a FASTA file which will be read in
to provide the sequence (if the file contains than one sequence, the first sequence will be used). Only
A/C/G/T nucleotide values may be provided; other symbols, such as those for amino acids, gaps, or
nucleotides of uncertain identity, are not allowed. The two semantic meanings of sequence that
involve a singleton string value are distinguished heuristically; a singleton string that contains only
the letters ACGT will be assumed to be a nucleotide sequence rather than a filename. The length of
the ancestral sequence is returned.

A utility function, randomNucleotides(), is provided by SLiM to assist in generating simple random
nucleotide sequences; see section 25.18.1.

(void)initializeGeneConversion(numeric$ nonCrossoverFraction, numeric$ meanLength,
numeric$ simpleConversionFraction, [numeric$ bias = 0],
[logical$ redrawLengthsOnFailure = F])

Calling this function switches the recombination model from a “simple crossover” model to a
“double-stranded break (DSB)” model, and configures the details of the gene conversion tracts that
will therefore be modeled (see section 1.5.6 for discussion of these models). The fraction of DSBs that
will be modeled as non-crossover events is given by nonCrossoverFraction. The mean length of
gene conversion tracts (whether associated with crossover or non-crossover events) is given by
meanLength; the actual extent of a gene conversion tract will be the sum of two independent draws

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 647

from a geometric distribution with mean meanLength/2. The fraction of gene conversion tracts that
are modeled as “simple” is given by simpleConversionFraction; the remainder will be modeled as
“complex”, involving repair of heteroduplex mismatches. Finally, the GC bias during heteroduplex
mismatch repair is given by bias, with the default of 0.0 indicating no bias, 1.0 indicating an
absolute preference for G/C mutations over A/T mutations, and -1.0 indicating an absolute preference
for A/T mutations over G/C mutations. A non-zero bias may only be set in nucleotide-based models
(see section 1.8). This function, and the way that gene conversion is modeled, fundamentally changed
in SLiM 3.3; see section 1.5.6 for discussion.

Beginning in SLiM 4.1, the redrawLengthsOnFailure parameter can be used to modify the internal
mechanics of layout of gene conversion tracts. If it is F (the default, and the only behavior supported
before SLiM 4.1), then if an attempt to lay out gene conversion tracts fails (because the tracts overlap
each other, or overlap the start or end of the chromosome), SLiM will try again by drawing new
positions for the tracts – essentially shuffling the tracts around to try to find positions for them that
don’t overlap. If redrawLengthsOnFailure is T, then if an attempt to lay out gene conversion tracts
fails, SLiM will try again by drawing new lengths for the tracts, as well as new positions. This makes it
more likely that layout will succeed, but risks biasing the realized mean tract length downward from
the requested mean length (since layout of long tracts is more likely fail due to overlap). In either
case, if SLiM attempts to lay out gene conversion tracts 100 times without success, an error will result.
That error indicates that the specified constraints for gene conversion are difficult to satisfy – tracts
may commonly be so long that it is difficult or impossible to find an acceptable layout for them within
the specified chromosome length. Setting redrawLengthsOnFailure to T may mitigate this problem,
at the price of biasing the mean tract length downward as discussed.

(object<GenomicElement>)initializeGenomicElement(io<GenomicElementType> genomicElem
entType, integer start, integer end)

Add a genomic element to the chromosome at initialization time. The start and end parameters give
the first and last base positions to be spanned by the new genomic element. The new element will be
based upon the genomic element type identified by genomicElementType, which can be either an
integer, representing the ID of the desired element type, or an object of type
GenomicElementType specified directly.

Beginning in SLiM 3.3, this function is vectorized: the genomicElementType, start, and end
parameters do not have to be singletons. In particular, start and end may be of any length, but must
be equal in length; each start/end element pair will generate one new genomic element spanning
the given base positions. In this case, genomicElementType may still be a singleton, providing the
genomic element type to be used for all of the new genomic elements, or it may be equal in length to
start and end, providing an independent genomic element type for each new element. When
adding a large number of genomic elements, it will be much faster to add them in order of ascending
position with a vectorized call.

The return value provides the genomic element(s) created by the call, in the order in which they were
specified in the parameters to initializeGenomicElement().

(object<GenomicElementType>$)initializeGenomicElementType(is$ id,
io<MutationType> mutationTypes, numeric proportions,
[Nf mutationMatrix = NULL])

Add a genomic element type at initialization time. The id must not already be used for any genomic
element type in the simulation. The mutationTypes vector identifies the mutation types used by the
genomic element, and the proportions vector should be of equal length, specifying the relative
proportion of mutations that will be drawn from the corresponding mutation type (proportions do not
need to add up to one; they are interpreted relatively). The id parameter may be either an integer
giving the ID of the new genomic element type, or a string giving the name of the new genomic
element type (such as "g5" to specify an ID of 5). The mutationTypes parameter may be either an
integer vector representing the IDs of the desired mutation types, or an object vector of
MutationType elements specified directly. The global symbol for the new genomic element type is
immediately available; the return value also provides the new object.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 648

The mutationMatrix parameter is NULL by default, and in non-nucleotide-based models it must be
NULL. In nucleotide-based models, on the other hand, it must be non-NULL, and therefore must be
supplied. In that case, mutationMatrix should take one of two standard forms. For sequence-based
mutation rates that depend upon only the single nucleotide at a mutation site, mutationMatrix
should be a 4×4 float matrix, specifying mutation rates for an existing nucleotide state (rows from 0–
3 representing A/C/G/T) to each of the four possible derived nucleotide states (columns, with the same
meaning):

The mutation rates in this matrix are absolute rates, per nucleotide per gamete; they will be used by
SLiM directly unless they are multiplied by a factor from the hotspot map (see
initializeHotspotMap()). Rates in mutationMatrix that involve the mutation of a nucleotide to
itself (A to A, C to C, etc.) are not used by SLiM and must be 0.0 by convention (shown above with
asterisks).

It is important to note that the order of the rows and columns used in SLiM, A/C/G/T, is not a universal
convention; other sources will present substitution-rate/transition-rate matrices using different
conventions, and so care must be taken when importing such matrices into SLiM.

For sequence-based mutation rates that depend upon the trinucleotide sequence centered upon a
mutation site (the adjacent bases to the left and right, in other words, as well as the mutating
nucleotide itself), mutationMatrix should be a 64×4 float matrix, specifying mutation rates for the
central nucleotide of an existing trinucleotide sequence (rows from 0–63, representing trinucleotides
as described in the documentation for the ancestralNucleotides() method of Chromosome) to
each of the four possible derived nucleotide states (columns from 0–3 for A/C/G/T as before):

Note that in every case it is the central nucleotide of the trinucleotide sequence that is mutating, but
rates can be specified independently based upon the nucleotides in the first and third positions as
well, with this type of mutation matrix.

Several helper functions are defined to construct common types of mutation matrices, such as
mmJukesCantor() to create a mutation matrix for a Jukes–Cantor model; see section 25.18.1. See
chapter 18 for practical examples of mutation matrices, and section 23.2.3 for further discussion of the
mutational paradigm in nucleotide-based models.

(void)initializeHotspotMap(numeric multipliers, [Ni ends = NULL],
[string$ sex = "*"])

In nucleotide-based models, set the mutation rate multiplier along the chromosome. Nucleotide-
based models define sequence-based mutation rates that are set up with the mutationMatrix
parameter to initializeGenomicElementType(). If no hotspot map is specified by calling
initializeHotspotMap(), a hotspot map with a multiplier of 1.0 across the whole chromosome is
assumed (and so the sequence-based rates are the absolute mutation rates used by SLiM). A hotspot

* PA→C PA→G PA→T
PC→A * PC→G PC→T
PG→A PG→C * PG→T
PT→A PT→C PT→G *

* PA A A→ACA PA A A→AGA PA A A→ATA
* PA AC→ACC PA AC→AGC PA AC→ATC
* PA AG→ACG PA AG→AGG PA AG→ATG
* PA AT→ACT PA AT→AGT PA AT→ATT

PACA→A A A * PACA→AGA PACA→ATA
PACC→A AC * PACC→AGC PACC→ATC
PACG→A AG * PACG→AGG PACG→ATG

.

PTTC→TAC PTTC→TCC PTTC→TGC *
PTTG→TAG PTTG→TCG PTTG→TGG *
PTTT→TAT PTTT→TCT PTTT→TGT *

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 649

map modifies the sequence-based rates by scaling them up in some regions, with multipliers greater
than 1.0 (representing mutational hot spots), and/or scaling them down in some regions, with
multipliers less than 1.0 (representing mutational cold spots).

There are two ways to call this function. If the optional ends parameter is NULL (the default), then
multipliers must be a singleton value that specifies a single multiplier to be used along the entire
chromosome (typically 1.0, but not required to be). If, on the other hand, ends is supplied, then
multipliers and ends must be the same length, and the values in ends must be specified in
ascending order. In that case, multipliers and ends taken together specify the multipliers to be
used along successive contiguous stretches of the chromosome, from beginning to end; the last
position specified in ends should extend to the end of the chromosome (i.e. at least to the end of the
last genomic element, if not further).

For example, if the following call is made:

 initializeHotspotMap(c(1.0, 1.2), c(5000, 9999));
then the result is that the mutation rate multiplier for bases 0...5000 (inclusive) will be 1.0 (and so the
specified sequence-based mutation rates will be used verbatim), and the multiplier for bases
5001...9999 (inclusive) will be 1.2 (and so the sequence-based mutation rates will be multiplied by
1.2 within the region).

Note that mutations are generated by SLiM only within genomic elements, regardless of the hotspot
map. In effect, the hotspot map given is intersected with the coverage area of the genomic elements
defined; areas outside of any genomic element are given a multiplier of zero. There is no harm in
supplying a hotspot map that specifies multipliers for areas outside of the genomic elements defined;
the excess information is simply not used.

If the optional sex parameter is "*" (the default), then the supplied hotspot map will be used for both
sexes (which is the only option for hermaphroditic simulations). In sexual simulations sex may be
"M" or "F" instead, in which case the supplied hotspot map is used only for that sex (i.e., when
generating a gamete from a parent of that sex). In this case, two calls must be made to
initializeHotspotMap(), one for each sex, even if a multiplier of 1.0 is desired for the other sex;
no default hotspot map is supplied.

(object<InteractionType>$)initializeInteractionType(is$ id, string$ spatiality,
[logical$ reciprocal = F], [numeric$ maxDistance = INF],
[string$ sexSegregation = "**"])

Add an interaction type at initialization time. The id must not already be used for any interaction type
in the simulation. The id parameter may be either an integer giving the ID of the new interaction
type, or a string giving the name of the new interaction type (such as "i5" to specify an ID of 5).

The spatiality may be "", for non-spatial interactions (i.e., interactions that do not depend upon
the distance between individuals); "x", "y", or "z" for one-dimensional interactions; "xy", "xz", or
"yz" for two-dimensional interactions; or "xyz" for three-dimensional interactions. The dimensions
referenced by spatiality must be defined as spatial dimensions with initializeSLiMOptions(); if
the simulation has dimensionality "xy", for example, then interactions in the simulation may have
spatiality "", "x", "y", or "xy", but may not reference spatial dimension z and thus may not have
spatiality "xz", "yz", or "xyz". If no spatial dimensions have been configured, only non-spatial
interactions may be defined.

The reciprocal flag may be T, in which case the interaction is guaranteed by the user to be
reciprocal: whatever the interaction strength is for exerter B upon receiver A, it will be equal (in
magnitude and sign) for exerter A upon receiver B. In principle, this allows the InteractionType to
reduce the amount of computation necessary by up to a factor of two (although it may or may not be
used). If reciprocal is F, the interaction is not guaranteed to be reciprocal and each interaction will
be computed independently. The built-in interaction formulas are all reciprocal, but if you implement
an interaction() callback (see section 26.7), you must consider whether the callback you have
implemented preserves reciprocality or not. For this reason, the default is reciprocal=F, so that bugs

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 650

are not inadvertently introduced by an invalid assumption of reciprocality. See below for a note
regarding reciprocality in sexual simulations when using the sexSegregation flag.

The maxDistance parameter supplies the maximum distance over which interactions of this type will
be evaluated; at greater distances, the interaction strength is considered to be zero (for efficiency). The
default value of maxDistance, INF (positive infinity), indicates that there is no maximum interaction
distance; note that this can make some interaction queries much less efficient, and is therefore not
recommended. In SLiM 3.1 and later, a warning will be issued if a spatial interaction type is defined
with no maximum distance to encourage a maximum distance to be defined.

The sexSegregation parameter governs the applicability of the interaction to each sex, in sexual
simulations. It does not affect distance calculations in any way; it only modifies the way in which
interaction strengths are calculated. The default, "**", implies that the interaction is felt by both sexes
(the first character of the string value) and is exerted by both sexes (the second character of the
string value). Either or both characters may be M or F instead; for example, "MM" would indicate a
male-male interaction, such as male-male competition, whereas "FM" would indicate an interaction
influencing only female receivers that is influenced only by male exerters, such as male mating
displays that influence female attraction. This parameter may be set only to "**" unless sex has been
enabled with initializeSex(). Note that a value of sexSegregation other than "**" may imply
some degree of non-reciprocality, but it is not necessary to specify reciprocal to be F for this reason;
SLiM will take the sex-segregation of the interaction into account for you. The value of reciprocal
may therefore be interpreted as meaning: in those cases, if any, in which A interacts with B and B
interacts with A, is the interaction strength guaranteed to be the same in both directions? The
sexSegregation parameter is shorthand for setting sex constraints on the interaction type using the
setConstraints() method; see that method for a more extensive set of constraints that may be used.

By default, the interaction strength is 1.0 for all interactions within maxDistance. Often it is
desirable to change the interaction function using setInteractionFunction(); modifying
interaction strengths can also be achieved with interaction() callbacks if necessary (see section
26.7). In any case, interactions beyond maxDistance always have a strength of 0.0, and the
interaction strength of an individual with itself is always 0.0, regardless of the interaction function or
callbacks.

The global symbol for the new interaction type is immediately available; the return value also provides
the new object. Note that in multispecies models, initializeInteractionType() must be called
from a non-species-specific interaction() callback (declared as species all initialize()),
since interactions are managed at the community level.

(void)initializeMutationRate(numeric rates, [Ni ends = NULL], [string$ sex = "*"])
Set the mutation rate per base position per gamete. To be precise, this mutation rate is the expected
mean number of mutations that will occur per base position per gamete; note that this is different from
how the recombination rate is defined (see initializeRecombinationRate()). The number of
mutations that actually occurs at a given base position when generating an offspring genome is, in
effect, drawn from a Poisson distribution with that expected mean (but under the hood SLiM uses a
mathematically equivalent but much more efficient strategy). It is possible for this Poisson draw to
indicate that two or more new mutations have arisen at the same base position, particularly when the
mutation rate is very high; in this case, the new mutations will be added to the site one at a time, and
as always the mutation stacking policy (see section 1.5.3) will be followed.

There are two ways to call this function. If the optional ends parameter is NULL (the default), then
rates must be a singleton value that specifies a single mutation rate to be used along the entire
chromosome. If, on the other hand, ends is supplied, then rates and ends must be the same length,
and the values in ends must be specified in ascending order. In that case, rates and ends taken
together specify the mutation rates to be used along successive contiguous stretches of the
chromosome, from beginning to end; the last position specified in ends should extend to the end of
the chromosome (i.e. at least to the end of the last genomic element, if not further).

For example, if the following call is made:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 651

 initializeMutationRate(c(1e-7, 2.5e-8), c(5000, 9999));
then the result is that the mutation rate for bases 0...5000 (inclusive) will be 1e-7, and the rate for
bases 5001...9999 (inclusive) will be 2.5e-8.

Note that mutations are generated by SLiM only within genomic elements, regardless of the mutation
rate map. In effect, the mutation rate map given is intersected with the coverage area of the genomic
elements defined; areas outside of any genomic element are given a mutation rate of zero. There is no
harm in supplying a mutation rate map that specifies rates for areas outside of the genomic elements
defined; that rate information is simply not used. The overallMutationRate family of properties on
Chromosome provide the overall mutation rate after genomic element coverage has been taken into
account, so it will reflect the rate at which new mutations will actually be generated in the simulation
as configured.

If the optional sex parameter is "*" (the default), then the supplied mutation rate map will be used for
both sexes (which is the only option for hermaphroditic simulations). In sexual simulations sex may
be "M" or "F" instead, in which case the supplied mutation rate map is used only for that sex (i.e.,
when generating a gamete from a parent of that sex). In this case, two calls must be made to
initializeMutationRate(), one for each sex, even if a rate of zero is desired for the other sex; no
default mutation rate map is supplied.

In nucleotide-based models, initializeMutationRate() may not be called. Instead, the desired
sequence-based mutation rate(s) should be expressed in the mutationMatrix parameter to
initializeGenomicElementType(). If variation in the mutation rate along the chromosome is
desired, initializeHotspotMap() should be used.

(object<MutationType>$)initializeMutationType(is$ id, numeric$ dominanceCoeff,
string$ distributionType, ...)

Add a mutation type at initialization time. The id must not already be used for any mutation type in
the simulation. The id parameter may be either an integer giving the ID of the new mutation type,
or a string giving the name of the new mutation type (such as "m5" to specify an ID of 5). The
dominanceCoeff parameter supplies the dominance coefficient for the mutation type; 0.0 produces
no dominance, 1.0 complete dominance, and values greater than 1.0, overdominance. The
distributionType may be "f", in which case the ellipsis ... should supply a numeric$ fixed
selection coefficient; "e", in which case the ellipsis should supply a numeric$ mean selection
coefficient for an exponential distribution; "g", in which case the ellipsis should supply a numeric$
mean selection coefficient and a numeric$ alpha shape parameter for a gamma distribution; "n", in
which case the ellipsis should supply a numeric$ mean selection coefficient and a numeric$ sigma
(standard deviation) parameter for a normal distribution; "p", in which case the ellipsis should supply
a numeric$ mean selection coefficient and a numeric$ scale parameter for a Laplace distribution;
"w", in which case the ellipsis should supply a numeric$ λ scale parameter and a numeric$ k shape
parameter for a Weibull distribution; or "s", in which case the ellipsis should supply a string$ Eidos
script parameter. See section 25.11 for discussion of the various DFEs and their uses. The global
symbol for the new mutation type is immediately available; the return value also provides the new
object.

Note that by default in WF models, all mutations of a given mutation type will be converted into
Substitution objects when they reach fixation, for efficiency reasons. If you need to disable this
conversion, to keep mutations of a given type active in the simulation even after they have fixed, you
can do so by setting the convertToSubstitution property of MutationType to F.

In contrast, by default in nonWF models mutations will not be converted into Substitution objects
when they reach fixation; convertToSubstitution is F by default in nonWF models. To enable
conversion in nonWF models for neutral mutation types with no indirect fitness effects, you should
therefore set convertToSubstitution to T.

See sections 23.3, 24.5, and 25.11.1 for further discussion regarding the convertToSubstitution
property.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 652

(object<MutationType>$)initializeMutationTypeNuc(is$ id, numeric$ dominanceCoeff,
string$ distributionType, ...)

Add a nucleotide-based mutation type at initialization time. This function is identical to
initializeMutationType() except that the new mutation type will be nucleotide-based – in other
words, mutations belonging to the new mutation type will have an associated nucleotide. This
function may be called only in nucleotide-based models (as enabled by the nucleotideBased
parameter to initializeSLiMOptions()).

Nucleotide-based mutations always use a mutationStackGroup of -1 and a mutationStackPolicy
of "l". This ensures that a new nucleotide mutation always replaces any previously existing
nucleotide mutation at a given position, regardless of the mutation types of the nucleotide mutations.
These values are set automatically by initializeMutationTypeNuc(), and may not be changed.

See the documentation for initializeMutationType() for all other discussion.

(void)initializeRecombinationRate(numeric rates, [Ni ends = NULL],
[string$ sex = "*"])

Set the recombination rate per base position per gamete. To be precise, this recombination rate is the
probability that a breakpoint will occur between one base and the next base; note that this is different
from how the mutation rate is defined (see initializeMutationRate()). All rates must be in the
interval [0.0, 0.5]. A rate of 0.5 implies complete independence between the adjacent bases, which
might be used to implement independent assortment of loci located on different chromosomes (see
the example below). Whether a breakpoint occurs between two bases is then, in effect, determined
by a binomial draw with a single trial and the given rate as probability (but under the hood SLiM uses
a mathematically equivalent but much more efficient strategy). The recombinational process in SLiM
will never generate more then one crossover between one base and the next (in one generation/
genome), and a supplied rate of 0.5 will therefore result in an actual probability of 0.5 for a crossover
at the relevant position. (Note that this was not true in SLiM 2.x and earlier, however; their
implementation of recombination resulted in a crossover probability of about 39.3% for a rate of 0.5,
due to the use of an inaccurate approximation method. Recombination rates lower than about 0.01
would have been essentially exact, since the approximation error became large only as the rate
approached 0.5.)

There are two ways to call this function. If the optional ends parameter is NULL (the default), then
rates must be a singleton value that specifies a single recombination rate to be used along the entire
chromosome. If, on the other hand, ends is supplied, then rates and ends must be the same length,
and the values in ends must be specified in ascending order. In that case, rates and ends taken
together specify the recombination rates to be used along successive contiguous stretches of the
chromosome, from beginning to end; the last position specified in ends should extend to the end of
the chromosome (i.e. at least to the end of the last genomic element, if not further). Note that a
recombination rate of 1 centimorgan/Mbp corresponds to a recombination rate of 1e-8 in the units
used by SLiM.

For example, if the following call is made:

 initializeRecombinationRate(c(0, 0.5, 0), c(5000, 5001, 9999));
then the result is that the recombination rates between bases 0 / 1, 1 / 2, ..., 4999 / 5000 will be 0, the
rate between bases 5000 / 5001 will be 0.5, and the rate between bases 5001 / 5002 onward (up to
9998 / 9999) will again be 0. Setting the recombination rate between one specific pair of bases to 0.5
forces recombination to occur with a probability of 0.5 between those bases, which effectively breaks
the simulated locus into separate chromosomes at that point; this example effectively has one
simulated chromosome from base position 0 to 5000, and another from 5001 to 9999.

If the optional sex parameter is "*" (the default), then the supplied recombination rate map will be
used for both sexes (which is the only option for hermaphroditic simulations). In sexual simulations
sex may be "M" or "F" instead, in which case the supplied recombination map is used only for that
sex. In this case, two calls must be made to initializeRecombinationRate(), one for each sex,
even if a rate of zero is desired for the other sex; no default recombination map is supplied.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 653

(void)initializeSex(string$ chromosomeType)
Enable and configure sex in the simulation. The argument chromosomeType gives the type of
chromosome to be simulated; this should be "A", "X", or "Y". Calling this function has the side effect
of enabling sex in the simulation; individuals will be male and female (rather than hermaphroditic)
regardless of the chromosomeType chosen for simulation. There is no way to disable sex once it has
been enabled; if you don’t want to have sex, don’t call this function.

The xDominanceCoeff parameter has been deprecated and removed. In SLiM 3.7 and later, use the
haploidDominanceCoeff property of MutationType instead. If the chromosomeType is "X", the
optional xDominanceCoeff parameter can supply the dominance coefficient used when a mutation is
present in an XY male, and is thus “heterozygous” (but in a different sense than the heterozygosity of
an XX female with one copy of the mutation).

(void)initializeSLiMModelType(string$ modelType)
Configure the type of SLiM model used for the simulation. At present, one of two model types may be
selected. If modelType is "WF", SLiM will use a Wright–Fisher (WF) model; this is the model type that
has always been supported by SLiM, and is the model type used if initializeSLiMModelType() is
not called. If modelType is "nonWF", SLiM will use a non-Wright–Fisher (nonWF) model instead; this
is a new model type supported by SLiM 3.0 and above (see section 1.6).

If initializeSLiMModelType() is called at all then it must be called before any other initialization
function, so that SLiM knows from the outset which features are enabled and which are not.

(void)initializeSLiMOptions([logical$ keepPedigrees = F],
[string$ dimensionality = ""], [string$ periodicity = ""],
[integer$ mutationRuns = 0], [logical$ preventIncidentalSelfing = F],
[logical$ nucleotideBased = F], [logical$ randomizeCallbacks = F])

Configure options for the simulation. If initializeSLiMOptions() is called at all then it must be
called before any other initialization function (except initializeSLiMModelType()), so that SLiM
knows from the outset which optional features are enabled and which are not.

If keepPedigrees is T, SLiM will keep pedigree information for every individual in the simulation,
tracking the identity of its parents and grandparents. This allows individuals to assess their degree of
pedigree-based relatedness to other individuals (see Individual’s relatedness() and
sharedParentCount() methods, section 25.7.2), as well as allowing a model to find “trios” (two
parents and an offspring they generated) using the pedigree properties of Individual (section 25.7.1).
As a side effect of keepPedigrees being T, the pedigreeID, pedigreeParentIDs, and
pedigreeGrandparentIDs properties of Individual will have defined values (see section 25.7.1), as
will the genomePedigreeID property of Genome (see section 25.4.1). Note that pedigree-based
relatedness doesn’t necessarily correspond to genetic relatedness, due to effects such as assortment
and recombination. For an overview of other ways of tracking genetic ancestry, including true local
ancestry at each position on the chromosome, see sections 1.7 and 14.7. Beginning in SLiM 3.5,
keepPedigrees=T also enables tracking of individual reproductive output, available through the
reproductiveOutput property of Individual (see section 25.7.1) and the
lifetimeReproductiveOutput property of Subpopulation (see section 25.16.1).

If dimensionality is not "", SLiM will enable its optional “continuous space” facility. Three values
for dimensionality are presently supported: "x", "xy", and "xyz", specifying that continuous space
should be enabled for one, two, or three dimensions, respectively, using (x), (x, y), and (x, y, z)
coordinates respectively. This has a number of side effects. First of all, it means that the specified
properties of Individual (x, y, and/or z) will be interpreted by SLiM as spatial positions; in particular,
SLiMgui will use those properties to display subpopulations spatially. Second, it allows spatial
interactions to be defined, evaluated, and queried using initializeInteractionType() and
interaction() callbacks. And third, it enables the use of any other properties and methods related
to continuous space, such as setting the spatial boundaries of subpopulations, which would otherwise
raise an error.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 654

If periodicity is not "", SLiM will designate the specified spatial dimensions as being periodic –
wrapping around at the edges of the spatial boundaries of that dimension. This option may only be
used if the dimensionality parameter to initializeSLiMOptions() has been used to enable
spatiality in the model, and only spatial dimensions that were specified in the dimensionality of the
model may be declared to be periodic (but if desired, it is permissible to make just a subset of those
dimensions periodic; it is not an all-or-none proposition). For example, if the specified dimensionality
is "xy", the model’s periodicity may be "x", "y", or "xy" (or "", the default, to specify that there are
no periodic dimensions). A one-dimensional periodic model would model a space like the perimeter
of a circle. A two-dimensional model periodic in one of those dimensions would model a space like a
cylinder without its end caps; if periodic in both dimensions, the modeled space is a torus. The
shapes of three-dimensional periodic models are harder to visualize, but are essentially higher-
dimensional analogues of these concepts. Periodic boundary conditions are commonly used to model
spatial scenarios without “edge effects”, since there are no edges in the periodic spatial dimensions.
The pointPeriodic() method of Subpopulation is typically used in conjunction with this option,
to actually implement the periodic boundary condition for the specified dimensions.

If mutationRuns is not 0, SLiM will use the value given as the number of mutation runs inside Genome
objects; if it is 0 (the default), SLiM will calculate a number of mutation runs that it estimates will work
well. Internally, SLiM divides genomes into a sequence of consecutive mutation runs, allowing more
efficient internal computations. The optimal mutation run length is short enough that each mutation
run is relatively unlikely to be modified by mutation/recombination events when inherited, but long
enough that each mutation run is likely to contain a relatively large number of mutations; these
priorities are in tension, so an intermediate balance between them is generally desirable. The optimal
number of mutation runs will depend upon the machine and even the compiler used to build SLiM, so
SLiM’s default value may not be optimal; for maximal performance it can thus be beneficial to
experiment with different values and find the optimal value for the simulation – a process which SLiM
can assist with (see section 21.4). Specifying the number of mutation runs is an advanced technique,
but in certain cases it can improve performance significantly.

If preventIncidentalSelfing is T, incidental selfing in hermaphroditic models will be prevented by
SLiM. By default (i.e., if preventIncidentalSelfing is F), SLiM chooses the first and second
parents in a biparental mating event independently. It is therefore possible for the same individual to
be chosen as both the first and second parent, resulting in selfing events even when the selfing rate is
zero. In many models this is unimportant, since it happens fairly infrequently and does not have large
consequences. This behavior is SLiM’s default because it is the simplest option, and produces results
that most closely align with simple analytical population genetics models. However, in some models
this selfing can be undesirable and problematic. In particular, models that involve very high variance
in fitness or very small effective population sizes may see elevated rates of selfing that substantially
influence model results. If preventIncidentalSelfing is set to T, all such incidental selfing will be
prevented (by choosing a new second parent if the first parent was chosen again). Non-incidental
selfing, as requested by the selfing rate, will still be permitted. Note that if incidental selfing is
prevented, SLiM will hang if it is unable to find a different second parent; there must always be at least
two individuals in the population with non-zero fitness, and mateChoice() and modifyChild()
callbacks must not absolutely prevent those two individuals from producing viable offspring.
Enforcement of the prohibition on incidental selfing will occur after mateChoice() callbacks have
been called (and thus the default mating weights provided to mateChoice() callbacks will not
exclude the first parent!), but will occur before modifyChild() callbacks are called (so those
callbacks may assume that the first and second parents are distinct).

If nucleotideBased is T, the model will be nucleotide-based. In this case, auto-generated mutations
(i.e., mutation types used by genomic element types) must be nucleotide-based, and an ancestral
nucleotide sequence must be supplied with initializeAncestralNucleotides(). Non-
nucleotide-based mutations may still be used, but may not be referenced by genomic element types.
A mutation rate (or rate map) may not be supplied with initializeMutationRate(); instead, a
hotspot map may (optionally) be supplied with initializeHotspotMap(). This choice has many
consequences across SLiM; see section 1.8 for further discussion.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 655

If randomizeCallbacks is T (the default), the order in which individuals are processed in callbacks
will be randomized to make it easier to avoid order-dependency bugs. This flag exists because the
order of individuals in each subpopulation is non-random; most notably, females always come before
males in the individuals vector, but non-random ordering may also occur with respect to things like
migrant versus non-migrant status, origin by selfing versus cloning versus biparental mating, and other
factors. When this option is F, individuals in a subpopulation are processed in the order of the
individuals vector in each tick cycle stage, which may lead to order-dependency issues if there is an
enabled callback whose behavior is not fully independent between calls. Setting this option to T will
cause individuals within each subpopulation to be processed in a randomized order in each tick cycle
stage; specifically, this randomizes the order of calls to mutationEffect() callbacks in both WF and
nonWF models, and calls to reproduction() and survival() callbacks in nonWF models. Each
subpopulation is still processed separately, in sequential order, so order-dependency issues between
subpopulations are still possible if callbacks have effects that are not fully independent. This feature
was added in SLiM 4, breaking backward compatibility; to recover the behavior of previous versions
of SLiM, pass F for this option (but then be very careful about order-dependency issues in your script).
The default of T is the safe option, but a small speed penalty is incurred by the randomization of the
processing order – for most models the difference will be less than 1%, but in the worst case it may
approach 10%. Models that do not have any order-dependency issue may therefore run somewhat
faster if this is set to F. Note that anywhere that your script uses the individuals property of
Subpopulation, the order of individuals returned will be non-random (regardless of the setting of this
option); you should use sample() to shuffle the order of the individuals vector if necessary to avoid
order-dependency issues in your script.

This function will likely be extended with further options in the future, added on to the end of the
argument list. Using named arguments with this call is recommended for readability. Note that
turning on optional features may increase the runtime and memory footprint of SLiM.

(void)initializeSpecies([integer$ tickModulo = 1], [integer$ tickPhase = 1],
[string$ avatar = ""], [string$ color = ""])

Configure options for the species being initialized. This initialization function may only be called in
multispecies models (i.e., models with explicit species declarations); in single-species models, the
default values are assumed and cannot be changed.

The tickModulo and tickPhase parameters determine the activation schedule for the species. The
active property of the species will be set to T (thus activating the species) every tickModulo ticks,
beginning in tick tickPhase. (However, when the species is activated in a given tick, the
skipTick() method may still be called in a first() event to deactivate it.) See the active property
of Species (section 25.15.1) for more details.

The avatar parameter, if not "", sets a string value used to represent the species graphically,
particularly in SLiMgui but perhaps in other contexts also. The avatar should generally be a single
character – usually an emoji corresponding to the species, such as "🦊 " for foxes or "🐭 " for mice. If
avatar is the empty string, "", SLiMgui will choose a default avatar.

The color parameter, if not "", sets a string color value used to represent the species in SLiMgui.
Colors may be specified by name, or with hexadecimal RGB values of the form "#RRGGBB" (see the
Eidos manual for details). If color is the empty string, "", SLiMgui will choose a default color.

(void)initializeTreeSeq([logical$ recordMutations = T],
[Nif$ simplificationRatio = NULL], [Ni$ simplificationInterval = NULL],
[logical$ checkCoalescence = F], [logical$ runCrosschecks = F],
[logical$ retainCoalescentOnly = T], [Ns$ timeUnit = NULL])

Configure options for tree sequence recording. Calling this function turns on tree sequence recording,
as a side effect, for later reconstruction of the simulation’s evolutionary dynamics; if you do not want
tree sequence recording to be enabled, do not call this function. Note that tree-sequence recording
internally uses SLiM’s “pedigree tracking” feature to uniquely identify individuals and genomes;
however, if you want to use pedigree tracking in your script you must still enable it yourself with
initializeSLiMOptions(keepPedigrees=T).

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 656

The recordMutations flag controls whether information about individual mutations is recorded or
not. Such recording takes time and memory, and so can be turned off if only the tree sequence itself is
needed, but it is turned on by default since mutation recording is generally useful.

The simplificationRatio and simplificationInterval parameters control how often automatic
simplification of the recorded tree sequence occurs. This is a speed–memory tradeoff: more frequent
simplification (lower simplificationRatio or smaller simplificationInterval) means the stored
tree sequences will use less memory, but at a cost of somewhat longer run times. Conversely, a larger
simplificationRatio or simplificationInterval means that SLiM will wait longer between
simplifications. There are three ways these parameters can be used. With the first option, with a non-
NULL simplificationRatio and a NULL value for simplificationInterval, SLiM will try to find
an optimal tick interval for simplification such that the ratio of the memory used by the tree sequence
tables, (before:after) simplification, is close to the requested ratio. The default of 10 (used if both
simplificationRatio and simplificationInterval are NULL) thus requests that SLiM try to find
a tick interval such that the maximum size of the stored tree sequences is ten times the size after
simplification. INF may be supplied to indicate that automatic simplification should never occur; 0
may be supplied to indicate that automatic simplification should be performed at the end of every
tick. Alternatively – the second option – simplificationRatio may be NULL and
simplificationInterval may be set to the interval, in ticks, between simplifications. This may
provide more reliable performance, but the interval must be chosen carefully to avoid exceeding the
available memory. The simplificationInterval value may be a very large number to specify that
simplification should never occur (not INF, though, since it is an integer value), or 1 to simplify
every tick. Finally – the third option – both parameters may be non-NULL, in which case
simplificationRatio is used as described above, while simplificationInterval provides the
initial interval first used by SLiM (and then subsequently increased or decreased to try to match the
requested simplification ratio). The default initial interval, used when simplificationInterval is
NULL, is usually 20; this is chosen to be relatively frequent, and thus unlikely to lead to a memory
overflow, but it can result in rather slow spool-up for models where the equilibrium simplification
interval, as determined by the simplification ratio, is much longer. It can therefore be helpful to set a
larger initial interval so that the early part of the model run is not excessively bogged down in
simplification.

The checkCoalescence parameter controls whether a check for full coalescence is conducted after
each simplification. If a model will call treeSeqCoalesced() to check for coalescence during its
execution, checkCoalescence should be set to T. Since the coalescence checks entail a performance
penalty, the default of F is preferable otherwise. See the documentation for treeSeqCoalesced() for
further discussion.

The runCrosschecks parameter controls whether cross-checks between SLiM’s internal data
structures and the tree-sequence recording data structures will be conducted. These two sets of data
structures record much the same thing (mutations in genomes), but using completely different
representations, so such cross-checks can be useful to confirm that the two data structures do indeed
represent the same conceptual state. This slows down the model considerably, however, and would
normally be turned on only for debugging purposes, so it is turned off by default.

The retainCoalescentOnly parameter controls how, exactly, simplification of the tree-sequence
data is performed in SLiM (both for auto-simplification and for calls to treeSeqSimplify()). More
specifically, this parameter controls the behavior of simplification for individuals and genomes that
have been “retained” by calling treeSeqRememberIndividuals() with the parameter permanent=F.
The default of retainCoalescentOnly=T helps to keep the number of retained individuals relatively
small, which is helpful if your simulation regularly flags many individuals for retaining. In this case,
changing retainCoalescentOnly to F may dramatically increase memory usage and runtime, in a
similar way to permanently remembering all the individuals. See the documentation of
treeSeqRememberIndividuals() for further discussion (section 25.15.2).

The timeUnit parameter controls the time unit stated in the tree sequence when it is saved (which
can be accessed through tskit APIs); it has no effect on the running simulation whatsoever. The

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 657

default value, NULL, means that a time unit of "ticks" will be used for all model types. (In SLiM 3.7 /
3.7.1, NULL implied a time unit of "generations" for WF models, but "ticks" for nonWF models;
given the new multispecies timescale parameters in SLiM 4, a default of "ticks" makes sense in all
cases since now even in WF models one tick might not equal one biological generation.) It may be
helpful to set timeUnit to "generations" explicitly when modeling non-overlapping generations in
which one tick equals one generation, to tell tskit that the time unit does in fact represent biological
generations; doing so may avoid warnings from tskit or msprime regarding the time unit, in cases
such as recapitation where the simulation timescale is important.

Once all initialize() callbacks have executed, in the order in which they are specified in the
SLiM input file, the simulation will begin. The tick number at which it starts is determined by the
Eidos events you have defined (see section 26.1); the first tick in which an Eidos event is scheduled
to execute is the tick at which the simulation starts. Similarly, the simulation will terminate after
the last tick for which a script block (either an event or a callback) is registered to execute, unless
the stop() function or the simulationFinished() method of Community or Species are called to
end the simulation earlier.

25.2 Class Chromosome
Superclass: Dictionary

This class represents the layout and properties of the chromosome being simulated. The
chromosome currently being simulated is available through the sim.chromosome global. Section
1.5.4 presents an overview of the conceptual role of this class.

25.2.1 Chromosome properties

colorSubstitution <–> (string$)
The color used to display substitutions in SLiMgui when both mutations and substitutions are being
displayed in the chromosome view. Outside of SLiMgui, this property still exists, but is not used by
SLiM. Colors may be specified by name, or with hexadecimal RGB values of the form "#RRGGBB" (see
the Eidos manual). If colorSubstitution is the empty string, "", SLiMgui will defer to the color
scheme of each MutationType, just as it does when only substitutions are being displayed. The
default, "3333FF", causes all substitutions to be shown as dark blue when displayed in conjunction
with mutations, to prevent the view from becoming too noisy. Note that when substitutions are
displayed without mutations also being displayed, this value is ignored by SLiMgui and the
substitutions use the color scheme of each MutationType.

geneConversionEnabled => (logical$)
When gene conversion has been enabled by calling initializeGeneConversion(), switching to the
DSB recombination model, this property is T; otherwise, when using the crossover breakpoints model,
it is F.

geneConversionGCBias => (float$)
The gene conversion bias coefficient, which expresses a bias in the resolution of heteroduplex
mismatches in complex gene conversion tracts. When gene conversion has not been enabled by
calling initializeGeneConversion(), this property will be unavailable.

geneConversionNonCrossoverFraction => (float$)
The fraction of double-stranded breaks that result in non-crossover events. When gene conversion has
not been enabled by calling initializeGeneConversion(), this property will be unavailable.

geneConversionMeanLength => (float$)
The mean length of a gene conversion tract (in base positions). When gene conversion has not been
enabled by calling initializeGeneConversion(), this property will be unavailable.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 658

geneConversionSimpleConversionFraction => (float$)
The fraction of gene conversion tracts that are “simple” (i.e., not involving resolution of heteroduplex
mismatches); the remainder will be “complex”. When gene conversion has not been enabled by
calling initializeGeneConversion(), this property will be unavailable.

genomicElements => (object<GenomicElement>)
All of the GenomicElement objects that comprise the chromosome.

hotspotEndPositions => (integer)
The end positions for hotspot map regions along the chromosome. Each hotspot map region is
assumed to start at the position following the end of the previous hotspot map region; in other words,
the regions are assumed to be contiguous. When using sex-specific hotspot maps, this property will
unavailable; see hotspotEndPositionsF and hotspotEndPositionsM.

hotspotEndPositionsF => (integer)
The end positions for hotspot map regions for females, when using sex-specific hotspot maps;
unavailable otherwise. See hotspotEndPositions for further explanation.

hotspotEndPositionsM => (integer)
The end positions for hotspot map regions for males, when using sex-specific hotspot maps;
unavailable otherwise. See hotspotEndPositions for further explanation.

hotspotMultipliers => (float)
The hotspot multiplier for each of the hotspot map regions specified by hotspotEndPositions.
When using sex-specific hotspot maps, this property will be unavailable; see hotspotMultipliersF
and hotspotMultipliersM.

hotspotMultipliersF => (float)
The hotspot multiplier for each of the hotspot map regions specified by hotspotEndPositionsF,
when using sex-specific hotspot maps; unavailable otherwise.

hotspotMultipliersM => (float)
The hotspot multiplier for each of the hotspot map regions specified by hotspotEndPositionsM,
when using sex-specific hotspot maps; unavailable otherwise.

lastPosition => (integer$)
The last valid position in the chromosome; its length, essentially. Note that the chromosome length is
determined by the maximum of the end of the last genomic element, the end of the last recombination
region, and the end of the last mutation map region (or hotspot map region).

mutationEndPositions => (integer)
The end positions for mutation rate regions along the chromosome. Each mutation rate region is
assumed to start at the position following the end of the previous mutation rate region; in other words,
the regions are assumed to be contiguous. When using sex-specific mutation rate maps, this property
will unavailable; see mutationEndPositionsF and mutationEndPositionsM.

This property is unavailable in nucleotide-based models.

mutationEndPositionsF => (integer)
The end positions for mutation rate regions for females, when using sex-specific mutation rate maps;
unavailable otherwise. See mutationEndPositions for further explanation.

This property is unavailable in nucleotide-based models.

mutationEndPositionsM => (integer)
The end positions for mutation rate regions for males, when using sex-specific mutation rate maps;
unavailable otherwise. See mutationEndPositions for further explanation.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 659

This property is unavailable in nucleotide-based models.

mutationRates => (float)
The mutation rate for each of the mutation rate regions specified by mutationEndPositions. When
using sex-specific mutation rate maps, this property will be unavailable; see mutationRatesF and
mutationRatesM.

This property is unavailable in nucleotide-based models.

mutationRatesF => (float)
The mutation rate for each of the mutation rate regions specified by mutationEndPositionsF, when
using sex-specific mutation rate maps; unavailable otherwise.

This property is unavailable in nucleotide-based models.

mutationRatesM => (float)
The mutation rate for each of the mutation rate regions specified by mutationEndPositionsM, when
using sex-specific mutation rate maps; unavailable otherwise.

This property is unavailable in nucleotide-based models.

overallMutationRate => (float$)
The overall mutation rate across the whole chromosome determining the overall number of mutation
events that will occur anywhere in the chromosome, as calculated from the individual mutation
ranges and rates as well as the coverage of the chromosome by genomic elements (since mutations are
only generated within genomic elements, regardless of the mutation rate map). When using sex-
specific mutation rate maps, this property will unavailable; see overallMutationRateF and
overallMutationRateM.

This property is unavailable in nucleotide-based models.

overallMutationRateF => (float$)
The overall mutation rate for females, when using sex-specific mutation rate maps; unavailable
otherwise. See overallMutationRate for further explanation.

This property is unavailable in nucleotide-based models.

overallMutationRateM => (float$)
The overall mutation rate for males, when using sex-specific mutation rate maps; unavailable
otherwise. See overallMutationRate for further explanation.

This property is unavailable in nucleotide-based models.

overallRecombinationRate => (float$)
The overall recombination rate across the whole chromosome determining the overall number of
recombination events that will occur anywhere in the chromosome, as calculated from the individual
recombination ranges and rates. When using sex-specific recombination maps, this property will
unavailable; see overallRecombinationRateF and overallRecombinationRateM.

overallRecombinationRateF => (float$)
The overall recombination rate for females, when using sex-specific recombination maps; unavailable
otherwise. See overallRecombinationRate for further explanation.

overallRecombinationRateM => (float$)
The overall recombination rate for males, when using sex-specific recombination maps; unavailable
otherwise. See overallRecombinationRate for further explanation.

recombinationEndPositions => (integer)
The end positions for recombination regions along the chromosome. Each recombination region is
assumed to start at the position following the end of the previous recombination region; in other

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 660

words, the regions are assumed to be contiguous. When using sex-specific recombination maps, this
property will unavailable; see recombinationEndPositionsF and recombinationEndPositionsM.

recombinationEndPositionsF => (integer)
The end positions for recombination regions for females, when using sex-specific recombination
maps; unavailable otherwise. See recombinationEndPositions for further explanation.

recombinationEndPositionsM => (integer)
The end positions for recombination regions for males, when using sex-specific recombination maps;
unavailable otherwise. See recombinationEndPositions for further explanation.

recombinationRates => (float)
The recombination rate for each of the recombination regions specified by
recombinationEndPositions. When using sex-specific recombination maps, this property will
unavailable; see recombinationRatesF and recombinationRatesM.

recombinationRatesF => (float)
The recombination rate for each of the recombination regions specified by
recombinationEndPositionsF, when using sex-specific recombination maps; unavailable
otherwise.

recombinationRatesM => (float)
The recombination rate for each of the recombination regions specified by
recombinationEndPositionsM, when using sex-specific recombination maps; unavailable
otherwise.

species => (object<Species>$)
The species to which the target object belongs.

tag <–> (integer$)
A user-defined integer value. The value of tag is initially undefined, and it is an error to try to read
it; if you wish it to have a defined value, you must arrange that yourself by explicitly setting its value
prior to using it elsewhere in your code. The value of tag is not used by SLiM; it is free for you to use.

25.2.2 Chromosome methods

– (is)ancestralNucleotides([Ni$ start = NULL], [Ni$ end = NULL],
[s$ format = "string")

Returns the ancestral nucleotide sequence originally supplied to
initializeAncestralNucleotides(), including any sequence changes due to nucleotide
mutations that have fixed and substituted. This nucleotide sequence is the reference sequence for
positions in a genome that do not contain a nucleotide-based mutation. The range of the returned
sequence may be constrained by a start position given in start and/or an end position given in end;
nucleotides will be returned from start to end, inclusive. The default value of NULL for start and
end represent the first and last base positions of the chromosome, respectively.

The format of the returned sequence is controlled by the format parameter. A format of "string"
will return the sequence as a singleton string (e.g., "TATA"). A format of "char" will return a
string vector with one element per nucleotide (e.g., "T", "A", "T", "A"). A format of "integer"
will return an integer vector with values A=0, C=1, G=2, T=3 (e.g., 3, 0, 3, 0). If the sequence
returned is likely to be long, the "string" format will be the most memory-efficient, and may also be
the fastest (but may be harder to work with).

For purposes related to interpreting the nucleotide sequence as a coding sequence, a format of
"codon" is also supported. This format will return an integer vector with values from 0 to 63, based
upon successive nucleotide triplets in the sequence (which, for this format, must have a length that is a
multiple of three). The codon value for a given nucleotide triplet XYZ is 16X + 4Y + Z, where X, Y,

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 661

and Z have the usual values A=0, C=1, G=2, T=3. For example, the triplet AAA has a codon value of
0, AAC is 1, AAG is 2, AAT is 3, ACA is 4, and on upward to TTT which is 63. If the nucleotide
sequence AACACATTT is requested in codon format, the codon vector 1 4 63 will therefore be
returned. These codon values can be useful in themselves; they can also be passed to
codonsToAminoAcids() to translate them into the corresponding amino acid sequence if desired (see
section 25.18.1).

– (integer)drawBreakpoints([No<Individual>$ parent = NULL], [Ni$ n = NULL])
Draw recombination breakpoints, using the chromosome’s recombination rate map, the current gene
conversion parameters, and (in some cases – see below) any active and applicable recombination()
callbacks. The number of breakpoints to generate, n, may be supplied; if it is NULL (the default), the
number of breakpoints will be drawn based upon the overall recombination rate and the chromosome
length (following the standard procedure in SLiM). Note that if the double-stranded breaks model has
been chosen, the number of breakpoints generated will probably not be equal to the number
requested, because most breakpoints will entail gene conversion tracts, which entail additional
crossover breakpoints.

It is generally recommended that the parent individual be supplied to this method, but parent is NULL
by default. The individual supplied in parent is used for two purposes. First, in sexual models that
define separate recombination rate maps for males versus females, the sex of parent will be used to
determine which map is used; in this case, a non-NULL value must be supplied for parent, since the
choice of recombination rate map must be determined. Second, in models that define
recombination() callbacks, parent is used to determine the various pseudo-parameters that are
passed to recombination() callbacks (individual, genome1, genome2, subpop), and the
subpopulation to which parent belongs is used to select which recombination() callbacks are
applicable; given the necessity of this information, recombination() callbacks will not be called as a
side effect of this method if parent is NULL. Apart from these two uses, parent is not used, and the
caller does not guarantee that the generated breakpoints will actually be used to recombine the
genomes of parent in particular. If a recombination() callback is called, genome1 for that callback
will always be parent.genome1; in other words, drawBreakpoints() will always treat
parent.genome1 as the initial copy strand. If the caller wishes to randomly choose an initial copy
strand (which is usually desirable), they should do that themselves.

– (integer$)setAncestralNucleotides(is sequence)
This method, which may be called only in nucleotide-based models (see section 1.8), replaces the
ancestral nucleotide sequence for the model. The sequence parameter is interpreted exactly as it is in
the initializeAncestralSequence() function; see that documentation for details (section 25.1).
The length of the ancestral sequence is returned.

It is unusual to replace the ancestral sequence in a running simulation, since the nucleotide states of
segregating and fixed mutations will depend upon the original ancestral sequence. It can be useful
when loading a new population state with readFromMS() or readFromVCF(), such as when resetting
the simulation state to an earlier state in a conditional simulation; however, that is more commonly
done using readFromPopulationFile() with a SLiM or .trees file.

– (void)setGeneConversion(numeric$ nonCrossoverFraction, numeric$ meanLength,
numeric$ simpleConversionFraction, [numeric$ bias = 0])

This method switches the recombination model to the “double-stranded break (DSB)” model (if it is
not already set to that), and configures the details of the gene conversion tracts that will therefore be
modeled (see section 1.5.6 for discussion of the “DSB” recombination model). The meanings and
effects of the parameters exactly mirror the initializeGeneConversion() function; see section 25.1
for details.

– (void)setHotspotMap(numeric multipliers, [Ni ends = NULL], [string$ sex = "*"])
In nucleotide-based models, set the mutation rate multiplier along the chromosome. There are two
ways to call this method. If the optional ends parameter is NULL (the default), then multipliers

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 662

must be a singleton value that specifies a single multiplier to be used along the entire chromosome. If,
on the other hand, ends is supplied, then multipliers and ends must be the same length, and the
values in ends must be specified in ascending order. In that case, multipliers and ends taken
together specify the multipliers to be used along successive contiguous stretches of the chromosome,
from beginning to end; the last position specified in ends should extend to the end of the
chromosome (as previously determined, during simulation initialization). See the
initializeHotspotMap() function for further discussion of precisely how these multipliers and
positions are interpreted.

If the optional sex parameter is "*" (the default), then the supplied hotspot map will be used for both
sexes (which is the only option for hermaphroditic simulations). In sexual simulations sex may be
"M" or "F" instead, in which case the supplied hotspot map is used only for that sex. Note that
whether sex-specific hotspot maps will be used is set by the way that the simulation is initially
configured with initializeHotspot(), and cannot be changed with this method; so if the
simulation was set up to use sex-specific hotspot maps then sex must be "M" or "F" here, whereas if it
was set up not to, then sex must be "*" or unsupplied here. If a simulation needs sex-specific hotspot
maps only some of the time, the male and female maps can simply be set to be identical the rest of
the time.

The hotspot map is normally constant in simulations, so be sure you know what you are doing.

– (void)setMutationRate(numeric rates, [Ni ends = NULL], [string$ sex = "*"])
Set the mutation rate per base position per gamete. There are two ways to call this method. If the
optional ends parameter is NULL (the default), then rates must be a singleton value that specifies a
single mutation rate to be used along the entire chromosome. If, on the other hand, ends is supplied,
then rates and ends must be the same length, and the values in ends must be specified in ascending
order. In that case, rates and ends taken together specify the mutation rates to be used along
successive contiguous stretches of the chromosome, from beginning to end; the last position specified
in ends should extend to the end of the chromosome (as previously determined, during simulation
initialization). See the initializeMutationRate() function for further discussion of precisely how
these rates and positions are interpreted.

If the optional sex parameter is "*" (the default), then the supplied mutation rate map will be used for
both sexes (which is the only option for hermaphroditic simulations). In sexual simulations sex may
be "M" or "F" instead, in which case the supplied mutation rate map is used only for that sex. Note
that whether sex-specific mutation rate maps will be used is set by the way that the simulation is
initially configured with initializeMutationRate(), and cannot be changed with this method; so if
the simulation was set up to use sex-specific mutation rate maps then sex must be "M" or "F" here,
whereas if it was set up not to, then sex must be "*" or unsupplied here. If a simulation needs sex-
specific mutation rate maps only some of the time, the male and female maps can simply be set to be
identical the rest of the time.

The mutation rate intervals are normally a constant in simulations, so be sure you know what you are
doing.

In nucleotide-based models, setMutationRate() may not be called. If variation in the mutation rate
along the chromosome is desired, setHotspotMap() should be used.

– (void)setRecombinationRate(numeric rates, [Ni ends = NULL], [string$ sex = "*"])
Set the recombination rate per base position per gamete. All rates must be in the interval [0.0, 0.5].
There are two ways to call this method. If the optional ends parameter is NULL (the default), then
rates must be a singleton value that specifies a single recombination rate to be used along the entire
chromosome. If, on the other hand, ends is supplied, then rates and ends must be the same length,
and the values in ends must be specified in ascending order. In that case, rates and ends taken
together specify the recombination rates to be used along successive contiguous stretches of the
chromosome, from beginning to end; the last position specified in ends should extend to the end of
the chromosome (as previously determined, during simulation initialization). See the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 663

initializeRecombinationRate() function for further discussion of precisely how these rates and
positions are interpreted.

If the optional sex parameter is "*" (the default), then the supplied recombination rate map will be
used for both sexes (which is the only option for hermaphroditic simulations). In sexual simulations
sex may be "M" or "F" instead, in which case the supplied recombination map is used only for that
sex. Note that whether sex-specific recombination maps will be used is set by the way that the
simulation is initially configured with initializeRecombinationRate(), and cannot be changed
with this method; so if the simulation was set up to use sex-specific recombination maps then sex
must be "M" or "F" here, whereas if it was set up not to, then sex must be "*" or unsupplied here. If
a simulation needs sex-specific recombination maps only some of the time, the male and female maps
can simply be set to be identical the rest of the time.

The recombination intervals are normally a constant in simulations, so be sure you know what you are
doing.

25.3 Class Community
Superclass: Dictionary

This class represents the top level of a SLiM simulation: a community containing one or more
species (represented by class Species). The community, represented by a global Community object
with the variable name community, is responsible for execution of the tick cycle for active species
in each tick, management of the script blocks associated with a simulation, and creation of log
files (by creating and owning instances of the LogFile class). The community exists even in single-
species models.

25.3.1 Community properties

allGenomicElementTypes => (object<GenomicElementType>)
All of the GenomicElementType objects defined in the simulation.

allInteractionTypes => (object<InteractionType>)
All of the InteractionType objects defined in the simulation.

allMutationTypes => (object<MutationType>)
All of the MutationType objects defined in the simulation.

allScriptBlocks => (object<SLiMEidosBlock>)
All registered SLiMEidosBlock objects in the simulation.

allSpecies => (object<Species>)
All of the Species objects defined in the simulation (in species declaration order).

allSubpopulations => (object<Subpopulation>)
All of the Subpopulation objects defined in the simulation.

cycleStage => (string$)
The current cycle stage, as a string. The values of this property essentially mirror the cycle stages of
WF and nonWF models (see chapters 23 and 24). Common values include "first" (during
execution of first() events), "early" (during execution of early() events),
"reproduction" (during offspring generation), "fitness" (during fitness evaluation),
"survival" (while applying selection and mortality in nonWF models), and "late" (during
execution of late() events).

Other possible values include "begin" (during internal setup before each cycle), "tally" (while
tallying mutation reference counts and removing fixed mutations), "swap" (while swapping the
offspring generation into the parental generation in WF models), "end" (during internal bookkeeping

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 664

after each cycle), and "console" (during the in-between-ticks state in which commands in SLiMgui’s
Eidos console are executed). It would probably be a good idea not to use this latter set of values; they
are probably not user-visible during ordinary model execution anyway.

During execution of initialize() callbacks, no Community object yet exists and so this property
cannot be accessed. To detect this state, use exists("community"); if that is F, community does not
exist, and therefore your code is executing during initialize() callbacks (or outside of SLiM
entirely, in some other Eidos-based context).

logFiles => (object<LogFile>)
The LogFile objects being used in the simulation.

modelType => (string$)
The type of model being simulated, as specified in initializeSLiMModelType(). This will be "WF"
for WF models (Wright–Fisher models, the default), or "nonWF" for nonWF models (non-Wright–Fisher
models; see section 1.6 for discussion). This must be the same for all species in the community; it is
therefore a property on Community, not Species.

tag <–> (integer$)
A user-defined integer value. The value of tag is initially undefined, and it is an error to try to read
it; if you wish it to have a defined value, you must arrange that yourself by explicitly setting its value
prior to using it elsewhere in your code. The value of tag is not used by SLiM; it is free for you to use.
See also the getValue() and setValue() methods (provided by the Dictionary class; see the Eidos
manual), for another way of attaching state to the simulation.

tick <–> (integer$)
The current tick number.

verbosity <–> (integer$)
The verbosity level, for SLiM’s logging of information about the simulation. This is 1 by default, but
can be changed at the command line with the -l[ong] option. It is provided here so that scripts can
consult it to govern the level of verbosity of their own output, or set the verbosity level for particular
sections of their code. A verbosity level of 0 suppresses most of SLiM’s optional output; 2 adds some
extra output beyond SLiM’s standard output. See sections 20.3 and 21.4 for more information.

25.3.2 Community methods

– (object<LogFile>$)createLogFile(string$ filePath, [Ns initialContents = NULL],
[logical$ append = F], [logical$ compress = F], [string$ sep = ","],
[Ni$ logInterval = NULL], [Ni$ flushInterval = NULL])

Creates and returns a new LogFile object that logs data from the simulation (see the documentation
for the LogFile class for details). Logged data will be written to the file at filePath, overwriting any
existing file at that path by default, or appending to it instead if append is T (successive rows of the log
table will always be appended to the previously written content, of course). Before the header line for
the log is written out, any string elements in initialContents will be written first, separated by
newlines, allowing for a user-defined file header. If compress is T, the contents will be compressed
with zlib as they are written, and the standard .gz extension for gzip-compressed files will be
appended to the filename in filePath if it is not already present.

The sep parameter specifies the separator between data values within a row. The default of "," will
generate a “comma-separated value” (CSV) file, while passing sep="\t" will use a tab separator
instead to generate a “tab-separated value” (TSV) file. Other values for sep may also be used, but are
less standard.

LogFile supports periodic automatic logging of a new row of data, enabled by supplying a non-NULL
value for logInterval. In this case, a new row will be logged (as if logRow() were called on the
LogFile) at the end of every logInterval ticks (just before the tick counter increments, in both WF
and nonWF models), starting at the end of the tick in which the LogFile was created. A

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 665

logInterval of 1 will cause automatic logging at the end of every tick, whereas a logInterval of
NULL disables automatic logging. Automatic logging can always be disabled or reconfigured later with
the LogFile method setLogInterval(), or logging can be triggered manually by calling logRow().

When compression is enabled, LogFile flushes new data lazily by default, for performance reasons,
buffering data for multiple rows before writing to disk. Passing a non-NULL value for flushInterval
requests a flush every flushInterval rows (with a value of 1 providing unbuffered operation). Note
that flushing very frequently will likely result in both lower performance and a larger final file size (in
one simple test, 48943 bytes instead of 4280 bytes, or more than a 10× increase in size). Alternatively,
passing a very large value for flushInterval will effectively disable automatic flushing, except at the
end of the simulation (but be aware that this may use a large amount of memory for large log files). In
any case, the log file will be created immediately, with its requested initial contents; the initial write is
not buffered. When compression is not enabled, the flushInterval setting is ignored.

The LogFile documentation discusses how to configure and use LogFile to write out the data you
are interested in from your simulation; see section 25.10.

– (void)deregisterScriptBlock(io<SLiMEidosBlock> scriptBlocks)
All SLiMEidosBlock objects specified by scriptBlocks (either with SLiMEidosBlock objects or
with integer identifiers) will be scheduled for deregistration. The deregistered blocks remain valid,
and may even still be executed in the current stage of the current tick (see section 26.11); the blocks
are not actually deregistered and deallocated until sometime after the currently executing script block
has completed. To immediately prevent a script block from executing, even when it is scheduled to
execute in the current stage of the current tick, use the active property of the script block (see
sections 25.12.1 and 26.11).

– (object<GenomicElementType>)genomicElementTypesWithIDs(integer ids)
Find and return the GenomicElementType objects with id values matching the values in ids. If no
matching GenomicElementType object can be found with a given id, an error results.

– (object<InteractionType>)interactionTypesWithIDs(integer ids)
Find and return the InteractionType objects with id values matching the values in ids. If no
matching InteractionType object can be found with a given id, an error results.

– (object<MutationType>)mutationTypesWithIDs(integer ids)
Find and return the MutationType objects with id values matching the values in ids. If no matching
MutationType object can be found with a given id, an error results.

– (void)outputUsage(void)
Output the current memory usage of the simulation to Eidos’s output stream. The specifics of what is
printed, and in what format, should not be relied upon as they may change from version to version of
SLiM. This method is primarily useful for understanding where the memory usage of a simulation
predominantly resides, for debugging or optimization. Note that it does not capture all memory usage
by the process; rather, it summarizes the memory usage by SLiM and Eidos in directly allocated
objects and buffers. To get the same memory usage reported by outputUsage(), but as a float$
value, use the Community method usage(). To get the total memory usage of the running process
(either current or peak), use the Eidos function usage().

– (object<SLiMEidosBlock>$)registerEarlyEvent(Nis$ id, string$ source,
[Ni$ start = NULL], [Ni$ end = NULL], [No<Species>$ ticksSpec = NULL])

Register a block of Eidos source code, represented as the string singleton source, as an Eidos
early() event in the current simulation, with optional start and end ticks (and, for multispecies
models, optional ticks specifier ticksSpec) limiting its applicability. The script block will be given
identifier id (specified as an integer, or as a string symbolic name such as "s5"); this may be NULL
if there is no need to be able to refer to the block later. The registered event is added to the end of the
list of registered SLiMEidosBlock objects, and is active immediately; it may be eligible to execute in

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 666

the current tick (see section 26.11 for details). The new SLiMEidosBlock will be defined as a global
variable immediately by this method (see section 25.12), and will also be returned by this method.

– (object<SLiMEidosBlock>$)registerFirstEvent(Nis$ id, string$ source,
[Ni$ start = NULL], [Ni$ end = NULL], [No<Species>$ ticksSpec = NULL])

Register a block of Eidos source code, represented as the string singleton source, as an Eidos
first() event in the current simulation, with optional start and end ticks (and, for multispecies
models, optional ticks specifier ticksSpec) limiting its applicability. The script block will be given
identifier id (specified as an integer, or as a string symbolic name such as "s5"); this may be NULL
if there is no need to be able to refer to the block later. The registered event is added to the end of the
list of registered SLiMEidosBlock objects, and is active immediately; it may be eligible to execute in
the current tick (see section 26.11 for details). The new SLiMEidosBlock will be defined as a global
variable immediately by this method (see section 25.12), and will also be returned by this method.

– (object<SLiMEidosBlock>$)registerInteractionCallback(Nis$ id, string$ source,
io<InteractionType>$ intType, [Nio<Subpopulation>$ subpop = NULL],
[Ni$ start = NULL], [Ni$ end = NULL])

Register a block of Eidos source code, represented as the string singleton source, as an Eidos
interaction() callback in the current simulation (global to the community), with a required
interaction type intType (which may be an integer identifier), optional exerter subpopulation
subpop (which may also be an integer identifier, or NULL, the default, to indicate all
subpopulations), and optional start and end ticks all limiting its applicability. The script block will
be given identifier id (specified as an integer, or as a string symbolic name such as "s5"); this
may be NULL if there is no need to be able to refer to the block later. The registered callback is added
to the end of the list of registered SLiMEidosBlock objects, and is active immediately; it will be
eligible to execute the next time an InteractionType is evaluated. The new SLiMEidosBlock will
be defined as a global variable immediately by this method (see section 25.12), and will also be
returned by this method.

– (object<SLiMEidosBlock>$)registerLateEvent(Nis$ id, string$ source,
[Ni$ start = NULL], [Ni$ end = NULL], [No<Species>$ ticksSpec = NULL])

Register a block of Eidos source code, represented as the string singleton source, as an Eidos
late() event in the current simulation, with optional start and end ticks (and, for multispecies
models, optional ticks specifier ticksSpec) limiting its applicability. The script block will be given
identifier id (specified as an integer, or as a string symbolic name such as "s5"); this may be NULL
if there is no need to be able to refer to the block later. The registered event is added to the end of the
list of registered SLiMEidosBlock objects, and is active immediately; it may be eligible to execute in
the current tick (see section 26.11 for details). The new SLiMEidosBlock will be defined as a global
variable immediately by this method (see section 25.12), and will also be returned by this method.

– (object<SLiMEidosBlock>)rescheduleScriptBlock(io<SLiMEidosBlock>$ block,
[Ni$ start = NULL], [Ni$ end = NULL], [Ni ticks = NULL])

Reschedule the target script block given by block to execute in a specified set of ticks. The block
parameter may be either an integer representing the ID of the desired script block, or a
SLiMScriptBlock specified directly.

The first way to specify the tick set is with start and end parameter values; block will then execute
from start to end, inclusive. In this case, block is returned.

The second way to specify the tick set is using the ticks parameter; this is more flexible but more
complicated. Since script blocks execute across a contiguous span of ticks defined by their start and
end properties, this may result in the duplication of block; one script block will be used for each
contiguous span of ticks in ticks. The block object itself will be rescheduled to cover the first such
span, whereas duplicates of block will be created to cover subsequent contiguous spans. A vector
containing all of the script blocks scheduled by this method, including block, will be returned; this
vector is guaranteed to be sorted by the (ascending) scheduled execution order of the blocks. Any
duplicates of block created will be given values for the active, source, tag, and type properties

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 667

equal to the current values for block, but will be given an id of -1 since script block identifiers must
be unique; if it is necessary to find the duplicated blocks again later, their tag property should be
used. The vector supplied for ticks does not need to be in sorted order, but it must not contain any
duplicates.

Because this method can create a large number of duplicate script blocks, it can sometimes be better
to handle script block scheduling in other ways. If an early() event needs to execute every tenth tick
over the whole duration of a long model run, for example, it would not be advisable to use a call like
community.rescheduleScriptBlock(s1, ticks=seq(10, 100000, 10)) for that purpose, since
that would result in thousands of duplicate script blocks. Instead, it would be preferable to add a test
such as if (community.tick % 10 != 0) return; at the beginning of the event. It is legal to
reschedule a script block while the block is executing; a call like
community.rescheduleScriptBlock(self, community.tick + 10, community.tick + 10);
made inside a given block would therefore also cause the block to execute every tenth tick, although
this sort of self-rescheduling code is probably harder to read, maintain, and debug.

Whichever way of specifying the tick set is used, the discussion in section 26.11 applies: block may
continue to be executed during the current tick cycle stage even after it has been rescheduled, unless
it is made inactive using its active property, and similarly, the block may not execute during the
current tick cycle stage if it was not already scheduled to do so. Rescheduling script blocks during the
tick and tick cycle stage in which they are executing, or in which they are intended to execute, should
be avoided. Also, as mentioned in section 23.7, script blocks which are open-ended (i.e., with no
specified end tick), are not used in determining whether the end of the simulation has been reached
(because then the simulation would run forever); if you reschedule a block to be open-ended, and to
start after the end of the last closed-ended block, the rescheduled block will therefore not run at all
(just as such a block would not run at all in other circumstances, too).

Note that new script blocks can also be created and scheduled using the register...() methods of
Community and Species; by using the same source as a template script block, the template can be
duplicated and scheduled for different ticks. In fact, rescheduleScriptBlock() does essentially that
internally. In multispecies models, note that all new script blocks created as a side effect of
rescheduleScriptBlock() will have the same species and ticks specifier as block; use the
register...() methods to create a new block with a different species or ticks specifier.

– (object<SLiMEidosBlock>)scriptBlocksWithIDs(integer ids)
Find and return the SLiMEidosBlock objects with id values matching the values in ids. If no
matching SLiMEidosBlock object can be found with a given id, an error results.

– (void)simulationFinished(void)
Declare the current simulation finished. Normally SLiM ends a simulation when, at the end of a tick,
there are no script events or callbacks registered for any future tick (excluding scripts with no declared
end tick). If you wish to end a simulation before this condition is met, a call to
simulationFinished() will cause the current simulation to end at the end of the current tick. For
example, a simulation might self-terminate if a test for a dynamic equilibrium condition is satisfied.
Note that the current tick will finish executing; if you want the simulation to stop immediately, you
can use the Eidos method stop(), which raises an error condition.

– (object<Species>)speciesWithIDs(integer ids)
Find and return the Species objects with id values matching the values in ids. If no matching
Species object can be found with a given id, an error results.

– (object<Subpopulation>)subpopulationsWithIDs(integer ids)
Find and return the Subpopulation objects with id values matching the values in ids. If no
matching Subpopulation object can be found with a given id, an error results.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 668

– (float$)usage(void)
Return the current memory usage of the simulation. The specifics of what is totalled up should not be
relied upon as it may change from version to version of SLiM. This method is primarily useful for
understanding where the memory usage of a simulation predominantly resides, for debugging or
optimization. Note that it does not capture all memory usage by the process; rather, it summarizes the
memory usage by SLiM and Eidos in directly allocated objects and buffers. To see details of this
internal memory usage, use the Community method outputUsage(). To get the total memory usage
of the running process (either current or peak), use the Eidos function usage().

25.4 Class Genome
Superclass: Object

This class represents one full genome of an individual (one of the two genomes contained by a
diploid individual, that is, in the way that SLiM uses the term), composed of the mutations carried
by that individual. Section 1.5.1 presents an overview of the conceptual role of this class.

25.4.1 Genome properties

genomePedigreeID => (integer$)
If pedigree tracking is turned on with initializeSLiMOptions(keepPedigrees=T),
genomePedigreeID is a unique non-negative identifier for each genome in a simulation, never re-
used throughout the duration of the simulation run. Furthermore, the genomePedigreeID of a given
genome will be equal to either (2*pedigreeID) or (2*pedigreeID + 1) of the individual that the
genome belongs to (the former for the first genome of the individual, the latter for the second genome
of the individual); this invariant relationship is guaranteed. If pedigree tracking is not enabled, this
property is unavailable.

genomeType => (string$)
The type of chromosome represented by this genome; one of "A", "X", or "Y".

individual => (object<Individual>$)
The Individual object to which this genome belongs.

isNullGenome => (logical$)
T if the genome is a “null” genome, F if it is an ordinary genome object. When a sex chromosome (X
or Y) is simulated, the other sex chromosome also exists in the simulation, but it is a “null” genome
that does not carry any mutations. Instead, it is a placeholder, present to allow SLiM’s code to operate
in much the same way as it does when an autosome is simulated. Null genomes should not be
accessed or manipulated.

mutations => (object<Mutation>)
All of the Mutation objects present in this genome.

tag <–> (integer$)
A user-defined integer value. The value of tag is initially undefined, and it is an error to try to read
it; if you wish it to have a defined value, you must arrange that yourself by explicitly setting its value
prior to using it elsewhere in your code. The value of tag is not used by SLiM; it is free for you to use.
Note that the Genome objects used by SLiM are new with every new individual, so the tag value of
each new offspring generated in each tick will be initially undefined.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 669

25.4.2 Genome methods

+ (void)addMutations(object<Mutation> mutations)
Add the existing mutations in mutations to the genome, if they are not already present (if they are
already present, they will be ignored), and if the addition is not prevented by the mutation stacking
policy (see the mutationStackPolicy property of MutationType, section 25.11.1).

Calling this will normally affect the fitness values calculated toward the end of the current tick; if you
want current fitness values to be affected, you can call the Species method recalculateFitness()
– but see the documentation of that method for caveats.

Note that in nonWF models that use tree-sequence recording, mutations cannot be added to an
individual after the tick in which the individual is created (i.e., when the age of the individual is
greater than 0), to prevent the possibility of inconsistencies in the recorded tree sequence.

+ (object<Mutation>)addNewDrawnMutation(io<MutationType> mutationType,
integer position, [Ni originTick = NULL],
[Nio<Subpopulation> originSubpop = NULL], [Nis nucleotide = NULL])

Add new mutations to the target genome(s) with the specified mutationType (specified by the
MutationType object or by integer identifier), position, originTick (which may be
NULL, the default, to specify the current tick; otherwise, beginning in SLiM 3.5, it must be
equal to the current tick anyway, as other uses of this property have been deprecated), and
originSubpop (specified by the Subpopulation object or by integer identifier, or by NULL,
the default, to specify the subpopulation to which the first target genome belongs). If
originSubpop is supplied as an integer, it is intentionally not checked for validity; you may
use arbitrary values of originSubpop to “tag” the mutations that you create (see section
25.10.1). The selection coefficients of the mutations are drawn from their mutation types;
addNewMutation() may be used instead if you wish to specify selection coefficients.

In non-nucleotide-based models, mutationType will always be a non-nucleotide-based
mutation type, and so nucleotide must be NULL (the default). In a nucleotide-based model,
mutationType might still be non-nucleotide-based (in which case nucleotide must still be
NULL), or mutationType might be nucleotide-based, in which case a non-NULL value must be
supplied for nucleotide, specifying the nucleotide(s) to be associated with the new
mutation(s). Nucleotides may be specified with string values ("A", "C", "G", or "T"), or with
integer values (A=0, C=1, G=2, T=3). If a nucleotide mutation already exists at the mutating
position, it is replaced automatically in accordance with the stacking policy for nucleotide-
based mutation types. No check is performed that a new mutation’s nucleotide differs from
the ancestral sequence, or that its selection coefficient is consistent with other mutations that
may already exist at the given position with the same nucleotide; model consistency is the
responsibility of the model.

Beginning in SLiM 2.5 this method is vectorized, so all of these parameters may be singletons
(in which case that single value is used for all mutations created by the call) or non-singleton
vectors (in which case one element is used for each corresponding mutation created). Non-
singleton parameters must match in length, since their elements need to be matched up one-
to-one.

The new mutations created by this method are returned, even if their actual addition is
prevented by the mutation stacking policy (see the mutationStackPolicy property of
MutationType, section 25.11.1). However, the order of the mutations in the returned vector
is not guaranteed to be the same as the order in which the values are specified in parameter
vectors, unless the position parameter is specified in ascending order. In other words, pre-
sorting the parameters to this method into ascending order by position, using order() and
subsetting, will guarantee that the order of the returned vector of mutations corresponds to the
order of elements in the parameters to this method; otherwise, no such guarantee exists.

Beginning in SLiM 2.1, this is a class method, not an instance method. This means that it does
not get multiplexed out to all of the elements of the receiver (which would add a different

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 670

new mutation to each element); instead, it is performed as a single operation, adding the
same new mutation objects to all of the elements of the receiver. Before SLiM 2.1, to add the
same mutations to multiple genomes, it was necessary to call addNewDrawnMutation() on
one of the genomes, and then add the returned Mutation object to all of the other genomes
using addMutations(). That is not necessary in SLiM 2.1 and later, because of this change
(although doing it the old way does no harm and produces identical behavior). Pre-2.1 code
that actually relied upon the old multiplexing behavior will no longer work correctly (but this
is expected to be an extremely rare pattern of usage).

Before SLiM 4, this method also took an originGeneration parameter. This was deprecated
(the origin generation was then required to be equal to the current generation, for internal
consistency), and was removed in SLiM 4.

Calling this will normally affect the fitness values calculated at the end of the current tick (but
not sooner); if you want current fitness values to be affected, you can call the Species
method recalculateFitness() – but see the documentation of that method for caveats.

Note that in nonWF models that use tree-sequence recording, mutations cannot be added to an
individual after the tick in which the individual is created (i.e., when the age of the individual is
greater than 0), to prevent the possibility of inconsistencies in the recorded tree sequence.

+ (object<Mutation>)addNewMutation(io<MutationType> mutationType,
numeric selectionCoeff, integer position, [Ni originTick = NULL],
[Nio<Subpopulation> originSubpop = NULL], [Nis nucleotide = NULL])

Add new mutations to the target genome(s) with the specified mutationType (specified by the
MutationType object or by integer identifier), selectionCoeff, position, originTick
(which may be NULL, the default, to specify the current tick; otherwise, beginning in SLiM 3.5,
it must be equal to the current tick anyway, as other uses of this property have been
deprecated), and originSubpop (specified by the Subpopulation object or by integer
identifier, or by NULL, the default, to specify the subpopulation to which the first target
genome belongs). If originSubpop is supplied as an integer, it is intentionally not checked
for validity; you may use arbitrary values of originSubpop to “tag” the mutations that you
create (see section 25.10.1). The addNewDrawnMutation() method may be used instead if
you wish selection coefficients to be drawn from the mutation types of the mutations.

In non-nucleotide-based models, mutationType will always be a non-nucleotide-based
mutation type, and so nucleotide must be NULL (the default). In a nucleotide-based model,
mutationType might still be non-nucleotide-based (in which case nucleotide must still be
NULL), or mutationType might be nucleotide-based, in which case a non-NULL value must be
supplied for nucleotide, specifying the nucleotide(s) to be associated with the new
mutation(s). Nucleotides may be specified with string values ("A", "C", "G", or "T"), or with
integer values (A=0, C=1, G=2, T=3). If a nucleotide mutation already exists at the mutating
position, it is replaced automatically in accordance with the stacking policy for nucleotide-
based mutation types. No check is performed that a new mutation’s nucleotide differs from
the ancestral sequence, or that its selection coefficient is consistent with other mutations that
may already exist at the given position with the same nucleotide; model consistency is the
responsibility of the model.

The new mutations created by this method are returned, even if their actual addition is
prevented by the mutation stacking policy (see the mutationStackPolicy property of
MutationType, section 25.11.1). However, the order of the mutations in the returned vector
is not guaranteed to be the same as the order in which the values are specified in parameter
vectors, unless the position parameter is specified in ascending order. In other words, pre-
sorting the parameters to this method into ascending order by position, using order() and
subsetting, will guarantee that the order of the returned vector of mutations corresponds to the
order of elements in the parameters to this method; otherwise, no such guarantee exists.

Beginning in SLiM 2.1, this is a class method, not an instance method. This means that it does
not get multiplexed out to all of the elements of the receiver (which would add a different

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 671

new mutation to each element); instead, it is performed as a single operation, adding the
same new mutation object to all of the elements of the receiver. Before SLiM 2.1, to add the
same mutation to multiple genomes, it was necessary to call addNewMutation() on one of
the genomes, and then add the returned Mutation object to all of the other genomes using
addMutations(). That is not necessary in SLiM 2.1 and later, because of this change
(although doing it the old way does no harm and produces identical behavior). Pre-2.1 code
that actually relied upon the old multiplexing behavior will no longer work correctly (but this
is expected to be an extremely rare pattern of usage).

Before SLiM 4, this method also took a originGeneration parameter. This was deprecated
(the origin generation was then required to be equal to the current generation, for internal
consistency), and was removed in SLiM 4.

Calling this will normally affect the fitness values calculated at the end of the current tick (but
not sooner); if you want current fitness values to be affected, you can call the Species
method recalculateFitness() – but see the documentation of that method for caveats.

Note that in nonWF models that use tree-sequence recording, mutations cannot be added to an
individual after the tick in which the individual is created (i.e., when the age of the individual is
greater than 0), to prevent the possibility of inconsistencies in the recorded tree sequence.

– (Nlo<Mutation>$)containsMarkerMutation(io<MutationType>$ mutType,
integer$ position, [logical$ returnMutation = F])

Returns T if the genome contains a mutation of type mutType at position, F otherwise (if
returnMutation has its default value of F; see below). This method is, as its name suggests, intended
for checking for “marker mutations”: mutations of a special mutation type that are not literally
mutations in the usual sense, but instead are added in to particular genomes to mark them as
possessing some property. Marker mutations are not typically added by SLiM’s mutation-generating
machinery; instead they are added explicitly with addNewMutation() or addNewDrawnMutation() at
a known, constant position in the genome. This method provides a check for whether a marker
mutation of a given type exists in a particular genome; because the position to check is known in
advance, that check can be done much faster than the equivalent check with containsMutations()
or countOfMutationsOfType(), using a binary search of the genome. See section 14.4 for one
example of a model that uses marker mutations – in that case, to mark chromosomes that possess an
inversion.

If returnMutation is T (an option added in SLiM 3), this method returns the actual mutation found,
rather than just T or F. More specifically, the first mutation found of mutType at position will be
returned; if more than one such mutation exists in the target genome, which one is returned is not
defined. If returnMutation is T and no mutation of mutType is found at position, NULL will be
returned.

– (logical)containsMutations(object<Mutation> mutations)
Returns a logical vector indicating whether each of the mutations in mutations is present in the
genome; each element in the returned vector indicates whether the corresponding mutation is present
(T) or absent (F). This method is provided for speed; it is much faster than the corresponding Eidos
code.

– (integer$)countOfMutationsOfType(io<MutationType>$ mutType)
Returns the number of mutations that are of the type specified by mutType, out of all of the mutations
in the genome. If you need a vector of the matching Mutation objects, rather than just a count, use
-mutationsOfType(). This method is provided for speed; it is much faster than the corresponding
Eidos code.

+ (integer)mutationCountsInGenomes([No<Mutation> mutations = NULL])
Return an integer vector with the frequency counts of all of the Mutation objects passed in
mutations, within the target Genome vector. If the optional mutations argument is NULL (the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 672

default), frequency counts will be returned for all of the active Mutation objects in the simulation –
the same Mutation objects, and in the same order, as would be returned by the mutations property
of sim, in other words.

See the +mutationFrequenciesInGenomes() method to obtain float frequencies instead of
integer counts. See also the Species methods mutationCounts() and mutationFrequencies(),
which may be more efficient for getting counts/frequencies for whole subpopulations or for the whole
simulation.

+ (float)mutationFrequenciesInGenomes([No<Mutation> mutations = NULL])
Return a float vector with the frequencies of all of the Mutation objects passed in mutations,
within the target Genome vector. If the optional mutations argument is NULL (the default), frequencies
will be returned for all of the active Mutation objects in the simulation – the same Mutation objects,
and in the same order, as would be returned by the mutations property of sim, in other words.

See the +mutationCountsInGenomes() method to obtain integer counts instead of float
frequencies. See also the Species methods mutationCounts() and mutationFrequencies(),
which may be more efficient for getting counts/frequencies for whole subpopulations or for the whole
simulation.

– (object<Mutation>)mutationsOfType(io<MutationType>$ mutType)
Returns an object vector of all the mutations that are of the type specified by mutType, out of all of
the mutations in the genome. If you just need a count of the matching Mutation objects, rather than
a vector of the matches, use -countOfMutationsOfType(); if you need just the positions of matching
Mutation objects, use -positionsOfMutationsOfType(); and if you are aiming for a sum of the
selection coefficients of matching Mutation objects, use -sumOfMutationsOfType(). This method is
provided for speed; it is much faster than the corresponding Eidos code.

– (is)nucleotides([Ni$ start = NULL], [Ni$ end = NULL],
[string$ format = "string"])

Returns the nucleotide sequence for the genome. This is the current ancestral sequence, as would be
returned by the Chromosome method ancestralNucleotides(), with the nucleotides for any
nucleotide-based mutations in the genome overlaid. The range of the returned sequence may be
constrained by a start position given in start and/or an end position given in end; nucleotides will be
returned from start to end, inclusive. The default value of NULL for start and end represent the first
and last base positions of the chromosome, respectively.

The format of the returned sequence is controlled by the format parameter. A format of "string"
will return the sequence as a singleton string (e.g., "TATA"). A format of "char" will return a
string vector with one element per nucleotide (e.g., "T", "A", "T", "A"). A format of "integer"
will return an integer vector with values A=0, C=1, G=2, T=3 (e.g., 3, 0, 3, 0). A format of "codon"
will return an integer vector with values from 0 to 63, based upon successive nucleotide triplets in
the sequence (which, for this format, must have a length that is a multiple of three); see the
ancestralNucleotides() documentation for details. If the sequence returned is likely to be long,
the "string" format will be the most memory-efficient, and may also be the fastest (but may be
harder to work with).

Several helper functions are provided for working with sequences, such as nucleotideCounts() to
get the counts of A/C/G/T nucleotides in a sequence, nucleotideFrequencies() to get the same
information as frequencies, and codonsToAminoAcids() to convert a codon sequence (such as
provided by the codon format described above) to an amino acid sequence; see section 25.18.1.

+ (void)output([Ns$ filePath = NULL], [logical$ append = F])
Output the target genomes in SLiM’s native format (see section 27.3.1 for output format details). This
low-level output method may be used to output any sample of Genome objects (the Eidos function
sample() may be useful for constructing custom samples, as may the SLiM class Individual). For
output of a sample from a single Subpopulation, the outputSample() of Subpopulation may be

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 673

more straightforward to use. If the optional parameter filePath is NULL (the default), output is
directed to SLiM’s standard output. Otherwise, the output is sent to the file specified by filePath,
overwriting that file if append if F, or appending to the end of it if append is T.

See outputMS() and outputVCF() for other output formats. Output is generally done in a late()
event, so that the output reflects the state of the simulation at the end of a tick.

+ (void)outputMS([Ns$ filePath = NULL], [logical$ append = F],
[logical$ filterMonomorphic = F])

Output the target genomes in MS format (see section 27.3.2 for output format details). This low-level
output method may be used to output any sample of Genome objects (the Eidos function sample()
may be useful for constructing custom samples, as may the SLiM class Individual). For output of a
sample from a single Subpopulation, the outputMSSample() of Subpopulation may be more
straightforward to use. If the optional parameter filePath is NULL (the default), output is directed to
SLiM’s standard output. Otherwise, the output is sent to the file specified by filePath, overwriting
that file if append if F, or appending to the end of it if append is T. Positions in the output will span
the interval [0,1].

If filterMonomorphic is F (the default), all mutations that are present in the sample will be included
in the output. This means that some mutations may be included that are actually monomorphic within
the sample (i.e., that exist in every sampled genome, and are thus apparently fixed). These may be
filtered out with filterMonomorphic = T if desired; note that this option means that some mutations
that do exist in the sampled genomes might not be included in the output, simply because they exist
in every sampled genome.

See output() and outputVCF() for other output formats. Output is generally done in a late()
event, so that the output reflects the state of the simulation at the end of a tick.

+ (void)outputVCF([Ns$ filePath = NULL], [logical$ outputMultiallelics = T],
[logical$ append = F], [logical$ simplifyNucleotides = F],
[logical$ outputNonnucleotides = T])

Output the target genomes in VCF format (see sections 27.2.3, 27.2.4, and 27.3.3 for output format
details). The target genomes are treated as pairs comprising individuals for purposes of structuring the
VCF output, so an even number of genomes is required. This low-level output method may be used to
output any sample of Genome objects (the Eidos function sample() may be useful for constructing
custom samples, as may the SLiM class Individual). For output of a sample from a single
Subpopulation, the outputVCFSample() of Subpopulation may be more straightforward to use. If
the optional parameter filePath is NULL (the default), output is directed to SLiM’s standard output.
Otherwise, the output is sent to the file specified by filePath, overwriting that file if append if F, or
appending to the end of it if append is T.

The parameters outputMultiallelics, simplifyNucleotides, and outputNonnucleotides affect
the format of the output produced; see sections 27.2.3 and 27.2.4 for further discussion.

See outputMS() and output() for other output formats. Output is generally done in a late() event,
so that the output reflects the state of the simulation at the end of a tick.

– (integer)positionsOfMutationsOfType(io<MutationType>$ mutType)
Returns the positions of mutations that are of the type specified by mutType, out of all of the mutations
in the genome. If you need a vector of the matching Mutation objects, rather than just positions, use
-mutationsOfType(). This method is provided for speed; it is much faster than the corresponding
Eidos code.

+ (object<Mutation>)readFromMS(string$ filePath, io<MutationType>$ mutationType)
Read new mutations from the MS format file at filePath and add them to the target genomes. The
number of target genomes must match the number of genomes represented in the MS file. To read
into all of the genomes in a given subpopulation pN, simply call pN.genomes.readFromMS(),

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 674

assuming the subpopulation’s size matches that of the MS file. A vector containing all of the
mutations created by readFromMS() is returned.

Each mutation is created at the position specified in the file, using the mutation type given by
mutationType. Positions are expected to be in [0,1], and are scaled to the length of the chromosome
by multiplying by the last valid base position of the chromosome (i.e., one less than the chromosome
length). Selection coefficients are drawn from the mutation type. The population of origin for each
mutation is set to -1, and the tick of origin is set to the current tick. In a nucleotide-based model, if
mutationType is nucleotide-based, a random nucleotide different from the ancestral nucleotide at the
position will be chosen with equal probability.

The target genomes correspond, in order, to the call lines in the MS file. In sex-based models that
simulate the X or Y chromosome, null genomes in the target vector will be skipped, and will not be
used to correspond to any call line; however, care should be taken in this case that the lines in the MS
file correspond to the target genomes in the manner desired.

+ (object<Mutation>)readFromVCF(string$ filePath,
[Nio<MutationType>$ mutationType = NULL])

Read new mutations from the VCF format file at filePath and add them to the target genomes. The
number of target genomes must match the number of genomes represented in the VCF file (i.e., two
times the number of samples, if each sample is diploid). To read into all of the genomes in a given
subpopulation pN, simply call pN.genomes.readFromVCF(), assuming the subpopulation’s size
matches that of the VCF file taking ploidy into account. A vector containing all of the mutations
created by readFromVCF() is returned.

SLiM’s VCF parsing is quite primitive. The header is parsed only inasmuch as SLiM looks to see
whether SLiM-specific VCF fields (see sections 27.2.3 and 27.2.4) are defined or not; the rest of the
header information is ignored. Call lines are assumed to follow the format:

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT i0...iN

The CHROM, ID, QUAL, FILTER, and FORMAT fields are ignored, and information in the genotype fields
beyond the GT genotype subfield are also ignored. SLiM’s own VCF annotations (see section 27.2.3)
are honored; in particular, mutations will be created using the given values of MID, S, PO, TO, and MT if
those subfields are present, and DOM, if it is present, must match the dominance coefficient of the
mutation type. The parameter mutationType (a MutationType object or id) will be used for any
mutations that have no supplied mutation type id in the MT subfield; if mutationType would be used
but is NULL an error will result. Mutation IDs supplied in MID will be used if no mutation IDs have
been used in the simulation so far; if any have been used, it is difficult for SLiM to guarantee that there
are no conflicts, so a warning will be emitted and the MID values will be ignored. If selection
coefficients are not supplied with the S subfield, they will be drawn from the mutation type used for
the mutation. If a population of origin is not supplied with the PO subfield, -1 will be used. If a tick of
origin is not supplied with the TO subfield (or a generation of origin GO field, which was the SLiM
convention before SLiM 4), the current tick will be used.

REF and ALT must always be comprised of simple nucleotides (A/C/G/T) rather than values representing
indels or other complex states. Beyond this, the handling of the REF and ALT fields depends upon
several factors. First of all, these fields are ignored in non-nucleotide-based models, although they are
still checked for conformance. In nucleotide-based models, when a header definition for SLiM’s
NONNUC tag is present (as when nucleotide-based output is generated by SLiM): Second, if a NONNUC
field is present in the INFO field the call line is taken to represent a non-nucleotide-based mutation,
and REF and ALT are again ignored. In this case the mutation type used must be non-nucleotide-
based. Third, if NONNUC is not present the call line is taken to represent a nucleotide-based mutation.
In this case, the mutation type used must be nucleotide-based. Also, in this case, the specified
reference nucleotide must match the existing ancestral nucleotide at the given position. In nucleotide-
based models, when a header definition for SLiM’s NONNUC tag is not present (as when loading a non-
SLiM-generated VCF file): The mutation type will govern the way nucleotides are handled. If the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 675

mutation type used for a mutation is nucleotide-based, the nucleotide provided in the VCF file for that
allele will be used. If the mutation type is non-nucleotide-based, the nucleotide provided will be
ignored.

If multiple alleles using the same nucleotide at the same position are specified in the VCF file, a
separate mutation will be created for each, mirroring SLiM’s behavior with independent mutational
lineages when writing VCF (see section 27.2.4). The MULTIALLELIC flag is ignored by
readFromVCF(); call lines for mutations at the same base position in the same genome will result in
stacked mutations whether or not MULTIALLELIC is present.

The target genomes correspond, in order, to the haploid or diploid calls provided for i0…iN (the
sample IDs) in the VCF file. In sex-based models that simulate the X or Y chromosome, null genomes
in the target vector will be skipped, and will not be used to correspond to any of i0…iN; however,
care should be taken in this case that the genomes in the VCF file correspond to the target genomes in
the manner desired.

+ (void)removeMutations([No<Mutation> mutations = NULL], [logical$ substitute = F])
Remove the mutations in mutations from the target genome(s), if they are present (if they are not
present, they will be ignored). If NULL is passed for mutations (which is the default), then all
mutations will be removed from the target genomes; in this case, substitute must be F (a specific
vector of mutations to be substituted is required). Note that the Mutation objects removed remain
valid, and will still be in the simulation’s mutation registry (i.e., will be returned by the Species
property mutations), until the next tick.

Removing mutations will normally affect the fitness values calculated at the end of the current tick; if
you want current fitness values to be affected, you can call the Species method
recalculateFitness() – but see the documentation of that method for caveats.

The optional parameter substitute was added in SLiM 2.2, with a default of F for backward
compatibility. If substitute is T, Substitution objects will be created for all of the removed
mutations so that they are recorded in the simulation as having fixed, just as if they had reached
fixation and been removed by SLiM’s own internal machinery. This will occur regardless of whether
the mutations have in fact fixed, regardless of the convertToSubstitution property of the relevant
mutation types, and regardless of whether all copies of the mutations have even been removed from
the simulation (making it possible to create Substitution objects for mutations that are still
segregating). It is up to the caller to perform whatever checks are necessary to preserve the integrity of
the simulation’s records. Typically substitute will only be set to T in the context of calls like
sim.subpopulations.genomes.removeMutations(muts, T), such that the substituted mutations
are guaranteed to be entirely removed from circulation. As mentioned above, substitute may not
be T if mutations is NULL.

– (float$)sumOfMutationsOfType(io<MutationType>$ mutType)
Returns the sum of the selection coefficients of all mutations that are of the type specified by mutType,
out of all of the mutations in the genome. This is often useful in models that use a particular mutation
type to represent QTLs with additive effects; in that context, sumOfMutationsOfType() will provide
the sum of the additive effects of the QTLs for the given mutation type. This method is provided for
speed; it is much faster than the corresponding Eidos code. Note that this method also exists on
Individual, for cases in which the sum across both genomes of an individual is desired.

25.5 Class GenomicElement
Superclass: Object

This class represents a genomic element of a particular genomic element type, with a start and
end; the chromosome is composed of a series of such genomic elements. Section 1.5.4 presents
an overview of the conceptual role of this class.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 676

25.5.1 GenomicElement properties

endPosition => (integer$)
The last position in the chromosome contained by this genomic element.

genomicElementType => (object<GenomicElementType>$)
The GenomicElementType object that defines the behavior of this genomic element.

startPosition => (integer$)
The first position in the chromosome contained by this genomic element.

tag <–> (integer$)
A user-defined integer value. The value of tag is initially undefined, and it is an error to try to read
it; if you wish it to have a defined value, you must arrange that yourself by explicitly setting its value
prior to using it elsewhere in your code. The value of tag is not used by SLiM; it is free for you to use.

25.5.2 GenomicElement methods

– (void)setGenomicElementType(io<GenomicElementType>$ genomicElementType)
Set the genomic element type used for a genomic element (see section 1.5.4). The
genomicElementType parameter should supply the new genomic element type for the element, either
as a GenomicElementType object or as an integer identifier. The genomic element type for a
genomic element is normally a constant in simulations, so be sure you know what you are doing.

25.6 Class GenomicElementType
Superclass: Dictionary

This class represents a type of genomic element, with particular mutation types. The genomic
element types currently defined in the simulation are defined as global constants with the same
names used in the SLiM input file – g1, g2, and so forth. Section 1.5.4 presents an overview of the
conceptual role of this class.

25.6.1 GenomicElementType properties

color <–> (string$)
The color used to display genomic elements of this type in SLiMgui. Outside of SLiMgui, this property
still exists, but is not used by SLiM. Colors may be specified by name, or with hexadecimal RGB
values of the form "#RRGGBB" (see the Eidos manual). If color is the empty string, "", SLiMgui’s
default color scheme is used; this is the default for new GenomicElementType objects.

id => (integer$)
The identifier for this genomic element type; for genomic element type g3, for example, this is 3.

mutationFractions => (float)
For each MutationType represented in this genomic element type, this property has the
corresponding fraction of all mutations that will be drawn from that MutationType.

mutationMatrix => (float)
The nucleotide mutation matrix used for this genomic element type, set up by
initializeGenomicElementType() and setMutationMatrix(). This property is only defined in
nucleotide-based models; it is unavailable otherwise.

mutationTypes => (object<MutationType>)
The MutationType instances used by this genomic element type.

species => (object<Species>$)

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 677

The species to which the target object belongs.

tag <–> (integer$)
A user-defined integer value. The value of tag is initially undefined, and it is an error to try to read
it; if you wish it to have a defined value, you must arrange that yourself by explicitly setting its value
prior to using it elsewhere in your code. The value of tag is not used by SLiM; it is free for you to use.
See also the getValue() and setValue() methods (provided by the Dictionary class; see the Eidos
manual), for another way of attaching state to genomic element types.

25.6.2 GenomicElementType methods

– (void)setMutationFractions(io<MutationType> mutationTypes, numeric proportions)
Set the mutation type fractions contributing to a genomic element type. The mutationTypes vector
should supply the mutation types used by the genomic element (either as MutationType objects or as
integer identifiers), and the proportions vector should be of equal length, specifying the relative
proportion of mutations that will be drawn from each corresponding type (see section 1.5.4). This is
normally a constant in simulations, so be sure you know what you are doing.

– (void)setMutationMatrix(float mutationMatrix)
Sets a new nucleotide mutation matrix for the genomic element type. This replaces the mutation
matrix originally set by initializeGenomicElementType(). This method may only be called in
nucleotide-based models.

25.7 Class Individual
Superclass: Dictionary

This class represents a single simulated individual. Individuals in SLiM are diploid, and thus
contain two Genome objects. Most functionality in SLiM is contained in the Genome class; the
Individual class is mostly a convenient way to treat the pairs of genomes associated with an
individual as a single object, and to associate a tag value with individuals. Section 1.5.1 presents
an overview of the conceptual role of this class.

25.7.1 Individual properties

age <–> (integer$)
The age of the individual, measured in cycles. A newly generated offspring individual will have an
age of 0 in the same tick in which it was created. The age of every individual is incremented by one at
the same point that its species cycle counter is incremented, at the end of the tick cycle, if and only if
its species was active in that tick. The age of individuals may be changed; usually this only makes
sense when setting up the initial state of a model, however.

color <–> (string$)
The color used to display the individual in SLiMgui. Outside of SLiMgui, this property still exists, but
is not used by SLiM. Colors may be specified by name, or with hexadecimal RGB values of the form
"#RRGGBB" (see the Eidos manual). If color is the empty string, "", SLiMgui’s default (fitness-based)
color scheme is used; this is the default for new Individual objects. Note that named colors will be
converted to RGB internally, so the value of this property will always be a hexadecimal RGB color
string (or "").

fitnessScaling <–> (float$)
A float scaling factor applied to the individual’s fitness (i.e., the fitness value computed for the
individual will be multiplied by this value). This provides a simple, fast way to modify the fitness of an
individual; conceptually it is similar to returning a fitness effect for the individual from a
fitnessEffect() callback, but without the complexity and performance overhead of implementing

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 678

such a callback. To scale the fitness of all individuals in a subpopulation by the same factor, see the
fitnessScaling property of Subpopulation.

The value of fitnessScaling is reset to 1.0 every tick, so that any scaling factor set lasts for only a
single tick. This reset occurs immediately after fitness values are calculated, in both WF and nonWF
models.

genomes => (object<Genome>)
The pair of Genome objects associated with this individual. If only one of the two genomes is desired,
the genome1 or genome2 property may be used.

genomesNonNull => (object<Genome>)
The pair of Genome objects associated with this individual, as with the genomes property, if both are
not null genomes. If one or both are null genomes, the null genomes are excluded from the returned
vector. This is a convenience shorthand, sometimes useful in models that involve null genomes.

genome1 => (object<Genome>$)
The first Genome object associated with this individual. This property is particularly useful when you
want the first genome from each of a vector of individuals, as often arises in haploid models.

genome2 => (object<Genome>$)
The second Genome object associated with this individual. This property is particularly useful when
you want the second genome from each of a vector of individuals, as often arises in haploid models.

index => (integer$)
The index of the individual in the individuals vector of its Subpopulation.

meanParentAge => (float$)
The average age of the parents of this individual, measured in cycles. Parentless individuals will have
a meanParentAge of 0.0. The mean parent age is determined when a new offspring is generated,
from the age property of the parent or parents involved in generating the offspring. For
addRecombinant() that is somewhat complex; see that method for details.

migrant => (logical$)
Set to T if the individual is a recent migrant, F otherwise. The definition of “recent” depends upon the
model type (WF or nonWF).

In WF models, this flag is set at the point when a new child is generated if it is a migrant (i.e., if its
source subpopulation is not the same as its subpopulation), and remains valid, with the same value,
for the rest of the individual’s lifetime.

In nonWF models, this flag is F for all new individuals, is set to F in all individuals at the end of the
reproduction tick cycle stage, and is set to T on all individuals moved to a new subpopulation by
takeMigrants() or a survival() callback; the T value set by takeMigrants() or survival() will
remain until it is reset at the end of the next reproduction tick cycle stage.

pedigreeID => (integer$)
If pedigree tracking is turned on with initializeSLiMOptions(keepPedigrees=T), pedigreeID is
a unique non-negative identifier for each individual in a simulation, never re-used throughout the
duration of the simulation run. If pedigree tracking is not enabled, this property is unavailable.

pedigreeParentIDs => (integer)
If pedigree tracking is turned on with initializeSLiMOptions(keepPedigrees=T),
pedigreeParentIDs contains the values of pedigreeID that were possessed by the parents of an
individual; it is thus a vector of two values. If pedigree tracking is not enabled, this property is
unavailable. Parental values may be -1 if insufficient ticks have elapsed for that information to be
available (because the simulation just started, or because a subpopulation is new).

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 679

pedigreeGrandparentIDs => (integer)
If pedigree tracking is turned on with initializeSLiMOptions(keepPedigrees=T),
pedigreeGrandparentIDs contains the values of pedigreeID that were possessed by the
grandparents of an individual; it is thus a vector of four values. If pedigree tracking is not enabled, this
property is unavailable. Grandparental values may be -1 if insufficient ticks have elapsed for that
information to be available (because the simulation just started, or because a subpopulation is new).

reproductiveOutput => (integer$)
If pedigree tracking is turned on with initializeSLiMOptions(keepPedigrees=T),
reproductiveOutput contains the number of offspring for which this individual has been a parent. If
pedigree tracking is not enabled, this property is unavailable. If an individual is a parent by cloning or
selfing, or as both parents for a biparental mating, this value is incremented by two. Involvement of
an individual as a parent for an addRecombinant() call does not change this property’s value, since
the reproductive contribution in that case is unclear; one must conduct separate bookkeeping for that
case if necessary.

See also the Subpopulation property lifetimeReproductiveOutput.

sex => (string$)
The sex of the individual. This will be "H" if sex is not enabled in the simulation (i.e., for
hermaphrodites), otherwise "F" or "M" as appropriate.

spatialPosition => (float)
The spatial position of the individual. The length of the spatialPosition property (the number of
coordinates in the spatial position of an individual) depends upon the spatial dimensionality declared
with initializeSLiMOptions(). If the spatial dimensionality is zero (as it is by default), it is an
error to access this property. The elements of this property are identical to the values of the x, y, and z
properties (if those properties are encompassed by the spatial dimensionality of the simulation). In
other words, if the declared dimensionality is "xy", the individual.spatialPosition property is
equivalent to c(individual.x, individual.y); individual.z is not used since it is not
encompassed by the simulation’s dimensionality. This property cannot be set, but the
setSpatialPosition() method may be used to achieve the same thing.

subpopulation => (object<Subpopulation>$)
The Subpopulation object to which the individual belongs.

tag <–> (integer$)
A user-defined integer value (as opposed to tagF, which is of type float). The value of tag is
initially undefined, and it is an error to try to read it; if you wish it to have a defined value, you must
arrange that yourself by explicitly setting its value prior to using it elsewhere in your code. The value
of tag is not used by SLiM; it is free for you to use. See also the getValue() and setValue()
methods (provided by the Dictionary class; see the Eidos manual), for another way of attaching state
to individuals. Note that the Individual objects used by SLiM are new for every new offspring, so
the tag value of each new offspring generated in each tick will be initially undefined.

tagF <–> (float$)
A user-defined float value (as opposed to tag, which is of type integer). The value of tagF is
initially undefined, and it is an error to try to read it; if you wish it to have a defined value, you must
arrange that yourself by explicitly setting its value prior to using it elsewhere in your code. The value
of tagF is not used by SLiM; it is free for you to use. See also the getValue() and setValue()
methods (provided by the Dictionary class; see the Eidos manual), for another way of attaching state
to individuals.

Note that at present, although many classes in SLiM have an integer-type tag property, only
Individual has a float-type tagF property, because attaching model state to individuals seems to

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 680

be particularly common and useful. If a tagF property would be helpful on another class, it would be
easy to add.

See the description of the tag property above for additional comments.

tagL0 <–> (logical$)
A user-defined logical value (see also tag and tagF). The value of tagL0 is initially undefined, and
it is an error to try to read it; if you wish it to have a defined value, you must arrange that yourself by
explicitly setting its value prior to using it elsewhere in your code. The value of tagL0 is not used by
SLiM; it is free for you to use. See also the getValue() and setValue() methods (provided by the
Dictionary class; see the Eidos manual), for another way of attaching state to individuals.

tagL1 <–> (logical$)
A user-defined logical value (see also tag and tagF). The value of tagL1 is initially undefined, and
it is an error to try to read it; if you wish it to have a defined value, you must arrange that yourself by
explicitly setting its value prior to using it elsewhere in your code. The value of tagL1 is not used by
SLiM; it is free for you to use. See also the getValue() and setValue() methods (provided by the
Dictionary class; see the Eidos manual), for another way of attaching state to individuals.

tagL2 <–> (logical$)
A user-defined logical value (see also tag and tagF). The value of tagL2 is initially undefined, and
it is an error to try to read it; if you wish it to have a defined value, you must arrange that yourself by
explicitly setting its value prior to using it elsewhere in your code. The value of tagL2 is not used by
SLiM; it is free for you to use. See also the getValue() and setValue() methods (provided by the
Dictionary class; see the Eidos manual), for another way of attaching state to individuals.

tagL3 <–> (logical$)
A user-defined logical value (see also tag and tagF). The value of tagL3 is initially undefined, and
it is an error to try to read it; if you wish it to have a defined value, you must arrange that yourself by
explicitly setting its value prior to using it elsewhere in your code. The value of tagL3 is not used by
SLiM; it is free for you to use. See also the getValue() and setValue() methods (provided by the
Dictionary class; see the Eidos manual), for another way of attaching state to individuals.

tagL4 <–> (logical$)
A user-defined logical value (see also tag and tagF). The value of tagL4 is initially undefined, and
it is an error to try to read it; if you wish it to have a defined value, you must arrange that yourself by
explicitly setting its value prior to using it elsewhere in your code. The value of tagL4 is not used by
SLiM; it is free for you to use. See also the getValue() and setValue() methods (provided by the
Dictionary class; see the Eidos manual), for another way of attaching state to individuals.

uniqueMutations => (object<Mutation>)
All of the Mutation objects present in this individual. Mutations present in both genomes will occur
only once in this property, and the mutations will be given in sorted order by position, so this
property is similar to sortBy(unique(individual.genomes.mutations), "position"). It is not
identical to that call, only because if multiple mutations exist at the exact same position, they may be
sorted differently by this method than they would be by sortBy(). This method is provided primarily
for speed; it executes much faster than the Eidos equivalent above. Indeed, it is faster than just
individual.genomes.mutations, and gives uniquing and sorting on top of that, so it is
advantageous unless duplicate entries for homozygous mutations are actually needed.

x <–> (float$)
A user-defined float value. The value of x is initially undefined (i.e., has an effectively random value
that could be different every time you run your model); if you wish it to have a defined value, you
must arrange that yourself by explicitly setting its value prior to using it elsewhere in your code. The
value of x is not used by SLiM unless the optional “continuous space” facility is enabled with the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 681

dimensionality parameter to initializeSLiMOptions(), in which case x will be understood to
represent the x coordinate of the individual in space. If continuous space is not enabled, you may use
x as an additional tag value of type float.

xy => (float)
This property provides joint read-only access to the x and y properties; they are returned as a two-
element float vector. This can be useful in complex spatial models in which the spatiality of
interactions/maps differs from the overall dimensionality of the model. See the documentation for the
separate properties x and y for further comments.

xyz => (float)
This property provides joint read-only access to the x, y, and z properties; they are returned as a three-
element float vector. This can be useful in complex spatial models in which the spatiality of
interactions/maps differs from the overall dimensionality of the model. See the documentation for the
separate properties x, y, and z for further comments.

xz => (float)
This property provides joint read-only access to the x and z properties; they are returned as a two-
element float vector. This can be useful in complex spatial models in which the spatiality of
interactions/maps differs from the overall dimensionality of the model. See the documentation for the
separate properties x and z for further comments.

y <–> (float$)
A user-defined float value. The value of y is initially undefined (i.e., has an effectively random value
that could be different every time you run your model); if you wish it to have a defined value, you
must arrange that yourself by explicitly setting its value prior to using it elsewhere in your code. The
value of y is not used by SLiM unless the optional “continuous space” facility is enabled with the
dimensionality parameter to initializeSLiMOptions(), in which case y will be understood to
represent the y coordinate of the individual in space (if the dimensionality is "xy" or "xyz"). If
continuous space is not enabled, or the dimensionality is not "xy" or "xyz", you may use y as an
additional tag value of type float.

yz => (float)
This property provides joint read-only access to the y and z properties; they are returned as a two-
element float vector. This can be useful in complex spatial models in which the spatiality of
interactions/maps differs from the overall dimensionality of the model. See the documentation for the
separate properties y and z for further comments.

z <–> (float$)
A user-defined float value. The value of z is initially undefined (i.e., has an effectively random value
that could be different every time you run your model); if you wish it to have a defined value, you
must arrange that yourself by explicitly setting its value prior to using it elsewhere in your code. The
value of z is not used by SLiM unless the optional “continuous space” facility is enabled with the
dimensionality parameter to initializeSLiMOptions(), in which case z will be understood to
represent the z coordinate of the individual in space (if the dimensionality is "xyz"). If continuous
space is not enabled, or the dimensionality is not "xyz", you may use z as an additional tag value of
type float.

25.7.2 Individual methods

– (logical)containsMutations(object<Mutation> mutations)
Returns a logical vector indicating whether each of the mutations in mutations is present in the
individual (in either of its genomes); each element in the returned vector indicates whether the
corresponding mutation is present (T) or absent (F). This method is provided for speed; it is much
faster than the corresponding Eidos code.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 682

– (integer$)countOfMutationsOfType(io<MutationType>$ mutType)
Returns the number of mutations that are of the type specified by mutType, out of all of the mutations
in the individual (in both of its genomes; a mutation that is present in both genomes counts twice). If
you need a vector of the matching Mutation objects, rather than just a count, you should probably
use uniqueMutationsOfType(). This method is provided for speed; it is much faster than the
corresponding Eidos code.

– (float)relatedness(object<Individual> individuals)
Returns a vector containing the degrees of relatedness between the receiver and each of the
individuals in individuals. The relatedness between A and B is always 1.0 if A and B are actually
the same individual; this facility works even if SLiM’s optional pedigree tracking is not enabled (in
which case all other relatedness values will be 0.0). Otherwise, if pedigree tracking is turned on with
initializeSLiMOptions(keepPedigrees=T), this method will use the pedigree information
described in section 25.7.1 to construct a relatedness estimate.

More specifically, this method uses all available pedigree information from the grandparental and
parental pedigree records of A and B to compute an estimate of the degree of consanguinity between A
and B. Siblings have a relatedness of 0.5, as do parents to their children and vice versa; cousins have
a relatedness of 0.125; and so forth. If, according to the pedigree information available, A and B have
no blood relationship, the value returned is 0.0. Note that the value returned by relatedness() is
what is called the “coefficient of relationship” between the two individuals (Wright, 1922; https://
doi.org/10.1086/279872), and ranges from 0.0 to 1.0.

There is another commonly used metric of relatedness, called the “kinship coefficient”, that reflects
the probability of identity by descent between two individuals A and B. In general, it is approximately
equal to one-half of the coefficient of relationship; if an approximate estimate of the kinship
coefficient is acceptable, especially in models in which individuals are expected to be outbred, you
can simply divide relatedness() by two. However, it should be noted that Wright’s coefficient of
relationship is not a measure of the probability of identity by descent, and so it is not exactly double
the kinship coefficient; they actually measure different things. More precisely, the relationship
between them is r = 2φ/sqrt((1+fA)(1+fB)), where r is Wright’s coefficient of relatedness, φ is the kinship
coefficient, and fA and fB are the inbreeding coefficients of A and B respectively.

Note that this relatedness is simply pedigree-based relatedness, and does not necessarily correspond
to genetic relatedness, because of the effects of factors like assortment and recombination. If a metric
of actual genetic relatedness is desired, tree-sequence recording can be used after simulation is
complete, to compute the exact genetic relatedness between individuals based upon the complete
ancestry tree (a topic which is beyond the scope of this manual). Actual genetic relatedness cannot
presently be calculated during a simulation run; the information is implicitly contained in the
recorded tree-sequence tables, but calculating it is too computationally expensive to be reasonable.

This method assumes that the grandparents (or the parents, if grandparental information is not
available) are themselves unrelated and that they are not inbred; this assumption is necessary because
we have no information about their parentage, since SLiM’s pedigree tracking information only goes
back two generations. Be aware that in a model where inbreeding or selfing occurs at all (including
“incidental selfing”, where a hermaphroditic individual happens to choose itself as a mate), some level
of “background relatedness” will be present and this assumption will be violated. In such
circumstances, relatedness() will therefore tend to underestimate the degree of relatedness
between individuals, and the greater the degree of inbreeding, the greater the underestimation will be.
If inbreeding is allowed in a model – and particularly if it is common – the results of relatedness()
should therefore not be taken as an estimate of absolute relatedness, but can still be useful as an
estimate of relative relatedness (indicating that, say, A appears from the information available to be
more closely related to B than it is to C).

See also sharedParentCount() for a different metric of relatedness.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 683

https://doi.org/10.1086/279872
https://doi.org/10.1086/279872

+ (void)setSpatialPosition(float position)
Sets the spatial position of the individual (as accessed through the spatialPosition property). The
length of position (the number of coordinates in the spatial position of an individual) depends upon
the spatial dimensionality declared with initializeSLiMOptions(). If the spatial dimensionality is
zero (as it is by default), it is an error to call this method. The elements of position are set into the
values of the x, y, and z properties (if those properties are encompassed by the spatial dimensionality
of the simulation). In other words, if the declared dimensionality is "xy", calling
individual.setSpatialPosition(c(1.0, 0.5)) property is equivalent to individual.x = 1.0;
individual.y = 0.5; individual.z is not set (even if a third value is supplied in position) since
it is not encompassed by the simulation’s dimensionality in this example.

Note that this is an Eidos class method, somewhat unusually, which allows it to work in a special way
when called on a vector of individuals. When the target vector of individuals is non-singleton, this
method can do one of two things. If position contains just a single point (i.e., is equal in length to
the spatial dimensionality of the model), the spatial position of all of the target individuals will be set
to the given point. Alternatively, if position contains one point per target individual (i.e., is equal in
length to the number of individuals multiplied by the spatial dimensionality of the model), the spatial
position of each target individual will be set to the corresponding point from position (where the
point data is concatenated, not interleaved, just as it would be returned by accessing the
spatialPosition property on the vector of target individuals). Calling this method with a position
vector of any other length is an error.

– (integer)sharedParentCount(object<Individual> individuals)
Returns a vector containing the number of parents shared between the receiver and each of the
individuals in individuals. The number of shared parents between A and B is always 2 if A and B are
actually the same individual; this facility works even if SLiM’s optional pedigree tracking is not
enabled (in which case all other relatedness values will be 0). Otherwise, if pedigree tracking is
turned on with initializeSLiMOptions(keepPedigrees=T), this method will use the pedigree
information described in section 25.7.1 to construct a relatedness estimate.

More specifically, this method uses the parental pedigree IDs from the pedigree records of a pair of
individuals to count the number of shared parents between them, such that full siblings (with all of the
same parents) have a count of 2, and half siblings (with half of the same parents) have a count of 1. If
possible parents of the two individuals are A, B, C, and D, then the shared parent count is as follows,
for some illustrative examples. The first column showing the two parents of the first individual, the
second column showing the two parents of the second individual; note that the two parents of an
individual can be the same due to cloning or selfing:

 AB CD → 0 (no shared parents)

 AB CC → 0 (no shared parents)

 AB AC → 1 (half siblings)

 AB AA → 1 (half siblings)

 AA AB → 1 (half siblings)

 AB AB → 2 (full siblings)

 AB BA → 2 (full siblings)

 AA AA → 2 (full siblings)

This method does not estimate consanguinity. For example, if one individual is itself a parent of the
other individual, that is irrelevant for this method. Similarly, in simulations of sex chromosomes, the
sexes of the parents are irrelevant, even if no genetic material would have been inherited from a given
parent. See relatedness() for an assessment of pedigree-based relatedness that does estimate the
consanguinity of individuals. The sharedParentCount() method is preferable if your exact question
is simply whether individuals are full siblings, half siblings, or non-siblings; in other cases,
relatedness() is probably more useful.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 684

– (float$)sumOfMutationsOfType(io<MutationType>$ mutType)
Returns the sum of the selection coefficients of all mutations that are of the type specified by mutType,
out of all of the mutations in the genomes of the individual. This is often useful in models that use a
particular mutation type to represent QTLs with additive effects; in that context,
sumOfMutationsOfType() will provide the sum of the additive effects of the QTLs for the given
mutation type. This method is provided for speed; it is much faster than the corresponding Eidos code.
Note that this method also exists on Genome, for cases in which the sum for just one genome is
desired.

– (object<Mutation>)uniqueMutationsOfType(io<MutationType>$ mutType)
Returns an object vector of all the mutations that are of the type specified by mutType, out of all of
the mutations in the individual. Mutations present in both genomes will occur only once in the result
of this method, and the mutations will be given in sorted order by position, so this method is similar
to sortBy(unique(individual.genomes.mutationsOfType(mutType)), "position"). It is not
identical to that call, only because if multiple mutations exist at the exact same position, they may be
sorted differently by this method than they would be by sortBy(). If you just need a count of the
matching Mutation objects, rather than a vector of the matches, use -countOfMutationsOfType().
This method is provided for speed; it is much faster than the corresponding Eidos code. Indeed, it is
faster than just individual.genomes.mutationsOfType(mutType), and gives uniquing and sorting
on top of that, so it is advantageous unless duplicate entries for homozygous mutations are actually
needed.

25.8 Class InteractionType
Superclass: Dictionary

This class represents a type of interaction between individuals. This is an advanced feature, the
use of which is optional. Once an interaction type is set up with initializeInteractionType()
(see section 25.1), it can be evaluated and then queried to give information such as the nearest
interacting neighbors of an individual, or the total strength of interactions felt by an individual,
relatively efficiently.

There are two types of individual, in the paradigm provided by InteractionType: the receiver of
an interaction, and the exerter of that interaction. The same individual might be a receiver for one
interaction and the exerter for another interaction, and both of those interactions might be
governed by the same InteractionType, but nevertheless, for any given interaction the distinction
remains important. The distinction is important because InteractionType enforces this
directionality – from exerters, to receivers – throughout its design. Interactions therefore
fundamentally define a one-to-many relationship, from one receiver to the (potentially) many
exerters that act upon that receiver. Note that a receiver will never be an exerter of an interaction
upon itself; a given individual is never both receiver and exerter in the same interaction. When
using InteractionType, you will generally start with a receiver, and ask an InteractionType
object to handle a query about that receiver, such as “what are the ten nearest exerters to this
receiver?”. InteractionType is optimized to find and return the set of exerters influencing a given
receiver; it is not optimized for the reverse, finding and returning the set of receivers influenced by
a given exerter. (If that seems desirable, you might wish to flip your perspective and regard the
interaction as actually working in the opposite direction!)

Interactions are usually spatial, depending upon the spatial dimensionality established with
initializeSLiMOptions() (section 25.1), but they do not have to be spatial. For spatial
interactions, the strength of the interaction from an exerter to a receiver often depends (partly, at
least) upon the distance d between the two; nearby exerters often wield a stronger influence upon
a receiver than more distant exerters do. Non-spatial interactions, on the other hand, are of course
unrelated to distance, and the strength of interaction between two individuals depends entirely

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 685

upon other factors, expressed by an interaction() callback in the model script. Spatial
interactions can use interaction() callbacks too, to modify interaction strengths calculated by
SLiM, if factors other than distance need to influence the strength of interactions.

Note that if there are N receivers to be assessed, each of which potentially interacts with M
possible exerters, then – depending upon the queries executed – InteractionType may take
computational time proportional to N×log(N)×M. If every individual interacts with every other, M
is equal to N and there will be N2 interactions to be evaluated, and the overall computational time
may be as bad as N2log(N), although in practice it is perhaps closer to N2 – still bad. Modeling
interactions with large population sizes can therefore be very expensive, although
InteractionType goes to considerable lengths to minimize the overhead. To reduce this
computational burden for your models, it is essential to reduce N, M or both. Spatial interactions
can have – and almost always should have – a maximum distance, which allows them to be
evaluated much more efficiently (since all interactions beyond the maximum distance can be
assumed to have a strength of zero); setting this maximum distance to be as small as possible,
without introducing unwanted artifacts, is the single most important factor for using
InteractionType efficiently. For sexual models, interactions that are specific to the sexes in a
particular way (males competing with other males, males competing to mate with females, etc.)
can be declared to be sex-specific, which can also substantially reduce the overhead of querying
them. This “sex-segregation” is just one facet of a larger feature, called “interaction constraints”,
that allows you to specify a variety of constraints upon which individuals can be exerters and
which individuals can be receivers; these constraints can include not only sex, but also age,
migrant status, and the values of Individual properties such as tag and tagL0 – tagL4. Setting up
constraints allows you to model the interaction of just a subset of a subpopulation with a different
subset of a (perhaps different) subpopulation.

We will focus, in the remaining discussion, on spatial interactions since they are more
common. The first step in InteractionType’s evaluation of a spatial interaction is to determine the
distance from the individual receiving the interaction (the receiver) to the individual exerting the
interaction (the exerter). This is computed as the Euclidean distance between the spatial positions
of the individuals, based upon the spatiality of the interaction (i.e., the spatial dimensions used by
the interaction, which may be less than the dimensionality of the simulation as a whole). If the
receiver and exerter occupy different subpopulations, it is assumed that they nevertheless occupy
the same coordinate system; this can be particularly useful for evaluating interactions between
individuals of different species. Second, this distance is compared to the maximum distance for
the interaction type; if it is beyond that limit, the interaction strength is always zero (and it is also
always zero for the interaction of an individual with itself, since a given individual is never both
receiver and exerter, as mentioned above). At this stage, the receiver and exerter are then
considered “neighbors” – individuals that are within the maximum interaction distance. Some
spatial queries stop at this stage, processing the neighbors of receivers. Third, receiver and exerter
constraints are applied, potentially disqualifying some interactions; interacting pairs that remain
after this cull are called “interacting neighbors”. Some queries stop at this stage, processing the
interacting neighbors of receivers. Fourth, for all interacting neighbors, the distance is converted
into an interaction strength by an interaction function (IF), which is a characteristic of the
InteractionType. Finally, this interaction strength may be modified by the interaction()
callbacks currently active in the simulation, if any (see section 26.7). Some queries stop at this
stage, processing the interaction strengths between interacting neighbors.

InteractionType is actually a wrapper for three different spatial query engines that share some
of their data but work very differently. The first engine is a brute-force engine that simply
computes distances and interaction strengths in response to queries. This engine is usually used in

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 686

response to queries for simple information, such as the distance(), distanceToPoint(), and
strength() methods.

The second engine is based upon a data structure called a “k-d tree” that is designed to
optimize searches for spatially proximate points. This engine is usually used directly in response to
queries involving “neighbors”, such as nearestNeighbors() and nearestNeighborsOfPoint(). As
mentioned above, the term “neighbor” means an individual that is within the maximum interaction
distance of a receiver (excluding the receiver itself) or a focal point; the neighbors of the receiver
or point are therefore those that fall within the fixed radius defined by the maximum interaction
distance. Calls with “neighbor” in their name explicitly use the k-d tree engine, and may therefore
be called only for spatial interactions; in non-spatial interactions there is no concept of a
“neighbor”. In terms of computational complexity, finding the nearest neighbor of a given receiver
by brute force would be an O(N) computation, whereas with the k-d tree it is typically an O(log N)
computation – a very important difference, especially for large N. In general, to get the best
performance from a spatial model, you should use neighbor-based calls to make minimal queries
when possible. If all you really care about is the distance to the nearest neighbor of a receiver, for
example, then use nearestNeighbors() to find the neighbor and then call distance() to get the
distance to that neighbor, rather than getting the distances to all individuals with distance() and
then using min() to select the smallest.

The third engine, introduced in SLiM 3.1 and radically modified in SLiM 4, is based upon a data
structure called a “sparse array” that is designed to track sparse non-zero values within a dataset
that contains mostly zeros. It applies to spatial interactions because most pairs of individuals
probably interact with a strength of zero (because typically N >> M, because few exerters fall
within the maximum interaction radius from a given receiver). In SLiM 4, the full sparse array of
interactions is no longer calculated (as it was in SLiM 3); instead, single rows of the sparse array
are calculated on demand, providing most of the benefits of the data structure with only a tiny
fraction of the memory overhead. In InteractionType parlance, such a single row of the sparse
array is called a sparse vector. Sparse vectors are used to temporarily cache calculated distances
and strengths for interactions within a given subpopulation. They are built using the k-d tree to
find the interacting neighbors of each individual, and once built they can respond extremely
quickly to queries from methods such as totalOfNeighborStrengths(); the interacting neighbors
of a given individual are already known, allowing response in O(M) time. These sparse vectors are
built on demand, when queries that would benefit from them are made. For them to be effective,
it is particularly important that a maximum interaction distance be used that is as small as possible,
so beginning with SLiM 3.1 a warning is issued when no maximum distance is defined for spatial
interactions.

As mentioned above, once an interaction distance has been found it is translated into an
interaction strength by an interaction function that depends upon the distance d between
individuals. There are currently six options for interaction functions (IFs) in SLiM, represented by
single-character codes:

"f" – a fixed interaction strength. This IF type has a single parameter, the interaction strength to
be used for all interactions of this type. By default, interaction types use a type "f" IF with a value
of 1.0, so interactions are binary: on within the maximum distance, off outside.

"l" – a linear interaction strength. This IF type has a single parameter, the maximum interaction
strength to be used at distance 0.0. The interaction strength falls off linearly, reaching exactly zero
at the maximum distance. In other words, for distance d, maximum interaction distance dmax, and
maximum interaction strength fmax, the formula for this IF is f(d) = fmax(1 − d / dmax).

"e" – A negative exponential interaction strength. This IF type is specified by two parameters, a
maximum interaction strength and a rate (inverse scale) parameter. The interaction strength falls off

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 687

non-linearly from the maximum, and cuts off discontinuously at the maximum distance; typically a
maximum distance is chosen such that the interaction strength at that distance is very small
anyway. The IF for this type is f(d) = fmaxexp(−λd), where λ is the specified rate parameter. Note that
this parameterization is not the same as for the Eidos function rexp().

"n" – A normal interaction strength (i.e., Gaussian, but "g" is avoided to prevent confusion with
the gamma-function option provided for, e.g., MutationType). The interaction strength falls off
non-linearly from the maximum, and cuts off discontinuously at the maximum distance; typically a
maximum distance is chosen such that the interaction strength at that distance is very small
anyway. This IF type is specified by two parameters, a maximum interaction strength and a
standard deviation. The Gaussian IF for this type is f(d) = fmaxexp(−d2/2σ2), where σ is the standard
deviation parameter. Note that this parameterization is not the same as for the Eidos function
rnorm(). A Gaussian function is often used to model spatial interactions, but is relatively
computation-intensive.

"c" – A Cauchy-distributed interaction strength. The interaction strength falls off non-linearly
from the maximum, and cuts off discontinuously at the maximum distance; typically a maximum
distance is chosen such that the interaction strength at that distance is very small anyway. This IF
type is specified by two parameters, a maximum interaction strength and a scale parameter. The IF
for this type is f(d) = fmax/(1+(d/λ)2), where λ is the scale parameter. Note that this parameterization
is not the same as for the Eidos function rcauchy(). A Cauchy distribution can be used to model
interactions with relatively fat tails, but for spatiality greater than 1D, the t-distribution (type "t")
with degrees of freedom larger than one might be a better choice since the interaction function as
we define it with the Cauchy distribution is not normalizable in more than one dimension.

"t" – A t-distributed interaction strength. The interaction strength falls off non-linearly from the
maximum, and cuts off discontinuously at the maximum distance; typically a maximum distance is
chosen such that the interaction strength at that distance is very small anyway. This IF type is
specified by three parameters: a maximum interaction strength, the “degrees of freedom” of the t-
distribution ν (which must be greater than the spatial dimension minus one), and a scale parameter
τ. The IF for this type is f(d) = fmax/(1+(d/τ)2/ν)−(ν+1)/2. The t-distribution can be used to model
interactions with relatively fat tails.

An InteractionType may be created using the initializeInteractionType() function (see
section 25.1). It is often then configured with a specific interaction function, using
setInteractionFunction(), and perhaps a set of interaction constraints for receivers and/or
exerters, using setConstraints(). It must then be evaluated, with the evaluate() method, for the
subpopulations containing exerters and receivers before it will respond to queries regarding
individuals in those subpopulations; querying with exerters or receivers whose subpopulations
have not been evaluated will result in an error. Calling evaluate() causes the positions of all
receivers and exerters to be cached, thus defining a snapshot in time that the InteractionType will
then use to respond to queries (allowing it to build its k-d tree based upon the snapshot positions).
In WF models, this evaluated state will last until the current parental generation expires, at the end
of the next offspring-generation stage. Before the InteractionType may be used with the new
parental generation (the offspring of the old parental generation), the interaction must be evaluated
again. In nonWF models, interactions are invalidated twice during the tick cycle: once after new
offspring are produced (just before early() events), and once just before individuals die (just after
fitness calculations); they are also invalidated any time takeMigrants() is called to move
individuals between subpopulations. Note that interaction() callbacks are called when queries
are served, not when evaluate() is called.

As mentioned above, InteractionType supports eligibility constraints for both receivers and
exerters, configured with setConstraints(). The snapshot taken by evaluate() also encompasses

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 688

information about which individuals satisfy any configured exerter constraints; changing the state
of individuals after evaluate() is called will not change whether those individuals are qualified to
act as exerters in interactions. However – caveat lector – it does not encompass the corresponding
constraint information about receivers! Changing the state of individuals (in particular, their tag /
tagL0 / tagL1 / tagL2 / tagL3 / tagL4 values) after evaluate() is called may cause individuals to
become qualified, or to become disqualified, to act as receivers, because receiver constraints are
evaluated at query time, not at evaluate() time. This small discrepancy in InteractionType’s
conceptual model was chosen for performance reasons, but it can be regarded as a feature, not a
bug, since it allows the receivers for each query to be tailored without re-evaluating the interaction
type. In any case, if you need receiver constraints to be cached at evaluate() time you can
evaluate those constraints yourself, in script, and cache the result in an Individual property such
as tagL0, and then use that property as the receiver criterion for the interaction, thereby using the
eligibility status that you precalculated and cached. This approach is also useful for enforcing
complex eligibility constraints, for either receivers or exerters, that go beyond what
InteractionType supports intrinsically; you can always calculate eligibility yourself, cache the
result in a property such as tagL0, and use that property as the interaction type’s receiver
constraint.

InteractionType will automatically account for any periodic spatial boundaries established
with the periodicity parameter of initializeSLiMOptions(); interactions will wrap around the
periodic boundaries without any additional configuration of the interaction. Interactions involving
periodic spatial boundaries entail some additional overhead in both memory usage and processor
time; in particular, setting up the k-d tree after the interaction is evaluated may take many times
longer than in the non-periodic case (but this is rarely a bottleneck anyway since it is quite fast).
Once the k-d tree has been set up, responses to spatial queries involving it should then be nearly
as fast as in the non-periodic case. Spatial queries that do not involve the k-d tree will generally
be marginally slower than in the non-periodic case, but the difference should not be large.

InteractionType provides a fairly large and confusingly similar set of methods, designed to
answer every common type of spatial query efficiently. To help find the right method for the job,
here is a summary of the methods that involve distances or interaction strengths, either between
receivers and exerters, or between a focal point and exerters:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 689

Consider whether you want to query for neighbors (all individuals near the receiver), for
interacting neighbors (nearby individuals that exert an interaction strength upon the receiver,
regardless of what that strength is), or for something about the actual interaction strengths. In
general, the simpler queries will be faster; finding neighbors or interacting neighbors is going to be
faster than actually evaluating strengths. Furthermore, counting individuals is faster than actually
returning the individuals in question. The last three methods in the table have to evaluate the
interaction strength between a receiver and every exerter that interacts with it, so they can be fairly
slow; if you can, for example, simply count the number of neighbors with neighborCount(), or
count the number of interacting neighbors with interactingNeighborCount(), rather than using
totalOfNeighborStrengths() to sum up their interaction strengths, the former alternatives will
likely be significantly faster than the latter. Finally, as has been mentioned above, for best
performance the maximum interaction distance should be set to as small a value as possible; this
point is crucial for performance.

25.8.1 InteractionType properties

id => (integer$)
The identifier for this interaction type; for interaction type i3, for example, this is 3.

maxDistance <–> (float$)
The maximum distance over which this interaction will be evaluated. For inter-individual distances
greater than maxDistance, the interaction strength will be zero.

reciprocal => (logical$)
The reciprocality of the interaction, as specified in initializeInteractionType(). This will be T
for reciprocal interactions (those for which the interaction strength of B upon A is equal to the
interaction strength of A upon B), and F otherwise.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 690

sexSegregation => (string$)
The sex-segregation of the interaction, as specified in initializeInteractionType() or with
setConstraints(). For non-sexual simulations, this will be "**". For sexual simulations, this
string value indicates the sex of individuals feeling the interaction, and the sex of individuals
exerting the interaction; see initializeInteractionType() for details.

spatiality => (string$)
The spatial dimensions used by the interaction, as specified in initializeInteractionType(). This
will be "" (the empty string) for non-spatial interactions, or "x", "y", "z", "xy", "xz", "yz", or
"xyz", for interactions using those spatial dimensions respectively. The specified dimensions are used
to calculate the distances between individuals for this interaction. The value of this property is always
the same as the value given to initializeInteractionType().

tag <–> (integer$)
A user-defined integer value. The value of tag is initially undefined, and it is an error to try to read
it; if you wish it to have a defined value, you must arrange that yourself by explicitly setting its value
prior to using it elsewhere in your code. The value of tag is not used by SLiM; it is free for you to use.
See also the getValue() and setValue() methods (provided by the Dictionary class; see the Eidos
manual), for another way of attaching state to interaction types.

25.8.2 InteractionType methods

– (float)clippedIntegral(No<Individual> receivers)
Returns a vector containing the integral of the interaction function as experienced by each of the
individuals in receivers. For each given individual, the interaction function is clipped to the edges
of the spatial bounds of the subpopulation that individual inhabits; the individual’s spatial position
must be within bounds or an error is raised. A periodic boundary will, correctly, not clip the
interaction function. The interaction function is also clipped to the interaction’s maximum distance;
that distance must be less than half of the extent of the spatial bounds in each dimension (so that, for a
given dimension, the interaction function is clipped by the spatial bounds on only one side), otherwise
an error is raised. Note that receiver constraints are not applied; an individual might not actually
receive any interactions because of those constraints, but it is still considered to have the same
interaction function integral. If receivers is NULL, the maximal integral is returned, as would be
experienced by an individual farther than the maximum distance from any edge. The evaluate()
method must have been previously called for the receiver subpopulation, and positions saved at
evaluation time will be used. If the InteractionType is non-spatial, this method may not be called.

The computed value of the integral is not exact; it is calculated by an approximate numerical method
designed to be fast, but the error should be fairly small (typically less than 1% from the true value). A
large amount of computation will occur the first time this method is called (perhaps taking more than
a second, depending upon hardware), but subsequent calls should be very fast. This method does not
invoke interaction() callbacks; the calculated integrals are only for the interaction function itself,
and so will not be accurate if interaction() callbacks modify the relationship between distance and
interaction strength. For this reason, the overhead of the first call will not reoccur when individuals
move or when the interaction is re-evaluated; for typical models, the initial overhead will be incurred
only once. The initial overhead will reoccur, however, if the interaction function itself, or the
maximum interaction distance, are changed; frequent change of those parameters may render the
performance of this method unacceptable.

The integral values returned by clippedIntegral() can be useful for computing interaction metrics
that are scaled by the amount of “interaction field” (to coin a term) that is present for a given
individual, producing metrics of interaction density. Notably, the localPopulationDensity()
method automatically incorporates the mechanics of clippedIntegral() into the calculations it
performs; see that method’s documentation for further discussion of this concept. This approach can
also be useful with the interactingNeighborCount() method, provided that the interaction
function is of type "f" (since the neighbor count does not depend upon interaction strength).

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 691

– (float)distance(object<Individual>$ receiver, [No<Individual> exerters = NULL])
Returns a vector containing distances between receiver and the individuals in exerters. If
exerters is NULL (the default), then a vector of the distances from receiver to all individuals in its
subpopulation (including itself) is returned; this case may be handled differently internally, for greater
speed, so supplying NULL is preferable to supplying the vector of all individuals in the subpopulation
explicitly. Otherwise, all individuals in exerters must belong to a single subpopulation (but not
necessarily the same subpopulation as receiver). The evaluate() method must have been
previously called for the receiver and exerter subpopulations, and positions saved at evaluation time
will be used. If the InteractionType is non-spatial, this method may not be called.

Importantly, distances are calculated according to the spatiality of the InteractionType (as declared
in initializeInteractionType()), not the dimensionality of the model as a whole (as declared in
initializeSLiMOptions()). The distances returned are therefore the distances that would be used
to calculate interaction strengths. However, distance() will return finite distances for all pairs of
individuals, even if the individuals are non-interacting due to the maximum interaction distance or the
interaction constraints; the distance() between an individual and itself will thus be 0. See
interactionDistance() for an alternative distance definition.

– (float)distanceFromPoint(float point, object<Individual> exerters)
Returns a vector containing distances between the point given by the spatial coordinates in point,
which may be thought of as the “receiver”, and individuals in exerters. The point vector is
interpreted as providing coordinates precisely as specified by the spatiality of the interaction type; if
the interaction type’s spatiality is "xz", for example, then point[0] is assumed to be an x value, and
point[1] is assumed to be a z value. Be careful; this means that in general it is not safe to pass an
individual’s spatialPosition property for point, for example (although it is safe if the spatiality of
the interaction matches the dimensionality of the simulation). A coordinate for a periodic spatial
dimension must be within the spatial bounds for that dimension, since coordinates outside of periodic
bounds are meaningless (pointPeriodic() may be used to ensure this); coordinates for non-periodic
spatial dimensions are not restricted. All individuals in exerters must belong to a single
subpopulation; the evaluate() method must have been previously called for that subpopulation, and
positions saved at evaluation time will be used. If the InteractionType is non-spatial, this method
may not be called. The vector point must be exactly as long as the spatiality of the
InteractionType.

Importantly, distances are calculated according to the spatiality of the InteractionType (as declared
in initializeInteractionType()) not the dimensionality of the model as a whole (as declared in
initializeSLiMOptions()). The distances are therefore interaction distances: the distances that are
used to calculate interaction strengths. However, the maximum interaction distance and interaction
constraints are not used.

This method replaces the distanceToPoint() method that existed prior to SLiM 4.

– (object)drawByStrength(object<Individual> receiver, [integer$ count = 1],
[No<Subpopulation>$ exerterSubpop = NULL], [logical$ returnDict = F])

Returns an object<Individual> vector containing up to count individuals drawn from
exerterSubpop, or if that is NULL (the default), then from the subpopulation of receiver, which must
be singleton in the default mode of operation (but see below). The probability of drawing particular
individuals is proportional to the strength of interaction they exert upon receiver (which is zero for
receiver itself). All exerters must belong to a single subpopulation (but not necessarily the same
subpopulation as receiver). The evaluate() method must have been previously called for the
receiver and exerter subpopulations, and positions saved at evaluation time will be used.

This method may be used with either spatial or non-spatial interactions, but will be more efficient with
spatial interactions that set a short maximum interaction distance. Draws are done with replacement,
so the same individual may be drawn more than once; sometimes using unique() on the result of this
call is therefore desirable. If more than one draw will be needed, it is much more efficient to use a
single call to drawByStrength(), rather than drawing individuals one at a time. Note that if no

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 692

individuals exert a non-zero interaction strength upon receiver, the vector returned will be zero-
length; it is important to consider this possibility.

Beginning in SLiM 4.1, this method has a vectorized mode of operation in which the receiver
parameter may be non-singleton. To switch the method to this mode, pass T for returnDict, rather
than the default of F (the operation of which is described above). In this mode, the return value is a
Dictionary object instead of a vector of Individual objects. This dictionary uses integer keys that
range from 0 to N-1, where N is the number of individuals passed in receiver; these keys thus
correspond directly to the indices of the individuals in receiver, and there is one entry in the
dictionary for each receiver. The value in the dictionary, for a given integer key, is an
object<Individual> vector with the individuals drawn for the corresponding receiver, exactly as
described above for the non-vectorized case. The results for each receiver can therefore be obtained
from the returned dictionary with getValue(), passing the index of the receiver. The speed of this
mode of operation will probably be similar to the speed of making N separate non-vectorized calls to
drawByStrength(), but may have other advantages. In this mode of operation, all receivers must
belong to the same subpopulation.

– (void)evaluate(io<Subpopulation> subpops)
Snapshots model state in preparation for the use of the interaction, for the receiver and exerter
subpopulations specified by subpops. The subpopulations may be supplied either as integer IDs, or
as Subpopulation objects. This method will discard all previously cached data for the
subpopulation(s), and will cache the current spatial positions of all individuals they contain (so that
the spatial positions of those individuals may then change without disturbing the state of the
interaction at the moment of evaluation). It will also cache which individuals in the subpopulation are
eligible to act as exerters, according to the configured exerter constraints, but it will not cache such
eligibility information for receiver constraints (which are applied at the time a spatial query is made).
Particular interaction distances and strengths are not computed by evaluate(), and interaction()
callbacks will not be called in response to this method; that work is deferred until required to satisfy a
query (at which point the tick and cycle counters may have advanced, so be careful with the tick
ranges used in defining interaction() callbacks).

You must explicitly call evaluate() at an appropriate time in the tick cycle before the interaction is
used, but after any relevant changes have been made to the population. SLiM will invalidate any
existing interactions after any portion of the tick cycle in which new individuals have been born or
existing individuals have died. In a WF model, this occurs just before late() events execute (see the
WF tick cycle diagram in chapter 23), so late() events are often the appropriate place to put
evaluate() calls, but first() or early() events can work too if the interaction is not needed until
that point in the tick cycle anyway. In nonWF models, on the other hand, new offspring are produced
just before early() events and then individuals die just before late() events (see the nonWF tick
cycle diagram in chapter 24), so interactions will be invalidated twice during each tick cycle. This
means that in a nonWF model, an interaction that influences reproduction should usually be
evaluated in a first() event, while an interaction that influences fitness or mortality should usually
be evaluated in an early() event (and an interaction that affects both may need to be evaluated at
both times).

If an interaction is never evaluated for a given subpopulation, it is guaranteed that there will be
essentially no memory or computational overhead associated with the interaction for that
subpopulation. Furthermore, attempting to query an interaction for a receiver or exerter in a
subpopulation that has not been evaluated is guaranteed to raise an error.

– (integer)interactingNeighborCount(object<Individual> receivers,
[No<Subpopulation>$ exerterSubpop = NULL])

Returns the number of interacting individuals for each individual in receivers, within the maximum
interaction distance according to the distance metric of the InteractionType, from among the
exerters in exerterSubpop (or, if that is NULL, then from among all individuals in the receiver’s
subpopulation). More specifically, this method counts the number of individuals which can exert an

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 693

interaction upon each receiver (which does not include the receiver itself). All of the receivers must
belong to a single subpopulation, and all of the exerters must belong to a single subpopulation, but
those two subpopulations do not need to be the same. The evaluate() method must have been
previously called for the receiver and exerter subpopulations, and positions saved at evaluation time
will be used.

This method is similar to nearestInteractingNeighbors() (when passed a large count so as to
guarantee that all interacting individuals are returned), but this method returns only a count of the
interacting individuals, not a vector containing the individuals.

Note that this method uses interaction eligibility as a criterion; it will not count neighbors that do not
exert an interaction upon a given receiver (due to the configured receiver or exerter constraints). (It
also does not count a receiver as a neighbor of itself.) If a count of all neighbors is desired, rather than
just interacting neighbors, use neighborCount(). If the InteractionType is non-spatial, this
method may not be called.

– (float)interactionDistance(object<Individual>$ receiver,
[No<Individual> exerters = NULL])

Returns a vector containing interaction-dependent distances between receiver and individuals in
exerters. If exerters is NULL (the default), then a vector of the interaction-dependent distances
from receiver to all individuals in its subpopulation (including receiver itself) is returned; this case
may be handled much more efficiently than if a vector of all individuals in the subpopulation is
explicitly provided. Otherwise, all individuals in exerters must belong to a single subpopulation
(but not necessarily the same subpopulation as receiver). The evaluate() method must have been
previously called for the receiver and exerter subpopulations, and positions saved at evaluation time
will be used. If the InteractionType is non-spatial, this method may not be called.

Importantly, distances are calculated according to the spatiality of the InteractionType (as declared
in initializeInteractionType()), not the dimensionality of the model as a whole (as declared in
initializeSLiMOptions()). The distances returned are therefore the distances that would be used
to calculate interaction strengths. In addition, interactionDistance() will return INF as the
distance between receiver and any individual which does not exert an interaction upon receiver;
the interactionDistance() between an individual and itself will thus be INF, and likewise for pairs
excluded from interacting by receiver constraints, exerter constraints, or the maximum interaction
distance of the interaction type. See distance() for an alternative distance definition.

– (float)localPopulationDensity(object<Individual> receivers,
[No<Subpopulation>$ exerterSubpop = NULL])

Returns a vector of the local population density present at the location of each individual in
receivers, which does not need to be a singleton; indeed, it can be a vector of all of the individuals
in a given subpopulation. However, all receivers must be in the same subpopulation. The local
population density is computed from exerters in exerterSubpop, or if that is NULL (the default), then
from the receiver’s subpopulation. The evaluate() method must have been previously called for the
receiver and exerter subpopulations, and positions saved at evaluation time will be used.

Population density is estimated using interaction strengths, effectively doing a kernel density estimate
using the interaction function as the kernel. What is returned is computed as the total interaction
strength present at a given point, divided by the integral of the interaction function around that point
after clipping by the spatial bounds of the exerter subpopulation (what one might think of as the
amount of “interaction field” around the point). This provides an estimate of local population density,
in units of individuals per unit area, as a weighted average over the area covered by the interaction
function, where the weight of each exerter in the average is the value of the interaction function at that
exerter’s position. This can also be thought of as a measure of the amount of interaction happening
per unit of interaction field in the space surrounding the point.

To calculate the clipped integral of the interaction function, this method uses the same numerical
estimator used by the clippedIntegral() method of InteractionType, and all of the caveats
described for that method apply here also; notably, all individuals must be within spatial bounds, the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 694

maximum interaction distance must be less than half the spatial extent of the subpopulation, and
interaction() callbacks are not used (and so, for this method, are not allowed to be active). See the
documentation for clippedIntegral() for further discussion of the details of these calculations.

To calculate the total interaction strength around the position of a receiver, this method uses the same
machinery as the totalOfNeighborStrengths() method of InteractionType, except that – in
contrast to other InteractionType methods – the interaction strength exerted by the receiver itself is
included in the total (if the exerter subpopulation is the receiver’s own subpopulation). This is because
population density at the location of an individual includes the individual itself. If this is not
desirable, the totalOfNeighborStrengths() method should probably be used.

To see the point of this method, consider a receiver located near the edge of the spatial bounds of its
subpopulation. Some portion of the interaction function that surrounds that receiver falls outside the
spatial bounds of its subpopulation, and will therefore never contain an interacting exerter. If, for
example, interaction strengths are used as a measure of competition, this receiver will therefore have
an advantage, because it will never feel any competition from the portion of its range that falls outside
spatial bounds. However, that portion of its range is presumably also not available to the receiver
itself, for foraging or hunting, in which case this advantage is not biologically realistic, but is instead
just an undesirable “edge effect” artifact. Dividing by the integral of the interaction function, clipped
to the spatial bounds, provides a way to compensate for this edge effect. A nice side effect of using
local population densities instead of total interaction strengths is that the maximum interaction
strength passed to setInteractionFunction() no longer matters; it cancels out when the total
interaction strength is divided by the receiver’s clipped integral. However, the shape of the interaction
function does still matter; it determines the relative weights used for exerters at different distances from
the position of the receiver.

– (object)nearestInteractingNeighbors(object<Individual> receiver,
[integer$ count = 1], [No<Subpopulation>$ exerterSubpop = NULL],
[logical$ returnDict = F])

Returns an object<Individual> vector containing up to count interacting individuals that are
spatially closest to receiver, according to the distance metric of the InteractionType, from among
the exerters in exerterSubpop (or, if that is NULL, then from among all individuals in the receiver’s
subpopulation). More specifically, this method returns only individuals which can exert an interaction
upon receiver, which must be singleton in the default mode of operation (but see below). To obtain
all of the interacting individuals within the maximum interaction distance of receiver, simply pass a
value for count that is greater than or equal to the size of the exerter subpopulation. Note that if
fewer than count interacting individuals are within the maximum interaction distance, the vector
returned may be shorter than count, or even zero-length; it is important to check for this possibility
even when requesting a single neighbor. If only the number of interacting individuals is needed, use
interactingNeighborCount() instead. The evaluate() method must have been previously called
for the receiver and exerter subpopulations, and positions saved at evaluation time will be used. If the
InteractionType is non-spatial, this method may not be called.

Note that this method uses interaction eligibility as a criterion; it will not return neighbors that cannot
exert an interaction upon the receiver (due to the configured receiver or exerter constraints). (It will
also never return the receiver as a neighbor of itself.) To find all neighbors of a receiver, whether they
can interact with it or not, use nearestNeighbors().

Beginning in SLiM 4.1, this method has a vectorized mode of operation in which the receiver
parameter may be non-singleton. To switch the method to this mode, pass T for returnDict, rather
than the default of F (the operation of which is described above). In this mode, the return value is a
Dictionary object instead of a vector of Individual objects. This dictionary uses integer keys that
range from 0 to N-1, where N is the number of individuals passed in receiver; these keys thus
correspond directly to the indices of the individuals in receiver, and there is one entry in the
dictionary for each receiver. The value in the dictionary, for a given integer key, is an
object<Individual> vector with the interacting neighbors found for the corresponding receiver,
exactly as described above for the non-vectorized case. The results for each receiver can therefore be

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 695

obtained from the returned dictionary with getValue(), passing the index of the receiver. The speed
of this mode of operation will probably be similar to the speed of making N separate non-vectorized
calls to nearestInteractingNeighbors(), but may have other advantages. In this mode of
operation, all receivers must belong to the same subpopulation.

– (object)nearestNeighbors(object<Individual> receiver, [integer$ count = 1],
[No<Subpopulation>$ exerterSubpop = NULL], [logical$ returnDict = F])

Returns an object<Individual> vector containing up to count individuals that are spatially closest
to receiver, according to the distance metric of the InteractionType, from among the exerters in
exerterSubpop (or, if that is NULL, then from among all individuals in the receiver’s subpopulation).
In the default mode of operation, receiver must be singleton (but see below). To obtain all of the
individuals within the maximum interaction distance of receiver, simply pass a value for count that
is greater than or equal to the size of individual’s subpopulation. Note that if fewer than count
individuals are within the maximum interaction distance, the vector returned may be shorter than
count, or even zero-length; it is important to check for this possibility even when requesting a single
neighbor. The evaluate() method must have been previously called for the receiver and exerter
subpopulations, and positions saved at evaluation time will be used. If the InteractionType is non-
spatial, this method may not be called.

Note that this method does not use interaction eligibility as a criterion; it will return neighbors that
could not interact with the receiver due to the configured receiver or exerter constraints. (It will never
return the receiver as a neighbor of itself, however.) To find only neighbors that are eligible to exert an
interaction upon the receiver, use nearestInteractingNeighbors().

Beginning in SLiM 4.1, this method has a vectorized mode of operation in which the receiver
parameter may be non-singleton. To switch the method to this mode, pass T for returnDict, rather
than the default of F (the operation of which is described above). In this mode, the return value is a
Dictionary object instead of a vector of Individual objects. This dictionary uses integer keys that
range from 0 to N-1, where N is the number of individuals passed in receiver; these keys thus
correspond directly to the indices of the individuals in receiver, and there is one entry in the
dictionary for each receiver. The value in the dictionary, for a given integer key, is an
object<Individual> vector with the neighbors found for the corresponding receiver, exactly as
described above for the non-vectorized case. The results for each receiver can therefore be obtained
from the returned dictionary with getValue(), passing the index of the receiver. The speed of this
mode of operation will probably be similar to the speed of making N separate non-vectorized calls to
nearestNeighbors(), but may have other advantages. In this mode of operation, all receivers must
belong to the same subpopulation.

– (object<Individual>)nearestNeighborsOfPoint(float point,
io<Subpopulation>$ exerterSubpop, [integer$ count = 1])

Returns up to count individuals in exerterSubpop that are spatially closest to point, according to
the distance metric of the InteractionType. The subpopulation may be supplied either as an
integer ID, or as a Subpopulation object. To obtain all of the individuals within the maximum
interaction distance of point, simply pass a value for count that is greater than or equal to the size of
exerterSubpop. Note that if fewer than count individuals are within the maximum interaction
distance, the vector returned may be shorter than count, or even zero-length; it is important to check
for this possibility even when requesting a single neighbor. The evaluate() method must have been
previously called for exerterSubpop, and positions saved at evaluation time will be used. If the
InteractionType is non-spatial, this method may not be called.

– (integer)neighborCount(object<Individual> receivers,
[No<Subpopulation>$ exerterSubpop = NULL])

Returns the number of neighbors for each individual in receivers, within the maximum interaction
distance according to the distance metric of the InteractionType, from among the individuals in
exerterSubpop (or, if that is NULL, then from among all individuals in the receiver’s subpopulation).
All of the receivers must belong to a single subpopulation, and all of the exerters must belong to a

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 696

single subpopulation, but those two subpopulations do not need to be the same. The evaluate()
method must have been previously called for the receiver and exerter subpopulations, and positions
saved at evaluation time will be used.

This method is similar to nearestNeighbors() (when passed a large count so as to guarantee that all
neighbors are returned), but this method returns only a count of the individuals, not a vector
containing the individuals.

Note that this method does not use interaction eligibility as a criterion; it will count neighbors that
cannot exert an interaction upon a receiver (due to the configured receiver or exerter constraints). (It
still does not count a receiver as a neighbor of itself, however.) If a count of only interacting neighbors
is desired, use interactingNeighborCount(). If the InteractionType is non-spatial, this method
may not be called.

– (integer$)neighborCountOfPoint(float point, io<Subpopulation>$ exerterSubpop)
Returns the number of individuals in exerterSubpop that are within the maximum interaction
distance according to the distance metric of the InteractionType. The subpopulation may be
supplied either as an integer ID, or as a Subpopulation object. The evaluate() method must
have been previously called for exerterSubpop, and positions saved at evaluation time will be used.
If the InteractionType is non-spatial, this method may not be called.

This method is similar to nearestNeighborsOfPoint() (when passed a large count so as to
guarantee that all neighbors are returned), but this method returns only a count of the individuals, not
a vector containing the individuals.

– (void)setConstraints(string$ who, [Ns$ sex = NULL], [Ni$ tag = NULL],
[Ni$ minAge = NULL], [Ni$ maxAge = NULL], [Nl$ migrant = NULL],
[Nl$ tagL0 = NULL], [Nl$ tagL1 = NULL], [Nl$ tagL2 = NULL], [Nl$ tagL3 = NULL],
[Nl$ tagL4 = NULL])

Sets constraints upon which individuals can be receivers and/or exerters, making the target
InteractionType measure interactions between only subsets of the population. The parameter who
specifies upon whom the specified constraints apply; it may be "exerters" to set constraints upon
exerters, "receivers" to set constraints upon receivers, or "both" to set constraints upon both. If
"both" is used, the same constraints are set for both exerters and receivers; different constraints can
be set for exerters versus receivers by making a separate call to setConstraints() for each.
Constraints only affect queries that involve the concept of interaction; for example, they will affect the
result of nearestInteractingNeighbors(), but not the result of nearestNeighbors(). The
constraints specified by a given call to setConstraints() override all previously set constraints for
the category specified (receivers, exerter, or both).

There is a general policy for the remaining arguments: they are NULL by default, and if NULL is used, it
specifies “no constraint” for that property (removing any currently existing constraint for that property).
The sex parameter constrains the sex of individuals; it may be "M" or “F" (or "*" as another way of
specifying no constraint, for historical reasons). If sex is "M" or "F", the individuals to which the
constraint is applied (potential receivers/exerters) must belong to a sexual species. The tag parameter
constrains the tag property of individuals; if this set, the individuals to which the constraint is applied
must have defined tag values. The minAge and maxAge properties constrain the age property of
individuals to the given minimum and/or maximum values; these constraints can only be used in
nonWF models. The migrant property constraints the migrant property of individuals (T constrains
to only migrants, F to only non-migrants). Finally, the tagL0, tagL1, tagL2, tagL3, and tagL4
properties constrain the corresponding logical properties of individuals, requiring them to be either
T or F as specified; the individuals to which these constraints are applied must have defined values for
the constrained property or properties. Again, NULL should be supplied (as it is by default) for any
property which you do not wish to constrain.

These constraints may be used in any combination, as desired. For example, calling
setConstraints("receivers", sex="M", minAge=5, tagL0=T) constrains the interaction type’s
operation so that receivers must be males, with an age of at least 5, with a tagL0 property value of T.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 697

For that configuration the potential receivers used with the interaction type must be sexual (since sex
is specified), must be in a nonWF model (since minAge is specified), and must have a defined value
for their tagL0 property (since that property is constrained). Note that the sexSegregation
parameter to initializeInteractionType() is a shortcut which does the same thing as the
corresponding calls to setConstraints().

Exerter constraints are applied at evaluate() time, whereas receiver constraints are applied at query
time; see the InteractionType class documentation (section 25.8) for further discussion. The
interaction constraints for an interaction type are normally a constant in simulations; in any case, they
cannot be changed when an interaction has already been evaluated, so either they should be set prior
to evaluation, or unevaluate() should be called first.

– (void)setInteractionFunction(string$ functionType, ...)
Set the function used to translate spatial distances into interaction strengths for an interaction type.
The functionType may be "f", in which case the ellipsis ... should supply a numeric$ fixed
interaction strength; "l", in which case the ellipsis should supply a numeric$ maximum strength for a
linear function; "e", in which case the ellipsis should supply a numeric$ maximum strength and a
numeric$ lambda (rate) parameter for a negative exponential function; "n", in which case the ellipsis
should supply a numeric$ maximum strength and a numeric$ sigma (standard deviation) parameter
for a Gaussian function; "c", in which case the ellipsis should supply a numeric$ maximum strength
and a numeric$ scale parameter for a Cauchy distribution function; or "t", in which case the ellipsis
should supply a numeric$ maximum strength, a numeric$ degrees of freedom, and a numeric$ scale
parameter for a t-distribution function. See section 25.8 above for discussions of these interaction
functions. Non-spatial interactions must use function type "f", since no distance values are available
in that case.

The interaction function for an interaction type is normally a constant in simulations; in any case, it
cannot be changed when an interaction has already been evaluated, so either it should be set prior to
evaluation, or unevaluate() should be called first.

– (float)strength(object<Individual>$ receiver, [No<Individual> exerters = NULL])
Returns a vector containing the interaction strengths exerted upon receiver by the individuals in
exerters. If exerters is NULL (the default), then a vector of the interaction strengths exerted by all
individuals in the subpopulation of receiver (including receiver itself, with a strength of 0.0) is
returned; this case may be handled much more efficiently than if a vector of all individuals in the
subpopulation is explicitly provided. Otherwise, all individuals in exerters must belong to a single
subpopulation (but not necessarily the same subpopulation as receiver). The evaluate() method
must have been previously called for the receiver and exerter subpopulations, and positions saved at
evaluation time will be used.

If the strengths of interactions exerted by a single individual upon multiple individuals are needed
instead (the inverse of what this method provides), multiple calls to this method will be necessary, one
per pairwise interaction queried; the interaction engine is not optimized for the inverse case, and so it
will likely be quite slow to compute. If the interaction is reciprocal and has the same receiver and
exerter constraints, the opposite query should provide identical results in a single efficient call
(because then the interactions exerted are equal to the interactions received); otherwise, the best
approach might be to define a second interaction type representing the inverse interaction that you
wish to be able to query efficiently.

– (lo<Individual>)testConstraints(object<Individual> individuals,
string$ constraints, [logical$ returnIndividuals = F])

Tests the individuals in the parameter individuals against the interaction constraints specified by
constraints. The value of constraints may be "receiver" to use the receiver constraints, or
"exerter" to use the exerter constraints. If returnIndividuals is F (the default), a logical vector
will be returned, with T values indicating that the corresponding individual satisfied the constraints, F
values indicating that it did not. If returnIndividuals is T, an object vector of class Individual

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 698

will be returned containing only those elements of individuals that satisfied the constraints (in the
same order as individuals). Note that unlike most queries, the InteractionType does not need to
have been evaluated before calling this method, and the individuals passed in need not belong to a
single population or even a single species.

This method can be useful for narrowing a vector of individuals down to just those that satisfy
constraints. Outside the context of InteractionType, similar functionality is provided by the
Subpopulation method subsetIndividuals(). Note that the use of testConstraints() is
somewhat rare; usually, queries are evaluated across a vector of individuals, each of which might or
might not satisfy the defined constraints. Individuals that do not satisfy constraints do not participate
in interactions, so their interaction strength with other individuals will simply be zero.

See the setConstraints() method to set up constraints, as well as the sexSegregation parameter
to initializeInteractionType(). Note that if the constraints tested involve tag values (including
tagL0 / tagL1 / tagL2 / tagL3 / tagL4), the corresponding property or properties of the tested
individuals must be defined (i.e., must have been set to a value), or an error will result because the
constraints cannot be applied.

– (float)totalOfNeighborStrengths(object<Individual> receivers,
[No<Subpopulation>$ exerterSubpop = NULL])

Returns a vector of the total interaction strength felt by each individual in receivers by the exerters
in exerterSubpop (or, if that is NULL, then by all individuals in the receiver’s subpopulation). The
receivers parameter does not need to be a singleton; indeed, it can be a vector of all of the
individuals in a given subpopulation. All of the receivers must belong to a single subpopulation, and
all of the exerters must belong to a single subpopulation, but those two subpopulations do not need to
be the same. The evaluate() method must have been previously called for the receiver and exerter
subpopulations, and positions saved at evaluation time will be used. If the InteractionType is non-
spatial, this method may not be called.

For one individual, this is essentially the same as calling nearestInteractingNeighbors() with a
large count so as to obtain the complete vector of all interacting neighbors, calling strength() for
each of those interactions to get each interaction strength, and adding those interaction strengths
together with sum(). This method is much faster than that implementation, however, since all of that
work is done as a single operation. Also, totalOfNeighborStrengths() can total up interactions
for more than one receiver in a single vectorized call.

Similarly, for one individual this is essentially the same as calling strength() to get the interaction
strengths between a receiver and all individuals in the exerter subpopulation, and then calling sum().
Again, this method should be much faster, since this algorithm looks only at neighbors, whereas
calling strength() directly assesses interaction strengths with all other individuals. This will make a
particularly large difference when the subpopulation size is large and the maximum distance of the
InteractionType is small.

See localPopulationDensity() for a related method that calculates the total interaction strength
divided by the amount of “interaction field” present for an individual (i.e., the integral of the
interaction function clipped to the spatial bounds of the subpopulation) to provide an estimate of the
“interaction density” felt by an individual.

– (void)unevaluate(void)
Discards all evaluation of this interaction, for all subpopulations. The state of the InteractionType
is reset to a state prior to evaluation. This can be useful if the model state has changed in such a way
that the evaluation already conducted is no longer valid. For example, if the maximum distance, the
interaction function, or the receiver or exerter constraints of the InteractionType need to be
changed with immediate effect, or if the data used by an interaction() callback has changed in
such a way that previously calculated interaction strengths are no longer correct, unevaluate()
allows the interaction to begin again from scratch.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 699

In WF models, all interactions are automatically reset to an unevaluated state at the moment when the
new offspring generation becomes the parental generation (at step 4 in the tick cycle; see section
23.4).

In nonWF models, all interactions are automatically reset to an unevaluated state twice per tick:
immediately after reproduction() callbacks have completed (after step 1 in the tick cycle; see
section 24.1), and immediately before viability/survival selection (before step 4 in the tick cycle; see
section 24.4).

Given this automatic invalidation, most simulations have no reason to call unevaluate().

25.9 Class LogFile
Superclass: Dictionary

LogFile is a class that can, optionally, be used to log out a table of information about the
running simulation to a text file. The information logged out is completely configurable with
generators, including the ability to use custom Eidos code as a generator. The resulting file can be
formatted with comma separators (a CSV file), tab separators (a TSV file), or with any custom
separator string between data values. The file can be plain text or can be compressed in .gz
format (decompressible at the command line with the gunzip utility, among other tools). When
compression is enabled, writes out to disk are buffered in memory for better performance and
smaller file size. A new LogFile object attached to the simulation can be created with the
Community method createLogFile(), discussed in section 25.3.2. Any number of LogFile objects
can be active simultaneously, writing to different files.

Logging can be done automatically, at the end of ticks at a given periodic interval (e.g., every
10th tick). This automatic logging is optional, and a log row can always be generated explicitly by
called logRow(). Flushing compressed data to disk can be done automatically after a given
number of rows have been generated, or can be requested explicitly with a call to flush().

Generators always generate a single value in each logged row, resulting in a single column of
data in the log file. Some built-in generators are provided by LogFile for the most common cases;
these can be added to a given LogFile by calling the add...() methods documented below. A
generator with custom Eidos code can be added with addCustomColumn(), and a generator that
expects to be supplied with the value to write, rather than generating the value itself, can be added
with addSuppliedColumn(). LogFile expects to be fully configured, with calls to add...()
methods to add generators, before the first row of data is written out, to ensure consistency in the
file’s data. When the first row of data is written (or buffered), the LogFile’s configuration will then
be frozen, and calls to add...() will no longer be allowed. Columns will be written, in each row,
in the order in which add...() calls are made on the LogFile, and they will be named in the file’s
header line as documented in those methods. It is an error to have two columns with the same
name.

LogFile is a subclass of the Eidos class Dictionary, but unlike other SLiM classes that are
Dictionary subclasses, this does not allow you to attach arbitrary key–value pairs to the object.
Instead, LogFile uses its Dictionary-ness to make the data from the last logged row available
through getValue(), using the name of the generator (i.e., the name of the data column) as the
key. One quirk of LogFile is that because its keys are defined by the columns that it generates,
and columns can sometimes contain an NA value, LogFile’s dictionary can, in effect, contain NULL
values (representing NA); this is not normally allowed by Dictionary. This should cause no trouble;
just be aware that getValue() on a LogFile might return NULL for a key, representing NA, and that
the result of serialize() might contain NA values.

Finally: as a general rule, if a Subpopulation is referenced by one of the add...X() methods
below it may be supplied as an object if it already exists (p1), or by id (1) even if it does not yet

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 700

exist. The resulting column will generally have a name of the form pX_colname, where X is the id
of the specified subpopulation. If a subpopulation-specific data logger refers to a Subpopulation
that does not exist at the time a given row is logged, NA will be written.

25.9.1 LogFile properties

allKeys => (string)
This Dictionary property has an override in LogFile to return, in order, the names of the log file
columns, which are the keys for LogFile’s dictionary.

filePath => (string$)
The path of the log file being written to. This may be changed with setFilePath().

logInterval => (integer$)
The interval for automatic logging; a new row of data will be logged every logInterval ticks. This
may be changed with setLogInterval(). If automatic logging has been disabled, this property will
be 0.

precision <–> (integer$)
The precision of float output. To be exact, precision specifies the preferred number of significant
digits that will be output for float values. The default is 6; values in [1,22] are legal, but 17 is
probably the largest value that makes sense given the limits of double-precision floating point.

tag <–> (integer$)
A user-defined integer value. The value of tag is initially undefined, and it is an error to try to read
it; if you wish it to have a defined value, you must arrange that yourself by explicitly setting its value
prior to using it elsewhere in your code. The value of tag is not used by SLiM; it is free for you to use.

25.9.2 LogFile methods

– (void)addCustomColumn(string$ columnName, string$ source, [* context = NULL])
Adds a new data column with its name provided by columnName. The value for the column, when a
given row is generated, will be produced by the code supplied in source, which is expected to return
either NULL (which will write out NA), or a singleton value of any non-object type.

The context parameter will be set up as a pseudo-parameter, named context, when source is
called, allowing the same source code to be used to generate values for multiple data columns; you
might, for example, provide the particular Subpopulation object here that you wish source to use
for its calculations. This is optional; if the default value of NULL is used, then context will be NULL
when source is called.

See addMeanSDColumns() for a useful variant.

– (void)addCycle([No<Species>$ species = NULL])
Adds a new data column that provides the cycle counter for species (the same as the value of the
cycle property of that species). In single-species models, species may be NULL to indicate that
single species. The column will simply be named cycle in single-species models; an underscore and
the name of the species will be appended in multispecies models.

– (void)addCycleStage(void)
Adds a new data column that provides the cycle stage, named cycle_stage. The stage is provided as
a string, and will typically be "first", "early", "late", or "end" (the latter used for the point in
time at which end-of-tick automatic logging occurs). Other possible values are discussed in the
documentation for the cycleStage property of Community, which this column reflects.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 701

– (void)addKeysAndValuesFrom(object$ source)
This Dictionary method has an override in LogFile to make it illegal to call, since LogFile
manages its Dictionary entries.

– (void)addMeanSDColumns(string$ columnName, string$ source, [* context = NULL])
Adds two new data columns with names of columnName_mean and columnName_sd. When a given
row is generated, the code supplied in source is expected to return either a zero-length vector of any
type including NULL (which will write out NA to both columns), or a non-zero-length vector of
integer or float values. In the latter case, the result vector will be summarized in the two columns
by its mean and standard deviation respectively. If the result vector has exactly one value, the
standard deviation will be written as NA. The context parameter is set up as a pseudo-parameter
when source is called, as described in addCustomColumn().

– (void)addPopulationSexRatio([No<Species>$ species = NULL])
Adds a new data column that provides the population sex ratio M:(M+F) for species. In single-
species models, species may be NULL to indicate that single species. The column will simply be
named sex_ratio in single-species models; an underscore and the name of the species will be
appended in multispecies models. If the species is hermaphroditic, NA will be written.

– (void)addPopulationSize([No<Species>$ species = NULL])
Adds a new data column that provides the total population size for species. In single-species
models, species may be NULL to indicate that single species. The column will simply be named
num_individuals in single-species models; an underscore and the name of the species will be
appended in multispecies models.

– (void)addSubpopulationSexRatio(io<Subpopulation>$ subpop)
Adds a new data column that provides the sex ratio M:(M+F) of the subpopulation subpop, named
pX_sex_ratio. If the subpopulation exists but has a size of zero, NA will be written.

– (void)addSubpopulationSize(io<Subpopulation>$ subpop)
Adds a new data column that provides the size of the subpopulation subpop, named
pX_num_individuals. If the subpopulation exists but has a size of zero, 0 will be written.

– (void)addSuppliedColumn(string$ columnName)
Adds a new data column with its name provided by columnName. The value for the column is initially
undefined, and will be written as NA. A different value may (optionally) be provided by calling
setSuppliedValue() with a value for columnName. That value will be used for the column the next
time a row is generated (whether automatically or by a call to logRow()), and the column’s value will
subsequently be undefined again. In other words, for any given logged row the default of NA may be
kept, or a different value may be supplied. This allows the value for the column to be set at any point
during the tick cycle, which can be convenient if the column’s value depends upon transient state that
is no longer available at the time the row is logged.

– (void)addTick(void)
Adds a new data column, named tick, that provides the tick number for the simulation.

– (void)clearKeysAndValues(void)
This Dictionary method has an override in LogFile to make it illegal to call, since LogFile
manages its Dictionary entries.

– (void)flush(void)
Flushes all buffered data to the output file, synchronously. This will make the contents of the file on
disk be up-to-date with the running simulation. Flushing frequently may entail a small performance
penalty. More importantly, if .gz compression has been requested with compress=T the size of the
resulting file will be larger – potentially much larger – if flush() is called frequently. Note that

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 702

automatic periodic flushing can be requested with the flushInterval parameter to
createLogFile().

– (void)logRow(void)
This logs a new row of data, by evaluating all of the generators added to the LogFile with add...()
calls. Note that the new row may be buffered, and thus may not be written out to disk immediately;
see flush(). This method may be used instead of, or in conjunction with, automatic logging.

You can get the LogFile instance, in order to call logRow() on it, from community.logFiles, or
you can remember it in a global constant with defineConstant().

– (void)setLogInterval([Ni$ logInterval = NULL])
Sets the automatic logging interval. A logInterval of NULL stops automatic logging immediately.
Other values request that a new row should be logged (as if logRow() were called) at the end of every
logInterval ticks (just before the tick count increment, in both WF and nonWF models), starting at
the end of the tick in which setLogInterval() was called.

– (void)setFilePath(string$ filePath, [Ns initialContents = NULL],
[logical$ append = F], [Nl$ compress = NULL], [Ns$ sep = NULL])

Redirects the LogFile to write new rows to a new filePath. Any rows that have been buffered but
not flushed will be written to the previous file first, as if flush() had been called. With this call, new
initialContents may be supplied, which will either replace any existing file or will be appended to
it, depending upon the value of append. New values may be supplied for compress and sep; the
meaning of these parameters is identical to their meaning in createLogFile(), except that a value of
NULL for these means “do not change this setting from its previous value”. In effect, then, this method
lets you start a completely new log file at a new path, without having to create and configure a new
LogFile object. The new file will be created (or appended) synchronously, with the specified initial
contents.

– (void)setSuppliedValue(string$ columnName, +$ value)
Registers a value, passed in value, to be used for the supplied column named columnName when a
row is next logged. This column must have been added with addSuppliedColumn(). A value of
NULL may be passed to log NA, but logging NA is the default behavior for supplied columns in any
case. Otherwise, the value must be a singleton, and its type should match the values previously
supplied for the column (otherwise the log file may be difficult to parse, since the values within the
column will not be of one consistent type). See addSuppliedColumn() for further details.

– (void)setValue(string$ key, * value)
This Dictionary method has an override in LogFile to make it illegal to call, since LogFile
manages its Dictionary entries.

– (logical$)willAutolog(void)
Returns T if the log file is configured to log a new row automatically at the end of the current tick;
otherwise, returns F. This is useful for calculating a value that will be logged only in ticks when the
value is needed.

25.10 Class Mutation
Superclass: Dictionary

This class represents a single point mutation. Mutations can be shared by the genomes of many
individuals; if they reach fixation, they are converted to Substitution objects.

Although Mutation has a tag property, like most SLiM classes, the subpopID can also store
custom values if you don’t need to track the origin subpopulation of mutations (see below).

Section 1.5.2 presents an overview of the conceptual role of this class.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 703

25.10.1 Mutation properties

id => (integer$)
The identifier for this mutation. Each mutation created during a run receives an immutable identifier
that will be unique across the duration of the run. These identifiers are not re-used during a run,
except that if a population file is loaded from disk, the loaded mutations will receive their original
identifier values as saved in the population file.

isFixed => (logical$)
T if the mutation has fixed (in the SLiM sense of having been converted to a Substitution object), F
otherwise. Since fixed/substituted mutations are removed from the simulation, you will only see this
flag be T if you have held onto a mutation beyond its usual lifetime (see section 28.2).

isSegregating => (logical$)
T if the mutation is segregating (in the SLiM sense of not having been either lost or converted to a
Substitution object), F otherwise. Since both lost and fixed/substituted mutations are removed from
the simulation, you will only see this flag be F if you have held onto a mutation beyond its usual
lifetime (see section 28.2). Note that if isSegregating is F, isFixed will let you determine whether
the mutation is no longer segregating because it was lost, or because it fixed.

mutationType => (object<MutationType>$)
The MutationType from which this mutation was drawn.

nucleotide <–> (string$)
A string representing the nucleotide associated with this mutation; this will be "A", "C", "G", or
"T". If the mutation is not nucleotide-based, this property is unavailable.

nucleotideValue <–> (integer$)
An integer representing the nucleotide associated with this mutation; this will be 0 (A), 1 (C), 2 (G),
or 3 (T). If the mutation is not nucleotide-based, this property is unavailable.

originTick => (integer$)
The tick in which this mutation arose.

position => (integer$)
The position in the chromosome of this mutation.

selectionCoeff => (float$)
The selection coefficient of the mutation, drawn from the distribution of fitness effects of its
MutationType. If a mutation has a selectionCoeff of s, the multiplicative fitness effect of the
mutation in a homozygote is 1+s; in a heterozygote it is 1+hs, where h is the dominance coefficient
kept by the mutation type (see section 25.11.1).

Note that this property has a quirk: it is stored internally in SLiM using a single-precision float, not the
double-precision float type normally used by Eidos. This means that if you set a mutation mut’s
selection coefficient to some number x, mut.selectionCoeff==x may be F due to floating-point
rounding error. Comparisons of floating-point numbers for exact equality is often a bad idea, but this
is one case where it may fail unexpectedly. Instead, it is recommended to use the id or tag properties
to identify particular mutations.

subpopID <–> (integer$)
The identifier of the subpopulation in which this mutation arose. This property can be used to track
the ancestry of mutations through their subpopulation of origin. For an overview of other ways of
tracking genetic ancestry, including true local ancestry at each position on the chromosome, see
sections 1.7 and 14.7.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 704

If you don’t care which subpopulation a mutation originated in, the subpopID may be used as an
arbitrary integer “tag” value for any purpose you wish; SLiM does not do anything with the value of
subpopID except propagate it to Substitution objects and report it in output. (It must still be >= 0,
however, since SLiM object identifiers are limited to nonnegative integers).

tag <–> (integer$)
A user-defined integer value. The value of tag is initially undefined, and it is an error to try to read
it; if you wish it to have a defined value, you must arrange that yourself by explicitly setting its value
prior to using it elsewhere in your code. The value of tag is not used by SLiM; it is free for you to use.

25.10.2 Mutation methods

– (void)setMutationType(io<MutationType>$ mutType)
Set the mutation type of the mutation to mutType (which may be specified as either an integer
identifier or a MutationType object). This implicitly changes the dominance coefficient of the
mutation to that of the new mutation type, since the dominance coefficient is a property of the
mutation type. On the other hand, the selection coefficient of the mutation is not changed, since it is
a property of the mutation object itself; it can be changed explicitly using the setSelectionCoeff()
method if so desired.

The mutation type of a mutation is normally a constant in simulations, so be sure you know what you
are doing. Changing this will normally affect the fitness values calculated toward the end of the
current tick; if you want current fitness values to be affected, you can call the Species method
recalculateFitness() – but see the documentation of that method for caveats.

In nucleotide-based models, a restriction applies: nucleotide-based mutations may not be changed to
a non-nucleotide-based mutation type, and non-nucleotide-based mutations may not be changed to a
nucleotide-based mutation type.

– (void)setSelectionCoeff(float$ selectionCoeff)
Set the selection coefficient of the mutation to selectionCoeff. The selection coefficient will be
changed for all individuals that possess the mutation, since they all share a single Mutation object
(note that the dominance coefficient will remain unchanged, as it is determined by the mutation type).

This is normally a constant in simulations, so be sure you know what you are doing; often setting up a
mutationEffect() callback (see section 26.2) is preferable, in order to modify the selection
coefficient in a more limited and controlled fashion (see section 10.5 for further discussion of this
point). Changing this will normally affect the fitness values calculated toward the end of the current
tick; if you want current fitness values to be affected, you can call the Species method
recalculateFitness() – but see the documentation of that method for caveats.

25.11 Class MutationType
Superclass: Dictionary

This class represents a type of mutation with a particular distribution of fitness effects, such as
neutral mutations or weakly beneficial mutations. Sections 1.5.3 and 1.5.4 present an overview of
the conceptual role of this class. The mutation types currently defined in the simulation are
defined as global constants with the same names used in the SLiM input file – m1, m2, and so forth.

There are currently six options for the distribution of fitness effects in SLiM, represented by
single-character codes:

"f" – A fixed fitness effect. This DFE type has a single parameter, the selection coefficient s to
be used by all mutations of the mutation type.

"g" – A gamma-distributed fitness effect. This DFE type is specified by two parameters, a mean
value and a shape parameter. The gamma distribution from which mutations are drawn is given by
the probability density function P(s | α,β) = [Γ(α)βα]−1sα−1exp(−s/β), where α is the shape parameter,

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 705

and the specified mean for the distribution is equal to αβ. Note that this parameterization is the
same as for the Eidos function rgamma(). A gamma distribution is often used to model deleterious
mutations at functional sites.

"e" – An exponentially-distributed fitness effect. This DFE type is specified by a single
parameter, the mean of the distribution. The exponential distribution from which mutations are
drawn is given by the probability density function P(s | β) = β−1exp(−s/β), where β is the specified
mean for the distribution. This parameterization is the same as for the Eidos function rexp(). An
exponential distribution is often used to model beneficial mutations.

"n" – A normally-distributed fitness effect. This DFE type is specified by two parameters, a
mean and a standard deviation. The normal distribution from which mutations are drawn is given
by the probability density function P(s | µ,σ) = (2πσ2)−1/2exp(−(s−µ)2/2σ2), where µ is the mean and σ
is the standard deviation. This parameterization is the same as for the Eidos function rnorm(). A
normal distribution is often used to model mutations that can be either beneficial or deleterious,
since both tails of the distribution are unbounded.

"p" – A Laplace-distributed fitness effect. This DFE type is specified by two parameters, a mean
and a scale. The Laplace distribution from which mutations are drawn is given by the probability
density function P(s | µ,b) = exp(−|s−µ|/b)/2b, where µ is the mean and b is the scale parameter. A
Laplace distribution is sometimes used to model a mix of both deleterious and beneficial
mutations.

"w" – A Weibull-distributed fitness effect. This DFE type is specified by a scale parameter and a
shape parameter. The Weibull distribution from which mutations are drawn is given by the
probability density function P(s | λ,k) = (k/λk)sk−1exp(−(s/λ)k), where λ is the scale parameter and k is
the shape parameter. This parameterization is the same as for the Eidos function rweibull(). A
Weibull distribution is often used to model mutations following extreme-value theory.

"s" – A script-based fitness effect. This DFE type is specified by a script parameter of type
string, specifying an Eidos script to be executed to produce each new selection coefficient. For
example, the script "return rbinom(1);" could be used to generate selection coefficients drawn
from a binomial distribution, using the Eidos function rbinom(), even though that mutational
distribution is not supported by SLiM directly. The script must return a singleton float or integer.

Note that these distributions can in principle produce selection coefficients smaller than -1.0.
In that case, the mutations will be evaluated as “lethal” by SLiM, and the relative fitness of the
individual will be set to 0.0.

25.11.1 MutationType properties

color <–> (string$)
The color used to display mutations of this type in SLiMgui. Outside of SLiMgui, this property still
exists, but is not used by SLiM. Colors may be specified by name, or with hexadecimal RGB values of
the form "#RRGGBB" (see the Eidos manual). If color is the empty string, "", SLiMgui’s default
(selection-coefficient–based) color scheme is used; this is the default for new MutationType objects.

colorSubstitution <–> (string$)
The color used to display substitutions of this type in SLiMgui (see the discussion for the
colorSubstitution property of the Chromosome class for details). Outside of SLiMgui, this property
still exists, but is not used by SLiM. Colors may be specified by name, or with hexadecimal RGB
values of the form "#RRGGBB" (see the Eidos manual). If colorSubstitution is the empty string, "",
SLiMgui’s default (selection-coefficient–based) color scheme is used; this is the default for new
MutationType objects.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 706

convertToSubstitution <–> (logical$)
This property governs whether mutations of this mutation type will be converted to Substitution
objects when they reach fixation.

In WF models this property is T by default, since conversion to Substitution objects provides large
speed benefits; it should be set to F only if necessary, and only on the mutation types for which it is
necessary. This might be needed, for example, if you are using a mutationEffect() callback to
implement an epistatic relationship between mutations; a mutation epistatically influencing the fitness
of other mutations through a mutationEffect() callback would need to continue having that
influence even after reaching fixation, but if the simulation were to replace the fixed mutation with a
Substitution object the mutation would no longer be considered in fitness calculations (unless the
callback explicitly consulted the list of Substitution objects kept by the simulation). Other script-
defined behaviors in mutationEffect(), interaction(), mateChoice(), modifyChild(), and
recombination() callbacks might also necessitate the disabling of substitution for a given mutation
type; this is an important consideration to keep in mind. See section 23.3 for further discussion of
convertToSubstitution in WF models.

In contrast, for nonWF models this property is F by default, because even mutations with no epistatis
or other indirect fitness effects will continue to influence the survival probabilities of individuals. For
nonWF models, only neutral mutation types with no epistasis or other side effects can safely be
converted to substitutions upon fixation. When such a pure-neutral mutation type is defined in a
nonWF model, this property should be set to T to tell SLiM that substitution is allowed; this may have
very large positive effects on performance, so it is important to remember when modeling background
neutral mutations. See section 24.5 for further discussion of convertToSubstitution in nonWF
models.

SLiM consults this flag at the end of each tick when deciding whether to substitute each fixed
mutation. If this flag is T, all eligible fixed mutations will be converted at the end of the current tick,
even if they were previously left unconverted because of the previous value of the flag. Setting this
flag to F will prevent future substitutions, but will not cause any existing Substitution objects to be
converted back into Mutation objects.

distributionParams => (float)
The parameters that configure the chosen distribution of fitness effects. This will be of type string for
DFE type "s", and type float for all other DFE types.

distributionType => (string$)
The type of distribution of fitness effects; one of "f", "g", "e", "n", "p", "w", or "s" (see section
25.11, above).

dominanceCoeff <–> (float$)
The dominance coefficient used for mutations of this type when heterozygous. Changing this will
normally affect the fitness values calculated toward the end of the current tick; if you want current
fitness values to be affected, you can call the Species method recalculateFitness() – but see the
documentation of that method for caveats.

Note that the dominance coefficient is not bounded. A dominance coefficient greater than 1.0 may
be used to achieve an overdominance effect. By making the selection coefficient very small and the
dominance coefficient very large, an overdominance scenario in which both homozygotes have the
same fitness may be approximated, to a nearly arbitrary degree of precision.

Note that this property has a quirk: it is stored internally in SLiM using a single-precision float, not the
double-precision float type normally used by Eidos. This means that if you set a mutation type
muttype’s dominance coefficient to some number x, muttype.dominanceCoeff==x may be F due to
floating-point rounding error. Comparisons of floating-point numbers for exact equality is often a bad
idea, but this is one case where it may fail unexpectedly. Instead, it is recommended to use the id or
tag properties to identify particular mutation types.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 707

haploidDominanceCoeff <–> (float$)
The dominance coefficient used for mutations of this type when they occur opposite a null genome (as
in sex-chromosome models and models involving haploids). This defaults to 1.0, and is used only in
models where null genomes are present; the dominanceCoeff property is the dominance coefficient
used in most circumstances. Changing this will normally affect the fitness values calculated toward
the end of the current tick; if you want current fitness values to be affected, you can call the Species
method recalculateFitness() – but see the documentation of that method for caveats.

As with the dominanceCoeff property, this is stored internally using a single-precision float; see the
documentation for dominanceCoeff for discussion.

id => (integer$)
The identifier for this mutation type; for mutation type m3, for example, this is 3.

mutationStackGroup <–> (integer$)
The group into which this mutation type belongs for purposes of mutation stacking policy. This is
equal to the mutation type’s id by default. See mutationStackPolicy, below, for discussion.

In nucleotide-based models, the stacking group for nucleotide-based mutation types is always -1, and
cannot be changed. Non-nucleotide-based mutation types may also be set to share the -1 stacking
group, if they should participate in the same stacking policy as nucleotide-based mutations, but that
would be quite unusual.

mutationStackPolicy <–> (string$)
This property and the mutationStackGroup property together govern whether mutations of this
mutation type’s stacking group can “stack” – can occupy the same position in a single individual. A
set of mutation types with the same value for mutationStackGroup is called a “stacking group”, and
all mutation types in a given stacking group must have the same mutationStackPolicy value, which
defines the stacking behavior of all mutations of the mutation types in the stacking group. In other
words, one stacking group might allow its mutations to stack, while another stacking group might not,
but the policy within each stacking group must be unambiguous.

This property is "s" by default, indicating that mutations in this stacking group should be allowed to
stack without restriction. If the policy is set to "f", the first mutation of stacking group at a given site
is retained; further mutations of this stacking group at the same site are discarded with no effect. This
can be useful for modeling one-way changes; once a gene is disabled by a premature stop codon, for
example, you might wish to assume, for simplicity, that further mutations cannot alter that fact. If the
policy is set to "l", the last mutation of this stacking group at a given site is retained; earlier mutation
of this stacking group at the same site are discarded. This can be useful for modeling an “infinite-
alleles” scenario in which every new mutation at a site generates a completely new allele, rather than
retaining the previous mutations at the site.

The mutation stacking policy applies only within the given mutation type’s stacking group; mutations
of different stacking groups are always allowed to stack in SLiM. The policy applies to all mutations
added to the model after the policy is set, whether those mutations are introduced by calls such as
addMutation(), addNewMutation(), or addNewDrawnMutation(), or are added by SLiM’s own
mutation-generation machinery. However, no attempt is made to enforce the policy for mutations
already existing at the time the policy is set; typically, therefore, the policy is set in an initialize()
callback so that it applies throughout the simulation. The policy is also not enforced upon the
mutations loaded from a file with readFromPopulationFile(); such mutations were governed by
whatever stacking policy was in effect when the population file was generated.

In nucleotide-based models, the stacking policy for nucleotide-based mutation types is always "l",
and cannot be changed. This ensures that new nucleotide mutations always replace the previous
nucleotide at a site, and that more than one nucleotide mutation is never present at the same position
in a single genome.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 708

nucleotideBased => (logical$)
If the mutation type was created with initializeMutationType(), it is not nucleotide-based, and
this property is F. If it was created with initializeMutationTypeNuc(), it is nucleotide-based, and
this property is T. See those methods for further discussion.

species => (object<Species>$)
The species to which the target object belongs.

tag <–> (integer$)
A user-defined integer value. The value of tag is initially undefined, and it is an error to try to read
it; if you wish it to have a defined value, you must arrange that yourself by explicitly setting its value
prior to using it elsewhere in your code. The value of tag is not used by SLiM; it is free for you to use.
See also the getValue() and setValue() methods (provided by the Dictionary class; see the Eidos
manual), for another way of attaching state to mutation types.

25.11.2 MutationType methods

– (float)drawSelectionCoefficient([integer$ n = 1])
Draws and returns a vector of n selection coefficients using the currently defined distribution of fitness
effects (DFE) for the target mutation type. See section 25.11 above for discussion of the supported
distributions and their uses. If the DFE is type "s", this method will result in synchronous execution
of the DFE’s script.

– (void)setDistribution(string$ distributionType, ...)
Set the distribution of fitness effects for a mutation type. The distributionType may be "f", in
which case the ellipsis ... should supply a numeric$ fixed selection coefficient; "e", in which case
the ellipsis should supply a numeric$ mean selection coefficient for the exponential distribution; "g",
in which case the ellipsis should supply a numeric$ mean selection coefficient and a numeric$ alpha
shape parameter for a gamma distribution; "n", in which case the ellipsis should supply a numeric$
mean selection coefficient and a numeric$ sigma (standard deviation) parameter for a normal
distribution; "p", in which case the ellipsis should supply a numeric$ mean selection coefficient and
a numeric$ scale parameter for a Laplace distribution; "w", in which case the ellipsis should supply a
numeric$ λ scale parameter and a numeric$ k shape parameter for a Weibull distribution; or "s", in
which case the ellipsis should supply a string$ Eidos script parameter. See section 25.11 above for
discussions of these distributions and their uses. The DFE for a mutation type is normally a constant in
simulations, so be sure you know what you are doing.

25.12 Class SLiMEidosBlock
Superclass: Dictionary

This class represents a block of Eidos code registered in a SLiM simulation. All Eidos events and
Eidos callbacks defined in the SLiM input file of the current simulation are instantiated as
SLiMEidosBlock objects and are available through the allScriptBlocks property of Community and
the scriptBlocks property of Species; see sections 25.3.1 and 25.15.1. In addition, new script
blocks can be created programmatically and registered with the simulation, and registered script
blocks can be deregistered; see the ‑register...() and ‑deregisterScriptBlock() methods of
Community and Species in sections 25.3.2 and 25.15.2. The currently executing script block is
available through the self global; see section 26.11.

25.12.1 SLiMEidosBlock properties

active <–> (integer$)
If this evaluates to logical F (i.e., is equal to 0), the script block is inactive and will not be called.
The value of active for all registered script blocks is reset to -1 at the beginning of each tick, prior to

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 709

script events being called, thus activating all blocks (except callbacks associated with a species that is
not active in that tick, which are deactivated as part of the deactivation of the species). Any integer
value other than -1 may be used instead of -1 to represent that a block is active; for example, active
may be used as a counter to make a block execute a fixed number of times in each tick. This value is
not cached by SLiM; if it is changed, the new value takes effect immediately. For example, a callback
might be activated and inactivated repeatedly during a single tick.

end => (integer$)
The last tick in which the script block is active.

id => (integer$)
The identifier for this script block; for script s3, for example, this is 3. A script block for which no id
was given will have an id of -1.

source => (string$)
The source code string of the script block.

speciesSpec => (object<Species>)
The species specifier for the script block. The species specifier for a callback block indicates
the callback’s associated species; the callback is called to modify the default behavior for that
species. If the script block has no species specifier, this property’s value is a zero-length
object vector of class Species. This property is read-only; normally it is set by preceding
the definition of a callback with a species specifier, of the form species <species-name>.

start => (integer$)
The first tick in which the script block is active.

tag <–> (integer$)
A user-defined integer value. The value of tag is initially undefined, and it is an error to try to read
it; if you wish it to have a defined value, you must arrange that yourself by explicitly setting its value
prior to using it elsewhere in your code. The value of tag is not used by SLiM; it is free for you to use.

ticksSpec => (object<Species>)
The ticks specifier for the script block. The ticks specifier for an event block indicates the
event’s associated species; the event executes only in ticks when that species is active. If the
script block has no ticks specifier, this property’s value is a zero-length object vector of
class Species. This property is read-only; normally it is set by preceding the definition of an
event with a ticks specifier, of the form ticks <species-name>.

type => (string$)
The type of the script block; this will be "first", "early", or "late" for the three types of Eidos
events, or "initialize", "fitnessEffect", "interaction", "mateChoice", "modifyChild",
"mutation", "mutationEffect", "recombination", "reproduction", or "survival" for the
respective types of Eidos callbacks (see section 25.1 and chapter 26).

25.12.2 SLiMEidosBlock methods
SLiMEidosBlock provides no methods to modify a script block. You may, however, reschedule a

block to run in a different set of ticks using the rescheduleScriptBlock() method of Community, or
register a new script block using the source and type of an existing block using the register...()
methods of Community and Species (see sections 25.3.2 and 25.15.2).

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 710

25.13 Class SLiMgui
Superclass: Dictionary

This class represents the SLiMgui application. When running under SLiMgui, a global object
singleton constant of class SLiMgui will be defined, named slimgui. This object can be used to
query and control the SLiMgui application. When running at the command line, the slimgui
object will not exist; to determine whether the simulation is running under SLiMgui, one may
therefore test exists("slimgui"). If a model needs to run both at the command line and under
SLiMgui, all uses of the slimgui object should be protected by if (exists("slimgui")) to avoid
errors.

25.13.1 SLiMgui properties

pid => (integer$)
The Un*x process identifier (commonly called the “pid”) of the running SLiMgui application. This can
be useful for scripts that wish to use system calls to influence the SLiMgui application.

25.13.2 SLiMgui methods

– (void)openDocument(string$ filePath)
Open the document at filePath in SLiMgui, if possible. Supported document types include SLiM
model files (typically with a .slim path extension), text files (typically with a .txt path extension,
and opened as untitled model files), and PNG, JPG/JPEG, BMP, and GIF image file formats
(typically .png / .jpg / .jpeg / .bmp / .gif, respectively). (Note that in SLiMguiLegacy, PDF files
(.pdf) are supported but these other image file formats are not.) This method can be particularly
useful for opening images created by the simulation itself, often by sublaunching a plotting process in
R or another environment; see section 14.8 for an example.

– (void)pauseExecution(string$ filePath)
Pauses a model that is playing in SLiMgui. This is essentially equivalent to clicking the “Play” button
to stop the execution of the model. Execution can be resumed by the user, by clicking the “Play”
button again; unlike calling stop() or simulationFinished(), the simulation is not terminated.
This method can be useful for debugging or exploratory purposes, to pause the model at a point of
interest. Execution is paused at the end of the currently executing tick, not mid-tick.

If the model is being profiled, or is executing forward to a tick number entered in the tick field,
pauseExecution() will do nothing; by design, pauseExecution() only pauses execution when
SLiMgui is doing a simple “Play” of the model.

25.14 Class SpatialMap
Superclass: Dictionary

This class represents a “spatial map”: a grid of values overlaid across a simulated spatial
landscape, representing some variable that varies across space. This variable could be something
environmental (elevation, temperature), something that affects local dynamics (local carrying-
capacity density, local mean dispersal distance), or anything else needed for the model (years since
the last wildfire in that location, for example). A new spatial map is created with the
defineSpatialMap() method of Subpopulation, because spatial maps are tightly associated with
subpopulations; in particular, they must share the spatial bounds of any subpopulation to which
they have been added, because the spatial map’s grid of values is overlaid onto those spatial
bounds.

There is a constructor for SpatialMap, but it is only used to copy an existing spatial map:

(object<SpatialMap>$)SpatialMap(string$ name, object<SpatialMap>$ map)
Creates a new SpatialMap object that is a copy of map, named name.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 711

That can be useful if you wish to derive a new spatial map from an existing map, but it is not
very commonly used. Usually a new map is created with defineSpatialMap(), often using spatial
data from a PNG image file that has been loaded using the Eidos class Image. If you wish to add a
spatial map to additional subpopulations, beyond the subpopulation for which the map was
originally defined, the Subpopulation method addSpatialMap() can be used to do so, thereby
sharing the map across more than one subpopulation.

The SpatialMap class was added in SLiM 4.1; before that, spatial maps were a sub-component
of Subpopulation. Splitting spatial maps out into their own class provides more flexibility to
extend their capabilities in the future.

25.14.1 SpatialMap properties

gridDimensions => (integer)
The dimensions of the spatial map’s grid of values, in the order of the components of the map’s
spatiality. For example, a map with spatiality "xz" and a grid of values that is 500 in the "x"
dimension by 300 in the "z" dimension would return c(500, 300) for this property.

interpolate <–> (logical$)
Whether interpolation between grid values is enabled (T) or disabled (F). The initial value of this
property is set by defineSpatialMap(), but it can be changed. The interpolation performed is linear;
for cubic interpolation, use the interpolate() method.

name => (string$)
The name of the spatial map, usually as provided to defineSpatialMap(). The names of spatial
maps must be unique within any given subpopulation, but the same name may be reused for different
spatial maps in different subpopulations. The name is used to identify a map for methods such as
spatialMapValue(), and is also used for display in SLiMgui.

spatialBounds => (float)
The spatial bounds to which the spatial map is aligned. These bounds come from the subpopulation
that originally created the map, with the defineSpatialMap() method, and cannot be subsequently
changed. All subpopulations that use a given spatial map must match that map’s spatial bounds, so
that the map does not stretch or shrink relative to its initial configuration. The components of the
spatial bounds of a map correspond to the components of the map’s spatiality; for example, a map
with spatiality "xz" will have bounds (x0, z0, x1, z1); bounds for "y" are not included, since that
dimension is not used by the spatial map.

spatiality => (string$)
The spatiality of the map: the subset of the model’s dimensions that are used by the spatial map. The
spatiality of a map is configured by defineSpatialMap() and cannot subsequently be changed. For
example, a 3D model (with dimensionality "xyz") might define a 2D spatial map with spatiality "xz",
providing spatial values that do not depend upon the "y" dimension. Often, however, the spatiality of
a map will match the dimensionality of the model.

tag <–> (integer$)
A user-defined integer value. The value of tag is initially undefined, and it is an error to try to read
it; if you wish it to have a defined value, you must arrange that yourself by explicitly setting its value
prior to using it elsewhere in your code. The value of tag is not used by SLiM; it is free for you to use.
See also the getValue() and setValue() methods (provided by the Dictionary class; see the Eidos
manual), for another way of attaching state to spatial maps.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 712

25.14.2 SpatialMap methods

– (object<SpatialMap>$)add(ifo<SpatialMap> x)
Adds x to the spatial map. One possibility is that x is a singleton integer or float value; in this
case, x is added to each grid value of the target spatial map. Another possibility is that x is an
integer or float vector/matrix/array of the same dimensions as the target spatial map’s grid; in this
case, each value of x is added to the corresponding grid value of the target spatial map. The third
possibility is that x is itself a (singleton) spatial map; in this case, each grid value of x is added to the
corresponding grid value of the target spatial map (and thus the two spatial maps must match in their
spatiality, their spatial bounds, and their grid dimensions). The target spatial map is returned, to allow
easy chaining of operations.

– (object<SpatialMap>$)blend(ifo<SpatialMap> x, float$ xFraction)
Blends x into the spatial map, giving x a weight of xFraction and the existing values in the target
spatial map a weight of 1 - xFraction, such that the resulting values in the target spatial map are
then given by x * xFraction + target * (1 - xFraction). The value of xFraction must be in
[0.0, 1.0].

One possibility is that x is a singleton integer or float value; in this case, x is blended with each
grid value of the target spatial map. Another possibility is that x is an integer or float vector/
matrix/array of the same dimensions as the target spatial map’s grid; in this case, each value of x is
blended with the corresponding grid value of the target spatial map. The third possibility is that x is
itself a (singleton) spatial map; in this case, each grid value of x is blended with the corresponding grid
value of the target spatial map (and thus the two spatial maps must match in their spatiality, their
spatial bounds, and their grid dimensions). The target spatial map is returned, to allow easy chaining
of operations.

– (void)changeColors([Nif valueRange = NULL], [Ns colors = NULL])
Changes the color scheme for the target spatial map. The meaning of valueRange and colors are
identical to their meaning in defineSpatialMap(), but are also described here.

The valueRange and colors parameters travel together; either both are NULL, or both are specified.
They control how map values will be transformed into colors, by SLiMgui and by the mapColor()
method. The valueRange parameter establishes the color-mapped range of spatial map values, as a
vector of length two specifying a minimum and maximum; this does not need to match the actual
range of values in the map. The colors parameter then establishes the corresponding colors for
values within the interval defined by valueRange: values less than or equal to valueRange[0] will
map to colors[0], values greater than or equal to valueRange[1] will map to the last colors value,
and intermediate values will shade continuously through the specified vector of colors, with
interpolation between adjacent colors to produce a continuous spectrum. This is much simpler than it
sounds in this description; see the recipes in chapter 16 for an illustration of its use.

If valueRange and colors are both NULL, a default grayscale color scheme will be used in SLiMgui,
but an error will result if mapColor() is called.

– (void)changeValues(ifo<SpatialMap> x)
Changes the grid values used for the target spatial map. The parameter x should be either a
SpatialMap object from which values are taken directly, or a vector, matrix, or array of numeric
values as described in the documentation for defineSpatialMap(). Other characteristics of the
spatial map, such as its color mapping (if defined), its spatial bounds, and its spatiality, will remain
unchanged. The grid resolution of the spatial map is allowed to change with this method. This
method is useful for changing the values of a spatial map over time, such as to implement changes to
the landscape’s characteristics due to seasonality, climate change, processes such as fire or
urbanization, and so forth. As with the original map values provided to defineSpatialMap(), it is
often useful to read map values from a PNG image file using the Eidos class Image.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 713

– (object<SpatialMap>$)divide(ifo<SpatialMap> x)
Divides the spatial map by x. One possibility is that x is a singleton integer or float value; in this
case, each grid value of the target spatial map is divided by x. Another possibility is that x is an
integer or float vector/matrix/array of the same dimensions as the target spatial map’s grid; in this
case, each grid value of the target spatial map is divided by the corresponding value of x. The third
possibility is that x is itself a (singleton) spatial map; in this case, each grid value of the target spatial
map is divided by the corresponding grid value of x (and thus the two spatial maps must match in
their spatiality, their spatial bounds, and their grid dimensions). The target spatial map is returned, to
allow easy chaining of operations.

– (object<SpatialMap>$)exp(void)
Exponentiates the values of the spatial map. More precisely, each grid value x of the target spatial
map is exponentiated – replaced by the value ex. The target spatial map is returned, to allow easy
chaining of operations.

– (float)gridValues(void)
Returns the values for the spatial map’s grid as a vector (for a 1D map), a matrix (for a 2D map), or an
array (for a 3D map). The form and orientation of the returned values is such that it could be used to
create a new spatial map, with defineSpatialMap(), which would be identical to the original.

– (object<SpatialMap>$)interpolate(integer$ factor, [string$ method = "linear"])
Increases the resolution of the spatial map by factor, changing the dimensions of the spatial map’s
grid of values (while leaving its spatial bounds unchanged), by interpolating new values between the
existing values. The parameter factor must be an integer in [2, 10001], somewhat arbitrarily. The
target spatial map is returned, to allow easy chaining of operations.

For a 1D spatial map, factor-1 new values will be inserted between every pair of values in the
original value grid. A factor of 2 would therefore insert one new value between each pair of existing
values, thereby increasing the map’s resolution by a factor of two. Note that if the spatial map’s
original grid dimension was N, the new grid dimension with a factor of k would be k(N−1)+1, not
kN, because new values are inserted only between existing values. For 2D and 3D spatial maps,
essentially the same process is conducted along each axis of the map’s spatiality, increasing the
resolution of the map by factor in every dimension.

If method is "linear" (the default), linear (or bilinear or trilinear, for 2D/3D maps) interpolation will
be used to interpolate the values for the new grid points. Alternatively, if method is "nearest", the
nearest value in the old grid will be used for new grid points; with this method, it is recommended
that factor be odd, not even, to avoid artifacts due to rounding of coordinates midway between the
original grid positions. If method is "cubic", cubic (or bicubic, for 2D maps) will be used; this
generally produces smoother interpolation with fewer artifacts than "linear", but it is not supported
for 3D maps. The choice of interpolation method used here is independent of the map’s interpolate
property. Note that while the "nearest" and "linear" interpolation methods will leave the range of
values in the map unchanged, "cubic" interpolation may produce interpolated values that are outside
the original range of values (by design). Periodic boundaries are currently supported only for
"nearest", "linear", and 1D "cubic" interpolation.

– (string)mapColor(numeric value)
Uses the spatial map’s color-translation machinery (as defined by the valueRange and colors
parameters to defineSpatialMap()) to translate each element of value into a corresponding color
string. If the spatial map does not have color-translation capabilities, an error will result. See the
documentation for defineSpatialMap() for information regarding the details of color translation.
See the Eidos manual for further information on color strings.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 714

– (object<Image>$)mapImage([Ni$ width = NULL], [Ni$ height = NULL],
[logical$ centers = F], [logical$ color = T])

Returns an Image object sampled from the spatial map. The image will be width pixels wide and
height pixels tall; the intrinsic size of the spatial map itself will be used if one of these parameters is
NULL. The image will be oriented in the same way as it is displayed in SLiMgui (which conceptually
entails a transformation from matrix coordinates, which store values by column, to standard image
coordinates, which store values by row; see the Eidos manual’s documentation of Image for details).
This method may only be called for 2D spatial maps at present.

The sampling of the spatial map can be done in one of two ways, as controlled by the centers
parameter. If centers is T, a (width+1) × (height+1) grid of lines that delineates width × height
rectangular pixels will be overlaid on top of the spatial map, and values will be sampled from the
spatial map at the center of each of these pixels. If centers is F (the default), a width × height grid
of lines will be overlaid on top of the spatial map, and values will be sampled from the spatial map at
the vertices of the grid. If interpolation is not enabled for the spatial map, these two options will both
recover the original matrix of values used to define the spatial map (assuming, here and below, that
width and height are NULL). If interpolation is enabled for the spatial map, however, centers == F
will recover the original values, but will not capture the “typical” value of each pixel in the image;
centers == T, on the other hand, will not recover the original values, but will capture the “typical”
value of each pixel in the image (i.e., the value at the center of each pixel, as produced by
interpolation). The figures in section 16.11 may be helpful for visualizing the difference between
these options; the overlaid grids span the full extent of the spatial map, just as shown in that section.

If color is T (the default), the valueRange and colors parameters supplied to defineSpatialMap()
will be used to translate map values to RGB color values as described in the documentation of that
method, providing the same appearance as in SLiMgui; of course those parameters must have been
supplied, otherwise an error will result. If color is F, on the other hand, a grayscale image will be
produced that directly reflects the map values without color translation. In this case, this method
needs to translate map values, which can have any float value, into grayscale pixel values that are
integers in [0, 255]. To do so, the map values are multiplied by 255.0, clamped to [0.0, 255.0], and
then rounded to the nearest integer. This translation scheme essentially assumes that map values are
in [0, 1]; for spatial maps that were defined using the floatK channel of a grayscale PNG image, this
should recover the original image’s pixel values. (If a different translation scheme is desired, color=T
with the desired valueRange and colors should be used.)

– (float)mapValue(float point)
Uses the spatial map’s mapping machinery (as defined by the gridSize, values, and interpolate
parameters to defineSpatialMap()) to translate the coordinates of point into a corresponding map
value. The length of point must be equal to the spatiality of the spatial map; in other words, for a
spatial map with spatiality "xz", point must be of length 2, specifying the x and z coordinates of the
point to be evaluated. Interpolation will automatically be used if it was enabled for the spatial map.
Point coordinates are clamped into the range defined by the spatial boundaries, even if the spatial
boundaries are periodic; use pointPeriodic() to wrap the point coordinates first if desired. See the
documentation for defineSpatialMap() for information regarding the details of value mapping.

Beginning in SLiM 3.3, point may contain more than one point to be looked up. In this case, the
length of point must be an exact multiple of the spatiality of the spatial map; for a spatial map with
spatiality "xz", for example, the length of point must be an exact multiple of 2, and successive pairs
of elements from point (elements 0 and 1, then elements 2 and 3, etc.) will be taken as the x and z
coordinates of the points to be evaluated. This allows spatialMapValue() to be used in a vectorized
fashion.

The spatialMapValue() method of Subpopulation provides the same functionality as this method;
it may be more convenient to use, for some usage cases, and it checks that the spatial map is actually
added to the subpopulation in question, providing an additional consistency check. However, either
method may be used.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 715

– (object<SpatialMap>$)multiply(ifo<SpatialMap> x)
Multiplies the spatial map by x. One possibility is that x is a singleton integer or float value; in
this case, each grid value of the target spatial map is multiplied by x. Another possibility is that x is an
integer or float vector/matrix/array of the same dimensions as the target spatial map’s grid; in this
case, each grid value of the target spatial map is multiplied by the corresponding value of x. The third
possibility is that x is itself a (singleton) spatial map; in this case, each grid value of the target spatial
map is multiplied by the corresponding grid value of x (and thus the two spatial maps must match in
their spatiality, their spatial bounds, and their grid dimensions). The target spatial map is returned, to
allow easy chaining of operations.

– (object<SpatialMap>$)power(ifo<SpatialMap> x)
Raises the spatial map to the power x. One possibility is that x is a singleton integer or float value;
in this case, each grid value of the target spatial map is raised to the power x. Another possibility is
that x is an integer or float vector/matrix/array of the same dimensions as the target spatial map’s
grid; in this case, each grid value of the target spatial map is raised to the power of the corresponding
value of x. The third possibility is that x is itself a (singleton) spatial map; in this case, each grid value
of the target spatial map is raised to power of the corresponding grid value of x (and thus the two
spatial maps must match in their spatiality, their spatial bounds, and their grid dimensions). The target
spatial map is returned, to allow easy chaining of operations.

– (float)range(void)
Returns the range of values contained in the spatial map. The result is a float vector of length 2; the
first element is the minimum map value, and the second element is the maximum map value.

– (object<SpatialMap>$)rescale([numeric$ min = 0.0], [numeric$ max = 1.0])
Rescales the values of the spatial map to the range [min, max]. By default, the rescaling is to the range
[0.0, 1.0]. It is required that min be less than max, and that both be finite. Note that the final range
may not be exactly [min, max] due to numerical error. The target spatial map is returned, to allow easy
chaining of operations.

– (float)sampleImprovedNearbyPoint(float point, float$ maxDistance,
string$ functionType, ...)

This variant of sampleNearbyPoint() samples a Metropolis–Hastings move on the spatial map. See
sampleNearbyPoint() for discussion of the basic idea. This method proposes a nearby point drawn
from the given kernel. If the drawn point has a larger map value than the original point, the new point
is returned. If the drawn point has a smaller map value than the original point, it is returned with a
probability equal to the ratio between its map value and the original map value, otherwise the original
point is returned. The distribution of individuals that move (or not) to new locations governed by this
method will converge upon the map itself, in a similar manner to how MCMC converges upon the
posterior distribution (assuming no other forces, such as birth or death, influence the distribution of
individuals). Movement governed by this method is “improved” in the sense that individuals will tend
to remain where they are unless the new sampled point is an improvement for them – a higher map
value.

Note that unlike sampleNearbyPoint(), this method requires that all map values are non-negative.

– (float)sampleNearbyPoint(float point, float$ maxDistance,
string$ functionType, ...)

For a spatial point supplied in point, returns a nearby point sampled from a kernel weighted by the
spatial map’s values. Only points within the maximum distance of the kernel, maxDistance, will be
chosen, and the probability that a given point is chosen will be proportional to the density of the
kernel at that point multiplied by the value of the map at that point (interpolated, if interpolation is
enabled for the map). Negative values of the map will be treated as zero. The point returned will be
within spatial bounds, respecting periodic boundaries if in effect (so there is no need to call
pointPeriodic() on the result).

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 716

The kernel is specified with a kernel shape, functionType, followed by zero or more ellipsis
arguments; see smooth() for further information. For this method, at present only kernel types "f",
"l", "e", "n", and "t" are supported, and type "t" is not presently supported for 3D kernels.

This method can be used to find points in the vicinity of individuals that are favorable – possessing
more resources, or better environmental conditions, etc. It can also be used to guide the dispersal or
foraging behavior of individuals. See sampleImprovedNearbyPoint() for a variant that may be
useful for directed movement across a landscape. Note that the algorithm for sampleNearbyPoint()
works by rejection sampling, and so will be very inefficient if the maximum value of the map
(anywhere, across the entire map) is much larger than the typical value of the map where individuals
are. The algorithm for sampleImprovedNearbyPoint() is different, and does not exhibit this
performance issue.

– (object<SpatialMap>$)smooth(float$ maxDistance, string$ functionType, ...)
Smooths (or blurs, one could say) the values of the spatial map by convolution with a kernel. The
kernel is specified with a maximum distance maxDistance (beyond which the kernel cuts off to a
value of zero), a kernel type functionType that should be "f", "l", "e", "n", "c", or "t", and
additional parameters in the ellipsis ... that depend upon the kernel type and further specify its
shape. The target spatial map is returned, to allow easy chaining of operations.

The kernel specification is similar to that for the setInteractionType() method of
InteractionType, but omits the maximum value of the kernel. Specifically, functionType may be
"f", in which case no ellipsis arguments should be supplied; "l", similarly with no ellipsis
arguments; "e", in which case the ellipsis should supply a numeric$ lambda (rate) parameter for a
negative exponential function; "n", in which case the ellipsis should supply a numeric$ sigma
(standard deviation) parameter for a Gaussian function; "c", in which case the ellipsis should supply a
numeric$ scale parameter for a Cauchy distribution function; or "t", in which case the ellipsis should
supply a numeric$ degrees of freedom and a numeric$ scale parameter for a t-distribution function.
See the InteractionType class documentation for discussions of these kernel types.

Distance metrics specified to this method, such as maxDistance and the additional kernel shape
parameters, are measured in the distance scale of the spatial map – the same distance scale in which
the spatial bounds of the map are specified. The operation is performed upon the grid values of the
spatial map; distances are internally translated into the scale of the value grid. For non-periodic
boundaries, clipping at the edge of the spatial map is done; in a 2D map with no periodic boundaries,
for example, the weights of edge and corner grid values are adjusted for their partial (one-half and
one-quarter) coverage. For periodic boundaries, the smoothing operation will automatically wrap
around based upon the assumption that the grid values at the two connected edges of the periodic
boundary have identical values (which they should, since by definition they represent the same
position in space).

The density scale of the kernel has no effect and will be normalized; this is the reason that smooth(),
unlike InteractionType, does not require specification of the maximum value of the kernel. This
normalization prevents the kernel from increasing or decreasing the average spatial map value (apart
from possible edge effects).

– (object<SpatialMap>$)subtract(ifo<SpatialMap> x)
Subtracts x from the spatial map. One possibility is that x is a singleton integer or float value; in
this case, x is subtracted from each grid value of the target spatial map. Another possibility is that x is
an integer or float vector/matrix/array of the same dimensions as the target spatial map’s grid; in
this case, each value of x is subtracted from the corresponding grid value of the target spatial map.
The third possibility is that x is itself a (singleton) spatial map; in this case, each grid value of x is
subtracted from the corresponding grid value of the target spatial map (and thus the two spatial maps
must match in their spatiality, their spatial bounds, and their grid dimensions). The target spatial map
is returned, to allow easy chaining of operations.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 717

25.15 Class Species
Superclass: Dictionary

This class represents a species in a SLiM simulation. In a single-species model, the single
Species instance is defined as a global constant named sim; in multispecies models, each Species
instance is defined as a global constant with the same name as the species.

25.15.1 Species properties

avatar => (string$)
The avatar string used to represent this species in SLiMgui. Outside of SLiMgui, this property still
exists, but is not used by SLiM. Avatars are typically one-character strings, often using an emoji that
symbolizes the species. This property is read-only; its value should be set with the avatar parameter
of initializeSpecies().

chromosome => (object<Chromosome>$)
The Chromosome object used by the species.

chromosomeType => (string$)
The type of chromosome being simulated by this species; this will be one of "A", "X", or "Y".

color => (string$)
The color used to display information about this species in SLiMgui. Outside of SLiMgui, this property
still exists, but is not used by SLiM. Colors may be specified by name, or with hexadecimal RGB
values of the form "#RRGGBB" (see the Eidos manual). This property is read-only; its value should be
set with the color parameter of initializeSpecies().

cycle <–> (integer$)
The current cycle count for this species. This counter begins at 1, and increments at the end of every
tick in which the species is active. In models with non-overlapping generations, particularly WF
models, this can be thought of as a generation counter.

description <–> (string$)
A human-readable string description for the species. By default, this is the empty string, "";
however, it may be set to whatever you wish.

dimensionality => (string$)
The spatial dimensionality of the simulation for this species, as specified in
initializeSLiMOptions(). This will be "" (the empty string) for non-spatial simulations (the
default), or "x", "xy", or "xyz", for simulations using those spatial dimensions respectively.

genomicElementTypes => (object<GenomicElementType>)
The GenomicElementType objects being used in the species.

id => (integer$)
The identifier for this species. Species identifiers are determined by their declaration order in the
script; the first declared species is given an id of 0, the second is given an id of 1, and so forth.

mutationTypes => (object<MutationType>)
The MutationType objects being used in the species.

mutations => (object<Mutation>)
The Mutation objects that are currently active in the species.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 718

name => (string$)
A human-readable string name for the subpopulation. This is always the declared name of the
species, as given in the explicit species declaration in script, and cannot be changed. The name of a
species may appear as a label in SLiMgui, and it can be useful in generating output, debugging, and
other purposes. See also the description property, which can be changed by the user and used for any
purpose.

nucleotideBased => (logical$)
If T, the model for this species is nucleotide-based; if F, it is not. See the discussion of the
nucleotideBased parameter to initializeSLiMOptions() for discussion.

periodicity => (string$)
The spatial periodicity of the simulation for this species, as specified in initializeSLiMOptions().
This will be "" (the empty string) for non-spatial simulations and simulations with no periodic spatial
dimensions (the default). Otherwise, it will be a string representing the subset of spatial dimensions
that have been declared to be periodic, as specified to initializeSLiMOptions().

scriptBlocks => (object<SLiMEidosBlock>)
All registered SLiMEidosBlock objects in the simulation that have been declared with this species as
their species specifier (not ticks specifier). These will always be callback blocks; callbacks are
species-specific, while other types of blocks are not.

sexEnabled => (logical$)
If T, sex is enabled for this species; if F, individuals are hermaphroditic.

subpopulations => (object<Subpopulation>)
The Subpopulation instances currently defined in the species.

substitutions => (object<Substitution>)
A vector of Substitution objects, representing all mutations that have been fixed in this species.

tag <–> (integer$)
A user-defined integer value. The value of tag is initially undefined, and it is an error to try to read
it; if you wish it to have a defined value, you must arrange that yourself by explicitly setting its value
prior to using it elsewhere in your code. The value of tag is not used by SLiM; it is free for you to use.
See also the getValue() and setValue() methods (provided by the Dictionary class; see the Eidos
manual), for another way of attaching state to the simulation.

25.15.2 Species methods

– (object<Subpopulation>$)addSubpop(is$ subpopID, integer$ size,
[float$ sexRatio = 0.5], [logical$ haploid = F])

Add a new subpopulation with id subpopID and size individuals. The subpopID parameter may be
either an integer giving the ID of the new subpopulation, or a string giving the name of the new
subpopulation (such as "p5" to specify an ID of 5). Only if sex is enabled for the species, the initial
sex ratio may optionally be specified as sexRatio (as the male fraction, M:M+F); if it is not specified,
a default of 0.5 is used. The new subpopulation will be defined as a global variable immediately by
this method (see section 25.16), and will also be returned by this method. Subpopulations added by
this method will initially consist of individuals with empty genomes. In order to model
subpopulations that split from an already existing subpopulation, use addSubpopSplit().

Only in nonWF models, the haploid parameter may be T; in this case, the second genome of each
new individual will be a null genome, rather than an empty genome. For even greater control in
nonWF models, you can call addSubpop() with an initial size of 0 and then stock the population with
new individuals created however you wish in the next tick’s reproduction() callback.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 719

– (object<Subpopulation>$)addSubpopSplit(is$ subpopID, integer$ size,
io<Subpopulation>$ sourceSubpop, [float$ sexRatio = 0.5])

Split off a new subpopulation with id subpopID and size individuals derived from subpopulation
sourceSubpop. The subpopID parameter may be either an integer giving the ID of the new
subpopulation, or a string giving the name of the new subpopulation (such as "p5" to specify an ID
of 5). The sourceSubpop parameter may specify the source subpopulation either as a
Subpopulation object or by integer identifier. Only if sex is enabled for the species, the initial sex
ratio may optionally be specified as sexRatio (as the male fraction, M:M+F); if it is not specified, a
default of 0.5 is used. The new subpopulation will be defined as a global variable immediately by
this method (see section 25.16), and will also be returned by this method.

Subpopulations added by this method will consist of individuals that are clonal copies of individuals
from the source subpopulation, randomly chosen with probabilities proportional to fitness. The fitness
of all of these initial individuals is considered to be 1.0, to avoid a doubled round of selection in the
initial tick, given that fitness values were already used to choose the individuals to clone. Once this
initial set of individuals has mated to produce offspring, the model is effectively of parental individuals
in the source subpopulation mating randomly according to fitness, as usual in SLiM, with juveniles
migrating to the newly added subpopulation. Effectively, then, then new subpopulation is created
empty, and is filled by migrating juveniles from the source subpopulation, in accordance with SLiM’s
usual model of juvenile migration.

– (integer$)countOfMutationsOfType(io<MutationType>$ mutType)
Returns the number of mutations that are of the type specified by mutType, out of all of the mutations
that are currently active in the species. If you need a vector of the matching Mutation objects, rather
than just a count, use -mutationsOfType(). This method is often used to determine whether an
introduced mutation is still active (as opposed to being either lost or fixed). This method is provided
for speed; it is much faster than the corresponding Eidos code.

– (object<Individual>)individualsWithPedigreeIDs(integer pedigreeIDs,
[Nio<Subpopulation> subpops = NULL])

Looks up individuals by pedigree ID, optionally within specific subpopulations. Pedigree tracking
must be turned on with initializeSLiMOptions(keepPedigrees=T) to use this method, otherwise
an error will result. This method is vectorized; more than one pedigree id may be passed in
pedigreeID, in which case the returned vector will contain all of the individuals for which a match
was found (in the same order in which they were supplied). If a given id is not found, the returned
vector will contain no entry for that id (so the length of the returned vector may not match the length
of pedigreeIDs). If none of the given ids were found, the returned vector will be
object<Individual>(0), an empty object vector of class Individual. If you have more than one
pedigree ID to look up, calling this method just once, in vectorized fashion, may be much faster than
calling it once for each ID, due to internal optimizations.

To find individuals within all subpopulations, pass the default of NULL for subpops. If you are
interested only in matches within a specific subpopulation, pass that subpopulation for subpops; that
will make the search faster. Similarly, if you know that a particular subpopulation is the most likely to
contain matches, you should supply that subpopulation first in the subpops vector so that it will be
searched first; the supplied subpopulations are searched in order. Subpopulations may be supplied
either as integer IDs, or as Subpopulation objects.

– (void)killIndividuals(object<Individual> individuals)
Immediately kills the individuals in individuals. This removes them from their subpopulation and
gives them an index value of -1. The Individual objects are not freed immediately, since references
to them could still exist in local Eidos variables; instead, the individuals are kept in a temporary
“graveyard” until they can be freed safely. It therefore continues to be safe to use them and their
genomes, except that accessing their subpopulation property will raise an error since they no longer
have a subpopulation.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 720

Note that the indices and order of individuals and genomes in all source subpopulations will change
unpredictably as a side effect of this method. All evaluated interactions are invalidated as a side effect
of calling this method.

Note that this method is only for use in nonWF models, in which mortality is managed manually by
the model script. In WF models, mortality is managed automatically by the SLiM core when the new
offspring generation becomes the parental generation and the previous parental generation dies;
mortality does not otherwise occur in WF models. In nonWF models, mortality normally occurs
during the survival stage of the tick cycle (see section 24.4), based upon the fitness values calculated
by SLiM, and survival() callbacks can influence the outcome of that survival stage. Calls to
killIndividuals(), on the other hand, can be made at any time during first(), early(), or
late() events, and the result cannot be modified by survival() callbacks; the given individuals are
simply immediately killed. This method therefore provides an alternative, and relatively rarely used,
mortality mechanism that is disconnected from fitness.

– (integer)mutationCounts(Nio<Subpopulation> subpops,
[No<Mutation> mutations = NULL])

Return an integer vector with the frequency counts of all of the Mutation objects passed in
mutations, within the Subpopulation objects in subpops. The subpops argument is required, but
you may pass NULL to get population-wide frequency counts. Subpopulations may be supplied either
as integer IDs, or as Subpopulation objects. If the optional mutations argument is NULL (the
default), frequency counts will be returned for all of the active Mutation objects in the species – the
same Mutation objects, and in the same order, as would be returned by the mutations property of
sim, in other words.

See the -mutationFrequencies() method to obtain float frequencies instead of integer counts.
See also the Genome methods mutationCountsInGenomes() and
mutationFrequenciesInGenomes().

– (float)mutationFrequencies(Nio<Subpopulation> subpops,
[No<Mutation> mutations = NULL])

Return a float vector with the frequencies of all of the Mutation objects passed in mutations,
within the Subpopulation objects in subpops. The subpops argument is required, but you may pass
NULL to get population-wide frequencies. Subpopulations may be supplied either as integer IDs, or
as Subpopulation objects. If the optional mutations argument is NULL (the default), frequencies will
be returned for all of the active Mutation objects in the species – the same Mutation objects, and in
the same order, as would be returned by the mutations property of sim, in other words.

See the -mutationCounts() method to obtain integer counts instead of float frequencies. See
also the Genome methods mutationCountsInGenomes() and mutationFrequenciesInGenomes().

– (object<Mutation>)mutationsOfType(io<MutationType>$ mutType)
Returns an object vector of all the mutations that are of the type specified by mutType, out of all of
the mutations that are currently active in the species. If you just need a count of the matching
Mutation objects, rather than a vector of the matches, use -countOfMutationsOfType(). This
method is often used to look up an introduced mutation at a later point in the simulation, since there
is no way to keep persistent references to objects in SLiM. This method is provided for speed; it is
much faster than the corresponding Eidos code.

– (void)outputFixedMutations([Ns$ filePath = NULL], [logical$ append = F])
Output all fixed mutations – all Substitution objects, in other words (see section 1.5.2) – in a SLiM
native format (see section 27.1.2 for output format details). If the optional parameter filePath is
NULL (the default), output will be sent to Eidos’s output stream (see section 4.2.1). Otherwise, output
will be sent to the filesystem path specified by filePath, overwriting that file if append if F, or
appending to the end of it if append is T. Mutations which have fixed but have not been turned into
Substitution objects – typically because convertToSubstitution has been set to F for their

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 721

mutation type (see section 25.11.1) – are not output; they are still considered to be segregating
mutations by SLiM.

In SLiM 3.3 and later, the output format includes the nucleotides associated with any nucleotide-based
mutations; see section 27.1.2.

Output is generally done in a late() event, so that the output reflects the state of the simulation at
the end of a tick.

– (void)outputFull([Ns$ filePath = NULL], [logical$ binary = F],
[logical$ append = F], [logical$ spatialPositions = T], [logical$ ages = T],
[logical$ ancestralNucleotides = T], [logical$ pedigreeIDs = F])

Output the state of the entire population (see section 27.1.1 for output format details). If the optional
parameter filePath is NULL (the default), output will be sent to Eidos’s output stream (see section
4.2.1). Otherwise, output will be sent to the filesystem path specified by filePath, overwriting that
file if append if F, or appending to the end of it if append is T. When writing to a file, a logical flag,
binary, may be supplied as well. If binary is T, the population state will be written as a binary file
instead of a text file (binary data cannot be written to the standard output stream). The binary file is
usually smaller, and in any case will be read much faster than the corresponding text file would be
read. Binary files are not guaranteed to be portable between platforms; in other words, a binary file
written on one machine may not be readable on a different machine (but in practice it usually will be,
unless the platforms being used are fairly unusual). If binary is F (the default), a text file will be
written.

Beginning with SLiM 2.3, the spatialPositions parameter may be used to control the output of the
spatial positions of individuals in species for which continuous space has been enabled using the
dimensionality option of initializeSLiMOptions(). If spatialPositions is F, the output will
not contain spatial positions, and will be identical to the output generated by SLiM 2.1 and later. If
spatialPositions is T, spatial position information will be output if it is available (see section
27.1.1 for format details). If the species does not have continuous space enabled, the
spatialPositions parameter will be ignored. Positional information may be output for all output
destinations – the Eidos output stream, a text file, or a binary file.

Beginning with SLiM 3.0, the ages parameter may be used to control the output of the ages of
individuals in nonWF simulations. If ages is F, the output will not contain ages, preserving backward
compatibility with the output format of SLiM 2.1 and later. If ages is T, ages will be output for nonWF
models (see section 27.1.1 for format details). In WF simulations, the ages parameter will be ignored.

Beginning with SLiM 3.3, the ancestralNucleotides parameter may be used to control the output
of the ancestral nucleotide sequence in nucleotide-based models (see section 27.1.1 for format
details). If ancestralNucleotides is F, the output will not contain ancestral nucleotide information,
and so the ancestral sequence will not be restored correctly if the saved file is loaded with
readPopulationFile(). This option is provided because the ancestral sequence may be quite large,
for models with a long chromosome (e.g., 1 GB if the chromosome is 109 bases long, when saved in
text format, or 0.25 GB when saved in binary format). If the model is not nucleotide-based (as
enabled with the nucleotideBased parameter to initializeSLiMOptions()), the
ancestralNucleotides parameter will be ignored. Note that in nucleotide-based models the output
format will always include the nucleotides associated with any nucleotide-based mutations; the
ancestralNucleotides flag governs only the ancestral sequence.

Beginning with SLiM 3.5, the pedigreeIDs parameter may be used to request that pedigree IDs be
written out (and read in by readFromPopulationFile(), subsequently). This option is turned off (F)
by default, to preserve backward compatibility; if it is turned on (T), different file version values will be
used, and backward compatibility with previous versions of SLiM will be lost (see section 27.1.1).
This option may only be used if SLiM’s optional pedigree tracking has been enabled with
initializeSLiMOptions(keepPedigrees=T).

Output is generally done in a late() event, so that the output reflects the state of the simulation at
the end of a tick.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 722

– (void)outputMutations(object<Mutation> mutations, [Ns$ filePath = NULL],
[logical$ append = F])

Output all of the given mutations (see section 27.1.3 for output format details). This can be used to
output all mutations of a given mutation type, for example. If the optional parameter filePath is
NULL (the default), output will be sent to Eidos’s output stream (see section 4.2.1). Otherwise, output
will be sent to the filesystem path specified by filePath, overwriting that file if append if F, or
appending to the end of it if append is T.

In SLiM 3.3 and later, the output format includes the nucleotides associated with any nucleotide-based
mutations; see section 27.1.3.

Output is generally done in a late() event, so that the output reflects the state of the simulation at
the end of a tick.

– (integer$)readFromPopulationFile(string$ filePath, [No$ subpopMap = NULL])
Read from a population initialization file, whether in text or binary format as previously specified to
outputFull(), and return the tick counter value represented by the file’s contents (i.e., the tick at
which the file was generated). Although this is most commonly used to set up initial populations
(often in an Eidos event set to run in tick 1, immediately after simulation initialization), it may be
called in any early() or late() Eidos event; the current state of all populations in the target species
will be wiped and replaced by the state in the file at filePath. All Eidos variables that are of type
object and have element type Subpopulation, Genome, Mutation, Individual, or Substitution
will be removed as a side effect of this method if they contain any element that belongs to the target
species, because those objects will no longer exist in the SLiM simulation; if you want to preserve any
of that state, you should output it or save it to a file prior to this call. New symbols will be defined to
refer to the new Subpopulation objects loaded from the file.

If the file being read was written by a version of SLiM prior to 2.3, then for backward compatibility
fitness values will be calculated immediately for any new subpopulations created by this call, which
will trigger the calling of any activated and applicable mutationEffect() and fitnessEffect()
callbacks. When reading files written by SLiM 2.3 or later, fitness values are not calculated as a side
effect of this call (because the simulation will often need to evaluate interactions or modify other state
prior to doing so).

In SLiM 2.3 and later when using the WF model, calling readFromPopulationFile() from any
context other than a late() event causes a warning; calling from a late() event is almost always
correct in WF models, so that fitness values can be automatically recalculated by SLiM at the usual
time in the tick cycle without the need to force their recalculation (see chapter 23, and comments on
recalculateFitness() below).

In SLiM 3.0 when using the nonWF model, calling readFromPopulationFile() from any context
other than an early() event causes a warning; calling from an early() event is almost always
correct in nonWF models, so that fitness values can be automatically recalculated by SLiM at the
usual time in the tick cycle without the need to force their recalculation (see chapter 24, and
comments on recalculateFitness() below).

As of SLiM 2.1, this method changes the tick and cycle counters to the tick and cycle read from the
file. If you do not want these counters to be changed, you can change them back after reading, by
setting community.tick and sim.cycle to whatever values you wish. Note that restoring a saved
past state and running forward again will not yield the same simulation results, because the random
number generator’s state will not be the same; to ensure reproducibility from a given time point,
setSeed() can be used to establish a new seed value. Any changes made to structure of the species
(mutation types, genomic element types, etc.) will not be wiped and re-established by
readFromPopulationFile(); this method loads only the population’s state, not the species
configuration, so care should be taken to ensure that the species structure meshes coherently with the
loaded data. Indeed, state such as the selfing and cloning rates of subpopulations, values set into tag
properties, and values set onto objects with setValue() will also be lost, since it is not saved out by
outputFull(). Only information saved by outputFull() will be restored; all other state associated

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 723

with the species – subpopulations, individuals, genomes, mutations, and substitutions – will be lost,
and should be re-established by the model if it is still needed.

As of SLiM 2.3, this method will read and restore the spatial positions of individuals if that information
is present in the output file and the species has enabled continuous space (see outputFull() for
details). If spatial positions are present in the output file but the species has not enabled continuous
space (or the number of spatial dimensions does not match), an error will result. If the species has
enabled continuous space but spatial positions are not present in the output file, the spatial positions
of the individuals read will be undefined, but an error is not raised.

As of SLiM 3.0, this method will read and restore the ages of individuals if that information is present
in the output file and the simulation is based upon the nonWF model. If ages are present but the
simulation uses a WF model, an error will result; the WF model does not use age information. If ages
are not present but the simulation uses a nonWF model, an error will also result; the nonWF model
requires age information.

As of SLiM 3.3, this method will restore the nucleotides of nucleotide-based mutations, and will
restore the ancestral nucleotide sequence, if that information is present in the output file. Loading an
output file that contains nucleotide information in a non-nucleotide-based model, and vice versa, will
produce an error.

As of SLiM 3.5, this method will read and restore the pedigree IDs of individuals and genomes if that
information is present in the output file (as requested with outputFull(pedigreeIDs=T)) and if
SLiM’s optional pedigree tracking has been enabled with
initializeSLiMOptions(keepPedigrees=T).

This method can also be used to read tree-sequence (.trees) files saved by treeSeqOutput() or
generated by the Python pyslim package. Note that the user metadata for a tree-sequence file can be
read separately with the treeSeqMetadata() function. Beginning with SLiM 4, the subpopMap
parameter may be supplied to re-order the populations of the input tree sequence when it is loaded in
to SLiM. This parameter must have a value that is a Dictionary; the keys of this dictionary should be
SLiM population identifiers as string values (e.g., "p2"), and the values should be indexes of
populations in the input tree sequence; a key/value pair of "p2", 4 would mean that the fifth
population in the input (the one at zero-based index 4) should become p2 on loading into SLiM. If
subpopMap is non-NULL, all populations in the tree sequence must be explicitly mapped, even if their
index will not change and even if they will not be used by SLiM; the only exception is for unused slots
in the population table, which can be explicitly remapped but do not have to be. For instance,
suppose we have a tree sequence in which population 0 is unused, population 1 is not a SLiM
population (for example, an ancestral population produced by msprime), and population 2 is a SLiM
population, and we want to load this in with population 2 as p0 in SLiM. To do this, we could supply
a value of Dictionary("p0", 2, "p1", 1, "p2", 0) for subpopMap, or we could leave out slot 0
since it is unused, with Dictionary("p0", 2, "p1", 1). Although this facility cannot be used to
remove populations in the tree sequence, note that it may add populations that will be visible when
treeSeqOutput() is called (although these will not be SLiM populations); if, in this example, we had
used Dictionary("p0", 0, "p1", 1, "p5", 2) and then we wrote the result out with
treeSeqOutput(), the resulting tree sequence would have six populations, although three of them
would be empty and would not be used by SLiM. The use of subpopMap makes it easier to load
simulation data that was generated in Python, since that typically uses an id of 0. The subpopMap
parameter may not be used with file formats other than tree-sequence files, at the present time; setting
up the correct subpopulation ids is typically easier when working with those other formats. Note the
tskit command-line interface can be used, like python3 -m tskit populations file.trees, to
find out the number of subpopulations in a tree-sequence file and their IDs.

When loading a tree sequence, a crosscheck of the loaded data will be performed to ensure that the
tree sequence was well-formed and was loaded correctly. When running a Release build of SLiM,
however, this crosscheck will only occur the first time that readFromPopulationFile() is called to
load a tree sequence; subsequent calls will not perform this crosscheck, for greater speed when
running models that load saved population state many times (such as models that are conditional on

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 724

fixation). If you suspect that a tree sequence file might be corrupted or read incorrectly, running a
Debug build of SLiM enables crosschecks after every load.

– (void)recalculateFitness([Ni$ tick = NULL])
Force an immediate recalculation of fitness values for all individuals in all subpopulations. Normally
fitness values are calculated at a fixed point in each tick, and those values are cached and used until
the next recalculation. If simulation parameters are changed in script in a way that affects fitness
calculations, and if you wish those changes to take effect immediately rather than taking effect at the
next automatic recalculation, you may call recalculateFitness() to force an immediate
recalculation and recache.

The optional parameter tick provides the tick for which mutationEffect() and fitnessEffect()
callbacks should be selected; if it is NULL (the default), the current tick value for the simulation,
community.tick, is used. If you call recalculateFitness() in an early() event in a WF model,
you may wish this to be community.tick - 1 in order to utilize the mutationEffect() and
fitnessEffect() callbacks for the previous tick, as if the changes that you have made to fitness-
influencing parameters were already in effect at the end of the previous tick when the new generation
was first created and evaluated (usually it is simpler to just make such changes in a late() event
instead, however, in which case calling recalculateFitness() is probably not necessary at all since
fitness values will be recalculated immediately afterwards). Regardless of the value supplied for tick
here, community.tick inside callbacks will report the true tick number, so if your callbacks consult
that parameter in order to create tick-specific fitness effects you will need to handle the discrepancy
somehow. (Similar considerations apply for nonWF models that call recalculateFitness() in a
late() event, which is also not advisable in general.)

After this call, the fitness values used for all purposes in SLiM will be the newly calculated values.
Calling this method will trigger the calling of any enabled and applicable mutationEffect() and
fitnessEffect() callbacks, so this is quite a heavyweight operation; you should think carefully
about what side effects might result (which is why fitness recalculation does not just occur
automatically after changes that might affect fitness values).

– (object<SLiMEidosBlock>$)registerFitnessEffectCallback(Nis$ id, string$ source,
[Nio<Subpopulation>$ subpop = NULL], [Ni$ start = NULL], [Ni$ end = NULL])

Register a block of Eidos source code, represented as the string singleton source, as an Eidos
fitnessEffect() callback in the current simulation (specific to the target species), with an optional
subpopulation subpop (which may be an integer identifier, or NULL, the default, to indicate all
subpopulations), and optional start and end ticks all limiting its applicability. The script block will
be given identifier id (specified as an integer, or as a string symbolic name such as "s5"); this
may be NULL if there is no need to be able to refer to the block later. The registered callback is added
to the end of the list of registered SLiMEidosBlock objects, and is active immediately; it may be
eligible to execute in the current tick (see section 26.11 for details). The new SLiMEidosBlock will
be defined as a global variable immediately by this method (see section 25.12), and will also be
returned by this method.

– (object<SLiMEidosBlock>$)registerMateChoiceCallback(Nis$ id, string$ source,
[Nio<Subpopulation>$ subpop = NULL], [Ni$ start = NULL], [Ni$ end = NULL])

Register a block of Eidos source code, represented as the string singleton source, as an Eidos
mateChoice() callback in the current simulation (specific to the target species), with optional
subpopulation subpop (which may be an integer identifier, or NULL, the default, to indicate all
subpopulations) and optional start and end ticks all limiting its applicability. The script block will be
given identifier id (specified as an integer, or as a string symbolic name such as "s5"); this may
be NULL if there is no need to be able to refer to the block later. The registered callback is added to
the end of the list of registered SLiMEidosBlock objects, and is active immediately; it may be eligible
to execute in the current tick (see section 26.11 for details). The new SLiMEidosBlock will be
defined as a global variable immediately by this method (see section 25.12), and will also be returned
by this method.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 725

– (object<SLiMEidosBlock>$)registerModifyChildCallback(Nis$ id, string$ source,
[Nio<Subpopulation>$ subpop = NULL], [Ni$ start = NULL], [Ni$ end = NULL])

Register a block of Eidos source code, represented as the string singleton source, as an Eidos
modifyChild() callback in the current simulation (specific to the target species), with optional
subpopulation subpop (which may be an integer identifier, or NULL, the default, to indicate all
subpopulations) and optional start and end ticks all limiting its applicability. The script block will be
given identifier id (specified as an integer, or as a string symbolic name such as "s5"); this may
be NULL if there is no need to be able to refer to the block later. The registered callback is added to
the end of the list of registered SLiMEidosBlock objects, and is active immediately; it may be eligible
to execute in the current tick (see section 26.11 for details). The new SLiMEidosBlock will be
defined as a global variable immediately by this method (see section 25.12), and will also be returned
by this method.

– (object<SLiMEidosBlock>$)registerMutationCallback(Nis$ id, string$ source,
[Nio<MutationType>$ mutType = NULL], [Nio<Subpopulation>$ subpop = NULL],
[Ni$ start = NULL], [Ni$ end = NULL])

Register a block of Eidos source code, represented as the string singleton source, as an Eidos
mutation() callback in the current simulation (specific to the target species), with an optional
mutation type mutType (which may be an integer mutation type identifier, or NULL, the default, to
indicate all mutation types – see section 26.9), optional subpopulation subpop (which may also be an
integer identifier, or NULL, the default, to indicate all subpopulations), and optional start and end
ticks all limiting its applicability. The script block will be given identifier id (specified as an integer,
or as a string symbolic name such as "s5"); this may be NULL if there is no need to be able to refer
to the block later. The registered callback is added to the end of the list of registered SLiMEidosBlock
objects, and is active immediately; it may be eligible to execute in the current tick (see section 26.11
for details). The new SLiMEidosBlock will be defined as a global variable immediately by this
method (see section 25.12), and will also be returned by this method.

– (object<SLiMEidosBlock>$)registerMutationEffectCallback(Nis$ id, string$ source,
io<MutationType>$ mutType, [Nio<Subpopulation>$ subpop = NULL],
[Ni$ start = NULL], [Ni$ end = NULL])

Register a block of Eidos source code, represented as the string singleton source, as an Eidos
mutationEffect() callback in the current simulation (specific to the target species), with a required
mutation type mutType (which may be an integer mutation type identifier), optional subpopulation
subpop (which may also be an integer identifier, or NULL, the default, to indicate all
subpopulations), and optional start and end ticks all limiting its applicability. The script block will
be given identifier id (specified as an integer, or as a string symbolic name such as "s5"); this
may be NULL if there is no need to be able to refer to the block later. The registered callback is added
to the end of the list of registered SLiMEidosBlock objects, and is active immediately; it may be
eligible to execute in the current tick (see section 26.11 for details). The new SLiMEidosBlock will
be defined as a global variable immediately by this method (see section 25.12), and will also be
returned by this method.

– (object<SLiMEidosBlock>$)registerRecombinationCallback(Nis$ id, string$ source,
[Nio<Subpopulation>$ subpop = NULL], [Ni$ start = NULL], [Ni$ end = NULL])

Register a block of Eidos source code, represented as the string singleton source, as an Eidos
recombination() callback in the current simulation (specific to the target species), with optional
subpopulation subpop (which may be an integer identifier, or NULL, the default, to indicate all
subpopulations) and optional start and end ticks all limiting its applicability. The script block will be
given identifier id (specified as an integer, or as a string symbolic name such as "s5"); this may
be NULL if there is no need to be able to refer to the block later. The registered callback is added to
the end of the list of registered SLiMEidosBlock objects, and is active immediately; it may be eligible
to execute in the current tick (see section 26.11 for details). The new SLiMEidosBlock will be
defined as a global variable immediately by this method (see section 25.12), and will also be returned
by this method.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 726

– (object<SLiMEidosBlock>$)registerReproductionCallback(Nis$ id, string$ source,
[Nio<Subpopulation>$ subpop = NULL], [Ns$ sex = NULL], [Ni$ start = NULL],
[Ni$ end = NULL])

Register a block of Eidos source code, represented as the string singleton source, as an Eidos
reproduction() callback in the current simulation (specific to the target species), with optional
subpopulation subpop (which may be an integer identifier, or NULL, the default, to indicate all
subpopulations), optional sex-specificity sex (which may be "M" or "F" in sexual species to make the
callback specific to males or females respectively, or NULL for no sex-specificity), and optional start
and end ticks all limiting its applicability. The script block will be given identifier id (specified as an
integer, or as a string symbolic name such as "s5"); this may be NULL if there is no need to be
able to refer to the block later. The registered callback is added to the end of the list of registered
SLiMEidosBlock objects, and is active immediately; it may be eligible to execute in the current tick
(see section 26.11 for details). The new SLiMEidosBlock will be defined as a global variable
immediately by this method (see section 25.12), and will also be returned by this method.

– (object<SLiMEidosBlock>$)registerSurvivalCallback(Nis$ id, string$ source,
[Nio<Subpopulation>$ subpop = NULL], [Ni$ start = NULL], [Ni$ end = NULL])

Register a block of Eidos source code, represented as the string singleton source, as an Eidos
survival() callback in the current simulation (specific to the target species), with optional
subpopulation subpop (which may be an integer identifier, or NULL, the default, to indicate all
subpopulations) and optional start and end ticks all limiting its applicability. The script block will be
given identifier id (specified as an integer, or as a string symbolic name such as "s5"); this may
be NULL if there is no need to be able to refer to the block later. The registered callback is added to
the end of the list of registered SLiMEidosBlock objects, and is active immediately; it may be eligible
to execute in the current tick (see section 26.11 for details). The new SLiMEidosBlock will be
defined as a global variable immediately by this method (see section 25.12), and will also be returned
by this method.

– (void)simulationFinished(void)
Declare the current simulation finished. This method is equivalent to the Community method
simulationFinished(), except that this method is only legal to call in single-species models (to
provide backward compatibility). It is recommended that new code should call the Community
method; this method may be deprecated in the future.

– (void)skipTick(void)
Deactivate the target species for the current tick. This sets the active property of the species to F; it
also set the active property of all callbacks that belong to the species (with the species as their
species specifier) to F, and sets the active property of all events that are synchronized with the
species (with the species as their ticks specifier) to F. The cycle counter for the species will not be
incremented at the end of the tick. This method may only be called in first() events, to ensure that
species are either active or inactive throughout a given tick.

– (object<Mutation>)subsetMutations([No<Mutation>$ exclude = NULL],
[Nio<MutationType>$ mutType = NULL], [Ni$ position = NULL],
[Nis$ nucleotide = NULL], [Ni$ tag = NULL], [Ni$ id = NULL])

Returns a vector of mutations subset from the list of all active mutations in the species (as would be
provided by the mutations property). The parameters specify constraints upon the subset of
mutations that will be returned. Parameter exclude, if non-NULL, may specify a specific mutation that
should not be included (typically the focal mutation in some operation). Parameter mutType, if non-
NULL, may specify a mutation type for the mutations to be returned (as either a MutationType object
or an integer identifier). Parameter position, if non-NULL, may specify a base position for the
mutations to be returned. Parameter nucleotide, if non-NULL, may specify a nucleotide for the
mutations to be returned (either as a string, "A" / "C" / "G" / "T", or as an integer, 0 / 1 / 2 / 3
respectively). Parameter tag, if non-NULL, may specify a tag value for the mutations to be returned.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 727

Parameter id, if non-NULL, may specify a required value for the id property of the mutations to be
returned.

This method is shorthand for getting the mutations property of the subpopulation, and then using
operator [] to select only mutations with the desired properties; besides being much simpler than the
equivalent Eidos code, it is also much faster. Note that if you only need to select on mutation type,
the mutationsOfType() method will be even faster.

– (logical$)treeSeqCoalesced(void)
Returns the coalescence state for the recorded tree sequence at the last simplification. The returned
value is a logical singleton flag, T to indicate that full coalescence was observed at the last tree-
sequence simplification (meaning that there is a single ancestral individual that roots all ancestry trees
at all sites along the chromosome – although not necessarily the same ancestor at all sites), or F if full
coalescence was not observed. For simple models, reaching coalescence may indicate that the model
has reached an equilibrium state, but this may not be true in models that modify the dynamics of the
model during execution by changing migration rates, introducing new mutations programmatically,
dictating non-random mating, etc., so be careful not to attach more meaning to coalescence than it is
due; some models may require burn-in beyond coalescence to reach equilibrium, or may not have an
equilibrium state at all. Also note that some actions by a model, such as adding a new subpopulation,
may cause the coalescence state to revert from T back to F (at the next simplification), so a return
value of T may not necessarily mean that the model is coalesced at the present moment – only that it
was coalesced at the last simplification.

This method may only be called if tree sequence recording has been turned on with
initializeTreeSeq(); in addition, checkCoalescence=T must have been supplied to
initializeTreeSeq(), so that the necessary work is done during each tree-sequence simplification.
Since this method does not perform coalescence checking itself, but instead simply returns the
coalescence state observed at the last simplification, it may be desirable to call treeSeqSimplify()
immediately before treeSeqCoalesced() to obtain up-to-date information. However, the speed
penalty of doing this in every tick would be large, and most models do not need this level of
precision; usually it is sufficient to know that the model has coalesced, without knowing whether that
happened in the current tick or in a recent preceding tick.

– (void)treeSeqOutput(string$ path, [logical$ simplify = T],
[logical$ includeModel = T], [No$ metadata = NULL])

Outputs the current tree sequence recording tables to the path specified by path. This method may
only be called if tree sequence recording has been turned on with initializeTreeSeq(). If
simplify is T (the default), simplification will be done immediately prior to output; this is almost
always desirable, unless a model wishes to avoid simplification entirely. (Note that if simplification is
not done, then all genomes since the last simplification will be marked as samples in the resulting tree
sequence.) A binary tree sequence file will be written to the specified path; a filename extension
of .trees is suggested for this type of file.

Normally, the full SLiM script used to generate the tree sequence is written out to the provenance
entry of the tree sequence file, to the model subkey of the parameters top-level key. Supplying F for
includeModel suppresses output of the full script; see section 27.4.6 for further discussion.

A Dictionary object containing user-generated metadata may be supplied with the metadata
parameter. If present, this dictionary will be serialized as JSON and attached to the saved tree
sequence under a key named user_metadata, within the SLiM key (see section 27.4.5). If tskit is
used to read the tree sequence in Python, this metadata will automatically be deserialized and made
available at ts.metadata["SLiM"]["user_metadata"]. This metadata dictionary is not used by
SLiM, or by pyslim, tskit, or msprime; you may use it for any purpose you wish. Note that
metadata may actually be any subclass of Dictionary, such as a DataFrame. It can even be a
Species object such as sim, or a LogFile instance; however, only the keys and values contained by
the object’s Dictionary superclass state will be serialized into the metadata (properties of the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 728

subclass will be ignored). This metadata dictionary can be recovered from the saved file using the
treeSeqMetadata() function.

– (void)treeSeqRememberIndividuals(object<Individual> individuals,
[logical$ permanent = T])

Mark the individuals specified by individuals to be kept across tree sequence table simplification.
This method may only be called if tree sequence recording has been turned on with
initializeTreeSeq(). All currently living individuals are always kept across simplification; this
method does not need to be called, and indeed should not be called, for that purpose. Instead,
treeSeqRememberIndividuals() allows any individual, including dead individuals, to be kept in
the final tree sequence. Typically this would be used, for example, to keep particular individuals that
you wanted to be able to trace ancestry back to in later analysis. However, this is not the typical
usage pattern for tree sequence recording; most models will not need to call this method.

There are two ways to keep individuals across simplification. If permanent is T (the default), then the
specified individuals will be permanently remembered: their genomes will be added to the current
sample, and they will always be present in the tree sequence. Permanently remembering a large
number of individuals will, of course, markedly increase memory usage and runtime.

Supplying F for permanent will instead mark the individuals only for (temporary) retention: their
genomes will not be added to the sample, and they will appear in the final tree sequence only if one
of their genomes is retained across simplification. In other words, the rule of thumb for retained
individuals is simple: if a genome is kept by simplification, the genome’s corresponding individual is
kept also, if it is retained. Note that permanent remembering takes priority; calling this function with
permanent=F on an individual that has previously been permanently remembered will not remove it
from the sample.

The behavior of simplification for individuals retained with permanent=F depends upon the value of
the retainCoalescentOnly flag passed to initializeTreeSeq(); here we will discuss the behavior
of that flag in detail. First of all, genomes are always removed by simplification unless they are (a) part
of the final generation (i.e., in a living individual when simplification occurs), (b) ancestral to the final
generation, (c) a genome of a permanently remembered individual, or (d) ancestral to a permanently
remembered individual. If retainCoalescentOnly is T (the default), they are also always removed if
they are not a branch point (i.e., a coalescent node or most recent common ancestor) in the tree
sequence. In some cases it may be useful to retain a genome and its associated individual when it is
simply an intermediate node in the ancestry (i.e., in the middle of a branch). This can be enabled by
setting retainCoalescentOnly to F in your call to initializeTreeSeq(). In this case, ancestral
genomes that are intermediate (“unary nodes”, in tskit parlance) and are within an individual that
has been retained using the permanent=F flag here are kept, along with the retained individual itself.
Since setting retainCoalescentOnly to F will prevent the unary nodes for retained individuals from
being pruned, simplification may often be unable to prune very much at all from the tree sequence,
and memory usage and runtime may increase rapidly. If you are retaining many individuals, this
setting should therefore be used only with caution; it is not necessary if you are purely interested in
the most recent common ancestors. See the pyslim documentation for further discussion of retaining
and remembering individuals and the effects of the retainCoalescentOnly flag.

The metadata (age, location, etc) that are stored in the resulting tree sequence are those values present
at either (a) the final generation, if the individual is alive when the tree sequence is output, or (b) the
last time that the individual was remembered, if not. Calling treeSeqRememberIndividuals() on
an individual that is already remembered will cause the archived information about the remembered
individual to be updated to reflect the individual’s current state; care should be taken to remember
individuals at a point in time when their state is valid. A case where this is particularly important is for
the spatial location of individuals in continuous-space models. SLiM automatically retains the
portions of the genomes that comprise the first generation of any new subpopulation created with
addSubpop() that are inherited by extant individuals, for easy recapitation and other analysis (see
sections 17.2 and 17.10). However, the individuals of the first generation are not remembered
automatically, only their needed genomic information.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 729

– (void)treeSeqSimplify(void)
Triggers an immediate simplification of the tree sequence recording tables. This method may only be
called if tree sequence recording has been turned on with initializeTreeSeq(). A call to this
method will free up memory being used by entries that are no longer in the ancestral path of any
individual within the current sample (currently living individuals, in other words, plus those explicitly
added to the sample with treeSeqRememberIndividuals()), but it can also take a significant
amount of time. Typically calling this method is not necessary; the automatic simplification performed
occasionally by SLiM should be sufficient for most models.

25.16 Class Subpopulation
Superclass: Dictionary

This class represents one subpopulation in the simulated population. Section 1.5.5 presents an
overview of the conceptual role of this class. The subpopulations currently defined in the
simulation are defined as global constants with the same names used in the SLiM input file – p1,
p2, and so forth.

25.16.1 Subpopulation properties

cloningRate => (float)
The fraction of children in the next generation that will be produced by cloning (as opposed to
biparental mating). In non-sexual (i.e. hermaphroditic) simulations, this property is a singleton float
representing the overall subpopulation cloning rate. In sexual simulations, this property is a float
vector with two values: the cloning rate for females (at index 0) and for males (at index 1).

description <–> (string$)
A human-readable string description for the subpopulation. By default, this is the empty string, "";
however, it may be set to whatever you wish. When tree-sequence recording is enabled,
description is persisted in the subpopulation’s metadata in tree-sequence output.

firstMaleIndex => (integer$)
The index of the first male individual in the subpopulation. The genomes vector is sorted into females
first and males second; firstMaleIndex gives the position of the boundary between those sections.
Note, however, that there are two genomes per diploid individual, and the firstMaleIndex is not
premultiplied by 2; you must multiply it by 2 before using it to decide whether a given index into
genomes is a genome for a male or a female. The firstMaleIndex property is also the number of
females in the subpopulation, given this design. For non-sexual (i.e. hermaphroditic) simulations, this
property has an undefined value and should not be used.

fitnessScaling <–> (float$)
A float scaling factor applied to the fitness of all individuals in this subpopulation (i.e., the fitness
value computed for each individual will be multiplied by this value). This is primarily of use in
nonWF models, where fitness is absolute, rather than in WF models, where fitness is relative (and thus
a constant factor multiplied into the fitness of every individual will make no difference); however, it
may be used in either type of model. This provides a simple, fast way to modify the fitness of all
individuals in a subpopulation; conceptually it is similar to returning the same fitness effect for all
individuals in the subpopulation from a fitnessEffect() callback, but without the complexity and
performance overhead of implementing such a callback. To scale the fitness of individuals by different
(individual-specific) factors, see the fitnessScaling property of Individual.

The value of fitnessScaling is reset to 1.0 every tick, so that any scaling factor set lasts for only a
single tick. This reset occurs immediately after fitness values are calculated, in both WF and nonWF
models.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 730

genomes => (object<Genome>)
All of the genomes contained by the subpopulation; there are two genomes per diploid individual.

genomesNonNull => (object<Genome>)
All of the genomes contained by the subpopulation, as with the genomes property, if all of them are
not null genomes; any null genomes present are excluded from the returned vector. This is a
convenience shorthand, sometimes useful in models that involve null genomes.

id => (integer$)
The identifier for this subpopulation; for subpopulation p3, for example, this is 3.

immigrantSubpopFractions => (float)
The expected value of the fraction of children in the next generation that are immigrants arriving from
particular subpopulations.

immigrantSubpopIDs => (integer)
The identifiers of the particular subpopulations from which immigrants will arrive in the next
generation.

individualCount => (integer$)
The number of individuals in the subpopulation; one-half of the number of genomes.

individuals => (object<Individual>)
All of the individuals contained by the subpopulation. Each individual is diploid and thus contains
two Genome objects. See the sampleIndividuals() and subsetIndividuals() for fast ways to get
a subset of the individuals in a subpopulation.

lifetimeReproductiveOutput => (integer)
If pedigree tracking is turned on with initializeSLiMOptions(keepPedigrees=T),
lifetimeReproductiveOutput contains the value of the Individual property
reproductiveOutput for all individuals in the subpopulation that died in the last viability/survival
tick cycle stage (or, for WF models, immediately after reproduction). This allows access to the lifetime
reproductive output of individuals in the subpopulation at the end of their lives. If pedigree tracking is
not on, this property is unavailable.

lifetimeReproductiveOutputF => (integer)
If pedigree tracking is turned on with initializeSLiMOptions(keepPedigrees=T),
lifetimeReproductiveOutputF contains the value of the Individual property
reproductiveOutput for all female individuals in the subpopulation that died in the last viability/
survival tick cycle stage (or, for WF models, immediately after reproduction). This property is
undefined if separate sexes have not been enabled, or if pedigree tracking is not on.

lifetimeReproductiveOutputM => (integer)
If pedigree tracking is turned on with initializeSLiMOptions(keepPedigrees=T),
lifetimeReproductiveOutputM contains the value of the Individual property
reproductiveOutput for all male individuals in the subpopulation that died in the last viability/
survival tick cycle stage (or, for WF models, immediately after reproduction). This property is
undefined if separate sexes have not been enabled, or if pedigree tracking is not on.

name <–> (string$)
A human-readable string name for the subpopulation. By default, this is the subpopulation’s symbol
as a string; for subpopulation p3, for example, name defaults to "p3". However, it may be set to
whatever you wish except that subpopulation names must be unique across time (two different
subpopulations may not both have the name "foo", even if they never exist at the same time). A
subpopulation’s name may appear as a label in SLiMgui, and it can be useful in generating output,

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 731

debugging, and other purposes. When tree-sequence recording is enabled, name is persisted in the
subpopulation’s metadata in tree-sequence output, and can then be used in Python to identify the
subpopulation; if you plan to take advantage of that feature, name should follow the syntax of Python
identifiers: starting with a letter or underscore [a-zA-Z_], followed by letters, digits, or underscores
[a-zA-Z0-9_], without spaces, hyphens, or other characters.

selfingRate => (float$)
The expected value of the fraction of children in the next generation that will be produced by selfing
(as opposed to biparental mating). Selfing is only possible in non-sexual (i.e. hermaphroditic)
simulations; for sexual simulations this property always has a value of 0.0.

sexRatio => (float$)
For sexual simulations, the sex ratio for the subpopulation. This is defined, in SLiM, as the fraction of
the subpopulation that is male; in other words, it is actually the M:(M+F) ratio. For non-sexual (i.e.
hermaphroditic) simulations, this property has an undefined value and should not be used.

spatialBounds => (float)
The spatial boundaries of the subpopulation. The length of the spatialBounds property depends
upon the spatial dimensionality declared with initializeSLiMOptions(). If the spatial
dimensionality is zero (as it is by default), the value of this property is float(0) (a zero-length float
vector). Otherwise, minimums are supplied for each coordinate used by the dimensionality of the
simulation, followed by maximums for each. In other words, if the declared dimensionality is "xy",
the spatialBounds property will contain values (x0, y0, x1, y1); bounds for the z coordinate
will not be included in that case, since that coordinate is not used in the simulation’s dimensionality.
This property cannot be set, but the setSpatialBounds() method may be used to achieve the same
thing.

spatialMaps => (object<SpatialMap>)
The spatial maps that are currently added to the subpopulation.

species => (object<Species>$)
The species to which the target object belongs.

tag <–> (integer$)
A user-defined integer value. The value of tag is initially undefined, and it is an error to try to read
it; if you wish it to have a defined value, you must arrange that yourself by explicitly setting its value
prior to using it elsewhere in your code. The value of tag is not used by SLiM; it is free for you to use.
See also the getValue() and setValue() methods (provided by the Dictionary class; see the Eidos
manual), for another way of attaching state to subpopulations.

25.16.2 Subpopulation methods

– (object<Individual>)addCloned(object<Individual>$ parent, [integer$ count = 1],
[logical$ defer = F])

Generates a new offspring individual from the given parent by clonal reproduction, queues it for
addition to the target subpopulation, and returns it. The new offspring will not be visible as a member
of the target subpopulation until the end of the offspring generation tick cycle stage. The
subpopulation of parent will be used to locate applicable mutation() and modifyChild()
callbacks governing the generation of the offspring individual.

Beginning in SLiM 4.1, the count parameter dictates how many offspring will be generated
(previously, exactly one offspring was generated). Each offspring is generated independently, based
upon the given parameters. The returned vector contains all generated offspring, except those that
were rejected by a modifyChild() callback. If all offspring are rejected, object<Individual>(0) is
returned, which is a zero-length object vector of class Individual; note that this is a change in
behavior from earlier versions, which would return NULL.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 732

Beginning in SLiM 4.1, passing T for defer will defer the generation of the genomes of the produced
offspring until the end of the reproduction phase. Genome generation can only be deferred if there
are no active mutation() callbacks; otherwise, an error will result. Furthermore, when genome
generation is deferred the mutations of the genomes of the generated offspring may not be accessed
until reproduction is complete (whether from a modifyChild() callback or otherwise). There is little
or no advantage to deferring genome generation at this time (it is in place for future expansion); the
default of F for defer is generally preferable since it has fewer restrictions.

Also beginning in SLiM 4.1, in spatial models the spatial position of the offspring will be inherited
(i.e., copied) from parent; more specifically, the x property will be inherited in all spatial models (1D/
2D/3D), the y property in 2D/3D models, and the z property in 3D models. Properties not inherited
will be left uninitialized, as they were prior to SLiM 4.1. The parent’s spatial position is probably not
desirable in itself; the intention here is to make it easy to model the natal dispersal of all the new
offspring for a given tick with a single vectorized call to pointDeviated().

Note that this method is only for use in nonWF models. See addCrossed() for further general notes
on the addition of new offspring individuals.

– (object<Individual>)addCrossed(object<Individual>$ parent1,
object<Individual>$ parent2, [Nfs$ sex = NULL], [integer$ count = 1],
[logical$ defer = F])

Generates a new offspring individual from the given parents by biparental sexual reproduction, queues
it for addition to the target subpopulation, and returns it. The new offspring will not be visible as a
member of the target subpopulation until the end of the offspring generation tick cycle stage.
Attempting to use a newly generated offspring individual as a mate, or to reference it as a member of
the target subpopulation in any other way, will result in an error. In most models the returned
individual is not used, but it is provided for maximal generality and flexibility.

The new offspring individual is generated from parent1 and parent2 by crossing them. In sexual
models parent1 must be female and parent2 must be male; in hermaphroditic models, parent1 and
parent2 are unrestricted. If parent1 and parent2 are the same individual in a hermaphroditic
model, that parent self-fertilizes, or “selfs”, to generate the offspring sexually (note this is not the same
as clonal reproduction). Such selfing is considered “incidental” by addCrossed(), however; if the
preventIncidentalSelfing flag of initializeSLiMOptions() is T, supplying the same individual
for parent1 and parent2 is an error (you must check for and prevent incidental selfing if you set that
flag in a nonWF model). If non-incidental selfing is desired, addSelfed() should be used instead.

The sex parameter specifies the sex of the offspring. A value of NULL means “make the default
choice”; in non-sexual models it is the only legal value for sex, and does nothing, whereas in sexual
models it causes male or female to be chosen with equal probability. A value of "M" or "F" for sex
specifies that the offspring should be male or female, respectively. Finally, a float value from 0.0 to
1.0 for sex provides the probability that the offspring will be male; a value of 0.0 will produce a
female, a value of 1.0 will produce a male, and for intermediate values SLiM will draw the sex of the
offspring randomly according to the specified probability. Unless you wish the bias the sex ratio of
offspring, the default value of NULL should generally be used.

Note that any defined, active, and applicable recombination(), mutation(), and modifyChild()
callbacks will be called as a side effect of calling this method, before this method even returns. For
recombination() and mutation() callbacks, the subpopulation of the parent that is generating a
given gamete is used; for modifyChild() callbacks the situation is more complex. In most biparental
mating events, parent1 and parent2 will belong to the same subpopulation, and modifyChild()
callbacks for that subpopulation will be used, just as in WF models. In certain models (such as
models of pollen flow and broadcast spawning), however, biparental mating may occur between
parents that are not from the same subpopulation; that is legal in nonWF models, and in that case,
modifyChild() callbacks for the subpopulation of parent1 are used (since that is the maternal
parent).

If the modifyChild() callback process results in rejection of the proposed child (see section 26.5), a
new offspring individual is not be generated. To force the generation of an offspring individual from a

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 733

given pair of parents, you could loop until addCrossed() succeeds, but note that if your
modifyChild() callback rejects all proposed children from those particular parents, your model will
then hang, so care must be taken with this approach. Usually, nonWF models do not force generation
of offspring in this manner; rejection of a proposed offspring by a modifyChild() callback typically
represents a phenomenon such as post-mating reproductive isolation or lethal genetic
incompatibilities that would reduce the expected litter size, so the default behavior is typically
desirable.

Beginning in SLiM 4.1, the count parameter dictates how many offspring will be generated
(previously, exactly one offspring was generated). Each offspring is generated independently, based
upon the given parameters. The returned vector contains all generated offspring, except those that
were rejected by a modifyChild() callback. If all offspring are rejected, object<Individual>(0) is
returned, which is a zero-length object vector of class Individual; note that this is a change in
behavior from earlier versions, which would return NULL.

Beginning in SLiM 4.1, passing T for defer will defer the generation of the genomes of the produced
offspring until the end of the reproduction phase. Genome generation can only be deferred if there
are no active mutation() or recombination() callbacks; otherwise, an error will result.
Furthermore, when genome generation is deferred the mutations of the genomes of the generated
offspring may not be accessed until reproduction is complete (whether from a modifyChild()
callback or otherwise). There is little or no advantage to deferring genome generation at this time (it is
in place for future expansion); the default of F for defer is generally preferable since it has fewer
restrictions.

Also beginning in SLiM 4.1, in spatial models the spatial position of the offspring will be inherited
(i.e., copied) from parent1; more specifically, the x property will be inherited in all spatial models
(1D/2D/3D), the y property in 2D/3D models, and the z property in 3D models. Properties not
inherited will be left uninitialized, as they were prior to SLiM 4.1. The parent’s spatial position is
probably not desirable in itself; the intention here is to make it easy to model the natal dispersal of all
the new offspring for a given tick with a single vectorized call to pointDeviated().

Note that this method is only for use in nonWF models, in which offspring generation is managed
manually by the model script; in such models, addCrossed() must be called only from
reproduction() callbacks, and may not be called at any other time. In WF models, offspring
generation is managed automatically by the SLiM core.

– (object<Individual>)addEmpty([Nfs$ sex = NULL], [Nl$ genome1Null = NULL],
[Nl$ genome2Null = NULL], [integer$ count = 1])

Generates a new offspring individual with empty genomes (i.e., containing no mutations), queues it
for addition to the target subpopulation, and returns it. The new offspring will not be visible as a
member of the target subpopulation until the end of the offspring generation tick cycle stage. No
recombination() or mutation() callbacks will be called. The target subpopulation will be used to
locate applicable modifyChild() callbacks governing the generation of the offspring individual
(unlike the other addX() methods, because there is no parental individual to reference). The offspring
is considered to have no parents for the purposes of pedigree tracking. The sex parameter is treated as
in addCrossed().

By default – when genome1Null and genome2Null are both NULL – null genomes will be generated
instead of empty genomes only in sex-chromosome simulations, where the sex chromosome that is
not being simulated is represented by a null genome; otherwise, empty genomes rather than null
genomes will be created. This default behavior can be changed by passing T or F for genome1Null or
genome2Null, which will force the corresponding offspring genome to be null (T) or non-null (F). The
behavior in sex-chromosome simulations cannot be changed, since the presence of null genomes
there is dictated by sex, but T or F may be passed as long as it matches what SLiM would do anyway.
In all other simulations there is little point in passing F (since that would be the default behavior
anyway), but passing T can be used to make one or both genomes be null genomes, which can be
useful for, e.g., modeling haploids (for which, by convention, the second genome is usually a null
genome in SLiM).

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 734

Beginning in SLiM 4.1, the count parameter dictates how many offspring will be generated
(previously, exactly one offspring was generated). Each offspring is generated independently, based
upon the given parameters. The returned vector contains all generated offspring, except those that
were rejected by a modifyChild() callback. If all offspring are rejected, object<Individual>(0) is
returned, which is a zero-length object vector of class Individual; note that this is a change in
behavior from earlier versions, which would return NULL.

Note that this method is only for use in nonWF models. See addCrossed() for further general notes
on the addition of new offspring individuals.

– (object<Individual>)addRecombinant(No<Genome>$ strand1, No<Genome>$ strand2,
Ni breaks1, No<Genome>$ strand3, No<Genome>$ strand4, Ni breaks2,
[Nfs$ sex = NULL], [No<Individual>$ parent1 = NULL],
[No<Individual>$ parent2 = NULL], [logical$ randomizeStrands = F],
[integer$ count = 1], [logical$ defer = F])

Generates a new offspring individual from the given parental genomes with the specified crossover
breakpoints, queues it for addition to the target subpopulation, and returns it. The new offspring will
not be visible as a member of the target subpopulation until the end of the offspring generation tick
cycle stage. The target subpopulation will be used to locate applicable mutation() and
modifyChild() callbacks governing the generation of the offspring individual (unlike the other
addX() methods, because there are potentially up to four parental individuals to reference);
recombination() callbacks will not be called by this method. This method is an advanced feature;
most models will use addCrossed(), addSelfed(), or addCloned() instead.

This method supports several possible configurations for strand1, strand2, and breaks1 (and the
same applies for strand3, strand4, and breaks2). If strand1 and strand2 are both NULL, the
corresponding genome in the generated offspring will be empty, as from addEmpty(), with no
parental genomes and no added mutations; in this case, breaks1 must be NULL or zero-length. If
strand1 is non-NULL but strand2 is NULL, the corresponding genome in the generated offspring will
be a clonal copy of strand1 with mutations added, as from addCloned(); in this case, breaks1 must
similarly be NULL or zero-length. If strand1 and strand2 are both non-NULL, the corresponding
genome in the generated offspring will result from recombination between strand1 and strand2
with mutations added, as from addCrossed(), with strand1 being the initial copy strand; copying
will switch between strands at each breakpoint in breaks1, which must be non-NULL but need not be
sorted or uniqued (SLiM will sort and unique the supplied breakpoints internally). (It is not currently
legal for strand1 to be NULL and strand2 non-NULL; that variant may be assigned some meaning in
future.) Again, this discussion applies equally to strand3, strand4, and breaks2, mutatis mutandis.
Note that when new mutations are generated by addRecombinant(), their subpopID property will be
the id of the offspring’s subpopulation, since the parental subpopulation is ambiguous in the general
case; this behavior differs from the other add...() methods.

The sex parameter is interpreted exactly as in addCrossed(); see that method for discussion. If the
offspring sex is specified in any way (i.e., if sex is non-NULL), the strands provided must be compatible
with the sex chosen. If the offspring sex is not specified (i.e., if sex is NULL), the sex will be inferred
from the strands provided where possible (when modeling an X or Y chromosome), or will be chosen
randomly otherwise (when modeling autosomes); it will not be inferred from the sex of the individuals
possessing the parental strands, even when the reproductive mode is essentially clonal from a single
parent, since such inference would be ambiguous in the general case. When modeling the X or Y,
strand1 and strand2 must be X genomes (or NULL), and strand3 and strand4 must both be X
genomes or both be Y genomes (or NULL).

By default, the offspring is considered to have no parents for the purposes of pedigree tracking, since
there may be more than two “parents” in the general case. If pedigree tracking of parentage is desired,
parent1 and/or parent2 may be passed to explicitly establish particular individuals as the parents of
the offspring for purposes of pedigree tracking. In this case, if only one of parent1 and parent2 is
non-NULL, that individual will be set as both of the parents of the offspring, mirroring the way that
parentage is tracked for other cases such as addCloned() and addSelfed(). It is not required for

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 735

parent1 or parent2 to actually be a genetic parent of the offspring at all, although typically they
would be.

If randomizeStrands is F (the default), strand1 will be the initial copy strand when generating the
first gamete to form the offspring, and strand3 will be the initial copy strand when generating the
second gamete. If randomizeStrands is T, then if strand1 and strand2 are both non-NULL, 50% of
the time they will be swapped, making strand2 the initial copy strand for the first gamete; and
similarly, if strand3 and strand4 are both non-NULL, 50% of the time they will be swapped, making
strand4 the initial copy strand for the second gamete. This is probably usually the desired behavior,
to avoid an inheritance bias due to a lack of randomization in the initial copy strand, so passing T for
randomizeStrands is recommended unless you specifically desire otherwise. It is not the default
behavior only for reasons of backward compatibility.

These semantics allow several uses for addRecombinant(). When all strands are non-NULL, it is
similar to addCrossed() except that the recombination breakpoints are specified explicitly, allowing
very precise offspring generation without having to override SLiM’s breakpoint generation with a
recombination() callback. When only strand1 and strand3 are supplied, it is very similar to
addCloned(), creating a clonal offspring, except that the two parental genomes need not belong to
the same individual (whatever that might mean biologically). Supplying only strand1 is useful for
modeling clonally reproducing haploids; the second genome of every offspring will be kept empty and
will not receive new mutations. For a model of clonally reproducing haploids that undergo horizontal
gene transfer (HGT), supplying only strand1 and strand2 will allow HGT from strand2 to replace
segments of an otherwise clonal copy of strand1, while the second genome of the generated
offspring will again be kept empty; this could be useful for modeling bacterial conjugation, for
example. Other variations are also possible.

The value of the meanParentAge property of the generated offspring is calculated from the mean
parent age of each of its two genomes (whether they turn out to be null genomes or not); that may be
an average of two values (if both offspring genomes have at least one parent), a single value (if one
offspring genome has no parent), or no values (if both offspring genomes have no parent, in which
case 0.0 results). The mean parent age of a given offspring genome is the mean of the ages of the
parents of the two strands used to generate that offspring genome; if one strand is NULL then the mean
parent age for that offspring genome is the age of the parent of the non-NULL strand, while if both
strands are NULL then that offspring genome is parentless and is not used in the final calculation. In
other words, if one offspring genome has two parents with ages A and B, and the other offspring
genome has one parent with age C, the meanParentAge of the offspring will be (A+B+C+C) / 4, not
(A+B+C) / 3.

Note that gene conversion tracts are not explicitly supported by this method; the breaks vectors
provide crossover breakpoints, which may be used to implement crossovers or simple gene conversion
tracts. There is no way to specify complex gene conversion tracts with heteroduplex mismatch repair.

Beginning in SLiM 4.1, the count parameter dictates how many offspring will be generated
(previously, exactly one offspring was generated). Each offspring is generated independently, based
upon the given parameters. The returned vector contains all generated offspring, except those that
were rejected by a modifyChild() callback. If all offspring are rejected, object<Individual>(0) is
returned, which is a zero-length object vector of class Individual; note that this is a change in
behavior from earlier versions, which would return NULL.

Beginning in SLiM 4.1, passing T for defer will defer the generation of the genomes of the produced
offspring until the end of the reproduction phase. Genome generation can only be deferred if there
are no active mutation() callbacks; otherwise, an error will result. Furthermore, when genome
generation is deferred the mutations of the genomes of the generated offspring may not be accessed
until reproduction is complete (whether from a modifyChild() callback or otherwise). There is little
or no advantage to deferring genome generation at this time (it is in place for future expansion); the
default of F for defer is generally preferable since it has fewer restrictions.

Also beginning in SLiM 4.1, in spatial models the spatial position of the offspring will be inherited
(i.e., copied) from parent1; more specifically, the x property will be inherited in all spatial models

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 736

(1D/2D/3D), the y property in 2D/3D models, and the z property in 3D models. Properties not
inherited will be left uninitialized, as they were prior to SLiM 4.1. The parent’s spatial position is
probably not desirable in itself; the intention here is to make it easy to model the natal dispersal of all
the new offspring for a given tick with a single vectorized call to pointDeviated(). If parent1 is
NULL (the default), parent2 will be used; if it is also NULL, no spatial position will be inherited.

Note that this method is only for use in nonWF models. See addCrossed() for further general notes
on the addition of new offspring individuals.

– (object<Individual>)addSelfed(object<Individual>$ parent, [integer$ count = 1],
[logical$ defer = F])

Generates a new offspring individual from the given parent by selfing, queues it for addition to the
target subpopulation, and returns it. The new offspring will not be visible as a member of the target
subpopulation until the end of the offspring generation tick cycle stage. The subpopulation of parent
will be used to locate applicable mutation(), recombination(), and modifyChild() callbacks
governing the generation of the offspring individual.

Since selfing requires that parent act as a source of both a male and a female gamete, this method
may be called only in hermaphroditic models; calling it in sexual models will result in an error. This
method represents a non-incidental selfing event, so the preventIncidentalSelfing flag of
initializeSLiMOptions() has no effect on this method (in contrast to the behavior of
addCrossed(), where selfing is assumed to be incidental).

Beginning in SLiM 4.1, the count parameter dictates how many offspring will be generated
(previously, exactly one offspring was generated). Each offspring is generated independently, based
upon the given parameters. The returned vector contains all generated offspring, except those that
were rejected by a modifyChild() callback. If all offspring are rejected, object<Individual>(0) is
returned, which is a zero-length object vector of class Individual; note that this is a change in
behavior from earlier versions, which would return NULL.

Beginning in SLiM 4.1, passing T for defer will defer the generation of the genomes of the produced
offspring until the end of the reproduction phase. Genome generation can only be deferred if there
are no active mutation() or recombination() callbacks; otherwise, an error will result.
Furthermore, when genome generation is deferred the mutations of the genomes of the generated
offspring may not be accessed until reproduction is complete (whether from a modifyChild()
callback or otherwise). There is little or no advantage to deferring genome generation at this time (it is
in place for future expansion); the default of F for defer is generally preferable since it has fewer
restrictions.

Also beginning in SLiM 4.1, in spatial models the spatial position of the offspring will be inherited
(i.e., copied) from parent; more specifically, the x property will be inherited in all spatial models (1D/
2D/3D), the y property in 2D/3D models, and the z property in 3D models. Properties not inherited
will be left uninitialized, as they were prior to SLiM 4.1. The parent’s spatial position is probably not
desirable in itself; the intention here is to make it easy to model the natal dispersal of all the new
offspring for a given tick with a single vectorized call to pointDeviated().

Note that this method is only for use in nonWF models. See addCrossed() for further general notes
on the addition of new offspring individuals.

– (void)addSpatialMap(object<SpatialMap>$ map)
Adds the given SpatialMap object, map, to the subpopulation. (The spatial map would have been
previously created with a call to defineSpatialMap() on a different subpopulation;
addSpatialMap() can then be used to add that existing spatial map with other subpopulations,
sharing the map between subpopulations.) If the map is already added to the target subpopulation,
this method does nothing; if a different map with the same name is already added to the
subpopulation, an error results (because map names must be unique within each subpopulation). The
map being added must be compatible with the target subpopulation; in particular, the spatial bounds
utilized by the map must exactly match the corresponding spatial bounds for the subpopulation, and
the dimensionality of the subpopulation must encompass the spatiality of the map. For example, if the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 737

map has a spatiality of "xz" then the subpopulation must have a dimensionality of "xyz" so that it
encompasses both "x" and "z", and the subpopulation’s spatial bounds for "x" and "z" must match
those for the map (but the spatial bounds for "y" are unimportant, since the map does not use that
dimension).

Adding a map to a subpopulation is not strictly necessary, at present; one may query a SpatialMap
object directly using mapValue(), regarding points in a subpopulation, without the map actually
having been added to that subpopulation. However, it is a good idea to use addSpatialMap(), both
for its compatibility check that prevents unnoticed scripting errors, and because it ensures correct
display of the model in SLiMgui.

– (float)cachedFitness(Ni indices)
The fitness values calculated for the individuals at the indices given are returned. If NULL is passed,
fitness values for all individuals in the subpopulation are returned. The fitness values returned are
cached values; mutationEffect() and fitnessEffect() callbacks are therefore not called as a
side effect of this method. It is always an error to call cachedFitness() from inside a
mutationEffect() or fitnessEffect() callback, since fitness values are in the middle of being set
up. In WF models, it is also an error to call cachedFitness() from a late() event, because fitness
values for the new offspring generation have not yet been calculated and are undefined. In nonWF
models, the population may be a mixture of new and old individuals, so instead, NAN will be returned
as the fitness of any new individuals whose fitness has not yet been calculated. When new
subpopulations are first created with addSubpop() or addSubpopSplit(), the fitness of all of the
newly created individuals is considered to be 1.0 until fitness values are recalculated.

– (void)configureDisplay([Nf center = NULL], [Nf$ scale = NULL],
[Ns$ color = NULL])

This method customizes the display of the subpopulation in SLiMgui’s Population Visualization graph.
When this method is called by a model running outside SLiMgui, it will do nothing except type-
checking and bounds-checking its arguments. When called by a model running in SLiMgui, the
position, size, and color of the subpopulation’s displayed circle can be controlled as specified below.

The center parameter sets the coordinates of the center of the subpopulation’s displayed circle; it
must be a float vector of length two, such that center[0] provides the x-coordinate and center[1]
provides the y-coordinate. The square central area of the Population Visualization occupies scaled
coordinates in [0,1] for both x and y, so the values in center must be within those bounds. If a value
of NULL is provided, SLiMgui’s default center will be used (which currently arranges subpopulations in
a circle).

The scale parameter sets a scaling factor to be applied to the radius of the subpopulation’s displayed
circle. The default radius used by SLiMgui is a function of the subpopulation’s number of individuals;
this default radius is then multiplied by scale. If a value of NULL is provided, the default radius will
be used; this is equivalent to supplying a scale of 1.0. Typically the same scale value should be
used by all subpopulations, to scale all of their circles up or down uniformly, but that is not required.

The color parameter sets the color to be used for the displayed subpopulation’s circle. Colors may be
specified by name, or with hexadecimal RGB values of the form "#RRGGBB" (see the Eidos manual). If
color is NULL or the empty string, "", SLiMgui’s default (fitness-based) color will be used.

– (object<SpatialMap>$)defineSpatialMap(string$ name, string$ spatiality,
numeric values, [logical$ interpolate = F], [Nif valueRange = NULL],
[Ns colors = NULL])

Defines a spatial map for the subpopulation; see the SpatialMap documentation regarding this class.
The new map is automatically added to the subpopulation; addSpatialMap() does not need to be
called. (That method is for sharing the map with additional subpopulations, beyond the one for which
the map was originally defined.) The new SpatialMap object is returned, and may be retained
permanently using defineConstant() or defineGlobal() for convenience.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 738

The name of the map is given by name, and can be used to identify it. The map uses the spatial
dimensions referenced by spatiality, which must be a subset of the dimensions defined for the
simulation in initializeSLiMOptions(). Spatiality "x" is permitted for dimensionality "x";
spatiality "x", "y", or "xy" for dimensionality "xy"; and spatiality "x", "y", "z", "xy", "yz", "xz",
or "xyz" for dimensionality "xyz". The spatial map is defined by a grid of values supplied in
parameter values. That grid of values is aligned with the spatial bounds of the subpopulation, as
described in more detail below; the spatial map is therefore coupled to those spatial bounds, and can
only be used in subpopulations that match those particular spatial bounds (to avoid stretching or
shrinking the map). The remaining optional parameters are described below.

Note that the semantics of this method changed in SLiM 3.5; in particular, the gridSize parameter
was removed, and the interpretation of the values parameter changed as described below. Existing
code written prior to SLiM 3.5 will produce an error, due to the removed gridSize parameter, and
must be revised carefully to obtain the same result, even if NULL had been passed for gridSize
previously.

Beginning in SLiM 3.5, the values parameter must be a vector/matrix/array with the number of
dimensions appropriate for the declared spatiality of the map; for example, a map with spatiality "x"
would require a (one-dimensional) vector, spatiality "xy" would require a (two-dimensional) matrix,
and a map with spatiality of "xyz" would require a three-dimensional array. (See the Eidos manual
for discussion of vectors, matrices, and arrays.) The data in values is interpreted in such a way that a
two-dimensional matrix of values, with (0, 0) at upper left and values by column, is transformed into
the format expected by SLiM, with (0, 0) at lower left and values by row; in other words, the two-
dimensional matrix as it prints in the Eidos console will match the appearance of the two-dimensional
spatial map as seen in SLiMgui. This is a change in behavior from versions prior to SLiM 3.5; it ensures
that images loaded from disk with the Eidos class Image can be used directly as spatial maps,
achieving the expected orientation, with no need for transposition or flipping. If the spatial map is a
three-dimensional array, it is read as successive z-axis “planes”, each of which is a two-dimensional
matrix that is treated as described above.

Moving on to the other parameters of defineSpatialMap(): if interpolate is F, values across the
spatial map are not interpolated; the value at a given point is equal to the nearest value defined by the
grid of values specified. If interpolate is T, values across the spatial map will be interpolated (using
linear, bilinear, or trilinear interpolation as appropriate) to produce spatially continuous variation in
values. In either case, the corners of the value grid are exactly aligned with the corners of the spatial
boundaries of the subpopulation as specified by setSpatialBounds(), and the value grid is then
stretched across the spatial extent of the subpopulation in such a manner as to produce equal spacing
between the values along each dimension. The setting of interpolation only affects how values
between these grid points are calculated: by nearest-neighbor, or by linear interpolation. Interpolation
of spatial maps with periodic boundaries is not handled specially; to ensure that the edges of a
periodic spatial map join smoothly, simply ensure that the grid values at the edges of the map are
identical, since they will be coincident after periodic wrapping. Note that cubic/bicubic interpolation
is generally smoother than linear/bilinear interpolation, with fewer artifacts, but it is substantially
slower to calculate; use the interpolate() method of SpatialMap to precalculate an interpolated
map using cubic/bucubic interpolation.

The valueRange and colors parameters travel together; either both are unspecified, or both are
specified. They control how map values will be transformed into colors, by SLiMgui and by the
mapColor() method. The valueRange parameter establishes the color-mapped range of spatial map
values, as a vector of length two specifying a minimum and maximum; this does not need to match
the actual range of values in the map. The colors parameter then establishes the corresponding
colors for values within the interval defined by valueRange: values less than or equal to
valueRange[0] will map to colors[0], values greater than or equal to valueRange[1] will map to
the last colors value, and intermediate values will shade continuously through the specified vector of
colors, with interpolation between adjacent colors to produce a continuous spectrum. This is much
simpler than it sounds in this description; see the recipes in chapter 16 for an illustration of its use.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 739

Note that at present, SLiMgui will only display spatial maps of spatiality "x", "y", or "xy"; the color-
mapping parameters will simply be ignored by SLiMgui for other spatiality values (even if the spatiality
is a superset of these values; SLiMgui will not attempt to display an "xyz" spatial map, for example,
since it has no way to choose which 2D slice through the xyz space it ought to display). The
mapColor() method will return translated color strings for any spatial map, however, even if SLiMgui
is unable to display the spatial map. If there are multiple spatial maps that SLiMgui is capable of
displaying, it choose one for display by default, but other maps may be selected from the action menu
on the individuals view (by clicking on the button with the gear icon).

– (void)outputMSSample(integer$ sampleSize, [logical$ replace = T],
[string$ requestedSex = "*"], [Ns$ filePath = NULL], [logical$ append = F],
[logical$ filterMonomorphic = F])

Output a random sample from the subpopulation in MS format (see section 27.2.2 for output format
details). Positions in the output will span the interval [0,1]. A sample of genomes (not entire
individuals, note) of size sampleSize from the subpopulation will be output. The sample may be
done either with or without replacement, as specified by replace; the default is to sample with
replacement. A particular sex of individuals may be requested for the sample, for simulations in
which sex is enabled, by passing "M" or "F" for requestedSex; passing "*", the default, indicates
that genomes from individuals should be selected randomly, without respect to sex. If the sampling
options provided by this method are not adequate, see the outputMS() method of Genome for a more
flexible low-level option.

If the optional parameter filePath is NULL (the default), output will be sent to Eidos’s output stream
(see section 4.2.1). Otherwise, output will be sent to the filesystem path specified by filePath,
overwriting that file if append if F, or appending to the end of it if append is T.

If filterMonomorphic is F (the default), all mutations that are present in the sample will be included
in the output. This means that some mutations may be included that are actually monomorphic within
the sample (i.e., that exist in every sampled genome, and are thus apparently fixed). These may be
filtered out with filterMonomorphic = T if desired; note that this option means that some mutations
that do exist in the sampled genomes might not be included in the output, simply because they exist
in every sampled genome.

See outputSample() and outputVCFSample() for other output formats. Output is generally done in
a late() event, so that the output reflects the state of the simulation at the end of a tick.

– (void)outputSample(integer$ sampleSize, [logical$ replace = T],
[string$ requestedSex = "*"], [Ns$ filePath = NULL], [logical$ append = F])

Output a random sample from the subpopulation in SLiM’s native format (see section 27.2.1 for output
format details). A sample of genomes (not entire individuals, note) of size sampleSize from the
subpopulation will be output. The sample may be done either with or without replacement, as
specified by replace; the default is to sample with replacement. A particular sex of individuals may
be requested for the sample, for simulations in which sex is enabled, by passing "M" or "F" for
requestedSex; passing "*", the default, indicates that genomes from individuals should be selected
randomly, without respect to sex. If the sampling options provided by this method are not adequate,
see the output() method of Genome for a more flexible low-level option.

If the optional parameter filePath is NULL (the default), output will be sent to Eidos’s output stream
(see section 4.2.1). Otherwise, output will be sent to the filesystem path specified by filePath,
overwriting that file if append if F, or appending to the end of it if append is T.

See outputMSSample() and outputVCFSample() for other output formats. Output is generally done
in a late() event, so that the output reflects the state of the simulation at the end of a tick.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 740

– (void)outputVCFSample(integer$ sampleSize, [logical$ replace = T],
[string$ requestedSex = "*"], [logical$ outputMultiallelics = T],
[Ns$ filePath = NULL], [logical$ append = F],
[logical$ simplifyNucleotides = F], [logical$ outputNonnucleotides = T])

Output a random sample from the subpopulation in VCF format (see sections 27.2.3 and 27.2.4 for
output format details). A sample of individuals (not genomes, note – unlike the outputSample() and
outputMSSample() methods) of size sampleSize from the subpopulation will be output. The sample
may be done either with or without replacement, as specified by replace; the default is to sample
with replacement. A particular sex of individuals may be requested for the sample, for simulations in
which sex is enabled, by passing "M" or "F" for requestedSex; passing "*", the default, indicates
that genomes from individuals should be selected randomly, without respect to sex. If the sampling
options provided by this method are not adequate, see the outputVCF() method of Genome for a
more flexible low-level option.

If the optional parameter filePath is NULL (the default), output will be sent to Eidos’s output stream
(see section 4.2.1). Otherwise, output will be sent to the filesystem path specified by filePath,
overwriting that file if append if F, or appending to the end of it if append is T.

The parameters outputMultiallelics, simplifyNucleotides, and outputNonnucleotides affect
the format of the output produced; see sections 27.2.3 and 27.2.4 for further discussion.

See outputMSSample() and outputSample() for other output formats. Output is generally done in a
late() event, so that the output reflects the state of the simulation at the end of a tick.

– (float)pointDeviated(integer$ n, float point, string$ boundary,
numeric$ maxDistance, string$ functionType, ...)

Returns a vector containing n points that are derived from point by adding a deviation drawn from a
dispersal kernel (specified by maxDistance, functionType, and the ellipsis parameters ..., as
detailed below) and then applying a boundary condition specified by boundary. This method
therefore performs the steps of a simple dispersal algorithm in a single vectorized call.

The parameter point may contain a single point which is deviated and bounded n independent times,
or may contain n points each of which is deviated and bounded. In any case, each point in point
should match the dimensionality of the model – one element in a 1D model, two elements in a 2D
model, or three elements in a 3D model. This method should not be called in a non-spatial model.

The dispersal kernel is specified similarly to other kernel-based methods, such as
setInteractionFunction() and smooth(). For pointDeviated(), functionType may be "f"
with no ellipsis arguments ... to use a flat kernel out to maxDistance; "l" with no ellipsis arguments
for a kernel that decreases linearly from the center to zero at maxDistance; "e", in which case the
ellipsis should supply a numeric$ lambda (rate) parameter for a negative exponential function; "n", in
which case the ellipsis should supply a numeric$ sigma (standard deviation) parameter for a Gaussian
function; or "t", in which case the ellipsis should supply a numeric$ degrees of freedom and a
numeric$ scale parameter for a t-distribution function. The Cauchy ("c") kernel is not supported by
pointDeviated() since it is not well-behaved for this purpose, and the Student’s t ("t") kernel is not
allowed in 3D models at present simply because it hasn’t been implemented. See the
InteractionType class documentation (section 25.8) for more detailed discussion of the available
kernel types and their parameters and probability distribution functions.

The random points returned from this method are drawn from the probability distribution that is
radially symmetric and has density proportional to the kernel – in other words, at distance r the
density is proportional to the kernel type referred to by functionType. (Said another way, the shape
of the cross-section through the probability density function is given by the kernel.) For instance, the
value of the type "e" (exponential) kernel with rate a at r is proportional to exp(−ar), and so in 2D, the
probability density that this method with kernel type "e" draws from has density proportional to
p(x, y) = exp(−a sqrt(x2 + y2)), since r = sqrt(x2 + y2) is the distance. Note that the distribution of the
distance is not given by the kernel except in 1D: in the type "e" example, the distribution of the
distance in 1D is exponential, while in 2D it has density proportional to r exp(−ar) (i.e., Gamma with
shape parameter 1). For another example, the value of the type "n" (Normal) kernel at r with standard

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 741

deviation 1 is proportional to exp(−r2 / 2), and so the density is proportional to p(x, y) = exp(−
(x2 + y2) / 2). This is the standard bivariate Normal, and equivalent to drawing independent Normals
for the x and y directions; however, the Normal is the only distribution for which independent draws
along each axis will result in a radially symmetric distribution. The distribution of the distance in 2D
with type "n" is proportional to r exp(−r2 / 2), i.e., Rayleigh.

The boundary condition must be one of "none", "periodic", "reflecting", "stopping", or
"reprising". For "none", no boundary condition is enforced; the deviated points are simply
returned as is. For "periodic", "reflecting", and "stopping", the boundary condition is
enforced just as it is by the pointPeriodic(), pointReflected(), and pointStopped() methods;
see their documentation for further details. For "reprising", if the deviated point is out of bounds a
new deviated point will be chosen, based upon the same original point, until a point inside bounds is
obtained. Note that absorbing boundaries (for which being out-of-bounds is lethal) would be
implemented in script; this method cannot enforce them.

In the typical usage case, point comes from the spatialPosition property for a vector of
individuals, and the result is then set back onto the same vector of individuals using the
setSpatialPosition() method; however, this method might be useful in other situations too.

– (logical)pointInBounds(float point)
Returns T if point is inside the spatial boundaries of the subpopulation, F otherwise. For example, for
a simulation with "xy" dimensionality, if point contains exactly two values constituting an (x,y) point,
the result will be T if and only if ((point[0]>=x0) & (point[0]<=x1) & (point[1]>=y0) &
(point[1]<=y1)) given spatial bounds (x0, y0, x1, y1). This method is useful for implementing
absorbing or reprising boundary conditions. This may only be called in simulations for which
continuous space has been enabled with initializeSLiMOptions().

The length of point must be an exact multiple of the dimensionality of the simulation; in other words,
point may contain values comprising more than one point. In this case, a logical vector will be
returned in which each element is T if the corresponding point in point is inside the spatial
boundaries of the subpopulation, F otherwise.

– (float)pointPeriodic(float point)
Returns a revised version of point that has been brought inside the periodic spatial boundaries of the
subpopulation (as specified by the periodicity parameter of initializeSLiMOptions()) by
wrapping around periodic spatial boundaries. In brief, if a coordinate of point lies beyond a periodic
spatial boundary, that coordinate is wrapped around the boundary, so that it lies inside the spatial
extent by the same magnitude that it previously lay outside, but on the opposite side of the space; in
effect, the two edges of the periodic spatial boundary are seamlessly joined. This is done iteratively
until all coordinates lie inside the subpopulation’s periodic boundaries. Note that non-periodic spatial
boundaries are not enforced by this method; they should be enforced using pointReflected(),
pointStopped(), or some other means of enforcing boundary constraints (which can be used after
pointPeriodic() to bring the remaining coordinates into bounds; coordinates already brought into
bounds by pointPeriodic() will be unaffected by those calls). This method is useful for
implementing periodic boundary conditions. This may only be called in simulations for which
continuous space and at least one periodic spatial dimension have been enabled with
initializeSLiMOptions().

The length of point must be an exact multiple of the dimensionality of the simulation; in other words,
point may contain values comprising more than one point. In this case, each point will be processed
as described above and a new vector containing all of the processed points will be returned.

– (float)pointReflected(float point)
Returns a revised version of point that has been brought inside the spatial boundaries of the
subpopulation by reflection. In brief, if a coordinate of point lies beyond a spatial boundary, that
coordinate is reflected across the boundary, so that it lies inside the boundary by the same magnitude
that it previously lay outside the boundary. This is done iteratively until all coordinates lie inside the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 742

subpopulation’s boundaries. This method is useful for implementing reflecting boundary conditions.
This may only be called in simulations for which continuous space has been enabled with
initializeSLiMOptions().

The length of point must be an exact multiple of the dimensionality of the simulation; in other words,
point may contain values comprising more than one point. In this case, each point will be processed
as described above and a new vector containing all of the processed points will be returned.

– (float)pointStopped(float point)
Returns a revised version of point that has been brought inside the spatial boundaries of the
subpopulation by clamping. In brief, if a coordinate of point lies beyond a spatial boundary, that
coordinate is set to exactly the position of the boundary, so that it lies on the edge of the spatial
boundary. This method is useful for implementing stopping boundary conditions. This may only be
called in simulations for which continuous space has been enabled with initializeSLiMOptions().

The length of point must be an exact multiple of the dimensionality of the simulation; in other words,
point may contain values comprising more than one point. In this case, each point will be processed
as described above and a new vector containing all of the processed points will be returned.

– (float)pointUniform([integer$ n = 1])
Returns a new point (or points, for n > 1) generated from uniform draws for each coordinate, within
the spatial boundaries of the subpopulation. The returned vector will contain n points, each
comprised of a number of coordinates equal to the dimensionality of the simulation, so it will be of
total length n*dimensionality. This may only be called in simulations for which continuous space has
been enabled with initializeSLiMOptions().

– (void)removeSpatialMap(so<SpatialMap>$ map)
Removes the SpatialMap object specified by map from the subpopulation. The parameter map may be
either a SpatialMap object, or a string name for spatial map. The map must have been added to
the subpopulation with addSpatialMap(); if it has not been, an error results. Removing spatial maps
that are no longer in use is optional in most cases. It is generally a good idea because it might
decrease SLiM’s memory footprint; also, it avoids an error if the subpopulation’s spatial bounds are
changed (see setSpatialBounds()).

– (void)removeSubpopulation(void)
Removes this subpopulation from the model. The subpopulation is immediately removed from the list
of active subpopulations, and the symbol representing the subpopulation is undefined. The
subpopulation object itself remains unchanged until children are next generated (at which point it is
deallocated), but it is no longer part of the simulation and should not be used.

Note that this method is only for use in nonWF models, in which there is a distinction between a
subpopulation being empty and a subpopulation being removed from the simulation; an empty
subpopulation may be re-colonized by migrants, whereas as a removed subpopulation no longer
exists at all. WF models do not make this distinction; when a subpopulation is empty it is
automatically removed. WF models should therefore call setSubpopulationSize(0) instead of this
method; setSubpopulationSize() is the standard way for WF models to change the subpopulation
size, including to a size of 0.

– (object<Individual>)sampleIndividuals(integer$ size, [logical$ replace = F],
[No<Individual>$ exclude = NULL], [Ns$ sex = NULL],[Ni$ tag = NULL],
[Ni$ minAge = NULL], [Ni$ maxAge = NULL], [Nl$ migrant = NULL],
[Nl$ tagL0 = NULL], [Nl$ tagL1 = NULL], [Nl$ tagL2 = NULL], [Nl$ tagL3 = NULL],
[Nl$ tagL4 = NULL])

Returns a vector of individuals, of size less than or equal to parameter size, sampled from the
individuals in the target subpopulation. Sampling is done without replacement if replace is F (the
default), or with replacement if replace is T. The remaining parameters specify constraints upon the
pool of individuals that will be considered candidates for the sampling. Parameter exclude, if non-

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 743

NULL, may specify a specific individual that should not be considered a candidate (typically the focal
individual in some operation). Parameter sex, if non-NULL, may specify a sex ("M" or "F") for the
individuals to be drawn, in sexual models. Parameter tag, if non-NULL, may specify a tag property
value for the individuals to be drawn. Parameters minAge and maxAge, if non-NULL, may specify a
minimum or maximum age for the individuals to be drawn, in nonWF models. Parameter migrant, if
non-NULL, may specify a required value for the migrant property of the individuals to be drawn (so T
will require that individuals be migrants, F will require that they not be). Finally, parameters tagL0,
tagL1, tagL2, tagL3, and tagL4, if non-NULL, may specify a required value (T or F) for the
corresponding properties (tagL0, tagL1, tagL2, tagL3, and tagL4) of the individuals to be drawn.
Note that if any tag/tagL parameter is specified as non-NULL, that tag/tagL property must have a
defined value for every individual in the subpopulation, otherwise an error may result (although this
requirement will not necessarily be checked comprehensively by this method in every invocation). If
the candidate pool is smaller than the requested sample size, all eligible candidates will be returned
(in randomized order); the result will be a zero-length vector if no eligible candidates exist (unlike
sample()).

This method is similar to getting the individuals property of the subpopulation, using operator [] to
select only individuals with the desired properties, and then using sample() to sample from that
candidate pool. However, besides being much simpler than the equivalent Eidos code, it is also much
faster, and it does not fail if less than the full sample size is available. See subsetIndividuals() for
a similar method that returns a full subset, rather than a sample.

– (void)setCloningRate(numeric rate)
Set the cloning rate of this subpopulation. The rate is changed to rate, which should be between 0.0
and 1.0, inclusive. Clonal reproduction can be enabled in both non-sexual (i.e. hermaphroditic) and
sexual simulations. In non-sexual simulations, rate must be a singleton value representing the overall
clonal reproduction rate for the subpopulation. In sexual simulations, rate may be either a singleton
(specifying the clonal reproduction rate for both sexes) or a vector containing two numeric values (the
female and male cloning rates specified separately, at indices 0 and 1 respectively). During mating
and offspring generation, the probability that any given offspring individual will be generated by
cloning – by asexual reproduction without gametes or meiosis – will be equal to the cloning rate (for
its sex, in sexual simulations) set in the parental (not the offspring!) subpopulation.

– (void)setMigrationRates(io<Subpopulation> sourceSubpops, numeric rates)
Set the migration rates to this subpopulation from the subpopulations in sourceSubpops to the
corresponding rates specified in rates; in other words, rates gives the expected fractions of the
children in this subpopulation that will subsequently be generated from parents in the subpopulations
sourceSubpops (see section 23.2.1). This method will only set the migration fractions from the
subpopulations given; migration rates from other subpopulations will be left unchanged (explicitly set
a zero rate to turn off migration from a given subpopulation). The type of sourceSubpops may be
either integer, specifying subpopulations by identifier, or object, specifying subpopulations directly.

– (void)setSelfingRate(numeric$ rate)
Set the selfing rate of this subpopulation. The rate is changed to rate, which should be between 0.0
and 1.0, inclusive. Selfing can only be enabled in non-sexual (i.e. hermaphroditic) simulations.
During mating and offspring generation, the probability that any given offspring individual will be
generated by selfing – by self-fertilization via gametes produced by meiosis by a single parent – will be
equal to the selfing rate set in the parental (not the offspring!) subpopulation (see section 23.2.1).

– (void)setSexRatio(float$ sexRatio)
Set the sex ratio of this subpopulation to sexRatio. As defined in SLiM, this is actually the fraction of
the subpopulation that is male; in other words, the M:(M+F) ratio. This will take effect when children
are next generated; it does not change the current subpopulation state. Unlike the selfing rate, the
cloning rate, and migration rates, the sex ratio is deterministic: SLiM will generate offspring that

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 744

exactly satisfy the requested sex ratio (within integer roundoff limits). See section 23.2.1 for further
details.

– (void)setSpatialBounds(numeric bounds)
Set the spatial boundaries of the subpopulation to bounds. This method may be called only for
simulations in which continuous space has been enabled with initializeSLiMOptions(). The
length of bounds must be double the spatial dimensionality, so that it supplies both minimum and
maximum values for each coordinate. More specifically, for a dimensionality of "x", bounds should
supply (x0, x1) values; for dimensionality "xy" it should supply (x0, y0, x1, y1) values; and for
dimensionality "xyz" it should supply (x0, y0, z0, x1, y1, z1) (in that order). These
boundaries will be used by SLiMgui to calibrate the display of the subpopulation, and will be used by
methods such as pointInBounds(), pointReflected(), pointStopped(), and pointUniform().
The default spatial boundaries for all subpopulations span the interval [0,1] in each dimension.
Spatial dimensions that are periodic (as established with the periodicity parameter to
initializeSLiMOptions()) must have a minimum coordinate value of 0.0 (a restriction that allows
the handling of periodicity to be somewhat more efficient). The current spatial bounds for the
subpopulation may be obtained through the spatialBounds property.

The spatial bounds of a subpopulation are shared with any SpatialMap objects added to the
subpopulation. For this reason, once a spatial map has been added to a subpopulation, the spatial
bounds of the subpopulation can no longer be changed (because it would stretch or shrink the
associated spatial map, which does not seem to make physical sense). The bounds for a
subpopulation should therefore be configured before any spatial maps are added to it. If those bounds
do need to change subsequently, any associated spatial maps must first be removed with
removeSpatialMap(), to ensure model consistency.

– (void)setSubpopulationSize(integer$ size)
Set the size of this subpopulation to size individuals. This will take effect when children are next
generated; it does not change the current subpopulation state. Setting a subpopulation to a size of 0
does have some immediate effects that serve to disconnect it from the simulation: the subpopulation is
removed from the list of active subpopulations, the subpopulation is removed as a source of migration
for all other subpopulations, and the symbol representing the subpopulation is undefined. In this
case, the subpopulation itself remains unchanged until children are next generated (at which point it is
deallocated), but it is no longer part of the simulation and should not be used.

– (string)spatialMapColor(string$ name, numeric value)
This method has been deprecated, and may be removed in a future release of SLiM. In SLiM 4.1 and
later, use the SpatialMap method mapColor() instead, and see that method’s documentation. (This
method differs only in taking a name parameter, which is used to look up the spatial map from those
that have been added to the subpopulation.)

– (object<Image>$)spatialMapImage(string$ name, [Ni$ width = NULL],
[Ni$ height = NULL], [logical$ centers = F], [logical$ color = T])

This method has been deprecated, and may be removed in a future release of SLiM. In SLiM 4.1 and
later, use the SpatialMap method mapImage() instead, and see that method’s documentation. (This
method differs only in taking a name parameter, which is used to look up the spatial map from those
that have been added to the subpopulation.)

– (float)spatialMapValue(so<SpatialMap>$ map, float point)
Looks up the spatial map specified by map, and uses its mapping machinery (as defined by the
gridSize, values, and interpolate parameters to defineSpatialMap()) to translate the
coordinates of point into a corresponding map value. The parameter map may specify the map either
as a SpatialMap object, or by its string name; in either case, the map must have been added to the
subpopulation. The length of point must be equal to the spatiality of the spatial map; in other words,
for a spatial map with spatiality "xz", point must be of length 2, specifying the x and z coordinates of

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 745

the point to be evaluated. Interpolation will automatically be used if it was enabled for the spatial
map. Point coordinates are clamped into the range defined by the spatial boundaries, even if the
spatial boundaries are periodic; use pointPeriodic() to wrap the point coordinates first if desired.
See the documentation for defineSpatialMap() for information regarding the details of value
mapping.

Beginning in SLiM 3.3, point may contain more than one point to be looked up. In this case, the
length of point must be an exact multiple of the spatiality of the spatial map; for a spatial map with
spatiality "xz", for example, the length of point must be an exact multiple of 2, and successive pairs
of elements from point (elements 0 and 1, then elements 2 and 3, etc.) will be taken as the x and z
coordinates of the points to be evaluated. This allows spatialMapValue() to be used in a vectorized
fashion.

The mapValue() method of SpatialMap provides the same functionality directly on the SpatialMap
class; spatialMapValue() is provided on Subpopulation partly for backward compatibility, but also
for convenience for the most common usage case of spatial maps.

– (object<Individual>)subsetIndividuals([No<Individual>$ exclude = NULL],
[Ns$ sex = NULL], [Ni$ tag = NULL], [Ni$ minAge = NULL], [Ni$ maxAge = NULL],
[Nl$ migrant = NULL], [Nl$ tagL0 = NULL], [Nl$ tagL1 = NULL],
[Nl$ tagL2 = NULL], [Nl$ tagL3 = NULL], [Nl$ tagL4 = NULL])

Returns a vector of individuals subset from the individuals in the target subpopulation. The parameters
specify constraints upon the subset of individuals that will be returned. Parameter exclude, if non-
NULL, may specify a specific individual that should not be included (typically the focal individual in
some operation). Parameter sex, if non-NULL, may specify a sex ("M" or "F") for the individuals to be
returned, in sexual models. Parameter tag, if non-NULL, may specify a tag property value for the
individuals to be returned. Parameters minAge and maxAge, if non-NULL, may specify a minimum or
maximum age for the individuals to be returned, in nonWF models. Parameter migrant, if non-NULL,
may specify a required value for the migrant property of the individuals to be returned (so T will
require that individuals be migrants, F will require that they not be). Finally, parameters tagL0,
tagL1, tagL2, tagL3, and tagL4, if non-NULL, may specify a required value (T or F) for the
corresponding properties (tagL0, tagL1, tagL2, tagL3, and tagL4) of the individuals to be returned.
Note that if any tag/tagL parameter is specified as non-NULL, that tag/tagL property must have a
defined value for every individual in the subpopulation, otherwise an error may result (although this
requirement will not necessarily be checked comprehensively by this method in every invocation).

This method is shorthand for getting the individuals property of the subpopulation, and then using
operator [] to select only individuals with the desired properties; besides being much simpler than the
equivalent Eidos code, it is also much faster. See sampleIndividuals() for a similar method that
returns a sample taken from a chosen subset of individuals.

– (void)takeMigrants(object<Individual> migrants)
Immediately moves the individuals in migrants to the target subpopulation (removing them from
their previous subpopulation). Individuals in migrants that are already in the target subpopulation
are unaffected. Note that the indices and order of individuals and genomes in both the target and
source subpopulations will change unpredictably as a side effect of this method.

Note that this method is only for use in nonWF models, in which migration is managed manually by
the model script. In WF models, migration is managed automatically by the SLiM core based upon
the migration rates set for each subpopulation with setMigrationRates().

25.17 Class Substitution
Superclass: Dictionary

This class represents a mutation that has been fixed; Mutation objects are converted to
Substitution objects upon fixation. Its properties are thus very similar to those of Mutation.
Section 1.5.2 presents an overview of the conceptual role of this class.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 746

Since Substitution objects represent fixation events that occurred in the past, they are
relatively immutable. However, since it may be useful to attach (possibly dynamic) state to
substitutions, their tag and subpopID properties are mutable, and they also provide the same
getValue() / setValue() functionality as Mutation (inherited from the Eidos class Dictionary).
Values set on a Mutation object will carry over to the corresponding Substitution object
automatically upon fixation.

25.17.1 Substitution properties

id => (integer$)
The identifier for this mutation. Each mutation created during a run receives an immutable identifier
that will be unique across the duration of the run, and that identifier is carried over to the
Substitution object when the mutation fixes.

fixationTick => (integer$)
The tick in which this mutation fixed.

mutationType => (object<MutationType>$)
The MutationType from which this mutation was drawn.

nucleotide <–> (string$)
A string representing the nucleotide associated with this mutation; this will be "A", "C", "G", or
"T". If the mutation is not nucleotide-based, this property is unavailable.

nucleotideValue <–> (integer$)
An integer representing the nucleotide associated with this mutation; this will be 0 (A), 1 (C), 2 (G),
or 3 (T). If the mutation is not nucleotide-based, this property is unavailable.

originTick => (integer$)
The tick in which this mutation arose.

position => (integer$)
The position in the chromosome of this mutation.

selectionCoeff => (float$)
The selection coefficient of the mutation, drawn from the distribution of fitness effects of its
MutationType.

subpopID <–> (integer$)
The identifier of the subpopulation in which this mutation arose. This value is carried over from the
Mutation object directly; if a “tag” value was used in the Mutation object (see section 25.10.1), that
value will carry over to the corresponding Substitution object. The subpopID in Substitution is
a read-write property to allow it to be used as a “tag” in the same way, if the origin subpopulation
identifier is not needed.

tag <–> (integer$)
A user-defined integer value. The value of tag is carried over automatically from the original
Mutation object. Apart from that, the value of tag is not used by SLiM; it is free for you to use.

25.17.2 Substitution methods
Substitution has no methods apart from those inherited from its superclasses.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 747

25.18 SLiM built-in functions
SLiM provides a small number of built-in functions, documented here. Note that these are

distinct from the functions built into the Eidos language itself, which are documented in the Eidos
manual.

25.18.1 Nucleotide utilities

(is)codonsToAminoAcids(integer codons, [li$ long = F], [logical$ paste = T])
Returns the amino acid sequence corresponding to the codon sequence in codons. Codons should be
represented with values in [0, 63] where AAA is 0, AAC is 1, AAG is 2, and TTT is 63; see
ancestralNucleotides() for discussion of this encoding. If long is F (the default), the standard
single-letter codes for amino acids will be used (where Serine is "S", etc.); if long is T, the standard
three-letter codes will be used instead (where Serine is "Ser", etc.). Beginning in SLiM 3.5, if long is
0, integer codes will be used as follows (and paste will be ignored):

stop (TAA, TAG, TGA) 0
Alanine 1
Arginine 2
Asparagine 3
Aspartic acid (Aspartate) 4
Cysteine 5
Glutamine 6
Glutamic acid (Glutamate) 7
Glycine 8
Histidine 9
Isoleucine 10
Leucine 11
Lysine 12
Methionine 13
Phenylalanine 14
Proline 15
Serine 16
Threonine 17
Tryptophan 18
Tyrosine 19
Valine 20

There does not seem to be a widely used standard for integer coding of amino acids, so SLiM just
numbers them alphabetically, making stop codons 0. If you want a different coding, you can make
your own 64-element vector and use it to convert codons to whatever integer codes you need. Other
integer values of long are reserved for future use (to support other codings), and will currently
produce an error.

When long is T or F and paste is T (the default), the amino acid sequence returned will be a
singleton string, such as "LYATI" (when long is F) or "Leu-Tyr-Ala-Thr-Ile" (when long is T).
When long is T or F and paste is F, the amino acid sequence will instead be returned as a string
vector, with one element per amino acid, such as "L" "Y" "A" "T" "I" (when long is F) or "Leu"
"Tyr" "Ala" "Thr" "Ile" (when long is T). Using the paste=T option is considerably faster than
using paste() in script.

This function interprets the supplied codon sequence as the sense strand (i.e., the strand that is not
transcribed, and which mirrors the mRNA’s sequence). This uses the standard DNA codon table
directly. For example, if the nucleotide sequence is CAA TTC, that will correspond to a codon vector
of 16 61, and will result in the amino acid sequence Gln-Phe (“QF").

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 748

(is)codonsToNucleotides(integer codons, [string$ format = "string"])
Returns the nucleotide sequence corresponding to the codon sequence supplied in codons. Codons
should be represented with values in [0, 63] where AAA is 0, AAC is 1, AAG is 2, and TTT is 63; see
ancestralNucleotides() for discussion of this encoding.

The format parameter controls the format of the returned sequence. It may be "string" to obtain
the sequence as a singleton string (e.g., "TATACG"), "char" to obtain it as a string vector of single
characters (e.g., "T", "A", "T", "A", "C", "G"), or "integer" to obtain it as an integer vector (e.g.,
3, 0, 3, 0, 1, 2), using SLiM’s standard code of A=0, C=1, G=2, T=3.

(float)mm16To256(float mutationMatrix16)
Returns a 64×4 mutation matrix that is functionally identical to the supplied 4×4 mutation matrix in
mutationMatrix16. The mutation rate for each of the 64 trinucleotides will depend only upon the
central nucleotide of the trinucleotide, and will be taken from the corresponding entry for the same
nucleotide in mutationMatrix16. This function can be used to easily construct a simple
trinucleotide-based mutation matrix which can then be modified so that specific trinucleotides sustain
a mutation rate that does not depend only upon their central nucleotide.

See the documentation for initializeGenomicElementType() in section 25.1 for further discussion
of how these 64×4 mutation matrices are interpreted and used.

(float)mmJukesCantor(float$ alpha)
Returns a mutation matrix representing a Jukes–Cantor (1969) model with mutation rate alpha to each
possible alternative nucleotide at a site:

This 2×2 matrix is suitable for use with initializeGenomicElementType(). Note that the actual
mutation rate produced by this matrix is 3*alpha.

(float)mmKimura(float$ alpha, float$ beta)
Returns a mutation matrix representing a Kimura (1980) model with transition rate alpha and
transversion rate beta:

This 2×2 matrix is suitable for use with initializeGenomicElementType(). Note that the actual
mutation rate produced by this model is alpha+2*beta.

(integer)nucleotideCounts(is sequence)
A convenience function that returns an integer vector of length four, providing the number of
occurrences of A / C / G / T nucleotides, respectively, in the supplied nucleotide sequence. The
parameter sequence may be a singleton string (e.g., "TATA"), a string vector of single characters
(e.g., "T", "A", "T", "A"), or an integer vector (e.g., 3, 0, 3, 0), using SLiM’s standard code of A=0,
C=1, G=2, T=3.

(float)nucleotideFrequencies(is sequence)
A convenience function that returns a float vector of length four, providing the frequencies of
occurrences of A / C / G / T nucleotides, respectively, in the supplied nucleotide sequence. The
parameter sequence may be a singleton string (e.g., "TATA"), a string vector of single characters

0 α α α
α 0 α α
α α 0 α
α α α 0

0 β α β
β 0 β α
α β 0 β
β α β 0

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 749

(e.g., "T", "A", "T", "A"), or an integer vector (e.g., 3, 0, 3, 0), using SLiM’s standard code of A=0,
C=1, G=2, T=3.

(integer)nucleotidesToCodons(is sequence)
Returns the codon sequence corresponding to the nucleotide sequence in sequence. The codon
sequence is an integer vector with values from 0 to 63, based upon successive nucleotide triplets in
the nucleotide sequence. The codon value for a given nucleotide triplet XYZ is 16X + 4Y + Z, where
X, Y, and Z have the usual values A=0, C=1, G=2, T=3. For example, the triplet AAA has a codon
value of 0, AAC is 1, AAG is 2, AAT is 3, ACA is 4, and on upward to TTT which is 63. If the
nucleotide sequence AACACATTT is passed in, the codon vector 1 4 63 will therefore be returned.
These codon values can be useful in themselves; they can also be passed to codonsToAminoAcids()
to translate them into the corresponding amino acid sequence if desired.

The nucleotide sequence in sequence may be supplied in any of three formats: a string vector with
single-letter nucleotides (e.g., "T", "A", "T", "A"), a singleton string of nucleotide letters (e.g.,
"TATA"), or an integer vector of nucleotide values (e.g., 3, 0, 3, 0) using SLiM’s standard code of
A=0, C=1, G=2, T=3. If the choice of format is not driven by other considerations, such as ease of
manipulation, then the singleton string format will certainly be the most memory-efficient for long
sequences, and will probably also be the fastest. The nucleotide sequence provided must be a
multiple of three in length, so that it translates to an integral number of codons.

(is)randomNucleotides(integer$ length, [Nif basis = NULL],
[string$ format = "string"])

Generates a new random nucleotide sequence with length bases. The four nucleotides ACGT are
equally probable if basis is NULL (the default); otherwise, basis may be a 4-element integer or
float vector providing relative fractions for A, C, G, and T respectively (these need not sum to 1.0, as
they will be normalized). More complex generative models such as Markov processes are not
supported intrinsically in SLiM at this time, but arbitrary generated sequences may always be loaded
from files on disk.

The format parameter controls the format of the returned sequence. It may be "string" to obtain
the generated sequence as a singleton string (e.g., "TATA"), "char" to obtain it as a string vector
of single characters (e.g., "T", "A", "T", "A"), or "integer" to obtain it as an integer vector (e.g., 3,
0, 3, 0), using SLiM’s standard code of A=0, C=1, G=2, T=3. For passing directly to
initializeAncestralNucleotides(), format "string" (a singleton string) will certainly be the
most memory-efficient, and probably also the fastest. Memory efficiency can be a significant
consideration; the nucleotide sequence for a chromosome of length 109 will occupy approximately 1
GB of memory when stored as a singleton string (with one byte per nucleotide), and much more if
stored in the other formats. However, the other formats can be easier to work with in Eidos, and so
may be preferable for relatively short chromosomes if you are manipulating the generated sequence.

25.18.2 Population genetics utilities
SLiM now provides a handful of utility functions for calculating standard population genetic

metrics. It should be noted that the correct method for calculating these metrics is often a
contentious topic. For one thing, many metrics are defined in more than one way in the literature,
and different definitions of a given metric may yield different numerical results. In addition,
applying those definitions to SLiM in particular can be ambiguous, particularly when stacked
mutations are present (a sort of nod to the infinite-sites model within SLiM’s discrete-sites model),
or when multiple mutational lineages representing the same genetic mutation exist (representing
identity by descent rather than identity by state); see section 1.5 for discussion of these topics. The
functions here are provided for convenience, but represent only one particular set of choices
regarding such questions; if your work requires a very specific definition of a metric that involves
different choices on these questions, you may then need to implement these metrics in your own
way, either in your own Eidos code, or perhaps with post-run analysis of VCF output, etc.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 750

To facilitate an understanding of exactly what these functions do and the assumptions and
choices upon which they are based, they are all implemented in Eidos, not in C++. Their Eidos
source code can be viewed using the functionSource() function in the Eidos console in SLiMgui;
for example, by executing functionSource("calcFST").

(float$)calcFST(object<Genome> genomes1, object<Genome> genomes2,
[No<Mutation> muts = NULL], [Ni$ start = NULL], [Ni$ end = NULL])

Calculates the FST between two Genome vectors – typically, but not necessarily, the genomes that
constitute two different subpopulations (which we will assume for the purposes of this discussion). In
general, higher FST indicates greater genetic divergence between subpopulations.

The calculation is done using only the mutations in muts; if muts is NULL, all mutations are used. The
muts parameter can therefore be used to calculate the FST only for a particular mutation type (by
passing only mutations of that type).

The calculation can be narrowed to apply to only a window – a subrange of the full chromosome – by
passing the interval bounds [start, end] for the desired window. In this case, the vector of mutations
used for the calculation will be subset to include only mutations within the specified window. The
default behavior, with start and end of NULL, provides the genome-wide FST, which is often used to
assess the overall level of genetic divergence between sister species or allopatric subpopulations.

The code for calcFST() is, roughly, an Eidos implementation of Wright’s definition of FST (but see
below for further discussion and clarification):

where HS is the average heterozygosity in the two subpopulations, and HT is the total heterozygosity
when both subpopulations are combined. In this implementation, the two genome vectors are
weighted equally, not weighted by their size. In SLiM 3, the implementation followed Wright’s
definition closely, and returned the average of ratios: mean(1.0 - H_s/H_t), in the Eidos code. In
SLiM 4, it returns the ratio of averages instead: 1.0 - mean(H_s)/mean(H_t). In other words, the FST
value reported by SLiM 4 is an average across the specified mutations in the two sets of genomes,
where H_s and H_t are first averaged across all specified mutations prior to taking the ratio of the two.
This ratio of averages is less biased than the average of ratios, and and is generally considered to be
best practice (see, e.g., Bhatia et al., 2013). This means that the behavior of calcFST() differs
between SLiM 3 and SLiM 4.

The implementation of calcFST(), viewable with functionSource(), treats every mutation in muts
as independent in the heterozygosity calculations; in other words, if mutations are stacked, the
heterozygosity calculated is by mutation, not by site. Similarly, if multiple Mutation objects exist in
different genomes at the same site (whether representing different genetic states, or multiple
mutational lineages for the same genetic state), each Mutation object is treated separately for
purposes of the heterozygosity calculation, just as if they were at different sites. One could regard
these choices as embodying an infinite-sites interpretation of the segregating mutations. In most
biologically realistic models, such genetic states will be quite rare, and so the impact of these choices
will be negligible; however, in some models these distinctions may be important.

(float$)calcHeterozygosity(object<Genome> genomes, [No<Mutation> muts = NULL],
[Ni$ start = NULL], [Ni$ end = NULL])

Calculates the heterozygosity for a vector of genomes, based upon the frequencies of mutations in the
genomes. The result is the expected heterozygosity, for the individuals to which the genomes belong,
assuming that they are under Hardy-Weinberg equilibrium; this can be compared to the observed
heterozygosity of an individual, as calculated by calcPairHeterozygosity(). Often genomes will
be all of the genomes in a subpopulation, or in the entire population, but any genome vector may be
used. By default, with muts=NULL, the calculation is based upon all mutations in the simulation; the
calculation can instead be based upon a subset of mutations, such as mutations of a specific mutation
type, by passing the desired vector of mutations for muts.

FST = 1 −
HS

HT

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 751

The calculation can be narrowed to apply to only a window – a subrange of the full chromosome – by
passing the interval bounds [start, end] for the desired window. In this case, the vector of mutations
used for the calculation will be subset to include only mutations within the specified window. The
default behavior, with start and end of NULL, provides the genome-wide heterozygosity.

The implementation of calcHeterozygosity(), viewable with functionSource(), treats every
mutation as independent in the heterozygosity calculations. One could regard this choice as
embodying an infinite-sites interpretation of the segregating mutations. In most biologically realistic
models, such genetic states will be quite rare, and so the impact of this choice will be negligible;
however, in some models this distinction may be important. See calcPairHeterozygosity() for
further discussion.

(float$)calcInbreedingLoad(object<Genome> genomes,
[No<MutationType>$ mutType = NULL])

Calculates inbreeding load (the haploid number of lethal equivalents, or B) for a vector of genomes
passed in genomes. The calculation can be limited to a focal mutation type passed in mutType; if
mutType is NULL (the default), all of the mutations for the focal species will be considered. In any
case, only deleterious mutations (those with a negative selection coefficient) will be included in the
final calculation.

The inbreeding load is a measure of the quantity of recessive deleterious variation that is heterozygous
in a population and can contribute to fitness declines under inbreeding. This function implements the
following equation from Morton et al. (1956), which assumes no epistasis and random mating:

B = sum(qs) − sum(q2s) − 2sum(q(1−q)sh)

where q is the frequency of a given deleterious allele, s is the absolute value of the selection
coefficient, and h is its dominance coefficient. Note that the implementation sets a maximum |s| of
1.0 (i.e., a lethal allele); |s| can sometimes be greater than 1.0 when s is drawn from a distribution,
but in practice an allele with s < -1.0 has the same lethal effect as when s = -1.0. Also note that this
implementation will not work when the model changes the dominance coefficients of mutations using
mutationEffect() callbacks, since it relies on the dominanceCoeff property of MutationType.
Finally, note that, to estimate the diploid number of lethal equivalents (2B), the result from this
function can simply be multiplied by two.

This function was contributed by Chris Kyriazis; thanks, Chris!

(float$)calcPairHeterozygosity(object<Genome>$ genome1, object<Genome>$ genome2,
[Ni$ start = NULL], [Ni$ end = NULL], [logical$ infiniteSites = T])

Calculates the heterozygosity for a pair of genomes; these will typically be the two genomes of a
diploid individual (individual.genome1 and individual.genome2), but any two genomes may be
supplied.

The calculation can be narrowed to apply to only a window – a subrange of the full chromosome – by
passing the interval bounds [start, end] for the desired window. In this case, the vector of mutations
used for the calculation will be subset to include only mutations within the specified window. The
default behavior, with start and end of NULL, provides the genome-wide heterozygosity.

The implementation calcPairHeterozygosity(), viewable with functionSource(), treats every
mutation as independent in the heterozygosity calculations by default (i.e., with infiniteSites=T).
If mutations are stacked, the heterozygosity calculated therefore depends upon the number of
unshared mutations, not the number of differing sites. Similarly, if multiple Mutation objects exist in
different genomes at the same site (whether representing different genetic states, or multiple
mutational lineages for the same genetic state), each Mutation object is treated separately for
purposes of the heterozygosity calculation, just as if they were at different sites. One could regard
these choices as embodying an infinite-sites interpretation of the segregating mutations. In most
biologically realistic models, such genetic states will be quite rare, and so the impact of this choice
will be negligible; however, in some models this distinction may be important. The behavior of

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 752

calcPairHeterozygosity() can be switched to calculate based upon the number of differing sites,
rather than the number of unshared mutations, by passing infiniteSites=F.

(float$)calcVA(object<Individual> individuals, io<MutationType>$ mutType)
Calculates VA, the additive genetic variance, among a vector individuals, in a particular mutation
type mutType that represents quantitative trait loci (QTLs) influencing a quantitative phenotypic trait.
The mutType parameter may be either an integer representing the ID of the desired mutation type,
or a MutationType object specified directly.

This function assumes that mutations of type mutType encode their effect size upon the quantitative
trait in their selectionCoeff property, as is fairly standard in SLiM (see, e.g., section 13.2). The
implementation of calcVA(), which is viewable with functionSource(), is quite simple; if effect
sizes are stored elsewhere (such as with setValue(), as in section 13.5), a new user-defined function
following the pattern of calcVA() can easily be written.

(float$)calcWattersonsTheta(object<Genome> genomes, [No<Mutation> muts = NULL],
[Ni$ start = NULL], [Ni$ end = NULL])

Calculates Watterson’s theta (a metric of genetic diversity comparable to heterozygosity) for a vector of
genomes, based upon the mutations in the genomes. Often genomes will be all of the genomes in a
subpopulation, or in the entire population, but any genome vector may be used. By default, with
muts=NULL, the calculation is based upon all mutations in the simulation; the calculation can instead
be based upon a subset of mutations, such as mutations of a specific mutation type, by passing the
desired vector of mutations for muts.

The calculation can be narrowed to apply to only a window – a subrange of the full chromosome – by
passing the interval bounds [start, end] for the desired window. In this case, the vector of mutations
used for the calculation will be subset to include only mutations within the specified window. The
default behavior, with start and end of NULL, provides the genome-wide Watterson’s theta.

The implementation of calcWattersonsTheta(), viewable with functionSource(), treats every
mutation as independent in the heterozygosity calculations. One could regard this choice as
embodying an infinite-sites interpretation of the segregating mutations, as with
calcHeterozygosity(). In most biologically realistic models, such genetic states will be quite rare,
and so the impact of this assumption will be negligible; however, in some models this distinction may
be important. See calcPairHeterozygosity() for further discussion.

25.18.3 Other utilities
This section documents SLiM built-in functions that do not fit into the categories covered by the

previous sections.

(float)summarizeIndividuals(object<Individual> individuals, integer dim,
numeric spatialBounds, string$ operation, [Nlif$ empty = 0.0],
[logical$ perUnitArea = F], [Ns$ spatiality = NULL])

Returns a vector, matrix, or array that summarizes spatial patterns of information related to the
individuals in individuals. In essence, those individuals are assigned into bins according to their
spatial position, and then a summary value for each bin is calculated based upon the individuals each
bin contains. The individuals might be binned in one dimension (resulting in a vector of summary
values), in two dimensions (resulting in a matrix), or in three dimensions (resulting in an array).
Typically the spatiality of the result (the dimensions into which the individuals are binned) will match
the dimensionality of the model, as indicated by the default value of NULL for the optional
spatiality parameter; for example, a two-dimensional ("xy") model would by default produce a
two-dimensional matrix as a summary. However, a spatiality that is more restrictive than the model
dimensionality may be passed; for example, in a two-dimensional ("xy") model a spatiality of "y"
could be passed to summarize individuals into a vector, rather than a matrix, assigning them to bins
based only upon their y position (i.e., the value of their y property). Whatever spatiality is chosen, the
parameter dim provides the dimensions of the desired result, in the same form that the dim() function
does: first the number of rows, then the number of columns, and then the number of planes, as

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 753

needed (see the Eidos manual for discussion of matrices, arrays, and dim()). The length of dims must
match the requested spatiality; for spatiality "xy", for example, dims might be c(50,100) to request
that the returned matrix have 50 rows and 100 columns. The result vector/matrix/array is in the correct
orientation to be directly usable as a spatial map, by passing it to the defineSpatialMap() method
of Subpopulation. For further discussion of dimensionality and spatiality, see section 25.1 on
initializeInteractionType(), and section 25.8 on InteractionType.

The spatialBounds parameter defines the spatial boundaries within which the individuals are
binned. Typically this is the spatial bounds of a particular subpopulation, within which the individuals
reside; for individuals in p1, for example, you would likely pass p1.spatialBounds for this.
However, this is not required; individuals may come from any or all subpopulations in the model, and
spatialBounds may be any bounds of non-zero area (if an individual falls outside of the given spatial
bounds, it is excluded, as if it were not in individuals at all). If you have multiple subpopulations
that conceptually reside within the same overall coordinate space, for example, that can be
accommodated here. The bounds are supplied in the dimensionality of the model, in the same form
as for Subpopulation; for an "xy" model, for example, they are supplied as a four-element vector of
the form c(x0, y0, x1, y1) even if the summary is being produced with spatiality "y". To produce
the result, a grid with dimensions defined by dims is conceptually stretched out across the given
spatial bounds, such that the centers of the edge and corner grid squares are aligned with the limits of
the spatial bounds. This matches the way that defineSpatialMap() defines its maps; see section
16.11 for illustration.

The particular summary produced depends upon the parameters operation and empty. Consider a
single grid square represented by a single element in the result. That grid square contains zero or
more of the individuals in individuals. If it contains zero individuals and empty is not NULL, the
empty value is used for the result, regardless of operation, providing specific, separate control over
the treatment of empty grid squares. If empty is NULL, this separate control over the treatment of
empty grid squares is declined; empty grid squares will be handled through the standard mechanism
described next. In all other cases for the given grid square – when it contains more than zero
individuals, or when empty is NULL – operation is executed as an Eidos lambda, a small snippet of
code, supplied as a singleton string, that is executed in a manner similar to a function call. Within
the execution of the operation lambda, a constant named individuals is defined to be the focal
individuals being evaluated – all of the individuals within that grid square. This lambda should
evaluate to a singleton logical, integer, or float value, comprising the result value for the grid
square; these types will all be coerced to float (T being 1 and F being 0).

Two examples may illustrate the use of empty and operation. To produce a summary indicating
presence/absence, simply use the default of 0.0 for empty, and "1.0; " (or "1;", or "T;") for
operation. This will produce 0.0 for empty grid squares, and 1.0 for those that contain at least one
individual. Note that the use of empty is essential here, because operation doesn’t even check
whether individuals are present or not. To produce a summary with a count of the number of
individuals in each grid square, again use the default of 0.0 for empty, but now use an operation of
"individuals.size();", counting the number of individuals in each grid square. In this case,
empty could be NULL instead and operation would still produce the correct result; but using empty
makes summarizeIndividuals() more efficient since it allows the execution of operation to be
skipped for those squares.

Lambdas are not limited in their complexity; they can use if, for, etc., and can call methods and
functions. A typical operation to compute the mean phenotype in a quantitative genetic model that
stores phenotype values in tagF, for example, would be "mean(individuals.tagF);", and this is
still quite simple compared to what is possible. However, keep in mind that the lambda will be
evaluated for every grid cell (or at least those that are non-empty), so efficiency can be a concern, and
you may wish to pre-calculate values shared by all of the lambda calls, making them available to your
lambda code using defineGlobal() or defineConstant().

There is one last twist, if perUnitArea is T: values are divided by the area (or length, in 1D, or
volume, in 3D) that their corresponding grid cell comprises, so that each value is in units of “per unit

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 754

area” (or “per unit length”, or “per unit volume”). The total area of the grid is defined by the spatial
bounds, and the area of a given grid cell is defined by the portion of the spatial bounds that is within
that cell. This is not the same for all grid cells; grid cells that fall partially outside spatialBounds
(because, remember, the centers of the edge/corner grid cells are aligned with the limits of
spatialBounds) will have a smaller area inside the bounds. For an "xy" spatiality summary, for
example, corner cells have only a quarter of their area inside spatialBounds, while edge elements
have half of their area inside spatialBounds; for purposes of perUnitArea, then, their respective
areas are ¼ and ½ the area of an interior grid cell. By default, perUnitArea is F, and no scaling is
performed. Whether you want perUnitArea to be F or T depends upon whether the summary you
are producing is, conceptually, “per unit area”, such as density (individuals per unit area) or local
competition strength (total interaction strength per unit area), or is not, such as “mean individual age”,
or “maximum tag value”. For the previous example of counting individuals with an operation of
"individuals.size();", a value of F for perUnitArea (the default) will produce a simple count of
individuals in each grid square, whereas with T it would produce the density of individuals in each
grid square.

(object<Dictionary>$)treeSeqMetadata(string$ filePath, [logical$ userData = T])
Returns a Dictionary containing top-level metadata from the .trees (tree-sequence) file at
filePath. If userData is T (the default), the top-level metadata under the SLiM/user_metadata key
is returned; this is the same metadata that can optionally be supplied to treeSeqOutput() in its
metadata parameter, so it makes it easy to recover metadata that you attached to the tree sequence
when it was saved. If userData is F, the entire top-level metadata Dictionary object is returned; this
can be useful for examining the values of other keys under the SLiM key (see section 27.4), or values
inside the top-level dictionary itself that might have been placed there by msprime or other software.

This function can be used to read in parameter values or other saved state (tag property values, for
example), in order to resuscitate the complete state of a simulation that was written to a .trees file.
It could be used for more esoteric purposes too, such as to search through .trees files in a directory
(with the help of the Eidos function filesAtPath()) to find those files that satisfy some metadata
criterion.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 755

26. Writing Eidos events and callbacks

In the preceding recipes, we have seen many examples of Eidos events and callbacks, but we
have not systematically described their syntax and semantics. Eidos events and callbacks are
typically used in SLiM simulations by defining them in the SLiM input file; they can also be
registered with the simulation dynamically at runtime (see sections 9.5.3 and 17.4, for example).

There are two main ways to use Eidos in the input file. One way is by defining an Eidos event, a
block of Eidos code that is executed during each tick for which it is active. The other way is by
defining an Eidos callback, a block of code that is called by SLiM in specific circumstances to
extend the functionality of SLiM in particular areas for a particular species. One type of Eidos
callback, the initialize() callback, was described in section 25.1. The sections below will detail
the remaining possibilities.

26.1 Defining Eidos events
An Eidos event is a block of Eidos code that is executed every tick, within a tick range, to

perform a desired task. The syntax of an Eidos event declaration looks like one of these:

[id] [t1 [: t2]] first() { ... }
[id] [t1 [: t2]] early() { ... }
[id] [t1 [: t2]] late() { ... }

The first declaration declares a first() event that executes first thing in the tick cycle. The
second declaration declares an early() event that executes relatively early in the tick cycle. The
third declaration declares a late() event that executes near the end of the tick cycle. Exactly
when these events run depends upon whether the model is a WF model (see chapter 23 for details
on the tick cycle in WF models) or a nonWF model (see chapter 24 for the same about nonWF
models).

The id is an optional identifier like s1 (or more generally, sX, where X is an integer greater than
or equal to 0) that defines an identifier that can be used to refer to the script block. In most
situations it can be omitted, in which case the id is implicitly defined as -1, a placeholder value
that essentially represents the lack of an identifier value. Supplying an id is only useful if you wish
to manipulate your script blocks programmatically (see section 26.11).

Then comes a tick or a range of ticks, and then a block of Eidos code enclosed in braces to form
a compound statement. A trivial example might look like this:

1000:5000 early() {
 catn(community.tick);
}

This would print the tick number in every tick in the specified range, which is obviously not
very exciting. The broader point is that the Eidos code in the braces {} is executed early in every
tick within the specified range of ticks. In this case, the tick range is 1000 to 5000, and so the Eidos
event will be executed 4001 times (not 4000!). A range of ticks can be given, as in the example
above, or a single tick can be given with a single integer:

100 late() {
 print("Finished tick 100!");
}

The tick range may also be incompletely specified, with a somewhat idiosyncratic syntax. A
range of 1000: would specify that the event should run in tick 1000 and every subsequent tick until
the model finishes; a range of :1000 would similarly specify that the event should run in the first

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 756

tick executed, and every subsequent tick, up to and including tick 1000. (You might notice that the
grammar shown above for the tick range is not quite correct; see section 28.1 for the correct
grammar.)

In fact, you can omit specifying a tick altogether, in which case the Eidos event runs every tick.
Since it takes a little time to set up the Eidos interpreter and interpret a script, it is advisable to use
the narrowest range of ticks possible; however, that is more of a concern with the callbacks we will
look at later in this chapter, since they might be called many time in every tick, whereas first(),
early(), and late() events will just be called once per tick.

The ticks specified for a Eidos event block can be any positive integer. All blocks that apply to a
given time point will be run in definition order; blocks specified higher in the input file will run
before those specified lower. Sometimes it is desirable to have a script block execute in a tick
which is not fixed, but instead depends upon some parameter, defined constant, or calculation;
this may be achieved by rescheduling the script block with the Community method
rescheduleScriptBlock() (see section 20.2 for an example).

In multispecies models, one can optionally provide a ticks specifier before the definition of an
Eidos event, specifying that the event should only run in ticks in which a particular species is
active. That extended syntax looks like this:

[ticks species_name] [id] [t1 [: t2]] first() { ... }
[ticks species_name] [id] [t1 [: t2]] early() { ... }
[ticks species_name] [id] [t1 [: t2]] late() { ... }

The species_name should be the name of a species that was explicitly declared in the
multispecies model, as discussed in section 25.1. If the ticks specifier is omitted, the event will
run in every tick (within the specified tick range).

When Eidos events are executed, several global variables are defined by SLiM for use by the
Eidos code. Here is a summary of those SLiM globals:

community The Community object for the overall simulation
sim A Species object for the simulated species (in single-species simulations)
g1, ... GenomicElementType objects for defined genomic element types
i1, ... InteractionType objects for defined interaction types
m1, ... MutationType objects representing defined mutation types
p1, ... Subpopulation objects for existing subpopulations
s1, ... SLiMEidosBlock objects for named events and callbacks
self A SLiMEidosBlock object for the script block currently executing

In multispecies models, symbols for each species will be defined instead of sim. Note that
species symbols such as sim are not available in initialize() callbacks, since the species objects
have not yet been initialized (see section 25.1). Similarly, the globals for subpopulations, mutation
types, and genomic element types are only available after the point at which those objects have
been defined by an initialize() callback.

26.2 Defining mutation fitness with a mutationEffect() callback
An Eidos callback is a block of Eidos code that is called by SLiM in specific circumstances, to

allow the customization of particular actions taken by SLiM while running the simulation of a
species. Nine types of callbacks are presently supported (in addition to the initialize()
callbacks described in section 25.1): mutationEffect() callbacks, discussed here, and

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 757

fitnessEffect(), mateChoice(), modifyChild(), recombination(), interaction(),
reproduction() , mutation(), and survival() callbacks, discussed in the following sections.

A mutationEffect() callback is called by SLiM when it is determining the fitness effect of a
mutation carried by an individual. Normally, the fitness effect of a mutation is determined by the
selection coefficient s of the mutation and the dominance coefficient h of the mutation (the latter
used only if the individual is heterozygous for the mutation). More specifically, the standard
calculation for the fitness effect of a mutation takes one of two forms. If the individual is
homozygous, then the fitness effect is (1+s), or:

w = w * (1.0 + selectionCoefficient),

where w is the relative fitness of the individual carrying the mutation. If the individual is
heterozygous, then the dominance coefficient enters the picture, and the fitness effect is (1+hs) or:

w = w * (1.0 + dominanceCoeff * selectionCoeff).

The dominance coefficient usually comes from the dominanceCoeff property of the mutation’s
MutationType; if the focal individual has only one non-null genome, however, such that the
mutation is paired with a null genome (i.e., is actually hemizygous or haploid, not heterozygous),
the haploidDominanceCoeff property of the MutationType is used instead. See section 23.6 for
further discussion of this detail.

That is the standard behavior of SLiM, reviewed here to provide a conceptual baseline.
Supplying a mutationEffect() callback allows you to substitute any calculation you wish for the
relative fitness effect of a mutation; the new relative fitness effect computation becomes:

w = w * mutationEffect()

where mutationEffect() is the value returned by your callback. This value is a multiplicative
fitness effect, so 1.0 is neutral, unlike the selection coefficient scale where 0.0 is neutral; be
careful with this distinction!

Like Eidos events, mutationEffect() callbacks are defined as script blocks in the input file, but
they use a variation of the syntax for defining an Eidos event:

[id] [t1 [: t2]] mutationEffect(<mut-type-id> [, <subpop-id>]) { ... }

For example, if the callback were defined as:

1000:2000 mutationEffect(m2, p3) { 1.0; }

then a relative fitness of 1.0 (i.e. neutral) would be used for all mutations of mutation type m2 in
subpopulation p3 from tick 1000 to tick 2000. The very same mutations, if also present in
individuals in other subpopulations, would preserve their normal selection coefficient and
dominance coefficient in those other subpopulations; this callback would therefore establish
spatial heterogeneity in selection, in which mutation type m2 was neutral in subpopulation p3 but
under selection in other subpopulations, for the range of ticks given (see the recipe in section 10.2
for a fuller explication of this idea).

In multispecies models, callbacks must be defined with a species specifier that states the
species with which species the callback is associated. Such a definition looks like this:

species species_name [id] [t1 [: t2]] mutationEffect(...) { ... }

It is the same syntax, in other words, except for the species specifier at the beginning, with the
name of the species that the callback will modify. As with the ticks specifier for events, this

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 758

means the callback will only be called in ticks when the species is active; but the species specifier
goes further, making that species the focal species for the callback.

In addition to the SLiM globals listed in section 26.1, a mutationEffect() callback is supplied
with some additional information passed through “pseudo-parameters”, variables that are defined
by SLiM within the context of the callback’s code to supply the callback with relevant information:

mut A Mutation object, the mutation whose relative fitness is being evaluated
homozygous A value of T (the mutation is homozygous), F (heterozygous), or NULL (it is

paired with a null chromosome, and is thus hemizygous or haploid)
effect The default relative fitness value calculated by SLiM
individual The individual carrying this mutation (an object of class Individual)
subpop The subpopulation in which that individual lives

These may be used in the mutationEffect() callback to compute a fitness value. To implement
the standard fitness functions used by SLiM for an autosomal simulation with no null genomes
involved, for example, you could do something like this:

mutationEffect(m1) {
 if (homozygous)
 return 1.0 + mut.selectionCoeff;
 else
 return 1.0 + mut.mutationType.dominanceCoeff * mut.selectionCoeff;
}

As mentioned above, a relative fitness of 1.0 is neutral (whereas a selection coefficient of 0.0 is
neutral); the 1.0 + in these calculations converts between the selection coefficient scale and the
relative fitness scale, and is therefore essential. However, the effect global variable mentioned
above would already contain this value, precomputed by SLiM, so you could simply return effect
to get that behavior when you want it:

mutationEffect(m1) {
 if (<conditions>)
 <custom fitness calculations...>;
 else
 return effect;
}

This would return a modified fitness value in certain conditions, but would return the standard
fitness value otherwise.

More than one mutationEffect() callback may be defined to operate in the same tick. As with
Eidos events, multiple callbacks will be called in the order in which they were defined in the input
file. Furthermore, each callback will be given the effect value returned by the previous callback
– so the value of effect is not necessarily the default value, in fact, but is the result of all previous
mutationEffect() callbacks for that individual in that tick. In this way, the effects of multiple
callbacks can “stack”.

One caveat to be aware of in WF models is that mutationEffect() callbacks are called at the
end of the tick, just before the next tick begins. If you have a mutationEffect() callback defined
for tick 10, for example, it will actually be called at the very end of tick 10, after child generation
has finished, after the new children have been promoted to be the next parental generation, and
after late() events have been executed (see chapter 23). The fitness values calculated will thus be
used during tick 11; the fitness values used in tick 10 were calculated at the end of tick 9. (This is
primarily so that SLiMgui, which refreshes its display in between ticks, has computed fitness values
at hand that it can use to display the new parental individuals in the proper colors.) This is not an

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 759

issue in nonWF models, since fitness values are used in the same tick in which they are calculated
(see chapter 24).

If the randomizeCallbacks parameter to initializeSLiMOptions() is T (the default), the order in
which the fitness of individuals is evaluated will be randomized within each subpopulation. This
partially mitigates order-dependency issues, although such issues can still arise whenever the
effects of a mutationEffect() callback are not independent. If randomizeCallbacks is F, the
fitness of individuals will be evaluated in sequential order within each subpopulation, greatly
increasing the risk of order-dependency problems (see section 25.1).

Many other possibilities can be implemented with mutationEffect() callbacks; chapter 10
introduces mutationEffect() callbacks with several different recipes, and later chapters also use
these techniques extensively. However, since mutationEffect() callbacks involve Eidos code
being executed for the evaluation of fitness of every mutation of every individual (within the tick
range, mutation type, and subpopulation specified), they can slow down a simulation
considerably, so use them as sparingly as possible.

26.3 Defining individual-level fitness effects with a fitnessEffect() callback
The previous section introduced mutationEffect() callbacks, which modify the effect of a

given mutation in a focal individual. Sometimes it is desirable to model effects upon individual
fitness that are not governed by particular mutations (or not directly, at least); fitness effects due to
spatial position, or resource acquisition, or behavior such as competitive or altruistic interactions,
for example. Another situation of this type is when fitness depends upon the overall phenotype of
an individual – the height of a tree, say – which might be influenced by genetics, but also by
environmental effects, climate, and so forth. For these sorts of situations, SLiM provides
fitnessEffect() callbacks, the topic of this section.

A fitnessEffect() callback is called by SLiM when it is determining the fitness of an individual
– typically, but not always, once per tick during the fitness calculation tick cycle stage. Normally,
the fitness of a given individual is determined by multiplying together the fitness effects of all
mutations possessed by that individual (see section 26.2 for further discussion). Supplying a
fitnessEffect() callback allows you to add another multiplicative fitness effect into that
calculation. As with mutationEffect() callbacks, the value returned by fitnessEffect()
callbacks is a fitness effect, so 1.0 is neutral.

The syntax for declaring fitnessEffect() callbacks is similar to that for mutationEffect()
callbacks, but simpler since no mutation type is needed:

[id] [t1 [: t2]] fitnessEffect([<subpop-id>]) { ... }

(In multispecies models, the definition must be preceded by a species specification as usual.)
For example, if the callback were defined as:

1000:2000 fitnessEffect(p3) { 0.75; }

then a fitness effect of 0.75 would be multiplied into the fitness values of all individuals in
subpopulation p3 from tick 1000 to tick 2000.

Much more interesting, of course, are fitnessEffect() callbacks that return different fitness
effects for different individuals, depending upon their state! In addition to the SLiM globals listed
in section 26.1, a fitnessEffect() callback is supplied with some additional information passed
through “pseudo-parameters”, variables that are defined by SLiM within the context of the
callback’s code to supply the callback with relevant information:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 760

individual The focal individual (an object of class Individual)
subpop The subpopulation in which that individual lives

These may be used in the fitnessEffect() callback to compute a fitness effect that depends
upon the state of the focal individual. The fitness effect for the callback is simply returned as a
singleton float value, as usual.

More than one fitnessEffect() callback may be defined to operate in the same tick. Each
such callback will provide an independent fitness effect for the focal individual; the results of each
fitnessEffect() callback will be multiplied in to the individual’s fitness. These callbacks will
generally be called once per individual in each tick, in an order that is formally undefined, as
described in detail in section 23.6.

Beginning in SLiM 3.0, it is also possible to set the fitnessScaling property on a subpopulation
to scale the fitness values of every individual in the subpopulation by the same constant amount,
or to set the fitnessScaling property on an individual to scale the fitness value of that specific
individual. These scaling factors are multiplied together with all other fitness effects for an
individual to produce the individual’s final fitness value. The fitnessScaling properties of
Subpopulation and Individual can often provide similar functionality to fitnessEffect()
callbacks with greater efficiency and simplicity. They are reset to 1.0 in every tick for which a
given species is active, immediately after fitness values are calculated, so they only need to be set
when a value other than 1.0 is desired.

As with mutationEffect() callbacks, fitnessEffect() callbacks are called at the end of the
tick, just before the next tick begins; see section 26.2 for further discussion of this potential pitfall.
Also, as with mutationEffect() callbacks, the order in which fitnessEffect() callbacks are
called will be shuffled when randomizeCallbacks is enabled, as it is by default, partially mitigating
order-dependency issues (see sections 26.2 and 25.1).

The fitnessEffect() callback mechanism is quite flexible and useful, although it has been
considerably eclipsed by the modern modern and efficient fitnessScaling property mentioned
above. When efficiency is not at a premium, it remains a clear and expressive paradigm for
modeling individual-level fitness effects. The performance penalty paid is often not large, since
these callbacks are called only once per individual per tick, whereas a mutationEffect() for a
type of mutation that is common in the simulation might be called thousands of times per
individual per tick (once per mutation of that type possessed by the focal individual). The
performance penalty typically becomes severe only when the fitnessEffect() callback needs to
perform calculations, once per focal individual, that would vectorize well if performed across a
whole vector of individuals. In such cases, fitnessScaling should be used.

26.4 Defining mate choice with a mateChoice() callback
Normally, WF models in SLiM regulate mate choice according to fitness; individuals of higher

fitness are more likely to be chosen as mates. However, one might wish to simulate more complex
mate-choice dynamics such as assortative or disassortative mating, mate search algorithms, and so
forth. Such dynamics can be handled in WF models with the mateChoice() callback mechanism.
(In nonWF models mating is arranged by the script, so there is no need for a callback; see section
1.6).

A mateChoice() callback is established in the input file with a syntax very similar to that of
fitnessEffect() callbacks (section 26.3):

[id] [t1 [: t2]] mateChoice([<subpop-id>]) { ... }

(In multispecies models, the definition must be preceded by a species specification as usual.)

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 761

Note that if a subpopulation is given to which the mateChoice() callback is to apply, the
callback is used for all matings that will generate a child in the stated subpopulation (as opposed to
all matings of parents in the stated subpopulation); this distinction is important when migration
causes children in one subpopulation to be generated by matings of parents in a different
subpopulation.

When a mateChoice() callback is defined, the first parent in a mating is still chosen
proportionally according to fitness (if you wish to influence that choice, you can use a
mutationEffect() or fitnessEffect() callback; see sections 26.2 and 26.3). In a sexual (rather
than hermaphroditic) simulation, this will be the female parent; SLiM does not currently support
males as the choosy sex. The second parent – the male parent, in a sexual simulation – will then
be chosen based upon the results of the mateChoice() callback.

More specifically, the callback must return a vector of weights, one for each individual in the
subpopulation; SLiM will then choose a parent with probability proportional to weight. The
mateChoice() callback could therefore modify or replace the standard fitness-based weights
depending upon some other criterion such as assortativeness. A singleton object of type
Individual may be returned instead of a weights vector to indicate that that specific individual has
been chosen as the mate (beginning in SLiM 2.3); this could also be achieved by returned a vector
of weights in which the chosen mate has a non-zero weight and all other weights are zero, but
returning the chosen individual directly is much more efficient. A zero-length return vector – as
generated by float(0), for example – indicates that a suitable mate was not found; in that event, a
new first parent will be drawn from the subpopulation. Finally, if the callback returns NULL, that
signifies that SLiM should use the standard fitness-based weights to choose a mate; the
mateChoice() callback did not wish to alter the standard behavior for the current mating (this is
equivalent to returning the unmodified vector of weights, but returning NULL is much faster since it
allows SLiM to drop into an optimized case). Apart from the special cases described above – a
singleton Individual, float(0), and NULL – the returned vector of weights must contain the same
number of values as the size of the subpopulation, and all weights must be non-negative. Note
that the vector of weights is not required to sum to 1, however; SLiM will convert relative weights
on any scale to probabilities for you.

If the sum of the returned weights vector is zero, SLiM treats it as meaning the same thing as a
return of float(0) – a suitable mate could not be found, and a new first parent will thus be drawn.
(This is a change in policy beginning in SLiM 2.3; prior to that, returning a vector of sum zero was
considered a runtime error.) There is a subtle difference in semantics between this and a return of
float(0): returning float(0) immediately short-circuits mate choice for the current first parent,
whereas returning a vector of zeros allows further applicable mateChoice() callbacks to be called,
one of which might “rescue” the first parent by returning a non-zero weights vector or an
individual. In most models this distinction is irrelevant, since chaining mateChoice() callbacks is
uncommon (see section 26.11). When the choice is otherwise unimportant, returning float(0)
will be handled more quickly by SLiM.

In addition to the SLiM globals listed in section 26.1, a mateChoice() callback is supplied with
some additional information passed through “pseudo-parameters”:

individual The parent already chosen (the female, in sexual simulations)
subpop The subpopulation into which the offspring will be placed
sourceSubpop The subpopulation from which the parents are being chosen
weights The standard fitness-based weights for all individuals

If sex is enabled, the mateChoice() callback must ensure that the appropriate weights are zero
and nonzero to guarantee that all eligible mates are male (since the first parent chosen is always

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 762

female, as explained above). In other words, weights for females must be 0. The weights vector
given to the callback is guaranteed to satisfy this constraint. If sex is not enabled – in a
hermaphroditic simulation, in other words – this constraint does not apply.

For example, a simple mateChoice() callback might look like this:

1000:2000 mateChoice(p2) {
 return weights ^ 2;
}

This defines a mateChoice() callback for ticks 1000 to 2000 for subpopulation p2. The callback
simply transforms the standard fitness-based probabilities by squaring them. Code like this could
represent a situation in which fitness and mate choice proceed normally in one subpopulation (p1,
here, presumably), but are altered by the effects of a social dominance hierarchy or male-male
competition in another subpopulation (p2, here), such that the highest-fitness individuals tend to be
chosen as mates more often than their (perhaps survival-based) fitness values would otherwise
suggest. Note that by basing the returned weights on the weights vector supplied by SLiM, the
requirement that females be given weights of 0 is finessed; in other situations, care would need to
be taken to ensure that.

More than one mateChoice() callback may be defined to operate in the same tick. As with
Eidos events, multiple callbacks will be called in the order in which they were defined.
Furthermore, each callback will be given the weights vector returned by the previous callback – so
the value of weights is not necessarily the default fitness-based weights, in fact, but is the result of
all previous weights() callbacks for the current mate-choice event. In this way, the effects of
multiple callbacks can “stack”. If any mateChoice() callback returns float(0), however –
indicating that no eligible mates exist, as described above – then the remainder of the callback
chain will be short-circuited and a new first parent will immediately be chosen.

Note that matings in SLiM do not proceed in random order. Offspring are generated for each
subpopulation in turn, and within each subpopulation the order of offspring generation is also
non-random with respect to both the source subpopulation and the sex of the offspring. It is
important, therefore, that mateChoice() callbacks are not in any way biased by the offspring
generation order; they should not treat matings early in the process any differently than matings
late in the process. Any failure to guarantee such invariance could lead to large biases in the
simulation outcome. In particular, it is usually dangerous to activate or deactivate mateChoice()
callbacks while offspring generation is in progress.

A wide variety of mate choice algorithms can easily be implemented with mateChoice()
callbacks; chapter 11 introduces mateChoice() callbacks with several different recipes. However,
mateChoice() callbacks can be particularly slow since they are called for every proposed mating,
and the vector of mating weights can be large and slow to process.

26.5 Defining child generation with a modifyChild() callback
Normally, a SLiM simulation defines child generation with its rules regarding selfing versus

crossing, recombination, mutation, and so forth. However, one might wish to modify these rules
in particular circumstances – by preventing particular children from being generated, by modifying
the generated children in particular ways, or by generating children oneself. All of these dynamics
can be handled in SLiM with the modifyChild() callback mechanism.

A modifyChild() callback is established in the input file with a syntax very similar to that of
other callbacks:

[id] [t1 [: t2]] modifyChild([<subpop-id>]) { ... }

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 763

The modifyChild() callback may optionally be restricted to the children generated to occupy a
specified subpopulation. (In multispecies models, the definition must be preceded by a species
specification as usual.)

When a modifyChild() callback is called, a parent or parents have already been chosen, and a
candidate child has already been generated. The parent or parents, and their genomes, are
provided to the callback, as is the generated child and its genomes. The callback may accept the
generated child, modify it, substitute completely different genomic information for it, or reject it
(causing a new parent or parents to be selected and a new child to be generated, which will again
be passed to the callback).

In addition to the SLiM globals listed in section 26.1, a modifyChild() callback is supplied with
additional information passed through “pseudo-parameters”:

child The generated child (an object of class Individual)
parent1 The first parent (an object of class Individual)
isCloning T if the child is the result of cloning
isSelfing T if the child is the result of selfing (but see note below)
parent2 The second parent (an object of class Individual)
subpop The subpopulation in which the child will live
sourceSubpop The subpopulation of the parents (==subpop if not a migration mating)

These may be used in the modifyChild() callback to decide upon a course of action. The
genomes of child (available as child.genome1 and child.genome2) may be modified by the
callback; whatever mutations they contain on exit will be used for the new child. Alternatively,
they may be left unmodified (to accept the generated child as is). These variables may be thought
of as the two gametes that will fuse to produce the fertilized egg that results in a new offspring;
child.genome1 is the gamete contributed by the first parent (the female, if sex is turned on), and
child.genome2 is the gamete contributed by the second parent (the male, if sex is turned on). The
child object itself may also be modified – for example, to set the spatial position of the child.

Importantly, a logical singleton return value is required from modifyChild() callbacks.
Normally this should be T, indicating that generation of the child may proceed (with whatever
modifications might have been made to the child’s genomes). A return value of F indicates that
generation of this child should not continue; this will cause new parent(s) to be drawn, a new child
to be generated, and a new call to the modifyChild() callback. A modifyChild() callback that
always returns F can cause SLiM to hang, so be careful that it is guaranteed that your callback has
a nonzero probability of returning T for every state your simulation can reach.

Note that isSelfing is T only when a mating was explicitly set up to be a selfing event by SLiM;
an individual may also mate with itself by chance (by drawing itself as a mate) even when SLiM
did not explicitly set up a selfing event, which one might term incidental selfing. If you need to
know whether a mating event was an incidental selfing event, you can compare the parents; self-
fertilization will always entail parent1==parent2, even when isSelfing is F. See the recipe in
section 12.4 for an example of how to use this to suppress incidental selfing. Since selfing is
enabled only in non-sexual simulations, isSelfing will always be F in sexual simulations (and
incidental selfing is also impossible in sexual simulations).

Note that matings in SLiM do not proceed in random order. Offspring are generated for each
subpopulation in turn, and within each subpopulation the order of offspring generation is also
non-random with respect to the source subpopulation, the sex of the offspring, and the
reproductive mode (selfing, cloning, or autogamy). It is important, therefore, that modifyChild()
callbacks are not in any way biased by the offspring generation order; they should not treat
offspring generated early in the process any differently than offspring generated late in the process.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 764

Similar to mateChoice() callbacks, any failure to guarantee such invariance could lead to large
biases in the simulation outcome. In particular, it is usually dangerous to activate or deactivate
modifyChild() callbacks while offspring generation is in progress. When SLiM sees that
mateChoice() or modifyChild() callbacks are defined, it randomizes the order of child generation
within each subpopulation, so this issue is mitigated somewhat. However, offspring are still
generated for each subpopulation in turn. Furthermore, in ticks without active callbacks offspring
generation order will not be randomized (making the order of parents nonrandom in the next
generation), with possible side effects. In short, order-dependency issues are possible and must be
handled very carefully.

As with the other callback types, multiple modifyChild() callbacks may be registered and
active. In this case, all registered and active callbacks will be called for each child generated, in
the order that the callbacks were registered. If a modifyChild() callback returns F, however,
indicating that the child should not be generated, the remaining callbacks in the chain will not be
called.

There are many different ways in which a modifyChild() callback could be used in a
simulation; see the recipes in chapter 12 for illustrations of the power of this technique. In nonWF
models, modifyChild() callbacks are often unnecessary since each generated child is available to
the script in the models’ reproduction() callback anyway; but they may be used if desired.

26.6 Defining recombination behavior with a recombination() callback
Typically, a simulation sets up a recombination map at the beginning of the run with

initializeRecombinationRate(), and that map is used for the duration of the run. Less
commonly, the recombination map is changed dynamically from tick to tick, with Chromosome’s
method setRecombinationRate(); but still, a single recombination map applies for all individuals
of a species in a given tick. However, in unusual circumstances a simulation may need to modify
the way that recombination works on an individual basis; for this, the recombination() callback
mechanism is provided. This can be useful for models involving chromosomal inversions that
prevent recombination within a region for some individuals (see section 14.4), for example, or for
models of the evolution of recombination.

A recombination() callback is defined with a syntax much like that of other callbacks:

[id] [t1 [: t2]] recombination([<subpop-id>]) { ... }

The recombination() callback will be called during the generation of every gamete during the
tick(s) in which it is active. It may optionally be restricted to apply only to gametes generated by
parents in a specified subpopulation, using the <subpop-id> specifier. (In multispecies models, the
definition must be preceded by a species specification as usual.)

When a recombination() callback is called, a parent has already been chosen to generate a
gamete, and candidate recombination breakpoints for use in recombining the parental genomes
have been drawn. The genomes of the focal parent are provided to the callback, as is the focal
parent itself (as an Individual object) and the subpopulation in which it resides. Furthermore, the
proposed breakpoints are provided to the callback. The callback may modify these breakpoints in
order to change the breakpoints used, in which case it must return T to indicate that changes were
made, or it may leave the proposed breakpoints unmodified, in which case it must return F. (The
behavior of SLiM is undefined if the callback returns the wrong logical value.)

In addition to the SLiM globals listed in section 26.1, then, a recombination() callback is
supplied with additional information passed through “pseudo-parameters”:

individual The focal parent that is generating a gamete

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 765

genome1 One genome of the focal parent; this is the initial copy strand
genome2 The other genome of the focal parent
subpop The subpopulation to which the focal parent belongs
breakpoints An integer vector of crossover breakpoints

These may be used in the recombination() callback to determine the final recombination
breakpoints used by SLiM. If values are set into breakpoints, the new values must be of type
integer. If breakpoints is modified by the callback, T should be returned, otherwise F should be
returned (this is a speed optimization, so that SLiM does not have to spend time checking for
changes when no changes have been made).

The positions specified in breakpoints mean that a crossover will occur immediately before the
specified base position (between the preceding base and the specified base, in other words). The
genome specified by genome1 will be used as the initial copy strand when SLiM executes the
recombination; this cannot presently be changed by the callback. (Note that genome1 and genome2
will be the same objects as individual.genome1 and individual.genome2, but may be swapped, if
individual.genome2 is the initial copy strand!)

In this design, the recombination callback does not specify a custom recombination map.
Instead, the callback can add or remove breakpoints at specific locations. To implement a
chromosomal inversion, as is done in the recipe in section 14.4, for example, if the parent is
heterozygous for the inversion mutation then crossovers within the inversion region are removed
by the callback. As another example, to implement a model of the evolution of the overall
recombination rate, a model could (1) set the global recombination rate to the highest rate
attainable in the simulation, (2) for each individual, within the recombination() callback,
calculate the fraction of that maximum rate that the focal individual would experience based upon
its genetics, and (3) probabilistically remove proposed crossover points based upon random
uniform draws compared to that threshold fraction, thus achieving the individual effective
recombination rate desired. Other similar treatments could actually vary the effective
recombination map, not just the overall rate, by removing proposed crossovers with probabilities
that depend upon their position, allowing for the evolution of localized recombination hot-spots
and cold-spots. Crossovers may also be added, not just removed, by recombination() callbacks.

In SLiM 3.3 the recombination model in SLiM was redesigned (see section 1.5.6 for discussion).
This required a corresponding redesign of recombination() callbacks. In particular, the gcStarts
and gcEnds pseudo-parameters to recombination() callbacks were removed. In the present
design, the callback receives “crossover breakpoints” information only, in the breakpoints pseudo-
parameter; it receives no information about gene conversion. However, recombination()
callbacks can still be used with the “DSB” recombination model; at the point when the callback is
called, the pattern of gene conversion tracts will have been simplified down to a vector of
crossover breakpoints. “Complex” gene conversion tracts, however, involving heteroduplex
mismatch repair, are not compatible with recombination() callbacks, since there is presently no
way for them to be specified to the callback.

Note that the positions in breakpoints are not, in the general case, guaranteed to be sorted or
uniqued; in other words, positions may appear out of order, and the same position may appear
more than once. After all recombination() callbacks have completed, the positions from
breakpoints will be sorted, uniqued, and used as the crossover points in generating the
prospective gamete genome. The essential point here is that if the same position occurs more than
once, across breakpoints, the multiple occurrences of the position do not cancel; SLiM does not
cross over and then “cross back over” given a pair of identical positions. Instead, the multiple
occurrences of the position will simply be uniqued down to a single occurrence.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 766

As with the other callback types, multiple recombination() callbacks may be registered and
active. In this case, all registered and active callbacks will be called for each gamete generated, in
the order that the callbacks were registered.

26.7 Defining interaction behavior with an interaction() callback
The InteractionType class (section 25.8) provides various built-in interaction functions that

translate from distances to interaction strengths. However, it may sometimes be useful to define a
custom function for that purpose; for that reason, SLiM allows interaction() callbacks to be
defined that modify the standard interaction strength calculated by InteractionType. In particular,
this mechanism allows the strength of interactions to depend upon not only the distance between
individuals, but also the genetics and other state of the individuals, the spatial position of the
individuals, and other environmental variables.

An interaction() callback is called by SLiM when it is determining the strength of the
interaction between one individual (the receiver of the interaction) and another individual (the
exerter of the interaction). This generally occurs when an interaction query is made to
InteractionType, as a side effect of serving that query. This means that interaction() callbacks
may be called at a variety of points in the tick cycle, unlike the other callback types in SLiM, which
are each called at a specific point. If you write an interaction() callback, you need to take this
into account; assuming that the tick cycle is at a particular stage, or even that the tick or cycle is
the same as it was when evaluate() was called, may be dangerous.

When an interaction strength is needed, the first thing SLiM does is calculate the default
interaction strength using the interaction function that has been defined for the InteractionType
(see section 25.8). If the receiver is the same as the exerter, the interaction strength is always zero;
and in spatial simulations if the distance between the receiver and the exerter is greater than the
maximum distance set for the InteractionType, the interaction strength is also always zero. In
these cases, interaction() callbacks will not be called, and there is no way to redefine these
interaction strengths.

Otherwise, SLiM will then call interaction() callbacks that apply to the interaction type and
exerter subpopulation for the interaction being evaluated. An interaction() callback is defined
with a variation of the syntax used for other callbacks:

[id] [t1 [: t2]] interaction(<int-type-id> [, <subpop-id>]) { ... }

For example, if the callback were defined as:

1000:2000 interaction(i2, p3) { 1.0; }

then an interaction strength of 1.0 would be used for all interactions of interaction type i2, for
exerters in subpopulation p3, from tick 1000 to tick 2000.

Beginning in SLiM 4, the receiver and exerter may be in different subpopulations from each
other – or even, in multispecies models, in different species altogether. For the subpopulation id in
the interaction() callback declaration, it does not matter which subpopulation the receiver is in;
if the exerter is in p3, for the above example, then the interaction() callback will be called
regardless of the receiver’s subpopulation (assuming other preconditions are also met, such as the
tick range and the interaction type id). This means that interaction() callbacks are not species-
specific, unlike other callback types; even if an interaction() callback is declared to be specific
to exerters in p3, as above, receivers can still be in a different species. With no subpopulation id
specified, interaction() callbacks are even more general: the InteractionType can then be
evaluated and queried for receivers and exerters belonging to any species. For this reason, in
multispecies models interaction() callbacks must be declared using a species specifier of

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 767

species all, unlike all other SLiM callback types; it is not legal to declare an interaction()
callback as species-specific. Note that there is no way to declare an interaction() callback as
applying only to receivers in a given subpopulation; if that functionality is desired, you can test
receiver.subpopulation in your callback code and act accordingly.

In addition to the SLiM globals listed in section 26.1, an interaction() callback is supplied
with some additional information passed through “pseudo-parameters”:

distance The distance from receiver to exerter, in spatial simulations; NAN otherwise
strength The default interaction strength calculated by the interaction function
receiver The individual receiving the interaction (an object of class Individual)
exerter The individual exerting the interaction (an object of class Individual)

These may be used in the interaction() callback to compute an interaction strength. To
simply use the default interaction strength that SLiM would use if a callback had not been defined
for interaction type i1, for example, you could do this:

interaction(i1) {
 return strength;
}

Usually an interaction() callback will modify that default strength based upon factors such as
the genetics of the receiver and/or the exerter, the spatial positions of the two individuals, or some
other simulation state. Any finite float value greater than or equal to 0.0 may be returned. The
value returned will be not be cached by SLiM; if the interaction strength between the same two
individuals is needed again later, the interaction() callback will be called again (something to
keep in mind if the interaction strength includes a stochastic component). Note that the provided
distance and strength values are based upon the spatial positions of the exerter and receiver
when evaluate() was called, not their current spatial positions, if they have moved since the
interaction was evaluated.

More than one interaction() callback may be defined to operate in the same tick. As with
other callbacks, multiple callbacks will be called in the order in which they were defined in the
input file. Furthermore, each callback will be given the strength value returned by the previous
callback – so the value of strength is not necessarily the default value, in fact, but is the result of
all previous interaction() callbacks for the interaction in question. In this way, the effects of
multiple callbacks can “stack”.

The interaction() callback mechanism is extremely powerful and flexible, allowing any sort of
user-defined interactions whatsoever to be queried dynamically using the methods of
InteractionType. However, in the general case a simulation may call for the evaluation of the
interaction strength between each individual and every other individual, making the computation
of the full interaction network an O(N2) problem. Since interaction() callbacks may be called
for each of those N2 interaction evaluations, they can slow down a simulation considerably, so it is
recommended that they be used sparingly. This is the reason that the various interaction functions
of InteractionType were provided; when an interaction does not depend upon individual state,
the intention is to avoid the necessity of an interaction() callback altogether. Furthermore,
constraining the number of cases in which interaction strengths need to be calculated – using a
short maximum interaction distance, querying the nearest neighbors of the focal individual rather
than querying all possible interactions with that individual, and specifying the reciprocality and
sex segregation of the InteractionType, for example – may greatly decrease the computational
overhead of interaction evaluation.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 768

26.8 Defining reproduction behavior with a reproduction() callback
In WF models (the default model type in SLiM), the SLiM core manages the reproduction of

individuals in each tick. In nonWF models, however, reproduction is managed by the model
script, in reproduction() callbacks. These callbacks may only be defined in nonWF models.

A reproduction() callback is defined with a syntax much like that of other callbacks:

[id] [t1 [: t2]] reproduction([<subpop-id> [, <sex>]]) { ... }

The reproduction() callback will be called once for each individual during the tick(s) in which
it is active. It may optionally be restricted to apply only to individuals in a specified
subpopulation, using the <subpop-id> specifier; this may be a subpopulation specifier such as p1,
or NULL indicating no restriction. It may also optionally be restricted to apply only to individuals of
a specified sex (in sexual models), using the <sex> specifier; this may be "M" or "F", or NULL
indicating no restriction. (In multispecies models, the definition must be preceded by a species
specification as usual.)

When a reproduction() callback is called, SLiM’s expectation is that the callback will trigger
the reproduction of a focal individual by making method calls to add new offspring individuals.
Typically the offspring added are the offspring of the focal individual, and typically they are added
to the subpopulation to which the focal individual belongs, but neither of these is required; a
reproduction() callback may add offspring generated by any parent(s), to any subpopulation in
the focal species. The focal individual is provided to the callback (as an Individual object), as are
its genomes and the subpopulation in which it resides.

A common alternative pattern is for a reproduction() callback to ignore the focal individual
and generate all of the offspring for a species for the current tick, from all parents. The callback
then sets self.active to 0, preventing itself from being called again in the current tick (see section
26.11); this callback design therefore executes once per tick. This can be useful if individuals
influence each other’s offspring generation (as in a monogamous-mating model, for example); it
can also simply be more efficient when producing offspring in bulk.

In addition to the SLiM globals listed in section 26.1, then, a reproduction() callback is
supplied with additional information passed through global variables:

individual The focal individual that is expected to reproduce
subpop The subpopulation to which the focal individual belongs

At present, the return value from reproduction() callbacks is not used, and must be void (i.e., a
value may not be returned). It is possible that other return values will be defined in future.

It is possible, of course, to do actions unrelated to reproduction inside reproduction()
callbacks, but it is not recommended. The first() event phase of the current tick provides an
opportunity for actions immediately before reproduction, and the early() event phase of the
current tick provides an opportunity for actions immediately after reproduction, so only actions
that are intertwined with reproduction itself should occur in reproduction() callbacks. Besides
providing conceptual clarity, following this design principle will also decrease the probability of
bugs, since actions that are unrelated to reproduction should usually not influence or be
influenced by the dynamics of reproduction.

If the randomizeCallbacks parameter to initializeSLiMOptions() is T (the default), the order in
which individuals are given an opportunity to reproduce with a call to reproduction() callbacks
will be randomized within each subpopulation. This partially mitigates order-dependency issues,
although such issues can still arise whenever the effects of a reproduction() callback are not
independent. If randomizeCallbacks is F, individuals will be given their opportunity to reproduce

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 769

in sequential order within each subpopulation, greatly increasing the risk of order-dependency
problems (see section 25.1).

As with the other callback types, multiple reproduction() callbacks may be registered and
active. In this case, all registered and active callbacks will be called for each individual, in the
order that the callbacks were registered.

26.9 Defining mutation behavior with a mutation() callback
SLiM auto-generates new mutations according to the current mutation rate (or rate map) and the

genetic structure defined by genomic elements, their genomic element types, the mutation types
those genomic element types draw from, and the distribution of fitness effects defined by those
mutation types (see section 1.5.4). In nucleotide-based models, the nucleotide sequence and the
mutation matrix also play a role in determining both the rate of mutation and the nucleotide
mutated to (see section 1.8). In some models it can be desirable to modify these dynamics in some
way – altering the selection coefficients of new mutations in some way, changing the mutation type
used, dictating the nucleotide to be used, replacing the proposed mutation with a pre-existing
mutation at the same position, or even suppressing the proposed mutation altogether. To achieve
this, one may define a mutation() callback.

A mutation() callback is defined as:

[id] [t1 [: t2]] mutation([<mut-type-id> [, <subpop-id>]]) { ... }

The mutation() callback will be called once for each new auto-generated mutation during the
tick(s) in which the callback is active. It may optionally be restricted to apply only to mutations of
a particular mutation type, using the <mut-type-id> specifier; this may be a mutation type specifier
such as m1, or NULL indicating no restriction. It may also optionally be restricted to individuals
generated by a specified subpopulation (usually – see below for discussion), using the <subpop-id>
specifier; this should be a subpopulation specifier such as p1. (In multispecies models, the
definition must be preceded by a species specification as usual.)

When a mutation() callback is called, a focal mutation (provided to the callback as an object
of type Mutation) has just been created by SLiM, referencing a particular position in a parental
genome (also provided, as an object of type Genome). The mutation will not be added to that
parental genome; rather, the parental genome is being copied, during reproduction, to make a
gamete or an offspring genome, and the mutation is, conceptually, a copying error made during
that process. It will be added to the offspring genome that is the end result of the copying process
(which may also involve recombination with another genome). At the point that the mutation()
callback is called, the offspring genome is not yet created, however, and so it cannot be accessed
from within the mutation() callback; the mutation() callback can affect only the mutation itself,
not the genome to which the mutation will be added.

In addition to the SLiM globals listed in section 26.1, then, a mutation() callback is supplied
with additional information passed through global variables:

mut The focal mutation that is being modified or reviewed
genome The parental genome that is being copied
element The genomic element that controls the mutation site
originalNuc The nucleotide (0/1/2/3 for A/C/G/T) originally at the mutating position
parent The parent which is generating the offspring genome
subpop The subpopulation to which the parent belongs

The mutation() callback has three possible returns: T, F, or (beginning in SLiM 3.5) a singleton
object of type Mutation. A return of T indicates that the proposed mutation should be used in

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 770

generating the offspring genome (perhaps with modifications made by the callback). Conversely, a
return of F indicates that the proposed mutation should be suppressed. If a proposed mutation is
suppressed, SLiM will not try again; one fewer mutations will be generated during reproduction
than would otherwise have been true. Returning F will therefore mean that the realized mutation
rate in the model will be lower than the expected mutation rate. Finally, a return of an object of
type Mutation replaces the proposed mutation (mut) with the mutation returned; the offspring
genomes being generated will contain the returned mutation. The position of the returned
mutation must match that of the proposed mutation. This provides a mechanism for a mutation()
callback to make SLiM re-use existing mutations instead of generating new mutations, which can
be useful.

The callback may perform a variety of actions related to the generated mutation. The selection
coefficient of the mutation can be changed with setSelectionCoefficient(), and the mutation
type of the mutation can be changed with setMutationType(); the drawSelectionCoefficient()
method of MutationType may also be useful here. A tag property value may be set for the
mutation, and named values may be attached to the mutation with setValue(). In nucleotide-
based models, the nucleotide (or nucleotideValue) property of the mutation may also be
changed; note that the original nucleotide at the focal position in the parental genome is provided
through originalNuc (it could be retrieved with genome.nucleotides(), but SLiM already has it at
hand anyway). All of these modifications to the new mutation may be based upon the state of the
parent, including its genetic state, or upon any other model state.

It is possible, of course, to do actions unrelated to mutation inside mutation() callbacks, but it
is not recommended; first(), early(), and late() events should be used for general-purpose
scripting. Besides providing conceptual clarity, following this design principle will also decrease
the probability of bugs, since actions that are unrelated to mutation should not influence or be
influenced by the dynamics of mutation.

The proposed mutation will not appear in the sim.mutations vector of segregating mutations
until it has been added to a genome; it will therefore not be visible in that vector within its own
mutation() callback invocation, and indeed, may not be visible in subsequent callbacks during
the reproduction tick cycle stage until such time as the offspring individual being generated has
been completed. If that offspring is ultimately rejected, in particular by a modifyChild() callback,
the proposed mutation may not be used by SLiM at all. It may therefore be unwise to assume, in a
mutation() callback, that the focal mutation will ultimately be added to the simulation, depending
upon the rest of the model’s script.

There is one subtlety to be mentioned here, having to do with subpopulations. The subpop
pseudo-parameter discussed above is always the subpopulation of the parent which possesses the
genome that is being copied and is mutating; there is no ambiguity about that whatsoever. The
<subpop-id> specified in the mutation() callback declaration, however, is a bit more subtle; above
it was said that it restricts the callback “to individuals generated by a specified subpopulation”,
and that is usually true but requires some explanation. In WF models, recall that migrants are
generated in a source subpopulation and placed in a target subpopulation, as a model of juvenile
migration (see section 23.2.1); in that context, the <subpop-id> specifies the source subpopulation
to which the mutation() callback will be restricted. In nonWF models, offspring are generated by
the add...() family of Subpopulation methods (see section 25.16.2), which can cross individuals
from two different subpopulations and place the result in a third target subpopulation; in that
context, in general, the <subpop-id> specifies the source subpopulation that is generating the
particular gamete that is sustaining a mutation during its production. The exception to this rule is
addRecombinant(); since there are four different source subpopulations potentially in play there, it
was deemed simpler in that case for the <subpop-id> to specify the target subpopulation to which
the mutation() callback will be restricted. If restriction to the source subpopulation is needed

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 771

with addRecombinant(), the subpop pseudo-parameter may be consulted rather than using
<subpop-id>.

Note that mutation() callbacks are only called for mutations that are auto-generated by SLiM,
as a consequence of the mutation rate and the genetic structure defined (see section 1.5.4).
Mutations that are created in script, using addNewMutation() or addNewDrawnMutation(), will not
trigger mutation() callbacks; but of course the script may modify or tailor such added mutations in
whatever way is desired, so there is no need for callbacks in that situation.

As with the other callback types, multiple mutation() callbacks may be registered and active.
In this case, all registered and active callbacks will be called for each generated mutation to which
they apply, in the order that the callbacks were registered.

26.10 Defining survival and mortality with a survival() callback
In nonWF models, a selection phase in the tick cycle results in mortality; individuals survive or

die based upon their fitness (see section 24.4). In most cases this standard behavior is sufficient;
but occasionally it can be useful to observe the survival decisions SLiM makes (to log out
information about dying individuals, for example), to modify those decisions (influencing which
individuals live and which die, perhaps based upon factors other than genetics), or even to short-
circuit mortality completely (moving dead individuals into a “cold storage” subpopulation for later
use, perhaps). To accomplish such goals, one can the survival() callback mechanism to override
SLiM’s default behavior. Note that in WF models, since they always model non-overlapping
generations, the entire parental generation dies in each tick regardless of fitness; survival()
callbacks therefore apply only to nonWF models.

A survival() callback is defined with a syntax much like that of other callbacks:

[id] [t1 [: t2]] survival([<subpop-id>]) { ... }

The survival() callback will be called during the selection phase of the tick cycle of nonWF
models, during the tick(s) in which it is active. By default it will be called once per individual in
the entire population (whether slated for survival or not); it may optionally be restricted to apply
only to individuals in a specified subpopulation, using the <subpop-id> specifier. (In multispecies
models, the definition must be preceded by a species specification as usual.)

When a survival() callback is called, a focal individual has already been evaluated by SLiM
regarding its survival; a final fitness value for the individual has been calculated, and a random
uniform draw in [0,1] has been generated that determines whether the individual is to survive (a
draw less than the individual’s fitness) or die (a draw greater than or equal to the individual’s
fitness). The focal individual is provided to the callback, as is the subpopulation in which it
resides. Furthermore, the preliminary decision (whether the focal individual will survive or not),
the focal individual’s fitness, and the random draw made by SLiM to determine survival are also
provided to the callback. The callback may return NULL to accept SLiM’s decision, or may return T
to indicate that the individual should survive, or F to indicate that it should die, regardless of its
fitness and the random deviate drawn. The callback may also return a singleton Subpopulation
object to indicate the individual should remain alive but should be moved to that subpopulation
(note that calling takeMigrants() during the survival phase is illegal, because SLiM is busy
modifying the population’s internal state).

In addition to the SLiM globals listed in section 26.1, then, a survival() callback is supplied
with additional information passed through “pseudo-parameters”:

individual The focal individual that will live or die
subpop The subpopulation to which the focal individual belongs

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 772

surviving A logical value indicating SLiM’s preliminary decision (T == survival)
fitness The focal individual’s fitness
draw SLiM’s random uniform deviate, which determined the preliminary decision

These may be used in the survival() callback to determine the final decision.
While survival() callbacks are still being called, no decisions are put into effect; no

individuals actually die, and none are moved to a new Subpopulation if that was requested. In
effect, SLiM pre-plans the fate of every individual completely without modifying the model state at
all. After all survival() callbacks have completed for every individual, the planned fates for every
individual will then be executed, without any opportunity for further intervention through
callbacks. It is therefore legal to inspect subpopulations and individuals inside a survival()
callback, but it should be understood that previously made decisions about the fates of other
individuals will not yet have any visible effect. It is generally a good idea for the decisions
rendered by survival() callbacks to be independent anyway, to avoid biases due to order-
dependency. If the randomizeCallbacks parameter to initializeSLiMOptions() is T (the default),
the order in which survival() callbacks are called on individuals will be randomized within each
subpopulation; nevertheless, order-dependency issues can occur if callback effects are not
independent. If randomizeCallbacks is F, the order in which individuals are evaluated within each
subpopulation is not guaranteed to be random, and order-dependency problems are thus even
more likely; see section 25.1.

It is worth noting that if survival() callbacks are used, “fitness” in the model is then no longer
really fitness; the model is making its own decisions about which individuals live and die, and
those decisions are the true determinant of fitness in the biological sense. A survival() callback
that makes its own decisions regarding survival with no regard for SLiM’s calculated fitness values
can completely alter the pattern of selection in a population, rendering all of SLiM’s fitness
machinery – selection and dominance coefficients, fitnessScaling values, etc. – completely
irrelevant. To avoid highly counterintuitive and confusing effects, it is thus generally a good idea to
use of survival() callbacks only when it is strictly necessary to achieve a desired outcome.

As with the other callback types, multiple survival() callbacks may be registered and active.
In this case, all registered and active callbacks will be called for each individual evaluated, in the
order that the callbacks were registered.

26.11 Further details on Eidos events and callbacks
Section 26.1 described Eidos events, and sections 26.2 – 26.10 described several different Eidos

callbacks that can be defined to modify the standard behavior of SLiM. This section describes a
few additional details that apply to events and callbacks. These details were mentioned previously,
but were not detailed, in the interests of simplicity; they are of interest mainly to the most
advanced users of SLiM.

Every Eidos block – an event or a callback – is defined in SLiM using a class called
SLiMEidosBlock. All of the registered instances of this class – all of the Eidos blocks scheduled to
run in the simulation – are available through the allScriptBlocks property of Community (section
25.3.2), as well as the scriptBlocks property of Species for species-specific callbacks. New script
blocks may be added programmatically (rather than in the SLiM input file) using the Community and
Species register...() methods; those methods take a string parameter, which is interpreted as
Eidos code. Existing script blocks may be deregistered, which removes them from the current
simulation permanently, using the deregisterScriptBlock() method of Community. Similarly,
script blocks may be rescheduled to an arbitrary tick or set of ticks using the
rescheduleScriptBlock() method of Community. In this way, the script blocks defined in the SLiM

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 773

input file are only the beginning; by adding, removing, and rescheduling script blocks dynamically,
SLiM simulations can modify their own code as they run. Obviously this feature would, if used
indiscriminately, result in incomprehensible and unmaintainable code; but in some circumstances,
it can be extremely useful and powerful.

Code that manipulates SLiMEidosBlock objects can find the operand blocks using their defined
global symbols such as s1 or s13 (see section 26.1), or using the id property of SLiMEidosBlock.
Alternatively, a script block that references itself (to deregister itself, for example, or to set its own
active property) can use a global variable called self that is defined whenever an Eidos block is
executing. The self variable refers to the executing SLiMEidosBlock object. It may be passed to
deregisterScriptBlock() in order to deregister the current block; this is safe to do, as the
executing block will not actually be deregistered until it has finished executing. It may also be
used to change the properties of the currently executing script block.

In particular, SLiMEidosBlock defines an integer property, active. The active property is
normally -1; this means that script blocks are normally active. If set to 0, the script block will be
inactive for the remainder of the current tick; it will not be called or used in any way (except that if
it is currently executing when active is set to 0, that execution will complete). At the beginning of
each tick, prior to the execution of any script blocks, the active flag of all registered script blocks
will be set back to -1, activating them all again; if you want a script block to be inactive
permanently, you must deregister it rather than just marking it as inactive. (In multispecies models,
script blocks will be set to be inactive at the start of a tick if they have an associated species,
because of a species or ticks specifier, and that species is inactive in the current tick. Script
blocks associated with a given species will also be made inactive if the species is made inactive
with the skipTick() method.)

Values other than -1 may be used for active; any value other than 0 indicates that the block is
active (because active is evaluated as a logical value; only 0 is F). This facility is provided to
allow script blocks to run a limited number of times in each tick; the block can check whether
active is -1 (indicating that it is being called for the first time in a tick), and can set active to a
counter value. In each call to the script block, the script can decrement the active counter by 1;
when it reaches 0, the block will not be called again in that tick. The active property could even
be used to implement a more complex state machine, or it could be used as an arbitrary tag value.

The precise way in which SLiM handles the scheduling of SLiMEidosBlock objects may be
important for some scripts. Because new script blocks can be added dynamically with
register...(), and existing blocks can be removed with deregisterScriptBlock(), the right way
to schedule blocks is not entirely clear. If SLiM is partway through generating children, and then a
new modifyChild() callback is added, for example, should that callback be used for the remaining
children generated in the current tick? What if an existing modifyChild() callback is removed,
partway through the process of child generation – should that callback stop being used
immediately? For consistency, SLiM’s answer to both of these questions is “no”; a consistent set of
scripts are used across each tick cycle stage of each tick. However, if a modifyChild() callback is
added before generating children begins, then that callback is used in the same tick. In essence,
the rule is this: whenever SLiM starts on a new stage of the tick cycle that involves calling a
particular kind of Eidos block, SLiM gathers up a list of all of the currently defined script blocks
applicable to that stage, and it uses that list throughout the duration of that stage, regardless of
what changes are made to the registered script blocks during the stage. The state of the active
property of each script block is checked immediately before each time that the script block is
called, however; the active property is specifically intended to change the active status of a script
block within a single tick.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 774

27. SLiM output formats

In addition to allowing custom output in any format whatsoever, produced with Eidos code,
SLiM also has numerous ways to produce output in fixed formats using built-in methods:

– Methods on Species (section 25.15.2): outputFull(), outputFixedMutations(), and
outputMutations().

– Methods on Subpopulation (section 25.16.2): outputSample(), outputMSSample(), and
outputVCFSample().

– Methods on Genome (section 25.4.2): output(), outputMS(), and outputVCF().

The documentation cited for these classes above summarizes the method calls themselves, but
does not document the precise format they produce; that will be covered in this chapter.

Note that these methods, and the format of the output produced by SLiM, changed in various
ways in SLiM version 2.1. This documentation will discuss only the format of output for SLiM 2.1
and later, for simplicity.

As will be shown below, all of these output methods can generate a header line beginning with
the tag #OUT: followed by (1) the tick in which the output was generated, (2) the cycle in which the
output was generated, (3) a one- or two-letter output type code, (4) additional values depending
upon the output type, and (5) if output was directed to a file, the filename to which output was
directed (except in the case of the Species method outputMutations()). The output code in the
header line may be used to detect which type of output follows, which is useful for automated
parsing of simulation output files. The codes are as follows:

Species methods:
 outputFull() A
 outputFixedMutations() F
 outputMutations() T
Subpopulation methods:
 outputSample() SS
 outputMSSample() SM
 outputVCFSample() SV
Genome methods:
 output() GS
 outputMS() GM
 outputVCF() GV

All of these methods support output to either the SLiM output stream or to a designated file.
When output is sent to a file, all of these methods support either overwriting an existing file at the
specified path, or appending to any existing file.

These output methods are some of the more complex methods in SLiM, often with many
optional arguments that are typically specified by name. See the Eidos manual for discussion of
how to use optional arguments and named arguments, how to interpret complex type-specifiers
and method signatures, and so forth; that information is not repeated here.

27.1 Species output methods
The output methods of Species produce output regarding state that spans the whole population

of the species, rather than just a single subpopulation or a selected set of genomes.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 775

27.1.1 outputFull()
The outputFull() method outputs complete information on all subpopulations, individuals,

and genomes, including all currently segregating mutations (but not including mutations that have
fixed and been converted into Substitution objects). Sample output for outputFull(),
abbreviated with ellipses:

#OUT: 10000 10000 A
Version: 3
Populations:
p1 50 H
p2 50 H
...
Mutations:
10 387752 m1 1308 0 0.5 p2 9404 130
47 387966 m1 5994 0 0.5 p1 9415 130
...
Individuals:
p1:i0 H p1:0 p1:1
p1:i1 H p1:2 p1:3
...
Genomes:
p1:0 A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19...
p1:1 A 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84...
...

The header line begins with #OUT: and then gives the tick and cycle in which the output was
produced, followed by an A (for “all”). If the output is sent to a file with outputFull()’s filePath
option, this is followed by the full path of the file to which the output was saved; for example:

#OUT: 10000 10000 A /Users/bhaller/Desktop/full.txt

Beginning in SLiM 2.3, the header line is followed by a single line that indicates the version of
the outputFull() file format. SLiM 2.3’s format is indicated by a version number of 3 (for internal
reasons); if the version line is missing, it may be inferred that the file format is pre-2.3. The reason
for this addition is that it allows SLiM (and other software) to more accurately read in output files
generated by different versions of SLiM, since the version number indicates what the reader
software can expect to find in the file. A version of 4 is used by SLiM 3.0 and later to indicate that
age values are included in the Individuals section; see below. Beginning in SLiM 3.5, individual
pedigree IDs can optionally be written out to the Individuals section; this is indicated with new
version numbers of 5 (without age information) or 6 (with age information), parallel to the existing
usage of version numbers 3 (without age information) and 4 (with age information). In other
words, beginning with SLiM 3.5 four version numbers are now simultaneously in active use: 3 (no
ages, no pedigree ids), 4 (ages, no pedigree ids), 5 (no ages, pedigree ids), and 6 (ages, pedigree
ids). This is a bit confusing, but has allowed backward compatibility to be preserved.

After these header lines comes the Populations section, which lists all currently existing
subpopulations. First is given the subpopulation’s identifier, such as p1. Next is listed its current
size, in individuals (not genomes). Finally, an H indicates that the population is composed of
hermaphroditic individuals; if sex has been enabled with initializeSex(), this will instead be an
S followed by the current sex ratio of the subpopulation (i.e., S 0.5).

Next is the Mutations section, which lists all of the currently segregating mutations in the
population. Each mutation is listed on a separate line. The first field is a within-file numeric
identifier for the mutation, beginning at 0 and counting up (although mutations are not listed in
sorted order according to this value); see below for a note on why this field exists. Second is the

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 776

mutation’s id property (see section 25.10.1), a within-run unique identifier for mutations that does
not change over time, and can thus be used to match up information on the same mutation within
multiple output dumps made at different times. Third is the identifier of the mutation’s mutation
type, such as m1. Fourth is the position of the mutation on the chromosome, as a zero-based base
position. Fifth is the selection coefficient of the mutation, and sixth is its dominance coefficient
(the latter being a property of the mutation type, in fact). Seventh is the identifier for the
subpopulation in which the mutation originated, and eighth is the tick in which it originated.
Finally, the ninth field gives the mutation’s prevalence: an integer count of the number of times that
it occurs in any genome in the population.

Following this section is the Individuals section. This describes each individual in each
subpopulation and specifies which genomes belong to it. The first field is an identifier for the
individual, such as p1:i0 (which indicates the 0th individual in p1). Beginning in SLiM 3.5 with
version 5, the next field is optionally the pedigree ID of the individual (from which the genome
pedigree IDs can be derived); in version 4 and earlier this field is not present, and even in SLiM 3.5
it is only present if pedigreeIDs=T is passed to outputFull() (the default is F), so this is not shown
in the example output above. Next is the sex of the individual: H for a hermaphrodite, or if sex has
been enabled, M for a male or F for a female. Following that come two genome specifiers, of the
form p1:0 (indicating the 0th genome in p1).

Beginning in SLiM 2.3, the genome specifiers may be followed by spatial positioning
information for each individual. This will be the case if continuous space has been enabled with
the dimensionality parameter to initializeSLiMOptions() and the spatialPositions parameter
to outputFull() is T (which is the default). If both of those preconditions are satisfied, then the
properties of Individual that represent spatial positions (x, y, and/or z) will be output as floating-
point values. Only properties that are included in the dimensionality of the simulation will be
output. For example, if the simulation has been configured to have dimensionality "xy" with
initializeSLiMOptions(), then the Individuals section might look like this:

Individuals:
p1:i0 H p1:0 p1:1 0.397687 0.522408
p1:i1 H p1:2 p1:3 0.066159 0.74749
...

The first floating-point value on each line is the value of x for that individual; the second is the
value of y. The value of the z property is not output because the z-coordinate is not included in
the dimensionality of the simulation. If spatialPositions=F were specified in the call to
outputFull(), this positional information would not be output and the file format would be
identical to that produced by version 2.1 (apart from the addition of the Version line in SLiM 2.3,
described above).

Beginning in SLiM 3.0, the genome specifiers may be followed by the age of each individual.
This will be the case if the simulation is using the nonWF model type (which is not the default) and
the ages parameter to outputFull() is T (which is the default). If both of those preconditions are
satisfied, then the age property of each individual will be output as an integer at the end of each
line in the Individuals section, following the genome specifiers and (if present) the optional spatial
positioning information controlled by spatialPositions. If age information is not output, the
output format is just as it was before SLiM 3.0, for backward compatibility. Note that if age
information is included in the output, the version number specified in the Version line will be 4; if
not, the version will remain 3 (as it was before SLiM 3.0).

Last comes the Genomes section, which specifies all of the mutations carried by each genome
in the population. The first field is a genome specifier, such as p1:0, as described above. Second
is the type of genome: an A for an autosome, or an X or Y for those types if modeling of sex

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 777

chromosomes has been enabled. This is followed by a list of within-file mutation identifiers, as
given in the Mutations section described above, that identify all the mutations carried on the
genome. Alternatively, if the genome is a “null genome” that is not allowed to carry any mutations
in SLiM (such as a Y chromosome if SLiM is modeling the X), the tag <null> will appear instead of
any mutation identifiers.

The reader might wonder why the within-file index for mutations (the first field in each
mutation’s output line) even exists. Couldn’t the mutation’s id (the second field) be used for that
purpose, since it also uniquely identifies mutations? The answer is: yes, in principle it could. In
practice, however, id values for mutations are often very large numbers – six, seven, or even more
digits long. Because the bulk of a SLiM output file consists of the sequences of mutation identifiers
listed in the Genomes section, using small zero-based numbers for these identifiers actually makes
SLiM’s output files markedly smaller than they would be if mutation id values were used instead.
Keeping output files small is an end in itself, since disk space is limited, but also has the benefit of
making file writes and reads faster.

On the topic of file size and read/write speed, note that the outputFull() method also provides
the option of writing out a binary file. The format of that file is not documented, and is subject to
change at any time (although we will try to preserve backward compatibility when possible).
Binary files can be smaller, and their read and write times are much faster.

Note that the output from outputFull() is the only output format that SLiM can read as well as
write. This is done with the readFromPopulationFile() method of Species (see section 25.15.2).

In SLiM 3.3 and later, outputFull() will add a column to the end of the output format of the
Mutations section when the mutation being output is nucleotide-based. That column will contain
an A, C, G, or T, as in the following example:

...
Mutations:
10 387752 m1 1308 0 0.5 p2 9404 130 A
47 387966 m1 5994 0 0.5 p1 9415 130 G
...

In nucleotide-based models, an additional output section will also exist, at the end of the
output, providing the full ancestral sequence for the model. For example:

Ancestral sequence:
CGCTCCTTATCAGGGGCTCAGGCCGCTCAAATATTTGATACGAGGGTAGGTCCGGAAGATCGGATAATGG
AAGTCCTACGGCATCTTTTATCCTTAGCCGGTATGTGGTGTCATTCCTAACTGTACTATAGACCCTGAGA
...

The sequence itself is in FASTA format, with 70 characters per line. Note that this output
section may be very large, for models with a long chromosome. For a chromosome length of 109,
the ancestral sequence will be 109 characters long, which will occupy 109 bytes, or 1 GB, in the
file on disk. If the output is done in binary format instead, the overhead will be about one-quarter
of that. This section may be suppressed by supplying ancestralSequence=F to the outputFull()
call; however, the ancestral sequence will then not be correctly restored if the saved output file is
read in with readPopulationFile().

27.1.2 outputFixedMutations()
The outputFixedMutations() method outputs information on all mutations that have fixed and

been turned into Substitution objects. It therefore complements the information produced by
outputFull(). Sample output for outputFixedMutations(), abbreviated with ellipses:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 778

#OUT: 10000 10000 F
Mutations:
0 390 m1 701 0 0.5 p2 20 650
1 1114 m1 957 0 0.5 p1 55 650
...

The header line has the standard SLiM output tag #OUT: followed by the tick and cycle, and
then an F (for “fixed”). If the output is sent to a file with outputFixedMutations()’s filePath
option, this is followed by the full path of the file to which the output was saved.

Following this is one section of output, Mutations. This lists every mutation that has fixed and
been turned into a Substitution object. The first eight fields used are identical to those used in the
Mutations section of outputFull() as described above: (1) a within-file identifier counting upward
from 0, (2) the mutation’s id property that uniquely identifies in within a run, (3) the identifier for
the mutation type, (4) the position on the chromosome, (5) the selection coefficient, (6) the
dominance coefficient, (7) the originating subpopulation, and (8) the origination tick. The last field
is different, however; instead of being a prevalence (which would be useless since these mutations
are, by definition, fixed), this field indicates the tick in which the mutation was converted to a
Substitution object (which is the same as the tick in which it fixed, unless you are dynamically
changing the convertToSubstitution flag).

In SLiM 3.3 and later, outputFixedMutations() will add a column to the end of this output
format when the substitution being output is nucleotide-based. That column will contain an A, C,
G, or T, as in the following example:

#OUT: 2000 2000 F
Mutations:
0 0 m1 20000 0.1 0.5 p1 1 228
1 1467 m2 65261 0 0.5 p1 201 1418 A
2 3029 m2 68716 0 0.5 p1 411 1418 C
3 4754 m2 295 0 0.5 p1 642 1654 G
4 1026 m2 48460 0 0.5 p1 143 1654 C
...

Note that if the substitutions to be output are a mix of nucleotide-based mutations and non-
nucleotide-based mutations, some lines will contain the extra nucleotide column and some will
not. In the example above, the first substitution (of mutation type m1) is non-nucleotide-based, so
the nucleotide column is omitted, but the rest of the substitutions (of mutation type m2) are
nucleotide-based, and so nucleotides (A, C, G, and C) are given.

27.1.3 outputMutations()
The outputMutations() method is intended to be used to output information about particular

mutations of interest that are being “tracked” – mutations of a particular mutation type, for
example, or perhaps a specific introduced mutation. Sample output for outputMutations():

#OUT: 10000 10000 T p1 388376 m1 673 0 0.5 p2 9434 43
#OUT: 10000 10000 T p2 388376 m1 673 0 0.5 p2 9434 27

These two lines of output are the result of an outputMutations() call requesting output for just
a single mutation. The first line gives information about the prevalence of the mutation in
subpopulation p1, whereas the second line gives the same for p2. If you requested output for more
than one mutations, you get a line for each mutation requested:

#OUT: 10000 10000 T p1 388376 m1 673 0 0.5 p2 9434 43
#OUT: 10000 10000 T p1 388788 m1 9394 0 0.5 p2 9455 57
#OUT: 10000 10000 T p1 390206 m1 6232 0 0.5 p2 9523 57

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 779

...
#OUT: 10000 10000 T p2 388376 m1 673 0 0.5 p2 9434 27
#OUT: 10000 10000 T p2 388788 m1 9394 0 0.5 p2 9455 73
#OUT: 10000 10000 T p2 390206 m1 6232 0 0.5 p2 9523 73
...

Note that the output is sorted by subpopulation, not by mutation, so the lines for a particular
mutation do not necessarily end up adjacent. If a mutation is not present in a given subpopulation
at all, no output line is produced for that mutation in that subpopulation.

The format of each output line follows a similar pattern to other output methods. First comes
the #OUT: tag, followed by the tick and cycle, and then a T (for “tracked”, for historical reasons).
Next comes the subpopulation identifier, such as p1, for which the line is being produced. The
remaining fields are the same mutation information as produced by outputFull(): (1) the
mutation’s id property, (2) the identifier of its mutation type, (3) its position, (4) its selection
coefficient, (5) its dominance coefficient, (6) origin subpopulation identifier, (7) origin tick, and (8)
prevalence. Note that even if outputMutations()’s filePath parameter is used to send the output
to a file, the filename is not added at the end of the header line as it is with SLiM’s other output
commands, to keep the output from this command concise (since it really consists of nothing but
header lines).

In SLiM 3.3 and later, outputMutations() will add a column to the end of this output format
when the mutation being output is nucleotide-based. That column will contain an A, C, G, or T, as
in the following example:

#OUT: 100 100 T p1 0 m1 20000 0.1 0.5 p1 1 270
#OUT: 100 100 T p1 43 m2 1562 0 0.5 p1 6 54 C
#OUT: 100 100 T p1 64 m2 96061 0 0.5 p1 9 52 T
#OUT: 100 100 T p1 83 m2 88245 0 0.5 p1 12 54 C
#OUT: 100 100 T p1 98 m2 93155 0 0.5 p1 14 54 A
...

Note that if the vector of mutations to be output is a mix of nucleotide-based mutations and
non-nucleotide-based mutations, some lines will contain the extra nucleotide column and some
will not. In the example above, the first mutation (of mutation type m1) is non-nucleotide-based, so
the nucleotide column is omitted, but the rest of the mutations (of mutation type m2) are
nucleotide-based, and so nucleotides (C, T, C, and A) are given.

27.2 Subpopulation output methods
The output methods of Subpopulation produce output about the mutations carried by a

sampled subset of the Subpopulation. Three different formats of output are presently available:
SLiM’s native format, MS, and VCF.

27.2.1 outputSample()
The outputSample() method takes a random sample of genomes from the subpopulation as

requested (with options regarding sample size, replacement, and sex) and outputs information on
them in SLiM’s native format. If the sampling options provided by outputSample() are
insufficiently flexible, the output() method of Genome is a more general-purpose method (see
section 27.3.1). Sample output for outputSample(), abbreviated with ellipses:

#OUT: 10000 10000 SS p1 10
Mutations:
65 587710 m1 1308 0 0.5 p2 9404 5
101 587924 m1 5994 0 0.5 p1 9415 5

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 780

...
Genomes:
p1:0 A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23...
p1:1 A 0 1 2 3 4 5 6 8 9 10 49 50 11 12 13 14 15 16 17 18 51 19 22 23...
...

The header line starts with the usual tag, #OUT:, followed by the tick and cycle, and then SS
(representing “sample, SLiM format”). It then gives the identifier for the subpopulation sampled,
such as p1, and finally the size of the sample (in genomes, not individuals). If the output is sent to
a file with outputSample()’s filePath option, this is followed by the full path of the file to which
the output was saved.

This is followed by a Mutations section and then a Genomes section. The formats of these is
identical to the same sections in the output of outputFull(), described in section 27.1.1, except
that the prevalence values given for mutations are their prevalence within the sample of genomes,
not in the population as a whole. Note that the Individuals section provided by outputFull() is
also not present in the output from outputSample(), because the sample is of genomes, not
complete individuals.

27.2.2 outputMSSample()
The outputMSSample() method takes a random sample of genomes from the subpopulation as

requested (with options regarding sample size, replacement, and sex) and outputs information on
them in MS format. If the sampling options provided by outputMSSample() are insufficiently
flexible, the outputMS() method of Genome is a more general-purpose method (see section 27.3.2).
Sample output for outputMSSample(), abbreviated with ellipses:

#OUT: 10000 10000 SM p1 10
//
segsites: 179
positions: 0.1308131 0.4991499 0.5994599 0.6999700 0.9599960...
00101001000001101011111000000011111000100100111100001000011000100000...
00101001000001101011111000000011111000100100111100001000011000100000...
...

The first line is a header in the same format as for outputSample(), as described in the previous
section. The output type code here, SM, represents “sample, MS format”. The outputMSSample()
method allows output to be sent to a file, with the optional filePath argument. In this case, the
#OUT: header line is not emitted, since it would not be conformant with the MS data format
specification.

This is followed by an empty comment line //, and then a line stating the total number of
segregating sites output. Note that, as with all other output methods in SLiM, these sites are
segregating in the population, but every genome in the sample may be identical at a given site.

Next comes a line giving the position on the chromosome of each of the segregating sites.
These positions have been converted by SLiM from base positions to floating-point positions in the
interval [0,1] as expected for the MS format. Note that SLiM allows multiple mutations at exactly
the same position, so even without roundoff (which may also be an issue for very long
chromosomes), two positions in this list may be specified with exactly the same number.

Finally, the output has one line for each genome in the sample. Each line is a simple sequences
of 0’s and 1’s, indicating whether the genome in question possesses (1) or does not possess (0) the
mutation at the corresponding position in the list of positions.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 781

27.2.3 outputVCFSample()
The outputVCFSample() method takes a random sample of individuals (not genomes!) from the

subpopulation as requested (with options regarding sample size, replacement, and sex) and
outputs information on them. If the sampling options provided by outputVCFSample() are
insufficiently flexible, the outputVCF() method of Genome is a more general-purpose method (see
section 27.3.3). Sample output for outputVCFSample(), abbreviated with ellipses:

#OUT: 10000 10000 SV p1 10
##fileformat=VCFv4.2
##fileDate=20160613
##source=SLiM
##slimGenomePedigreeIDs=4999898,4999899,...
##INFO=<ID=MID,Number=1,Type=Integer,Description="Mutation ID in SLiM">
##INFO=<ID=S,Number=1,Type=Float,Description="Selection Coefficient">
##INFO=<ID=DOM,Number=1,Type=Float,Description="Dominance">
##INFO=<ID=PO,Number=1,Type=Integer,Description="Population of Origin">
##INFO=<ID=TO,Number=1,Type=Integer,Description="Tick of Origin">
##INFO=<ID=MT,Number=1,Type=Integer,Description="Mutation Type">
##INFO=<ID=AC,Number=1,Type=Integer,Description="Allele Count">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=MULTIALLELIC,Number=0,Type=Flag,Description="Multiallelic">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT i0 i1 i2 i3 i4 i5...
1 1309 . A T 1000 PASS
MID=987550;S=0;DOM=0.5;PO=2;TO=9404;MT=1;AC=11;DP=1000 GT 0|1 0|0 0|1...
1 5995 . A T 1000 PASS
MID=987764;S=0;DOM=0.5;PO=1;TO=9415;MT=1;AC=11;DP=1000 GT 0|1 0|0 0|1...
...

The first line is a header, similar to that produced by outputSample() and outputMSSample().
The output code SV here represents “sample, VCF format”. The outputVCFSample() method allows
output to be sent to a file, with the optional filePath argument. In this case, the #OUT: header line
is not emitted, since it would not be conformant with the VCF data format specification.

Following that is the VCF header, which provides various information about the information in
the file; the VCF format is quite complex so we will not attempt to document it in detail here. The
SLiM genomePedigreeID value for each sampled genome will be provided, in order, in the
##slimGenomePedigreeIDs header line. (Pedigree IDs for sampled individuals are not provided,
since each diploid sample in the VCF output might be comprised of two genomes from different
individuals; the individual pedigree IDs are therefore not well-defined in the general case.
However, in general, the individual pedigree ID for the individual to which a given genome
belongs is equal to the genome pedigree ID divided by two, rounded down; in other words, an
individual with pedigree ID 10 has genomes with pedigree IDs of 20 and 21.)

Note that the INFO fields provided by SLiM include fields for a lot of SLiM-specific information
that is not part of the VCF standard itself: the mutation’s id property, selection and dominance
coefficients, subpopulation of origin and tick of origin, and mutation type (the numeric part of a
mutation type identifier like m1). These will have no meaning to most VCF tools, but may be useful
for filtering or other analysis. The VCF header also describes two standard INFO tags: AC and DP. AC
gives the “allele count”, the number of occurrences of the given mutation within the sample. DP
gives the “total depth”, a property of empirical genomic samples that is meaningless for SLiM
output; it is supplied, and is always equal to 1000, in SLiM output to facilitate processing with VCF
tools that expect this tag to be present. The last INFO tag described in the header is MULTIALLELIC;
it is discussed below.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 782

Following the VCF header are lines describing each mutation. Because of word-wrapping and
line-breaking issues, these lines look a little funny here, but this is actually a single line, with fields
separated by tab characters:

1 1309 . A T 1000 PASS
MID=987550;S=0;DOM=0.5;PO=2;TO=9404;MT=1;AC=11;DP=1000 GT 0|1 0|0 0|1...

These fields correspond to the column headings given in the last line of the VCF header:

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT i0 i1 i2 i3 i4 i5...

The first field is the chromosome identifier; SLiM always emits 1 for this. Next is the position of
the mutation; note that VCF uses 1-based positions, so this is the position used internally by SLiM
plus 1. The next five fields have VCF-oriented meanings that are unimportant for SLiM; they will
always be . A T 1000 PASS. The next field is very long, and consists of a series of INFO tags
separated by semicolons; the meaning of those fields is as specified by the ##INFO lines in the VCF
header. Next comes a GT tag indicating the start of genotype data, and finally a sequence of “calls”
of the format 0|0, 0|1, 1|0, or 1|1, indicating whether a given individual in the sample possessed
(1) or did not possess (0) the mutation in each of its two genomes. This data has essentially the
same meaning as MS-format data, but in a notation that groups the 0’s and 1’s into homologous
chromosomes in diploid individuals.

There are several things to note about this. First of all, calls are normally diploid (0|0, 1|0, etc.),
but if SLiM is modeling sex chromosomes, calls may be haploid instead (just a 0 or a 1). For
example, if you are modeling the X chromosome, males will be emitted as haploid while females
will be emitted as diploid. There is no way to represent a 0-ploid individual in VCF format, so if
you are modeling the Y chromosome you may not include females in your sample; there would be
no genetic information to emit for them.

Second, it is important to emphasize that VCF output, unlike all other output from SLiM, is
based on individuals, not on genomes. The subpopulation sample taken by outputVCFSample() is
a sample of individuals, not genomes, and thus a sample of size 10 will include twice as many
genomes as a sample of size 10 would include for outputMSSample() or outputSample().

Third, note that SLiM designates all mutations as being a change from an A to a T. Since SLiM
has no concept of nucleotide sequence (in non-nucleotide-based models), this is simply an
arbitrary choice. If you wished to construct a FASTA file for the ancestral sequence, for example, it
would simply be the length of the chromosome, filled with A’s.

Finally, there are several subtle points related to the nature of the VCF output produced by SLiM
that we have glossed over here. One is the MULTIALLELIC tag defined in the VCF header above. In
SLiM, it is often possible for a single individual to have multiple mutations at a given base position.
Because the VCF format is an explicit-nucleotide format, this property of SLiM does not fit well into
VCF. Since there are only four possible nucleotides at a given base position in VCF, at most one
“reference” state and three “alternate” states could be represented at that base position. SLiM, on
the other hand, can represent any number of alternative possibilities at a given base; in general, if
N different mutations are segregating at a given position, there are 2N different allelic states at that
position in SLiM. For this reason, SLiM does not attempt to represent multiple mutations at a single
site as being alternative alleles in a single output line, as is typical in VCF format. Instead, SLiM
produces a separate line of VCF output for each segregating mutation at a given position. In non-
nucleotide-based models, SLiM always declares base positions as having a “reference base” of A
(representing the state in individuals that do not carry a given mutation) and an “alternate base” of
T (representing the state in individuals that do carry the given mutation). Multiallelic positions will
thus produce VCF output showing multiple A-to-T changes at the same position, possessed by

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 783

different but possibly overlapping sets of individuals. Many programs that process VCF output may
not behave correctly with this style of output. SLiM therefore provides a choice, using the
outputMultiallelics flag; if that flag is T (the default), SLiM will produce multiple lines of output
for multiallelic base positions, but will mark those lines with a MULTIALLELIC flag in the INFO field
of the VCF output so that those lines can be filtered or processed in a special manner. The
resulting call lines in the VCF output look like this:

1 3 . A T 1000 PASS MID=1769;S=0;DOM=0.5;PO=1;TO=10;MT=1;AC=1;DP=1000
GT 0|0 0|0 0|0 0|0 0|0 0|0 0|0 1|0 0|0 0|0
1 5 . A T 1000 PASS MID=1574;S=0;DOM=0.5;PO=1;TO=9;MT=1;AC=1;DP=1000
GT 0|0 0|0 0|0 0|0 0|1 0|0 0|0 0|0 0|0 0|0
1 7 . A T 1000 PASS MID=876;S=0;DOM=0.5;PO=1;TO=6;MT=1;AC=3;
DP=1000;MULTIALLELIC GT 0|0 0|0 1|1 0|0 1|0 0|0 0|0 0|0 0|0 0|0
1 7 . A T 1000 PASS MID=393;S=0;DOM=0.5;PO=1;TO=3;MT=1;AC=2;
DP=1000;MULTIALLELIC GT 1|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 1|0 0|0
1 8 . A T 1000 PASS MID=1705;S=0;DOM=0.5;PO=1;TO=10;MT=1;AC=1;
DP=1000;MULTIALLELIC GT 0|1 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0
1 8 . A T 1000 PASS MID=1236;S=0;DOM=0.5;PO=1;TO=8;MT=1;AC=4;
DP=1000;MULTIALLELIC GT 0|1 0|0 0|0 0|0 0|0 0|0 1|1 0|1 0|0 0|0
1 10 . A T 1000 PASS MID=1154;S=0;DOM=0.5;PO=1;TO=7;MT=1;AC=2;DP=1000
GT 0|0 0|0 0|0 1|0 0|0 0|0 0|0 0|0 0|1 0|0
...

Positions 3, 5, and 10 in this output are not multiallelic; there is a single mutation segregating at
those positions, shown as an A-to-T mutation as described above. Positions 7 and 8, however,
each have two different mutations segregating; those mutations are therefore emitted as separate
lines tagged by MULTIALLELIC. Note that position 7 is multiallelic simply because more than one
mutation is segregating at that position; mutation id 876 is in three genomes, and mutation id 393 is
in two different genomes. Position 8, however, is multiallelic in part because of stacking: mutation
id 1705 is in one genome, mutation id 1236 is in four genomes, and those sets of genomes overlap
– the second genome of the first individual contains both mutations (1705 presumably arose on the
background of 1236). See section 1.5.3 for discussion of mutation stacking. Both situations are
covered by the MULTIALLELIC flag.

If outputMultiallelics is F, on the other hand, SLiM will completely suppress output of all
mutations at multiallelic sites – often the simplest option, if doing so does not lead to bias in the
subsequent analysis. This flag has no effect upon the output of sites with only a single mutation
present; the output shown above would therefore contain the lines for positions 3, 5, and 10, but
the lines for mutations at positions 7 and 8 would be omitted since those positions are multiallelic.
Assessment of whether a site is multiallelic is done only within the sample; segregating mutations
that are not part of the sample are ignored. The outputMultiallelics flag is ignored in
nucleotide-based models; see section 27.2.4.

The other more subtle points related to VCF output have to do with output from nucleotide-
based models – in particular, the effects of the simplifyNucleotides and outputNonnucleotides
flags. For information on nucleotide-based VCF output, see section 27.2.4.

27.2.4 outputVCFSample() in nucleotide-based models
Section 27.2.3 describes VCF output from non-nucleotide-based models. In nucleotide-based

models, it is somewhat different. Nucleotide-based mutations will be emitted with their correct
nucleotides, of course, rather than always being emitted as A-to-T mutations. The “reference”
nucleotide for a given call will be the ancestral nucleotide; it will also be given with the AA field in
the INFO of the call line, redundantly. If simplifyNucleotides is F (the default), SLiM’s mutational
state will be emitted verbatim; this may include oddities such as an A allele on an ancestral

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 784

background of A (if a back-mutation has occurred at a site that had previously mutated away from
A), or multiple G alleles with different selection coefficients segregating at the same position (if
more than one independent mutation to G has occurred at the site). As a result, the VCF file output
produced may not be considered compliant by some software, since these patterns are not
something one would typically see in VCF files associated with empirical biological data. Here is
an example of VCF output with simplifyNucleotides being F:

#OUT: 10 10 SV p1 10
##fileformat=VCFv4.2
##fileDate=20190308
##source=SLiM
##slimGenomePedigreeIDs=4999898,4999899,...
##INFO=<ID=MID,Number=.,Type=Integer,Description="Mutation ID in SLiM">
##INFO=<ID=S,Number=.,Type=Float,Description="Selection Coefficient">
##INFO=<ID=DOM,Number=.,Type=Float,Description="Dominance">
##INFO=<ID=PO,Number=.,Type=Integer,Description="Population of Origin">
##INFO=<ID=TO,Number=.,Type=Integer,Description="Tick of Origin">
##INFO=<ID=MT,Number=.,Type=Integer,Description="Mutation Type">
##INFO=<ID=AC,Number=.,Type=Integer,Description="Allele Count">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">
##INFO=<ID=NONNUC,Number=0,Type=Flag,Description="Non-nucleotide-based">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT i0 i1 i2 i3 i4 i5 i6 i7 i8
i9
1 4 . G C 1000 PASS MID=1085;S=0;DOM=0.5;PO=1;TO=9;MT=2;AC=2;DP=1000;AA=G
GT 0|0 0|0 0|0 0|0 0|0 1|0 0|0 0|1 0|0 0|0
1 7 . A C,C,C,C 1000 PASS MID=318,1283,1274,1270;S=0,0,0,0;
DOM=0.5,0.5,0.5,0.5;PO=1,1,1,1;TO=3,10,10,10;MT=2,2,2,2;AC=1,1,1,1;
DP=1000;AA=A GT 0|0 0|0 2|0 0|0 0|0 0|1 0|0 4|3 0|0 0|0
1 8 . G T 1000 PASS MID=1236;S=0;DOM=0.5;PO=1;TO=10;MT=2;AC=1;DP=1000;AA=G
GT 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 1|0
1 9 . G T 1000 PASS MID=316;S=0;DOM=0.5;PO=1;TO=3;MT=2;AC=1;DP=1000;AA=G
GT 0|0 0|0 0|0 0|0 0|0 0|1 0|0 0|0 0|0 0|0
1 11 . G C,G 1000 PASS MID=53,659;S=0,0;DOM=0.5,0.5;PO=1,1;TO=2,6;
MT=2,2;AC=2,1;DP=1000;AA=G GT 0|0 0|0 0|1 0|0 1|0 0|0 0|2 0|0 0|0 0|0
1 13 . C T,T 1000 PASS MID=1280,1067;S=0,0;DOM=0.5,0.5;PO=1,1;TO=10,9;
MT=2,2;AC=1,2;DP=1000;AA=C GT 0|0 0|0 1|0 0|0 0|2 0|0 2|0 0|0 0|0 0|0
1 14 . G A 1000 PASS MID=899;S=0;DOM=0.5;PO=1;TO=7;MT=2;AC=1;DP=1000;AA=G
GT 0|0 0|0 0|0 0|0 0|0 0|1 0|0 0|0 0|0 0|0
1 15 . G A 1000 PASS MID=353;S=0;DOM=0.5;PO=1;TO=4;MT=2;AC=1;DP=1000;AA=G
GT 0|0 0|0 0|0 0|0 0|0 0|1 0|0 0|0 0|0 0|0
1 18 . C T 1000 PASS MID=95;S=0;DOM=0.5;PO=1;TO=2;MT=2;AC=9;DP=1000;AA=C
GT 0|1 1|1 1|0 1|1 0|0 0|0 0|0 1|0 1|1 0|0
1 19 . T G,A 1000 PASS
MID=1307,1241;S=0,0;DOM=0.5,0.5;PO=1,1;TO=10,10;MT=2,2;AC=1,1;DP=1000;AA=T
GT 0|0 0|0 0|0 0|0 0|0 1|0 0|0 0|0 0|0 0|2
...

There are several things to note here. The AA and NONNUC tags are now declared in the header as
INFO fields (the NONNUC flag will be discussed below). Some call lines, such as position 4, have just
a single segregating mutation and so appear similar to the output we have seen before, except that
actual nucleotides are specified (G to C, for position 4) and the ancestral allele is given in the AA
field of the call line. Position 19 has an ancestral state of T, and two mutations, G and A, are
segregating; the call line therefore lists both, and various INFO fields provide values for both of the
segregating alleles (two values for S, the selection coefficient, and DOM, the dominance coefficient,

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 785

and so forth). Position 7 has an ancestral state of A, and four independent mutations to C are
segregating at that site; they are listed separately, with separate values for their relevant state. At
position 11 the ancestral state is G, and a mutation to C as well as a back-mutation to G are
segregating; the back-mutation is listed as a separate allele rather than being lumped into the
ancestral state. Some VCF processing software would probably not handle this output correctly,
given these unusual features.

If simplifyNucleotides is T instead, SLiM’s mutational state will be simplified; an A allele on an
ancestral background of A will be reported as the ancestral state, for example, and multiple G
alleles with different selection coefficients segregating at the same position will be reported as a
single G allele. In this case, the SLiM-specific information about nucleotide-based mutations (such
as selection coefficient and subpopulation of origin) will not be emitted, since a single allele in the
VCF file might be an aggregate representing more than one mutation in SLiM. The call lines for the
same model run as above, but with simplifyNucleotides being T, would look like:

#OUT: 10 10 SV p1 10
##fileformat=VCFv4.2
##fileDate=20190308
##source=SLiM
##slimGenomePedigreeIDs=4999898,4999899,...
##INFO=<ID=MID,Number=.,Type=Integer,Description="Mutation ID in SLiM">
##INFO=<ID=S,Number=.,Type=Float,Description="Selection Coefficient">
##INFO=<ID=DOM,Number=.,Type=Float,Description="Dominance">
##INFO=<ID=PO,Number=.,Type=Integer,Description="Population of Origin">
##INFO=<ID=TO,Number=.,Type=Integer,Description="Tick of Origin">
##INFO=<ID=MT,Number=.,Type=Integer,Description="Mutation Type">
##INFO=<ID=AC,Number=.,Type=Integer,Description="Allele Count">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">
##INFO=<ID=NONNUC,Number=0,Type=Flag,Description="Non-nucleotide-based">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT i0 i1 i2 i3 i4 i5 i6 i7 i8
i9
1 4 . G C 1000 PASS AC=2;DP=1000;AA=G GT 0|0 0|0 0|0 0|0 0|0 1|0 0|0 0|1
0|0 0|0
1 7 . A C 1000 PASS AC=4;DP=1000;AA=A GT 0|0 0|0 1|0 0|0 0|0 0|1 0|0 1|1
0|0 0|0
1 8 . G T 1000 PASS AC=1;DP=1000;AA=G GT 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0
0|0 1|0
1 9 . G T 1000 PASS AC=1;DP=1000;AA=G GT 0|0 0|0 0|0 0|0 0|0 0|1 0|0 0|0
0|0 0|0
1 11 . G C 1000 PASS AC=2;DP=1000;AA=G GT 0|0 0|0 0|1 0|0 1|0 0|0 0|0 0|0
0|0 0|0
1 13 . C T 1000 PASS AC=3;DP=1000;AA=C GT 0|0 0|0 1|0 0|0 0|1 0|0 1|0 0|0
0|0 0|0
1 14 . G A 1000 PASS AC=1;DP=1000;AA=G GT 0|0 0|0 0|0 0|0 0|0 0|1 0|0 0|0
0|0 0|0
1 15 . G A 1000 PASS AC=1;DP=1000;AA=G GT 0|0 0|0 0|0 0|0 0|0 0|1 0|0 0|0
0|0 0|0
1 18 . C T 1000 PASS AC=9;DP=1000;AA=C GT 0|1 1|1 1|0 1|1 0|0 0|0 0|0 1|0
1|1 0|0
1 19 . T A,G 1000 PASS AC=1,1;DP=1000;AA=T GT 0|0 0|0 0|0 0|0 0|0 2|0 0|0
0|0 0|0 0|1

Compared to the previous VCF output, it can be seen that the unusual SLiM-specific mutational
states have been simplified. At position 7, for example, the four mutational lineages for
independent mutations to C are shown as a single C allele; and at position 11 the back-mutation to

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 786

G is just considered to be equivalent to the ancestral state, and so that segregating mutation is not
shown at all. The SLiM-specific mutational information such as selection coefficient,
subpopulation of origin, etc., is omitted since alleles now represent an aggregation of multiple
mutations, as discussed above; if that information is needed, then simplifyNucleotides=T cannot
be used.

Nucleotide-based models can still use non-nucleotide-based mutations, and for those, the same
issue discussed above regarding multiallelic sites still exists, but in nucleotide-based models it is
handled differently. Instead, if outputNonnucleotides is T (the default), non-nucleotide-based
mutations will be emitted as usual, as A-to-T mutations, in separate call lines from any nucleotide-
based mutations at the same position, and their call lines will be marked with a NONNUC flag in the
INFO field. For example, such a call line might look like this:

1 21 . A T 1000 PASS MID=0;S=0.1;DOM=0.5;PO=1;TO=1;MT=1;AC=7;
DP=1000;NONNUC GT 1|0 0|0 0|1 0|0 1|0 1|0 0|1 0|1 0|0 1|0

This call line indicates a non-nucleotide-based mutation at position 21; as usual, the A and T
nucleotide states for non-nucleotide-based mutations are fictional. If there were nucleotide-based
mutations at position 21 as well, they would be emitted with a separate call line preceding this
call line.

If, on the other hand, outputNonnucleotides is F, non-nucleotide-based mutations will not be
emitted at all, producing a more standard VCF file that contains only nucleotide-based mutations.
In either case, the MULTIALLELIC flag is never emitted in the VCF output of nucleotide-based
models, and the outputMultiallelics flag is ignored. (Similarly, the outputNonnucleotides flag is
ignored in non-nucleotide-based models, as is the simplifyNucleotides flag.)

27.3 Genome output methods
The output methods of Genome produce output about the specific vector of Genome objects for

which the method is called. Whereas the sampling output methods of Subpopulation limit you to
a sample drawn from a single subpopulation, and provide only a few options regarding how that
sample is conducted, with the Genome output methods you can construct your own vector of
genomes in whatever way you wish, and produce standardized output from that sample. The
sample() function of Eidos may prove useful for this, providing options such as weighted sampling
that Subpopulation’s methods don’t support. The Individual class of SLiM may also be useful; you
can get a vector of individuals from the subpopulations you are interested in, use sample() to get a
sample of individuals from that vector, get the genomes from those individuals using the genomes
property of Individual, and then produce output from the resulting vector of genomes using these
methods.

Incidentally, you might wonder why these Genome output methods behave differently from
most Eidos methods – they do not multicast out to all of the objects in the target vector, producing
a separate output block for each, but instead produce a single output block for the whole target
vector. This is because these methods are designated as class methods, which do not multicast.
This is parallel to defining a static member function in a class in C++, taking a parameter that is a
std::vector containing elements of that same class; that would be the natural way to represent
this concept in C++, whereas in Eidos such methods are class methods that are called on the target
vector but do not multicast. If this is gibberish to you, you can ignore it; the upshot is that it just
works.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 787

27.3.1 output()
The output() method is parallel to the outputSample() method of Subpopulation (see section

27.2.1), but allows output based upon any vector of genomes. Sample output for output(),
abbreviated with ellipses:

#OUT: 10000 10000 GS 10
Mutations:
9 187870 m1 1308 0 0.5 p2 9404 12
47 188084 m1 5994 0 0.5 p1 9415 12
...
Genomes:
p*:0 A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23...
p*:1 A 0 1 2 3 4 5 6 68 7 8 9 69 10 12 13 14 15 16 17 18 19 20 21 22...
...

This is almost identical to the output from outputSample(), so see section 27.2.1 for further
discussion. The main differences are in the header line. The output type here is GS (for “genomes,
SLiM format”), and no subpopulation identifier is given since the genome vector being output may
originate from more than one subpopulation. If the output is sent to a file with output()’s
filePath option, the last field of the header provides the full path of the file to which the output
was saved.

The other difference is in the genome identifiers in the Genomes section. Here, since the
subpopulation of origin of the genomes is not known to output() – since it was just handed a
vector of genomes that could have come from anywhere – the genome identifiers are of the form
p*:0, p*:1, etc., with the * symbolizing an unknown source subpopulation. This syntax is
intended to parallel the syntax used by SLiM’s other output functions, to make it easier to share
parsing code.

27.3.2 outputMS()
The outputMS() method is parallel to the outputMSSample() method of Subpopulation (see

section 27.2.2), but allows output based upon any vector of genomes. Sample output for
outputMS(), abbreviated with ellipses:

#OUT: 10000 10000 GM 10
//
segsites: 165
positions: 0.1308131 0.4991499 0.5994599 0.6999700 0.9599960...
11010110111110010100000111111100000111011011000011110111100111000010...
11010110111110010100000111111100000111011011000011110111100111000010...

This is almost identical to the output from outputMSSample(), so see section 27.2.2 for further
discussion. The differences are in the header line; output type GM is used here (representing
“genomes, MS format”), and no subpopulation identifier is given since the genome vector being
output may originate from more than one subpopulation.

The outputMS() method allows output to be sent to a file, with the optional filePath argument.
In this case, the #OUT: header line is not emitted, since it would not be conformant with the MS
data format specification.

27.3.3 outputVCF()
The outputVCF() method is parallel to the outputVCFSample() method of Subpopulation (see

section 27.2.3 and 27.2.4), but allows output based upon any vector of genomes. Sample output
for outputVCF(), abbreviated with ellipses:

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 788

#OUT: 10000 10000 GV 20
##fileformat=VCFv4.2
##fileDate=20160613
##source=SLiM
##slimGenomePedigreeIDs=4999898,4999899,...
##INFO=<ID=MID,Number=1,Type=Integer,Description="Mutation ID in SLiM">
##INFO=<ID=S,Number=1,Type=Float,Description="Selection Coefficient">
##INFO=<ID=DOM,Number=1,Type=Float,Description="Dominance">
##INFO=<ID=PO,Number=1,Type=Integer,Description="Population of Origin">
##INFO=<ID=TO,Number=1,Type=Integer,Description="Tick of Origin">
##INFO=<ID=MT,Number=1,Type=Integer,Description="Mutation Type">
##INFO=<ID=AC,Number=1,Type=Integer,Description="Allele Count">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=MULTIALLELIC,Number=0,Type=Flag,Description="Multiallelic">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT i0 i1 i2 i3 i4 i5...
1 1309 . A T 1000 PASS
MID=987550;S=0;DOM=0.5;PO=2;TO=9404;MT=1;AC=11;DP=1000 GT 0|1 0|0 0|1...
1 5995 . A T 1000 PASS
MID=987764;S=0;DOM=0.5;PO=1;TO=9415;MT=1;AC=11;DP=1000 GT 0|1 0|0 0|1...
...

This is almost identical to the output from outputVCFSample(), so see section 27.2.3 and 27.2.4
for further discussion. The differences are in the header line; type GV is used here (representing
“genomes, VCF format”), and no subpopulation identifier is given since the genome vector being
output may originate from more than one subpopulation. Also note that the sample size here is
reported in genomes (i.e., 20) whereas with outputVCFSample() it is reported in individuals (i.e.,
10). This is because this method operates on a vector of genomes, and thus that is the natural unit
for the sample size. Nevertheless, since VCF output naturally groups genomes into diploid
individuals, the target genome vector must have an even number of elements, and each pair of
elements will be assumed to represent one individual.

The outputVCF() method allows output to be sent to a file, with the optional filePath
argument. In this case, the #OUT: header line is not emitted, since it would not be conformant with
the VCF data format specification.

27.4 SLiM additions to the .trees file format
The .trees files produced by the treeSeqOutput() method (section 25.15.2) are in a complex

binary format, defined at the top level by the kastore library and at the next level by tskit; it is
not documented here. Reading or writing compliant .trees files is a topic well beyond the scope
of this manual. However, if the tskit.load() method is used to load a .trees file into Python, the
entities defined by the file, such as nodes, edges, and mutations, can then be accessed through the
tskit APIs in Python. Those entities often have a column for metadata, and this is where SLiM
attaches its additional state information. The contents of those metadata fields is documented
here. Directly using or generating this metadata information in Python is, again, beyond the scope
of this manual, but the information provided here at least documents what you would need to
know in order to do so. The tskit and pyslim packages provide the usual route to accessing and
modifying this metadata information, and should suffice for the needs of almost all users.

With tskit version 0.3.0, tskit has greatly improved metadata handling, introducing
metadata schemas and adding metadata entries to all tables, as well as to the tree sequence itself
(so-called “top-level” metadata). With these improvements, the tree sequence now carries around
the information necessary to interpret the metadata it contains (see tskit’s documentation for
further detail). Metadata schemas, stored as JSON-parseable text, provide the information

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 789

necessary to interpret and decode the metadata stored in the tree sequence. (Any equivalent JSON
text will work, but for standardization, schemas should be written out without whitespace.) The
metadata schemas say what elements are present in the metadata, and in what order, and how they
are stored as binary. The actual schemas are lengthy; if you need to see them, they are available in
pyslim through pyslim.slim_metadata_schemas. The metadata itself can be in either a binary
format or in JSON, as documented below. For binary metadata the descriptions below will give
the number of bytes for each field, their C / C++ type, and a brief description, essentially
recapitulating the information in the metadata schemas; for JSON metadata the keys and values
will be described.

27.4.1 Metadata for mutations
The derived state field for each mutation entry is actually a comma-separated list of mutation

IDs, in ASCII, representing all of the stacked mutations present at the position in question after the
addition (or removal) of a mutation; this is rather different from the way the derived state field is
used in most mutation models. Note that fixed mutations (i.e., Substitution objects in SLiM) will
be added on to the end of this derived state list, even in cases such as nucleotide-based models
where mutations do not normally stack, because of the way substitutions are reconciled internally
between SLiM and the tree sequence.

Each mutation entry’s metadata will then consist of a series of 17 byte binary metadata records,
corresponding to the mutation IDs listed for the derived state:

4 bytes (int32_t): the id of the mutation type the mutation belongs to (i.e., 5 for m5)

4 bytes (float): the selection coefficient of the mutation

4 bytes (int32_t): the id of the subpopulation in which the mutation arose (i.e., 3 for p3)

4 bytes (int32_t): the simulation tick in which the mutation arose

1 byte (int8_t): the nucleotide for the mutation (0=A, 1=C, 2=G, 3=T, or -1 for none)

The last field, the nucleotide, is only present in file version "0.3" and later (i.e., output
generated by SLiM 3.3 and later; see below); in file version "0.2" that field is not present, the
mutation metadata record is only 16 bytes in length, and nucleotides cannot be represented.

Note that the same mutation ID may be described by multiple mutation entries, if differences in
stacking or other factors lead to it being recorded multiple times. Furthermore, the metadata for
these multiple descriptions may not match, since metadata such as the selection coefficient of a
mutation can change as a mutation runs. When reading, SLiM will use the metadata associated
with the last recorded version of each mutation.

27.4.2 Metadata for nodes
Each node will have 10 bytes of binary metadata attached (if the node references an individual

that is alive; otherwise, metadata is not required and may be 0 bytes):

8 bytes (int64_t): the SLiM genome ID for this node, as from genomePedigreeID

1 byte (uint8_t): true (1) if this node represents a null genome, as from isNullGenome

1 byte (uint8_t): the type of the genome (0 for autosome, 1 for X, 2 for Y)

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 790

27.4.3 Metadata for individuals
Each individual will have 40 bytes of binary metadata attached:

8 bytes (int64_t): the SLiM pedigree ID for this individual, as from pedigreeID

8 bytes (int64_t): the SLiM pedigree ID for parent 1, as from pedigreeParentIDs

8 bytes (int64_t): the SLiM pedigree ID for parent 2, as from pedigreeParentIDs

4 bytes (int32_t): the age of this individual, as from age

4 bytes (int32_t): the subpopulation the individual belongs to (i.e., 3 for p3)

4 bytes (int32_t): the sex of the individual (0 for female, 1 for male, -1 for hermaphrodite)

4 bytes (uint32_t): flags; see below.

The two parental pedigree ID fields are present only in file version "0.7" and later (i.e., output
generated by SLiM 3.7 and later; see below); in file version "0.6" those fields are not present, the
individual metadata record is only 24 bytes in length, and parental pedigree IDs are not recorded.

At present, only the low-order bit of the flags metadata, 0x01, is used; if set, it indicates that this
individual migrated between subpopulations during the current tick (following the migrant
property of Individual described in section 25.7.1). Other flag bits are reserved and should be set
to 0 until such time as they are defined.

The individual table also has a flags field, outside of the metadata record, and SLiM uses some
bits in that field; that will be explained below since it is not part of the metadata record itself.

27.4.4 Metadata for populations
Beginning in SLiM 3.7, the metadata for populations is in JSON format. The slim_id key is

required (if metadata is present at all; it may be omitted). The rest of the keys are optional; the keys
that apply only to WF models are typically omitted in nonWF metadata, but will be ignored if
present. The keys are as follows:

bounds_x0: spatial bounds x0 value, omitted/unused in non-spatial models

bounds_x1: spatial bounds x1 value, omitted/unused in non-spatial models

bounds_y0: spatial bounds y0 value, omitted/unused in non-spatial models

bounds_y1: spatial bounds y1 value, omitted/unused in non-spatial models

bounds_z0: spatial bounds z0 value, omitted/unused in non-spatial models

bounds_z1: spatial bounds z1 value, omitted/unused in non-spatial models

description: a human-readable description of the population, as from description

female_cloning_fraction: the cloning fraction for females or hermaphrodites (WF)

male_cloning_fraction: the cloning fraction for males or hermaphrodites (WF)

name: a human-readable name for the population, as from name

selfing_fraction: the selfing fraction (WF)

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 791

sex_ratio: the sex ratio as M:M+F (WF)

slim_id: the ID of this subpopulation, as from id

In addition to these basic object values, the key migration_records contains information about
migration rates for the population (WF models only). The value for this key should be an array,
made up of object records, each of which has two keys: source_subpop with the ID of the source
subpopulation, and migration_rate with the migration rate from that source.

Prior to SLiM 3.7, this metadata was instead binary. In binary form, each population has 88
bytes of metadata attached at a minimum, followed by a variable number of 12-byte sections (if the
population is referenced by a node; empty subpopulations are not required to have metadata). The
initial 88-byte section is structured as:

4 bytes (int32_t): the ID of this subpopulation, as from id

8 bytes (double): the selfing fraction (WF) or unused (nonWF)

8 bytes (double): the cloning fraction for females or hermaphrodites (WF) or unused (nonWF)

8 bytes (double): the cloning fraction for males or hermaphrodites (WF) or unused (nonWF)

8 bytes (double): the sex ratio as M:M+F (WF) or unused (nonWF)

8 bytes (double): spatial bounds x0 value, unused in non-spatial models

8 bytes (double): spatial bounds x1 value, unused in non-spatial models

8 bytes (double): spatial bounds y0 value, unused in non-spatial models

8 bytes (double): spatial bounds y1 value, unused in non-spatial models

8 bytes (double): spatial bounds z0 value, unused in non-spatial models

8 bytes (double): spatial bounds z1 value, unused in non-spatial models

4 bytes (int32_t): the number of migration records, as from immigrantSubpopFractions

The value of the last field above dictates the number of 12-byte metadata sections that follow,
each of this format:

4 bytes (int32_t): the ID of the source subpopulation (i.e., 3 for p3)

8 bytes (double): the migration rate from the source subpopulation

27.4.5 Top-level metadata
SLiM makes use of the top-level metadata in the tree sequence to store the information

necessary to reload a tree sequence generated by SLiM. The top-level metadata is encoded as a
JSON string, and SLiM puts its information into the "SLiM" key of this JSON object. This
information should be a JSON object with the following keys: "model_type", "stage", "cycle",
"tick", "name", "description", "file_version", "spatial_dimensionality",
"spatial_periodicity", "separate_sexes", and "nucleotide_based". Note, however, that only
"model_type", "stage", "cycle", "tick", and "file_version" are actually used by SLiM or
pyslim; the rest are provided just for informational purposes. Note also that the keys present in the
top-level metadata have changed from version to version of SLiM, as described in the notes below;
notably, prior to SLiM 4 the "tick" key was not present and the "cycle" key was named

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 792

"generation" instead. If backward compatibility with tree-sequence files written by older versions
of SLiM is needed, care must be taken.

Here is an example, from the top-level metadata generated by the recipe in section 17.1 (with
whitespace added for readability):

{
 "SLiM": {
 "file_version": "0.8",
 "description": "",
 "cycle": 5000,
 "model_type": "WF",
 "name": "sim",
 "nucleotide_based": false,
 "separate_sexes": false,
 "spatial_dimensionality": "",
 "spatial_periodicity": "",
 "stage": "late"
 "tick": 5000
 }
}

These keys have the following meanings:

file_version: the overall version of the SLiM-specific information in the file, such as
metadata and provenance entry information. The current value, for SLiM 4.0, is
"0.8". See below for further details.

cycle: the cycle count at which the file was written, for the focal species, so that that cycle
count can be restored when the file is read.

tick: the tick at which the file was written, for the community, so that that tick can be
restored when the file is read. For single-species models, this will generally have
the same value as cycle; for multispecies models it can be different, if for example
the focal species has been inactive in some ticks.

name: the name of the species persisted in the .trees file ("sim" for single-species models);
this is the name property of the species, as set by the explicit species declaration in
the model script.

description: the description of the species persisted in the .trees file, for annotation; this
comes from the description property of the species.

stage: the tick cycle stage ("first", "early", or "late") at which the file was written; this is
used by pyslim for time calculations.

model_type: this should be either "WF" or "nonWF", depending upon the type of model that
generated the file. This has some implications for other metadata; in particular,
some of the population metadata is required for WF models but unused in nonWF
models, and individual ages in WF model data are expected to be -1.

nucleotide_based: this is true if the model that generated the file was nucleotide-based,
false otherwise.

separate_sexes: this is true if the model that generated the file was sexual (i.e.,
initializeSex() was called), false otherwise.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 793

spatial_dimensionality: the spatial dimensionality of the model that generated the file; this
will be "", "x", "xy", or "xyz" for non-spatial, 1D, 2D, and 3D models respectively.

spatial_periodicity: the spatial periodicity of the model that generated the file; this will be
"", "x", "y", "z", "xy", "xz", "yz", or "xyz", indicating which spatial dimensions
are periodic (if any).

A key named user_metadata may also be present, containing optional user-level metadata that
was supplied to SLiM with the metadata parameter of treeSeqOutput(), as described in section
25.15.2. If present, the value for this key should be a JSON-serialized dictionary. This key is not
used by SLiM (or by pyslim, tskit, or msprime); it may contain any information desired.

Finally, a top-level key (not inside the "SLiM" JSON object) named "reference_sequence" will
be present for nucleotide-based models that were saved with file_version "0.7" or later (SLiM
3.7 or later). It contains a string value representing the ancestral (“reference”) nucleotide sequence
for the model, as a sequence of ACGT characters in ASCII. Prior to file_version "0.7" this string
was placed in a kastore key instead, as noted below.

The file_version value for SLiM 3.3.x is "0.3"; it extends the mutation metadata to include
nucleotide information, as described above (section 27.4.1). Version "0.3" also includes the
ancestral nucleotide sequence, written out to the .trees files under the kastore key
reference_sequence/data; this sequence is provided for nucleotide-based models, and will not be
present for non-nucleotide-based models (note that it moved to top-level metadata in
file_version "0.7", see below). These are the only changes in version "0.3" compared to "0.2";
the provenance entry format is unchanged. Version "0.2" files can still be read by SLiM 3.3 and
later (but since they do not contain nucleotide information, they cannot be read into a nucleotide-
based model).

The file_version for SLiM 3.4.x is "0.4"; it adds a model_hash subkey to the parameters top-
level key, providing a SHA-256 hash (as a 64-character ASCII string containing the lowercase
hexadecimal representation of the hash) for the script provided in the model subkey. This allows
the script to be easily compared/validated against known script strings. With this extension, the
model subkey is no longer guaranteed to be present; if the includeModel option to
treeSeqOutput() is F (T is the default), the model subkey will be omitted from parameters (see
section 25.15.2). This allows one to avoid writing out extremely large scripts to the provenance,
which was a problem for certain usage cases. This is the only change in version "0.4" compared
to "0.3".

The file_version for SLiM 3.5.x is "0.5"; it added top-level metadata and metadata schemas
as previously discussed. It also removed the SLIM_TSK_INDIVIDUAL_FIRST_GEN flag from the flags
column of the individuals table, since first-generation individuals no longer need to be explicitly
marked and retained due to improvements in tskit’s simplification algorithm.

The file_version for SLiM 3.6.x is "0.6"; it added the SLIM_TSK_INDIVIDUAL_RETAINED flag to
the flags column of the individuals table.

The file_version for SLiM 3.7 and later is "0.7"; it added the two parental pedigree ID fields
to the individual metadata record, and moved the ancestral nucleotide sequence from kastore to
top-level metadata, as described above.

The file_version for SLiM 4.0 and later is "0.8"; it added the tick key to top-level metadata,
renamed the generation key to cycle in the top-level metadata, changed the semantics of the
slim_time metadata property of mutations from generations to ticks, and added name and
description metadata values, from the corresponding properties of the focal species, to the top-
level metadata.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 794

27.4.6 The SLiM provenance table entry format
The provenance table is designed to hold an entry for each software program that has been

involved in the creation of the file, providing a sort of “chain of custody” for the data in the file. A
SLiM provenance entry is an ASCII string, with no terminating NULL (the end of the string is dictated
by the length of the entry itself, as tracked by kastore). A typical provenance table entry from
SLiM 3.0 (file_version of "0.1") looked like:

{"program":"SLiM", "version":"3.0", "file_version":"0.1",
 "model_type":"WF", "generation":1000, "remembered_node_count":0}

In SLiM 3.1 this was extended to include more information (file_version of "0.2"). The new
provenance table entry format provided a superset of the information in file_version "0.1"
format, but some keys were renamed or moved within the JSON hierarchy. Such changes have
continued over time; as of SLiM 4.0 (file_version "0.8"), a provenance entry looks like this (with
a few ellipses for long lines):

{
 "environment": {
 "os": {
 "machine": "x86_64",
 "node": "lanois.local",
 "release": "19.6.0",
 "system": "Darwin",
 "version": "Darwin Kernel Version 19.6.0: Tue Feb 15 21:39:11 PST 2022; ..."
 }
 },
 "metadata": {
 "individuals": {
 "flags": {
 "16": {
 "description": "the individual was alive at the time the file was written",
 "name": "SLIM_TSK_INDIVIDUAL_ALIVE"
 },
 "17": {
 "description": "the individual was requested by the user to be...",
 "name": "SLIM_TSK_INDIVIDUAL_REMEMBERED"
 },
 "18": {
 "description": "the individual was requested by the user to be...",
 "name": "SLIM_TSK_INDIVIDUAL_RETAINED"
 }
 }
 }
 },
 "parameters": {
 "command": [],
 "model": "initialize() {\n\tinitializeTreeSeq();\n\tinitializeMutationRate(1e-7);
\n\tinitializeMutationType(\"m1\", 0.5, \"f\", 0.0);\n\tinitializeGenomicElementType(\"g1\", m1,
1.0);\n\tinitializeGenomicElement(g1, 0, 99999);\n\tinitializeRecombinationRate(1e-8);\n}\n1
early() {\n\tsim.addSubpop(\"p1\", 500);\n}\n2000 late() { sim.treeSeqOutput(\"~/Desktop/
junk.trees\"); }\n",
 "model_hash": "eb8f55ebb263a3a42c20aed3d3cb23d44e63ad80365a252408a7126d402c1d6e",
 "model_type": "WF",
 "nucleotide_based": false,
 "seed": 2297719191923,
 "separate_sexes": false,
 "spatial_dimensionality": "",
 "spatial_periodicity": "",
 "stage": "late"
 },
 "schema_version": "1.0.0",
 "slim": {
 "cycle": 2000,
 "file_version": "0.8",
 "name": "sim",
 "tick": 2000
 },

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 795

 "software": {
 "name": "SLiM",
 "version": "4.0"
 }
}

These provenance strings are JSON strings (https://www.json.org). For SLiM 3.0, the keys must
be provided in exactly the order given in the file_version "0.1" example above, including the
exact positions of spaces and punctuation. For SLiM 3.1 and later, any JSON-compliant string
supplying the expected keys will work, as a proper JSON reader has been incorporated into SLiM.

The top-level keys have the following meanings:

environment: This has information about the environment in which the simulation was
executed. Right now it has an os key under it, with machine, node, release,
system, and version keys under that, providing information vended by the POSIX
function uname(). These keys are for diagnostic purposes, and are not particularly
standardized, and should not be relied upon by reading software.

metadata: This has information about the metadata annotations used in the file. Right now it
describes only the three bits that are used by SLiM in the flags column of the
individuals table (not the flags field inside the metadata record for each individual).
Further entries may be added describing all the metadata documented above.

parameters: This provides information that would be necessary to recreate the model run.
The command key provides the command-line parameters (beginning with slim itself)
that were used to run the model; for models run in SLiMgui this will be an empty
array. The model key provides the script that was run by SLiM to generate the saved
file; this is archived in the .trees file for easier identification and reproducibility of
runs. Note that other files that may be sourced or read by the script are not
archived; for full reproducibility it would be necessary to archive such auxiliary files
alongside the .trees file. The script is a JSON-quoted string, so it should be un-
JSON-quoted to reproduce the original script. In SLiM 3.4 and later (file_version
"0.4" and later), a model_hash key will always be present, providing a SHA-256
hash of the script, and the model key may optionally be omitted; see below for
details. The file_version key gives the version of the SLiM annotations in the file
(provenance and metadata). The model_type key should be either "WF" or "nonWF",
depending upon the type of model that generated the file; this is the same as the
top-level metadata key, provided here also since it is relevant to provenance.
Finally, the seed key provides the original random number generator seed. If a seed
is supplied at the command line with the -s option, that will be given here.
Otherwise, the seed will be a randomly generated seed provided by SLiM. Note
that this is only the original seed; if the seed is set in script using setSeed(), that
will not be reflected here (but might be reflected in the script supplied by the model
key).

schema_version: The version of the JSON schema used. The schema for provenance entries
is documented at https://tskit.dev/tskit/docs/stable/provenance.html. Note that the
schema is fairly minimal; most of the information emitted by SLiM is not described.

slim: This provides SLiM-specific information, but is not used by default; it retains a record of
the history of a simulation (e.g., one that has multiple stages of SLiM simulation),
and can be used to recover (some of) the top-level metadata if the top-level
metadata is somehow lost. The file_version, cycle, tick, and name keys provide

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 796

https://www.json.org
https://tskit.dev/tskit/docs/stable/provenance.html

the same information as those keys in the top-level metadata (and note that prior to
SLiM 4 the tick and name keys were not present and the cycle key was named
generation, as in the top-level metadata, as discussed above). There was a key
named remembered_node_count key in file_version "0.1" which specified how
many rows at the top of the nodes table were “remembered” by the user with the
treeSeqRememberIndividuals() method; in file_version "0.2" and later,
remembered individuals and genomes are controlled by the flags set on the rows of
the individual table.

software: This provides information about the software program that produced this
provenance entry. The name key gives the name of the software, and the version
key gives the version number of the software. Note that in file_version "0.1"
these were top-level keys instead, and the name key was called program, as
illustrated by the file_version "0.1" example earlier.

The hope is that this existing provenance information will now be fairly stable, although further
fields may be added.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 797

28. SLiM extensions to the Eidos language

28.1 Extensions to the Eidos grammar
The Eidos language itself is defined by the grammar given in the Eidos manual. However, SLiM

defines the grammar of a SLiM input file, which defines a small extension to the Eidos language –
in particular, by using a different start rule than Eidos’s interpreter normally uses:

This start rule defines a SLiM input file as a series of zero or more SLiM Eidos blocks:

As shown above, each slim_eidos_block is a callback, an event, or a user-defined function;
callbacks and events can be preceded by some informational tokens. Note that ordinary Eidos
statements are not allowed at the top level of the SLiM input file; they must be within the body of a
slim_eidos_block. The SLiM input file therefore structures Eidos statements into encapsulated
blocks: events and callbacks (as well as, perhaps, user-defined functions).

In the definition of a slim_eidos_block, there are a couple of optional components:

The slim_species_spec, called a species specifier, is used in multispecies models to indicate
the species to which a callback block applies; in single-species models it must be omitted.
Similarly, the slim_ticks_spec, called a ticks specifier, is used in multispecies models to indicate
a species to which an event block should be synchronized (executing only in ticks for which that
species is active); in single-species models it must be omitted.

The slim_script_info begins with an optional identifier that can be used to later identify the
script block programmatically. If supplied, it should be an identifier like "s1", or more generally,
"sX" where X is an integer greater than or equal to 0. The rest of the informational section
comprises an optional tick or range of ticks in which the script block will be used by SLiM:

The tick numbers are defined syntactically by the grammar as numeric literals, but semantically,
there are further restrictions (see section 26.1). The railroad diagram above describes that the tick
range may take one of several forms: NUMBER_LITERAL, NUMBER_LITERAL:,
NUMBER_LITERAL:NUMBER_LITERAL, or :NUMBER_LITERAL. See section 26.1 for discussion of these
forms.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 798

After these optional components of the informational section comes either a SLiM callback
declaration section, declaring an Eidos callback (initialize(), mutationEffect(),
fitnessEffect(), interaction(), mateChoice(), modifyChild(), mutation(), recombination(),
reproduction(), or survival()):

or a SLiM event declaration section, declaring an Eidos event (first(), early(), or late()):

or the block is a user-defined function, the grammar for which is defined in the Eidos language (see
the Eidos manual for details).

For Eidos callbacks, there may be required or optional identifier tokens following the callback
type declaration (in parentheses), as shown above; these identifiers specify restrictions on the
circumstances in which the callback will be used by SLiM. See chapter 26 for further details
regarding the possible restrictions supported by each callback type.

In all other respects the grammar of Eidos is unmodified in SLiM.

28.2 SLiM scoping rules
The term “scope”, in computer science, refers to the semantic rules about where defined

variables are visible, and how long defined variables continue to exist. Languages vary widely in
their scoping rules.

Eidos is not a strongly scoped language; variables do not exist until they are defined, and once
defined they exist in the global scope, and continue to exist forever (unless/until they are
subsequently undefined with rm()). There is no expression scope or block scope; variables do not
become undefined at the end of the expression or block in which they were defined. The only
exception to this, in pure Eidos code, is that user-defined functions run within their own private
scope; in other words, Eidos does employ function scope. This means that when code inside a
user-defined function is executing, variables in the global scope are still visible (unless they are

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 799

masked by a local variable with the same name), but assignment occurs in the local scope unless
defineConstant() or defineGlobal() are used to explicitly put a constant or variable into the
global scope. (This is true even if a given variable has already been defined in the global scope;
assigning to that variable name with operator = inside a user-defined function will create a new
local variable with the same name, masking the global variable!) Local variables defined inside a
function’s private scope will go out of scope, and thus cease to exist, when the function returns.
Finally, if one function calls out to a second function, the local variables of the first function are
not visible to the code of the second function (in other words, function scoping is lexical, not
dynamic). (See the Eidos manual for further discussion of scope in Eidos.)

SLiM follows these scoping rules, in general, but there are two twists. The first twist is that SLiM
events and callbacks are treated much like Eidos user-defined functions, in that they have their
own private scope. This is desirable, in general, because it prevents the global namespace from
becoming cluttered up with all of the local, temporary variables defined by particular events and
callbacks. It also provides a clean way for SLiM to, in effect, pass values in to callbacks (so-called
“pseudo-parameters”), as described in chapter 26. For all intents and purposes, then, SLiM events
and callbacks can actually be thought of as a special kind of user-defined function that is called
automatically by SLiM, with a non-standard syntax for their declaration.

The second twist in SLiM is that the global scope is de-emphasized. It is not possible to write
top-level Eidos code in a SLiM script that gets executed in the global scope; all SLiM code exists
inside an event or callback, and therefore all SLiM code gets executed inside a private scope.
However, the global scope does still exist, and can be used, as described below. Again, this design
is actually advantageous, because it keeps the global namespace free of clutter, and automatically
disposes of the context-specific variables used in events and callbacks.

Two kinds of entities can live in the global scope (and this is true in pure Eidos as well as in
SLiM): constants and variables. Constants can be defined in the global scope with the
defineConstant() function; there is no way to define a constant with local scope. Variables can
be defined in the global scope with the defineGlobal() function (and in the local scope with
operator =). The most obvious difference between constants and variables is that variables can be
redefined with a new value, whereas constants cannot. This is primarily a safety measure; using a
constant ensures that the value will be what you intended it to be, because it cannot be replaced
accidentally. The other important difference is that global variables can be masked; a local
variable with the same name can hide the global variable, which can cause difficult-to-find bugs if
you intend your code to be referencing the global variable instead of the local variable. Constants,
on the other hand, cannot be masked, ever; if a global constant has been defined, it is illegal for a
variable to be defined, in any scope, with the same name. Again, this is a safety measure; it
ensures that when you use the name of a constant you will always get the value you intend,
because masking of constants is impossible.

When writing SLiM code, you will usually want your values to live in the local scope, as
variables do by default. Sometimes, however, you will want to keep a value around beyond the
lifetime of the local scope, for future reference. Given the scoping rules above, there are a number
of strategies for this:

• You could define a global constant with defineConstant(). This is the best approach if
you want the value to be permanent and unchanging, and is a common way to handle
model parameters.

• You could define a global variable with defineGlobal(). This is often the best approach
for a value that you want to exist more or less forever, but that might change over time –

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 800

especially if the value is not conceptually associated with a particular SLiM object. Note
that you will need to update the value of such a global variable by calling defineGlobal()
again; if you try to just assign into the variable after defining it, you will create a new
variable with the same name as the global, in the local scope. It is perfectly legal to
“mask” a global variable with a local variable of the same name, but it is usually not what
you want.

• You could put the value into a tag property on a SLiM object. A property named tag
exists on many of SLiM’s classes, which can hold singleton integer values persistently
(and the tagF property on Individual can hold singleton float values, as well). If you
want to keep a single number associated with an object (something about the state of an
individual, a genome, or a mutation, for example), the tag property is a good way to do it.

• You could put the value into a SLiM object’s dictionary. Most SLiM classes inherit from
the Eidos class Dictionary (documented in the Eidos manual) and thus provide a key-
value dictionary that you can use to attach arbitrary values to them. You attach a value
with the setValue() method, and fetch values back with the getValue() method, using a
string or integer key to look up the value you want. This mechanism is much more
flexible than tag and tagF; values of any type can be kept, and the values don’t have to be
singletons. Indeed, you could even attach a whole Dictionary object to a SLiM object
using setValue().

• You could put the value into a global dictionary. You can use the Eidos class Dictionary
for a variety of purposes. One that can be convenient is to define a global variable that
contains a dictionary, with a call like defineGlobal("D", Dictionary());. Now you can
throw key-value pairs into that dictionary, using the Dictionary methods setValue() and
getValue(), keeping your global namespace free of clutter and organizing your data by
string or integer keys. You can even nest Dictionary() objects to create tree structures
if you wish, which might be useful for storing complex data.

One thing that it is impossible to do in SLiM is to keep “long-term” references to some values of
object type. The Eidos manual discusses the reasons for this, in its section “Scope with user-
defined functions”, but in a nutshell: the SLiM core creates and destroys many objects as the
simulation runs (objects like Individual and Subpopulation instances), and references to such
objects become invalid when the referenced objects are destroyed. This happens at specific points
in time, called “long-term boundaries”, that are defined by SLiM. A reference to an object that is
kept “long-term” is a reference that is kept across a long-term boundary; such a reference might
become invalid at the long-term boundary, because the referenced object might have been
destroyed.

There are two important points to resolve, regarding this picture. The first point is when long-
term boundaries occur. SLiM defines that a long-term boundary exists whenever an Eidos event,
like a first(), early(), or late() event, or an Eidos callback, like a mutationEffect() or
reproduction() callback, returns back to the SLiM core. In addition, a long-term boundary exists
whenever the state of a species is replaced (destroying the previously existing objects); this occurs
when readFromPopulationFile() is called. With the exception of calls to
readFromPopulationFile(), then, long-term boundaries do not exist within the local scope; you
can keep references to any object you wish within the local scope, using local variables and
locally-defined containers like Dictionary and DataFrame. Beyond the local scope, however –

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 801

when you return to the SLiM core at the end of an event or callback – you are not allowed to keep
references to some objects, because such references are “long-term” and might become invalid.

The second important point is what is meant when we say that some objects cannot be
referenced long-term; which can and which can’t? The answer is that it is safe to keep a long-term
reference to an object if, and only if, it is under an internal memory-management scheme called
“retain-release”. This memory-management scheme “retains” objects when they are referenced,
preventing them from being destroyed even if the SLiM core has finishing using them. If you have
a reference to such an object, your reference retains the object, and therefore your reference
remains valid even across a long-term boundary. If an object is not under retain-release memory
management, however, then SLiM manages its lifetime, and will destroy the object at the next
long-term boundary if it has finished using it. If you have a reference to such an object, your
reference could become invalid at the next long-term boundary, and therefore it is illegal to keep
that reference long-term.

Which object classes are under retain-release? First of all, all of the classes defined by Eidos
(Dictionary, DataFrame, and Image, at present) are under retain-release, so those objects, in
themselves, are safe to keep long-term. However, a Dictionary or DataFrame might contain an
object that is not under retain-release; in that case, the Dictionary or DataFrame cannot be kept
long-term because of the object it contains. Second, some of the Eidos classes defined by SLiM
are also under retain-release: specifically, at present, Chromosome, Mutation, SpatialMap,
Substitution, and LogFile. References to objects of these classes may also be kept long-term.
Third, all other Eidos classes defined by SLiM are not under retain-release, and therefore may not
be kept long-term.

This scheme may seem rather complicated and daunting, at first. Happily, Eidos is designed to
prevent you from violating these scoping rules, so you don’t need to worry about going off-piste; if
you violate the rules, Eidos will tell you. This is done in two ways. First of all, several of the ways
of establishing a long-term reference will immediately prevent you from referencing an object that
you are not allowed to reference long-term. In particular, the defineConstant() and
defineGlobal() functions will not let you put a reference to a non-retain-released object into a
global constant or variable, period; they will give you an error if you try. Second, Eidos will check
for references to non-retain-released objects whenever a long-term boundary is reached, and will
give you an error if you have kept one. Since defineConstant() and defineGlobal() both block
you from establishing such a reference in the first place, there is actually only one way that this
can happen in SLiM at present: put a reference to the non-retain-released object into a Dictionary
or DataFrame (or a subclass thereof) with setValue(). Eidos allows you to do this, because it is
very useful to be able to do so within the local scope – making a Dictionary with keys that
reference Individual objects, for example, so that you can look up the individual you want while
you are doing some sort of complex processing of a subpopulation. Eidos even allows you to put
that Dictionary into a global variable, because you might want to use it inside a deeply nested
call to a user-defined function, for example. But if you don’t clean up that reference before the
next long-term boundary, Eidos will throw an error. So you should never get a crash in SLiM due
to a stale reference to an object that has deallocated; instead, Eidos should detect that possibility
before it occurs, and give you an error message.

So, in summary: (1) You can keep long-term references to Eidos classes, as well as Chromosome,
Mutation, SpatialMap, Substitution, and LogFile; (2) You cannot keep long-term references to
other SLiM object classes, but you can keep references to them, put them in Dictionary and
DataFrame objects, etc., in the local scope; and (3) Eidos will throw an error if you violate these
rules. This provides a fair amount of flexibility, but sometimes you really do want to be able to
refer to a non-retain-released object across a long-term boundary. What to do then? Typically, you
remember an object ID, a “tag” value, a pedigree ID, or some other piece of state that will allow

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 802

you to look up the object later. (The Eidos manual has further discussion of such strategies in its
discussion of scoping rules.) Keep in mind, though, that when you try to look the object up, it
might not exist any more – which is precisely why you weren’t allowed to keep a long-term
reference to it in the first place! So your code should handle the possibility that the lookup fails.

It is surprising that Mutation is under retain-release and can be kept long-term, because
mutations are the sort of object that the SLiM core is constantly creating and destroying as a
simulation runs. Why is it possible to keep a long-term reference to one, beyond the point when it
might become lost or fixed? In short, it is possible because a bunch of work went into making it
possible, because it is so useful to be able to keep a long-term reference to a Mutation object
when you are modeling selective sweeps (see section 9.9). It is important to understand the
consequences of this, however; in particular, this means that you can keep mutation objects past
their normal lifetime in SLiM, after they have fixed (and been converted to a Substitution object),
or have been lost. If you want to know whether a mutation that you have held onto is still actually
segregating in the population, or has been fixed or lost, there are now properties on Mutation that
provide this information (see section 25.10.1).

Finally, note that these policies have evolved considerably over time. Before SLiM 3.5 (Eidos
2.5), it was not possible to keep long-term references to Eidos and SLiM objects at all, whether
with defineConstant(), defineGlobal(), or setValue(), because the retain-release memory-
management scheme had not yet been implemented in Eidos. That was added in SLiM 3.5, and
then keeping object references for retain-released objects became possible with defineConstant()
and defineGlobal(). In SLiM 4.1 the policy was relaxed further, allowing even non-retain-
released objects to be put into Dictionary and DataFrame containers within the local scope, as
long as those references get cleaned up before the next long-term boundary. The policy will
probably continue to evolve towards increasing flexibility as time goes by, with more classes put
under retain-release. Ultimately, however, it is necessary to place limits on the lifetime of certain
object references, so that SLiM is able to destroy objects when it has finished with them – if only
for performance reasons.

TOC I TOC II WF nonWF initialize() Community Genome Individual LogFile Mutation Species Subpopulation

events mutationEffect() interaction() mateChoice() modifyChild() mutation() recombination() reproduction() survival() 803

29. SLiM reference sheet

This reference sheet may be downloaded as a separate PDF from http://messerlab.org/slim/.

2. Execution of early() events

5. Removal of fixed mutations

4. Selection (incl. survival())

3. Fitness recalculation using
mutationEffect() and

fitnessEffect() callbacks

7. Tick/cycle count increment,
individual age increments

1. Generation of offspring:

1.1. Call reproduction()
callbacks for individuals

1.2. The callback(s) make
calls requesting offspring

1.3. Generate the offspring
(including mutation() and
recombination() callbacks)

1.4. Suppress/modify child
(modifyChild() callbacks)

6. Execution of late() events

The nonWF model’s tick cycle

0. Execution of first() events

1. Execution of early() events

3. Removal of fixed mutations

4. Offspring become parents

6. Fitness recalculation using
mutationEffect() and

fitnessEffect() callbacks

7. Tick/cycle count increment

2. Generation of offspring:

2.1. Choose source subpop

2.2. Choose parent 1

2.3. Choose parent 2
(mateChoice() callbacks)

2.4. Generate the offspring
(including mutation() and
recombination() callbacks)

2.5. Suppress/modify child
(modifyChild() callbacks)

5. Execution of late() events

The WF model’s tick cycle

0. Execution of first() events

(ret-type)functionName(params) { ... } user-defined function
[id] initialize() { ... } initialize() callback
[id] [t1 [: t2]] first() | early() | late() { ... } Eidos events
[id] [t1 [: t2]] fitnessEffect([<subpopId>]) { ... } fitnessEffect() callback
[id] [t1 [: t2]] interaction(<intTypeId> [, <subpopId>]) { ... } interaction() callback
[id] [t1 [: t2]] mateChoice([<subpopId>]) { ... } (WF) mateChoice() callback
[id] [t1 [: t2]] modifyChild([<subpopId>]) { ... } modifyChild() callback
[id] [t1 [: t2]] mutationEffect(<mutTypeId> [, <subpopId>]) { ... } mutationEffect() callback
[id] [t1 [: t2]] recombination([<subpopId>]) { ... } recombination() callback
[id] [t1 [: t2]] mutation([<mutTypeId> [, <subpopId>]]) { ... } mutation() callback
[id] [t1 [: t2]] reproduction([<subpopId> [, <sex>]]) { ... } (nonWF) reproduction() callback
[id] [t1 [: t2]] survival([<subpopId>]) { ... } (nonWF) survival() callback

slim -version | -usage | -help | -testEidos | -testSLiM |
 [-seed <seed>] [-time] [-mem] [-Memhist] [-long [<l>]] [-x] [-define <def>] <script file>

Types: N:NULL, l:logical, i:integer, f:float, n:numeric, s:string, o<X>:object of class X

*

*

*

* : cycle stage
 present in only
one of the model types

SLiM Reference Sheet 5 December 2023

definition order

species declaration order

undefined order

Multispecies execution:

 804

http://messerlab.org/slim/

Initialization functions (callable only from initialize() callbacks):

(integer$)initializeAncestralNucleotides(is sequence) (nuc)
(void)initializeGeneConversion(n$ nonCrossoverFraction, n$ meanLength,

n$ simpleConversionFraction, [n$ bias], [l$ redrawLengthsOnFailure])
(o<GElement>)initializeGenomicElement(io<GEType> genomicElementType, i start, i end)
(o<GEType>$)initializeGenomicElementType(is$ id, io<MutType> mutationTypes, n proportions,

[Nf mutationMatrix])
(void)initializeHotspotMap(numeric multipliers, [Ni ends], [s$ sex]) (nuc)
(o<IntType>$)initializeInteractionType(is$ id, s$ spatiality, [l$ reciprocal],

[n$ maxDistance], [s$ sexSegregation])
(void)initializeMutationRate(n rates, [Ni ends], [s$ sex])
(o<MutType>$)initializeMutationType(is$ id, n$ dominanceCoeff, s$ distributionType, ...)
(o<MutType>$)initializeMutationTypeNuc(is$ id, n$ dominanceCoeff, s$ distributType, ...) (nuc)
(void)initializeRecombinationRate(n rates, [Ni ends], [s$ sex])
(void)initializeSex(s$ chromosomeType)
(void)initializeSLiMModelType(s$ modelType)
(void)initializeSLiMOptions([l$ keepPedigrees], [s$ dimensionality], [s$ periodicity],

[i$ mutationRuns], [l$ preventIncidentalSelfing], [l$ nucleotideBased],
[l$ randomizeCallbacks])

(void)initializeSpecies([i$ tickModulo], [i$ tickPhase], [s$ avatar], [s$ color])
(void)initializeTreeSeq([l$ recordMutations], [Nif$ simplificationRatio],

[Ni$ simplificationInterval], [l$ checkCoalescence], [l$ runCrosschecks],
[l$ retainCoalescentOnly], [Ns$ timeUnit])

SLiMEidosBlock (SEBlock):

Superclass: Dictionary

active <–> (i$)
end => (i$)
id => (i$)
source => (s$)
speciesSpec => (o<Species>$)
start => (i$)
tag <–> (i$)
ticksSpec => (o<Species>$)
type => (s$)

mutationEffect():
 mut (o<Mutation>$)
 homozygous (l$)
 effect (f$)
 individual (o<Ind>$)
 subpop (o<Subpop>$)
 float$: mutation effect

mateChoice(): (WF)
 individual (o<Ind>$)
 subpop (o<Subpop>$)
 sourceSubpop (o<Subpop>$)
 weights (f)
 NULL: use default mate choice
 float: new mating weights
 float(0): no suitable mate
 o<Ind>$: the chosen mate

SLiM globals:

 community (o<Community>$)
 sim, ... (o<Species>$)
 g1, ... (o<GEType>$)
 i1, ... (o<IntType>$)
 m1, ... (o<MutType>$)
 p1, ... (o<Subpop>$)
 s1, ... (o<SEBlock>$)
 self (o<SEBlock>$)

modifyChild():
 child (o<Ind>$)
 parent1 (o<Ind>$)
 isCloning (l$)
 isSelfing (l$)
 parent2 (o<Ind>$)
 subpop (o<Subpop>$)
 sourceSubpop (o<Subpop>$)
 T: accept the proposed child
 F: reject the proposed child

interaction():
 distance (f$)
 strength (f$)
 exerter (o<Ind>$)
 receiver (o<Ind>$)
 float$: interaction strength

reproduction(): (nonWF)
 individual (o<Ind>$)
 subpop (o<Subpop>$)
 void: (no return)

mutation():
 mut (o<Mutation>$)
 genome (o<Genome>$)
 element (o<GElement>$)
 originalNuc (i$)
 parent (o<Ind>$)
 subpop (o<Subpop>$)
 T: accept the mutation
 F: reject the mutation
 o<Mut>$: use a substitute

SLiM callbacks:

survival(): (nonWF)
 individual (o<Ind>$)
 subpop (o<Subpop>$)
 surviving (l$)
 fitness (f$)
 draw (f$)
 T: individual survives
 F: individual dies
 NULL: use SLiM’s decision
 o<Subpop>$: move to subpop

recombination():
 individual (o<Ind>$)
 genome1 (o<Genome>$)
 genome2 (o<Genome>$)
 subpop (o<Subpop>$)
 breakpoints (i)
 T: breakpoints changed
 F: breakpoints unchanged

fitnessEffect():
 individual (o<Ind>$)
 subpop (o<Subpop>$)
 float$: fitness effect

 805

Species:
Superclass: Dictionary

avatar => (s$)
chromosome => (o<Chromosome>$)
chromosomeType => (s$)
color => (s$)
cycle <–> (i$)
description <–> (s$)
dimensionality => (s$)
genomicElementTypes => (o<GEType>)
id => (i$)
mutationTypes => (o<MutType>)
mutations => (o<Mut>)
name => (s$)
nucleotideBased => (l$) (nuc)
periodicity => (s$)
scriptBlocks => (o<SEBlock>)
sexEnabled => (l$)
subpopulations => (o<Subpop>)
substitutions => (o<Substitution>)
tag <–> (i$)
– (o<Subpop>$)addSubpop(is$ subpopID, i$ size, [f$ sexRatio], [l$ haploid])
– (o<Subpop>$)addSubpopSplit(is$ subpopID, i$ size, io<Subpop>$ sourceSubpop,

[f$ sexRatio]) (WF)
– (i$)countOfMutationsOfType(io<MutType>$ mutType)
– (o<Ind>)individualsWithPedigreeIDs(i pedigreeIDs, [Nio<Subpop> subpops])
– (void)killIndividuals(o<Individual> individuals) (nonWF)
– (i)mutationCounts(Nio<Subpop> subpops, [No<Mut> mutations])
– (f)mutationFrequencies(Nio<Subpop> subpops, [No<Mut> mutations])
– (o<Mut>)mutationsOfType(io<MutType>$ mutType)
– (void)outputFixedMutations([Ns$ filePath], [l$ append])
– (void)outputFull([Ns$ filePath], [l$ binary], [l$ append], [l$ spatialPositions], [l$ ages],

[l$ ancestralNucleotides], [l$ pedigreeIDs])
– (void)outputMutations(o<Mut> mutations, [Ns$ filePath], [l$ append])
– (i$)readFromPopulationFile(s$ filePath, [No$ subpopMap])
– (void)recalculateFitness([Ni$ tick])
– (o<SEBlock>$)register[FitnessEffect/MateChoice (WF)/ModifyChild/Recombination/

Survival]Callback(Nis$ id, s$ source, [Nio<Subpop>$ subpop], [Ni$ start], [Ni$ end])
– (o<SEBlock>$)registerMutationCallback(Nis$ id, s$ source, [Nio<MutType>$ mutType],

[Nio<Subpop>$ subpop], [Ni$ start], [Ni$ end])
– (o<SEBlock>$)registerMutationEffectCallback(Nis$ id, s$ source, io<MutType>$ mutType,

[Nio<Subpop>$ subpop], [Ni$ start], [Ni$ end])
– (o<SEBlock>$)registerReproductionCallback(Nis$ id, s$ source, [Nio<Subpop>$ subpop],

[Ns$ sex], [Ni$ start], [Ni$ end]) (nonWF)
– (void)simulationFinished(void)
– (void)skipTick(void)
– (o<Mut>)subsetMutations([No<Mut>$ exclude], [Nio<MutType>$ mutType], [Ni$ position],

[Nis$ nucleotide], [Nl$ tag], [Nl$ id])
– (l$)treeSeqCoalesced(void)
– (void)treeSeqOutput(s$ path, [l$ simplify] , [l$ includeModel] , [No$ metadata])
– (void)treeSeqRememberIndividuals(o<Ind> individuals , [l$ permanent])
– (void)treeSeqSimplify(void)

SLiMgui quick help:
opt-click on keyword

Code completion:
escape (␛)

Effects of mutations:

 no mutation present 1
 heterozygote 1 + h*s
 homozygote 1 + s

s = mut.selectionCoeff
h = mutType.dominanceCoeff

SLiMgui: (in SLiMgui only)
Superclass: Dictionary

pid => (i$)
– (void)openDocument(s$ filePath)
– (void)pauseExecution(void)

 806

Subpopulation (Subpop):

Superclass: Dictionary

cloningRate => (f) (WF)
description <–> (s$)
firstMaleIndex => (i$)
fitnessScaling <–> (f$)
genomes => (o<Genome>)
genomesNonNull => (o<Genome>)
id => (i$)
immigrantSubpopFractions => (f) (WF)
immigrantSubpopIDs => (i) (WF)
individualCount => (i$)
individuals => (o<Ind>)
lifetimeReproductiveOutput => (i$)
lifetimeReproductiveOutputF => (i$)
lifetimeReproductiveOutputM => (i$)
name <–> (s$)
selfingRate => (f$) (WF)
sexRatio => (f$) (WF)
spatialBounds => (f)
spatialMaps => (o<SpatialMap>)
species => (o<Species>$)
tag <–> (i$)
– (No<Ind>$)addCloned(o<Ind>$ parent, [i$ count], [l$ defer]) (nonWF)
– (No<Ind>$)addCrossed(o<Ind>$ parent1, o<Ind>$ parent2, [Nfs$ sex], [i$ count],

[l$ defer]) (nonWF)
– (No<Ind>$)addEmpty([Nfs$ sex], [Nl$ genome1Null], [Nl$ genome2Null], [i$ count]) (nonWF)
– (No<Ind>$)addRecombinant(No<Genome>$ strand1, No<Genome>$ strand2, Ni breaks1,

No<Genome>$ strand3, No<Genome>$ strand4, Ni breaks2, [Nfs$ sex],
[No<Ind>$ parent1], [No<Ind>$ parent2], [l$ randomizeStrands], [i$ count],
[l$ defer]) (nonWF)

– (No<Ind>$)addSelfed(o<Ind>$ parent, [i$ count], [l$ defer]) (nonWF)
– (void)addSpatialMap(o<SpatialMap>$ map)
– (f)cachedFitness(Ni indices)
– (void)configureDisplay([Nf center], [Nf$ scale], [Ns$ color])
– (o<SpatialMap>$)defineSpatialMap(s$ name, s$ spatiality, n values, [l$ interpolate],

[Nif valueRange], [Ns colors])
– (void)outputMSSample(i$ sampleSize, [l$ replace], [s$ requestedSex],

[Ns$ filePath], [l$ append], [l$ filterMonomorphic])
– (void)outputSample(i$ sampleSize, [l$ replace], [s$ requestedSex],

[Ns$ filePath], [l$ append])
– (void)outputVCFSample(i$ sampleSize, [l$ replace], [s$ requestedSex],

[l$ outputMultiallelics], [Ns$ filePath], [l$ append])
– (f)pointDeviated(i$ n, float point, s$ boundary, f$ maxDistance, s$ functionType, ...)
– (l)pointInBounds(f point)
– (f)point[Periodic|Reflected|Stopped](f point)
– (f)pointUniform([i$ n])
– (void)removeSpatialMap(so<SpatialMap>$ map)
– (void)removeSubpopulation(void) (nonWF)
– (void)sampleIndividuals(i$ size, [l$ replace], [No<Ind>$ exclude], [Ns$ sex], [Ni$ tag],

[Ni$ minAge], [Ni$ maxAge], [Nl$ migrant], [Nl$ tagL0], [Nl$ tagL1], [Nl$ tagL2],
[Nl$ tagL3], [Nl$ tagL4])

– (void)setCloningRate(n rate) (WF)
– (void)setMigrationRates(io<Subpop> sourceSubpops, n rates) (WF)
– (void)setSelfingRate(n$ rate) (WF)
– (void)setSexRatio(f$ sexRatio) (WF)
– (void)setSpatialBounds(n bounds)
– (void)setSubpopulationSize(i$ size) (WF)
– (f)spatialMapValue(so<SpatialMap>$ map, f point)
– (o<Ind>)subsetIndividuals([No<Ind>$ exclude], [Ns$ sex], [Ni$ tag], [Ni$ minAge],

[Ni$ maxAge], [Nl$ migrant], [Nl$ tagL0], [Nl$ tagL1], [Nl$ tagL2], [Nl$ tagL3],
[Nl$ tagL4])

– (void)takeMigrants(o<Ind> migrants) (nonWF)

 807

Individual (Ind):

Superclass: Dictionary

age <–> (i$) (nonWF)
color <–> (s$)
fitnessScaling <–> (f$)
genomes => (o<Genome>)
genomesNonNull => (o<Genome>)
genome1 => (o<Genome>$)
genome2 => (o<Genome>$)
index => (i$)
migrant => (l$)
pedigreeID => (i$)
pedigreeParentIDs => (i)
pedigreeGrandparentIDs => (i)
reproductiveOutput => (i$)
sex => (s$)
spatialPosition => (f)
subpopulation => (o<Subpop>$)
tag <–> (i$)
tagF <–> (f$)
tagL0 to tagL4 <–> (l$)
uniqueMutations => (o<Mut>)
x, y, z <–> (f$)
xy, xz, yz, xyz => (f)
– (l)containsMutations(o<Mut> mutations)
– (i$)countOfMutationsOfType(io<MutType>$ mutType)
– (f)relatedness(o<Ind> individuals)
+ (void)setSpatialPosition(f position)
– (i)sharedParentCount(o<Ind> individuals)
– (f$)sumOfMutationsOfType(io<MutType>$ mutType)
– (o<Mut>)uniqueMutationsOfType(io<MutType>$ mutType)

Mutation (Mut):

Superclass: Dictionary

id => (i$)
isFixed => (l$)
isSegregating => (l$)
mutationType => (o<MutType>$)
nucleotide <–> (s$) (nuc)
nucleotideValue <–> (i$) (nuc)
originTick => (i$)
position => (i$)
selectionCoeff => (f$)
subpopID <–> (i$)
tag <–> (i$)
- (void)setMutationType(io<MutType>$ mutType)
– (void)setSelectionCoeff(f$ selectionCoeff)

MutationType (MutType):

Superclass: Dictionary

color <–> (s$)
colorSubstitution <–> (s$)
convertToSubstitution <–> (l$)
distributionParams => (f)
distributionType => (s$)
dominanceCoeff <–> (f$)
id => (i$)
mutationStackGroup <–> (i$)
mutationStackPolicy <–> (s$)
nucleotideBased => (l$) (nuc)
species => (o<Species>$)
tag <–> (i$)
– (float)drawSelectionCoefficient(i$ n)
– (void)setDistribution(s$ distType, ...)

Chromosome:

Superclass: Dictionary

colorSubstitution <–> (s$)
geneConversionEnabled => (l$)
geneConversionGCBias => (f$)
geneConversionNonCrossoverFraction => (f$)
geneConversionMeanLength => (f$)
geneConversionSimpleConversionFraction => (f$)
genomicElements => (o<GElement>)
hotspotEndPositions[F|M] => (i) (nuc)
hotspotMultipliers[F|M] => (f) (nuc)
lastPosition => (i$)
mutationEndPositions[F|M] => (i)
mutationRates[F|M] => (f)
overallMutationRate[F|M] => (f$)
overallRecombinationRate[F|M] => (f$)
recombinationEndPositions[F|M] => (i)
recombinationRates[F|M] => (f)
species => (o<Species>$)
tag <–> (i$)
– (is)ancestralNucleotides([Ni$ start], [Ni$ end], [s$ format]) (nuc)
– (integer)drawBreakpoints([No<Ind>$ parent], [Ni$ n])
– (integer$)setAncestralNucleotides(is sequence) (nuc)
– (void)setGeneConversion(n$ nonCrossoverFraction, n$ meanLength,

n$ simpleConversionFraction, [n$ bias])
– (void)setHotspotMap(n multipliers, [Ni ends], [s$ sex]) (nuc)
– (void)setMutationRate(n rates, [Ni ends], [s$ sex])
– (void)setRecombinationRate(n rates, [Ni ends], [s$ sex])

Substitution:

Superclass: Dictionary

id => (i$)
fixationTick => (i$)
mutationType => (o<MutType>$)
nucleotide <–> (s$) (nuc)
nucleotideValue <–> (i$) (nuc)
originTick => (i$)
position => (i$)
selectionCoeff => (f$)
subpopID <–> (i$)
tag <–> (i$)

 808

Genome:

Superclass: Object

genomePedigreeID => (i$)
genomeType => (s$)
individual => (o<Ind>$)
isNullGenome => (l$)
mutations => (o<Mut>)
tag <–> (i$)
+ (void)addMutations(o<Mut> mutations)
+ (o<Mut>)addNewDrawnMutation(io<MutType> mutationType, i position,

[Nio<Subpop> originSubpop], [Nis nucleotide])
+ (o<Mut>)addNewMutation(io<MutType> mutationType, n selectionCoeff, i position,

[Nio<Subpop> originSubpop], [Nis nucleotide])
– (l$)containsMarkerMutation(io<MutType>$ mutType, i$ position, [l$ returnMutation])
– (l)containsMutations(o<Mut> mutations)
– (i$)countOfMutationsOfType(io<MutType>$ mutType)
+ (i)mutationCountsInGenomes(No<Mut> mutations)
+ (f)mutationFrequenciesInGenomes(No<Mut> mutations)
– (o<Mut>)mutationsOfType(io<MutType>$ mutType)
– (is)nucleotides([Ni$ start], [Ni$ end], [s$ format])
+ (void)output([Ns$ filePath], [l$ append])
+ (void)outputMS([Ns$ filePath], [l$ append], [l$ filterMonomorphic])
+ (void)outputVCF([Ns$ filePath], [l$ outputMultiallelics], [l$ append])
– (i)positionsOfMutationsOfType(io<MutType>$ mutType)
+ (o<Mut>)readFromMS(s$ filePath, io<MutType>$ mutationType)
+ (o<Mut>)readFromVCF(s$ filePath, [Nio<MutType>$ mutationType])
+ (void)removeMutations([No<Mut> mutations], [l$ substitute])
– (f$)sumOfMutationsOfType(io<MutType>$ mutType)

InteractionType (IntType):

Superclass: Dictionary

id => (i$)
maxDistance <–> (f$)
reciprocal => (l$)
sexSegregation => (s$)
spatiality => (s$)
tag <–> (i$)
– (f)clippedIntegral(No<Ind> individuals)
– (f)distance(o<Ind>$ receiver, [No<Ind> exerters])
– (f)distanceFromPoint(f point, o<Ind> exerters)
– (o)drawByStrength(o<Ind> receiver, [i$ count], [No<Subpop>$ exerterSubpop],

[l$ returnDict])
– (void)evaluate(io<Subpop> subpops)
– (i)interactingNeighborCount(o<Ind> receivers, [No<Subpop>$ exerterSubpop])
– (f)interactionDistance(o<Ind> receiver, [No<Ind> exerters])
– (f)localPopulationDensity(o<Ind> receivers, [No<Subpop>$ exerterSubpop])
– (o)nearestInteractingNeighbors(o<Ind> receiver, [i$ count],

[No<Subpop>$ exerterSubpop], [l$ returnDict])
– (o)nearestNeighbors(o<Ind> receiver, [i$ count], [No<Subpop>$ exerterSubpop],

[l$ returnDict])
– (o<Ind>)nearestNeighborsOfPoint(f point, io<Subpop>$ exerterSubpop, [i$ count])
– (i)neighborCount(o<Ind> receivers, [No<Subpop>$ exerterSubpop])
– (i)neighborCountOfPoint(o<Ind> receivers, [No<Subpop>$ exerterSubpop])
– (void)setConstraints(s$ who, [Ns$ sex], [Ni$ tag], [Ni$ minAge], [Ni$ maxAge],

[Nl$ migrant], [Nl$ tagL0], [Nl$ tagL1], [Nl$ tagL2], [Nl$ tagL3], [Nl$ tagL4])
– (void)setInteractionFunction(s$ functionType, ...)
– (f)strength(o<Ind>$ receiver, [No<Ind> exerters])
– (lo<Ind>)testConstraints(o<Ind> individuals, s$ constraints, [l$ returnIndividuals])
– (f)totalOfNeighborStrengths(o<Ind> receivers, [No<Subpop>$ exerterSubpop])
– (void)unevaluate(void)

 809

GenomicElementType (GEType):

Superclass: Dictionary

color <–> (s$)
id => (i$)
mutationFractions => (f)
mutationMatrix => (f) (nuc)
mutationTypes => (o<MutType>)
species => (o<Species>$)
tag <–> (i$)
– (void)setMutationFractions(io<MutType> mutationTypes, n proportions)
– (void)setMutationMatrix(f mutationMatrix) (nuc)

GenomicElement (GElement):

Superclass: Object

endPosition => (i$)
genomicElementType => (o<GEType>$)
startPosition => (i$)
tag <–> (i$)
– (void)setGenomicElementType(io<GEType>$ genomicElementType)

SpatialMap:

Superclass: Dictionary

(o<SpatialMap>$)SpatialMap(s$ map, o<SpatialMap>$ map): copies a SpatialMap, with a new name

gridDimensions => (i)
interpolate <–> (l$)
name => (s$)
spatialBounds => (f)
spatiality => (s$)
tag <–> (i$)
– (o<SpatialMap>$)add(ifo<SpatialMap> x)
– (o<SpatialMap>$)blend(ifo<SpatialMap> x, f$ xFraction)
– (void)changeValues(ifo<SpatialMap> x)
– (o<SpatialMap>$)divide(ifo<SpatialMap> x)
– (o<SpatialMap>$)exp(void)
– (float)gridValues(void)
– (o<SpatialMap>$)interpolateValues(i$ factor, [s$ method])
– (s)mapColor(n value)
– (o<Image>$)mapImage([Ni$ width], [Ni$ height], [l$ centers], [l$ color])
– (f)mapValue(f point)
– (o<SpatialMap>$)multiply(ifo<SpatialMap> x)
– (o<SpatialMap>$)power(ifo<SpatialMap> x)
– (float)range(void)
– (o<SpatialMap>$)rescale([n$ min], [n$ max])
– (float)sampleImprovedNearbyPoint(float point, f$ maxDistance, s$ functionType, ...)
– (float)sampleNearbyPoint(float point, f$ maxDistance, s$ functionType, ...)
– (o<SpatialMap>$)smooth(float$ maxDistance, s$ functionType, ...)
– (o<SpatialMap>$)subtract(ifo<SpatialMap> x)

 810

LogFile:

Superclass: Dictionary

filePath => (s$)
logInterval => (i$)
precision <–> (i$)
tag <–> (i$)
– (void)addCustomColumn(s$ columnName, s$ source, [* context])
– (void)addCycle(void)
– (void)addCycleStage(void)
– (void)addMeanSDColumns(s$ columnName, s$ source, [* context])
– (void)addPopulationSexRatio(void)
– (void)addPopulationSize(void)
– (void)addSubpopulationSexRatio(io<Subpop>$ subpop)
– (void)addSubpopulationSize(io<Subpop>$ subpop)
– (void)addSuppliedColumn(s$ columnName)
– (void)flush(void)
– (void)logRow(void)
– (void)setFilePath(s$ filePath, [Ns initialContents], [l$ append], [Nl$ compress], [Ns$ sep])
– (void)setLogInterval([Ni$ logInterval])
– (void)setSuppliedValue(s$ columnName, +$ value)
– (void)willAutolog(void)

Community:

Superclass: Dictionary

allGenomicElementTypes => (o<GEType>)
allInteractionTypes => (o<IntType>)
allMutationTypes => (o<MutType>)
allScriptBlocks => (o<SEBlock>)
allSpecies => (o<Species>)
allSubpopulations => (o<Subpop>)
cycleStage <–> (s$)
logFiles => (o<LogFile>)
modelType => (s$)
tag <–> (i$)
tick <–> (i$)
verbosity <–> (i$)
– (o<LogFile>$)createLogFile(s$ filePath, [Ns initialContents], [l$ append], [l$ compress],

[s$ sep], [Ni$ logInterval], [Ni$ flushInterval])
– (void)deregisterScriptBlock(io<SEBlock> scriptBlocks)
– (o<GEType>)genomicElementTypesWithIDs(i ids)
– (o<IntType>)interactionTypesWithIDs(i ids)
– (o<MutType>)mutationTypesWithIDs(i ids)
– (void)outputUsage(void)
– (o<SEBlock>$)register[First/Early/Late]Event(Nis$ id, s$ source, [Ni$ start], [Ni$ end])
– (o<SEBlock>$)registerInteractionCallback(Nis$ id, s$ source, io<IntType>$ intType,

[Nio<Subpop>$ subpop], [Ni$ start], [Ni$ end])
– (o<SEBlock>$)rescheduleScriptBlock(io<SEBlock>$ block, [Ni$ start], [Ni$ end],

[Ni ticks])
– (o<SEBlock>)scriptBlocksWithIDs(i ids)
– (void)simulationFinished(void)
– (o<Species>)speciesWithIDs(i ids)
– (o<Subpop>)subpopulationsWithIDs(i ids)
– (float$)usage(void)

 811

SLiM nucleotide-based utilities:

– (s)codonsToAminoAcids(i codons, [li$ long], [l$ paste]) (nuc)
– (is)codonsToNucleotides(i codons, [s$ format]) (nuc)
– (f)mm16To256(f mutationMatrix) (nuc)
– (f)mmJukesCantor(f$ alpha) (nuc)
– (f)mmKimura(f$ alpha, f$ beta) (nuc)
– (i)nucleotideCounts(is sequence) (nuc)
– (f)nucleotideFrequencies(is sequence) (nuc)
– (i)nucleotidesToCodons(is sequence) (nuc)
– (is)randomNucleotides(i$ length, [Nif basis], [s$ format]) (nuc)

SLiM population-genetics utilities:

– (f$)calcFST(o<Genome> genomes1, o<Genome> genomes2, [No<Mut> muts], [Ni$ start], [Ni$ end])
– (f$)calcHeterozygosity(o<Genome> genomes, [No<Mut> muts], [Ni$ start], [Ni$ end])
– (f$)calcInbreedingLoad(o<Genome> genomes, [No<MutType> mutType])
– (f$)calcPairHeterozygosity(o<Genome>$ genome1, o<Genome>$ genome2, [Ni$ start], [Ni$ end],

[l$ infiniteSites])
– (f$)calcVA(o<Ind> individuals, io<MutType>$ mutType)
– (f$)calcWattersonsTheta(o<Genome> genomes, [No<Mut> muts], [Ni$ start], [Ni$ end])

SLiM other utilities:

– (f)summarizeIndividuals(o<Ind> individuals, i dim, n spatialBounds, s$ operation,
[Nlif$ empty], [l$ perUnitArea], [Ns$ spatiality])

– (o<Dictionary>)treeSeqMetadata(s$ filePath, [l$ userData])

 812

30. Revision history

This is a history of the revisions of SLiM since version 2.0. It focuses on new features, not bug
fixes (which rapidly become ancient history), and it does not contain every detail. The VERSIONS
file in the SLiM source code provides more detail, including changes that might not be user-visible
at all. Beyond that, the commit history in GitHub is of course the definitive history of the project.
For those wanting a quick overview of SLiM’s history, however, this is a good place to start.

Recipe numbers have changed over time, as sections of the SLiM manual have been added and
reorganized, so the numbers given here may or may not make any sense, unfortunately.

Version 4.1
Feature: new SpatialMap class for representing 1D / 2D / 3D spatial maps:
 spatial maps are no longer a subcomponent of Subpopulation, but a class on their own
 a SpatialMap object can now be kept in a variable, or in a global constant / variable
 they can be shared between subpopulations with addSpatialMap() / removeSpatialMap()
 lots of SpatialMap methods: mapValue(), gridValues(), changeValues(), etc.
 lots of properties too: gridDimensions, spatialBounds, name, tag, etc.
 add(), multiply(), subtract(), divide(), power(), exp(), blend(), rescale() operations
 interpolate() provides improved map interpolation, including bicubic interpolation
 smooth() can smooth / blur a map using a specified kernel
 sampleNearbyPoint() and sampleNearbyImprovedPoint() for directed dispersal
 SLiMgui now supports display of the grid values defining a spatial map
Feature: new setConstraints() method of InteractionType sets receiver/exerter constraints
 limits which individuals are eligible to receive and/or exert an interaction
 can be based on sex, age, migrant status, and/or tags (including the new logical tags)
Feature: pointDeviated() method manages kernel-based dispersal and boundary conditions
Feature: logical tag properties on Individual: tagL0, tagL1, tagL2, tagL3, tagL4
 sampleIndividuals() and subsetIndividuals() now support these tag properties
Feature: new xy, xz, yz, xyz properties on Individual return grouped spatial coordinates
Feature: command-line profiling, with a custom slim build; see new manual section 21.7
Feature: the Dictionary class now supports integer keys (as well as string keys)
Feature: Dictionary and DataFrame now allow objects of all classes to be added (with caveats)
Feature: count parameter for addCrossed(), etc., allowing bulk offspring production
Feature: parent1 / parent2 parameters to addRecombinant() for pedigree tracking
Feature: randomizeStrands parameter to addRecombinant() to randomize the initial copy strand
Feature: new lowerTri(), upperTri(), and diag() Eidos functions thanks to Nick O’Brien
Feature: new rank() Eidos function, giving the ranks of values in a vector
Feature: SLiMgui now supports command + and command − shortcuts to change the font size
Tweak: sharedParentCount() method to quickly/easily identify full and half sibs
Tweak: compactIndices() method in Dictionary for compacting to non-empty values
Tweak: redrawLengthsOnFailure option for initializeGeneConversion()
Tweak: major performance improvements for some types of spatial queries
Tweak: performance improvements for readFromPopulationFile(), sample(), findInterval()
Tweak: Laplace DFE (type "p") for MutationType, contributed by Nick O’Brien
Tweak: usage() method on Community for better memory usage metrics

 813

Tweak: recipe revisions – 10.4.2, 12.1, 12.5, 14.2 II, 17.3, 17.10
Tweak: recipe revisions – many in chapters 15 and 16 (which are swapped)
Tweak: new recipes for new spatial modeling features: 16.3 V, 16.14, 16.18
Tweak: new recipes 14.16 (biallelic loci again), 17.11 (tree-seq simplification)
Tweak: new build flags BUILD_NATIVE and BUILD_LTO for extreme optimization
Tweak: new zlib (1.2.13) with possible fixes & breaks in backward reproducibility
Tweak: new tskit (C_1.1.2) with possible fixes & breaks in backward reproducibility
Policy change: new offspring now receive the first parent’s position automatically
Policy change: macOS minimum system requirement is now macOS 10.13
Policy change: in multispecies models, all species reproduce, then all species merge offspring
Policy change: a change to k-d tree algorithms might break backward reproducibility
Policy change: "slim" type Dictionary serialization now always quotes string keys
Policy change: for addCrossed() etc., object<Individual>(0) is now returned for none
Bug fix: many memory leaks fixed, mostly minor, a few major for certain code paths
Bug fix: lots more unit tests, much closer to complete code coverage, many small bugs fixed
Bug fix: mutationCounts() / mutationFrequencies() could be zero in multispecies models
Bug fix: fixes for uncommon edge cases of some spatial queries

Version 4.0.1
Feature: new meanParentAge property on Individual for easy generation time calculation
Feature: add asMatrix() method to DataFrame, making it easy to use readCSV() to get a matrix
Tweak: DataFrame’s subset() method now takes NULL for row/col to get whole columns/rows
Tweak: readCSV() now accepts sep="" to use a “whitespace” separator (as in R)
Tweak: recipe 6.1.2 now uses readCSV() instead of readFile()
Tweak: recipe 16.13 II now uses asMatrix() to read mating/death files more elegantly
Bug fix: error/leak when reloading tree-sequence models with readFromPopulationFile()
Bug fix: LogFile error when given an absolute filesystem path on Windows
Bug fix: error passing a zero-length vector of individuals to treeSeqRememberIndividuals()
Bug fix: incorrect autofix in SLiMgui for assignment into property (e.g., sim.generation = 10)

Version 4.0
Feature: “autofixing” assistance in SLiMgui, assisting in transitioning to new versions of SLiM
Feature: numerous extensions to SLiM for simulation of multiple species
 split SLiMSim into Community and Species classes; Community has a vector of Species
 Community gets lots of new APIs for looking up objects associated with species
 add a species property to many SLiM Eidos classes, to get the species they belong to
 add species and ticks specifiers to SLiM’s top-level syntax for event/callback declarations
 add species all designation for non-species-specific events and callbacks
 add an initializeSpecies() function to do species-level configuration
 new “species schedules”: tickModulo and tickPhase parameters for initializeSpecies()
 add skipTick() method to Species for custom tick cycle scheduling
 add “cycle” concept to Species: number of times that species has executed its cycle
 change “generations” to either “ticks” or “cycles”, as appropriate, across almost all APIs
 remove the originGeneration parameter from addNew[Drawn]Mutation()

 814

 output format change for most output methods, providing both tick and cycle in header
 SLiMgui multispecies support: species tab bar, species avatars, species color lines, etc.
 new multispecies chapter with new recipes: chapter 19
Feature: major design shift in InteractionType to support between-species interactions
 interaction types are defined at the Community level and may be used with any/all species
 InteractionType APIs are now much more explicit about the “receiver” vs. “exerter”
 APIs now allow the receiver and exerter to be in different subpopulations (or species)
 evaluate() now requires subpops to be given explicitly, and immediate has been removed
 new neighborCount() and neighborCountOfPoint() methods to fill out the API
 break in backward reproducibility due to internal change in rounding behavior
 greatly reduced memory usage for large models, from O(N2) to O(N)
Feature: new killIndividuals() method for mortality in nonWF models at (almost) any time
Feature: support “no-genetics” species (ecology only) omitting boilerplate null genetics
Feature: randomization of order of processing in tick cycle stages; optional but defaults to T
Feature: add “supplied columns” to LogFile for data supplied to the log by script
Feature: add subpopMap parameter to readFromPopulationFile() for remapping subpop IDs
Feature: add name and description properties to Species for better output annotation
Feature: add a findInterval() function to Eidos, patterned after the same function in R
Feature: new calcInbreedingLoad() pop-gen function, thanks to Chris Kyriazis
Feature: add the WF/nonWF tick cycle diagrams to SLiMgui, under the Help menu
Feature: add a “Scheduling” tab to the SLiMgui output viewer to see script events over time
Feature: add “Focus on Script” and “Focus on Console” keyboard shortcuts in SLiMgui
Feature: show the run progress as a progress indicator bar in the Ticks lineedit in SLiMgui
Feature: add display of the Git SHA-1 for the slim/SLiMgui build, in “about” info
Tweak: fitness() renamed to mutationEffect(), fitness(NULL) renamed to fitnessEffect()
Tweak: remove the removeConstants parameter from rm(); no redefining constants!
Tweak: revisions to many recipes to adapt to the above changes, pyslim changes, etc.
Tweak: new recipe 14.15 showing how to make a biallelic model in SLiM
Tweak: add a second recipe to 16.20 (nonWF range expansion) demonstrating survival()
Tweak: new recipe 18.15 and revised 18.14, better showing how to “unique down” mutations
Tweak: remove the deprecated inSLiMgui property of SLiMSim
Tweak: change GO (generation of origin) to TO (tick of origin) in VCF output
Tweak: remove obsolete and unnecessary pseudo-parameters from callbacks, streamlining APIs
Tweak: merge in tskit C API 1.0 final, providing improvements under the hood
Policy change: early() is no longer a default for events, and must be specified explicitly
Policy change: calcFST() now gives “ratio of averages” not “average of ratios” (best practice)
Bug fix: mutation frequency/count could (rarely) be incorrect; see slim-discuss announcement
Bug fix: crash in removeMutations() when called on a null genome
Bug fix: malformed tree-seq metadata in certain conditions after removal of a subpopulation

Version 3.7.1
Tweak: Recipe fixes for 17.9, 17.10, 18.13
Bug fix: Preview output in SLiMgui was unreadable in dark mode
Bug fix: Occasional self-test error due to a faulty test for relatedness()

 815

Bug fix: Fix for a common and reproducible crashing bug on treeSeqOutput()
Bug fix: Spurious "subpopulation p0 has already been used" error in certain circumstances

Version 3.7
Feature: Windows is now supported as a platform, including SLiMgui, thanks to Russell Dinnage
Feature: both WF and nonWF models now have a new tick cycle stage, first() events
Feature: new survival() callbacks in nonWF models now govern mortality (and relocation)
Feature: new DataFrame class in Eidos for representing data tables, like R’s data.frame
Feature: add CSV/TSV serialization for Dictionary, and readCSV() to read in a DataFrame
Feature: Dictionary can now serialize to and from JSON, for easy persistence of information
Feature: better support for null genomes with addRecombinant(); breaks backward compatibility
Feature: other null genome work: genomesNonNull, addEmpty() flags, addSubpop() flag
Feature: better fitness evaluation in haploids using null genomes, with haploidDominanceCoeff
Feature: summarizeIndividuals() for creating spatial maps from individuals; new recipe 15.13
Feature: localPopulationDensity() and clippedIntegral() for local area/density calculations
Feature: add spatialMapImage() method to Subpopulation to get an Image for a spatial map
Feature: can now create a grayscale Image from a matrix of values
Feature: add write() method to Image to write out to PNG
Feature: in tree-seq, parent pedigree ids are now kept and the parent column is maintained
Feature: new name and description properties for Subpopulation, used for tree-seq metadata
Feature: tskit time unit support, timeUnit parameter to initializeTreeSeq() to set the name
Feature: new treeSeqMetadata() function to get the metadata from a .trees file, as a Dictionary
Feature: SLiMgui individuals view improvements including action buttons, Unified display
Feature: SLiMgui chromosome view now has an action button and a cleaner UI design
Feature: SLiMgui output viewer window now has tabs for LogFile and writeFile() output
Feature: added Eidos string functions strcontains(), strfind(), strprefix(), strsuffix()
Feature: added an assert() function in Eidos, to easily assert that a condition is true
Feature: add rnbinom() function to Eidos for the negative binomial distribution
Feature: add grep() function to Eidos for regular expression matching
Feature: add tempdir() and sysinfo() functions for better cross-platform support
Feature: added an individualsWithPedigreeIDs() SLiMSim method for fast individual lookup
Tweak: extended recipe 16.16 (WF models in nonWF) to show fitness-based mate choice
Tweak: new recipe 16.23, sperm storage with a survival() callback
Tweak: new recipe 16.24, tracking separate sexes in script in nonWF models
Tweak: new recipe 16.25, haplodiploidy
Tweak: revised recipes 9.2, 9.3, 9.6.2, 17.4 I/II, 16.11, 16.13, 16.14, 16.15
Tweak: add a [logical$ chdir = F] argument to source() to simplify common usage
Tweak: many calls now take an integer id in place of a Subpopulation/MutationType argument
Tweak: fix InteractionType to allow > 2 billion interactions in a model
Tweak: updated SLiM to tskit version C API 0.99.15, inheriting various improvements
Tweak: added the concept of deprecated APIs in Eidos, marked some old stuff deprecated
Tweak: remove dominanceCoeffX (for haploidDominanceCoeff) breaks backward compatibility
Tweak: allow readFromPopulationFile() even when tree-seq recording is not enabled
Tweak: getRowValues() now allows ragged rows and matrix/array elements; new [drop=F] arg

 816

Tweak: remembering large numbers of individuals in tree-seq is now much faster
Tweak: limited Markdown supported in Jump menu comments, improved recipe 5.4 to show it
Policy change: float values that are round now output with “.0” – e.g., 1.0 instead of 1
Policy change: subpopulation ids can no longer be reused later in time, to prevent collisions
Policy change: source() now raises an error if given a non-existent path
Bug fix: completely overhauled recipe 14.4 (chromosomal inversions) fixing several bugs
Bug fix: major bugs in relatedness() in SLiM 3.6 fixed; do not use SLiM 3.6 relatedness()
Bug fix: subpopulation metadata is now preserved across load/save for untouched subpops
Bug fix: various JSON parsing bugs were fixed
Bug fix: more robust handling of memory allocation failures
Bug fix: reproductiveOutput is now correct after modifyChild() rejects a child
Bug fix: floating-point roundoff issue with mutationFrequencies() not being exactly one

Version 3.6
Feature: “debug points” and a debug output window in SLiMgui
Feature: [permanent=T] flag for treeSeqRememberIndividuals() to “retain” individuals
Feature: [retainCoalescentOnly=T] flag for initializeTreeSeq() to modify simplification
Feature: metadata= optional parameter for treeSeqOutput(), for user-supplied metadata
Feature: error stream support in Eidos, with a [error=F] parameter for cat()/catn()/print()
Feature: various extensions to the Eidos Dictionary class for dataframe-like usage
Feature: rf() function in Eidos for F-distribution draws
Feature: precision property for LogFile, to govern the precision of floating-point output
Feature: dark mode support for SLiMgui, for both macOS (automatic) and Linux (prefs)
Feature: Eidos and SLiM now allow Unicode variable names (accents, Chinese, emoji, etc.)
Feature: SLiM and Eidos manuals now have PDF “document outlines” (i.e., TOCs)
Tweak: new recipe 16.22, “Dynamic population structure in nonWF models” (split, merge)
Tweak: tskit 0.99.10, .trees file version 6, supporting various improvements
Tweak: SLiMgui on macOS no longer quits on last window close (yay!)
Tweak: generationStage property for SLiMSim, for (unusual) models that need it
Tweak: add -help command-line option, make --option prefixes work
Tweak: SLiMgui opens .py files in the user’s browser, for a better cross-platform experience
Tweak: debugIndent() function in Eidos, to get the current SLiM debugging output indent level
Tweak: the command-line verbosity level is now available as property verbosity of SLiMSim
Policy change: the sequence <- is now treated as an illegal Eidos token, for safety versus R
Bug fix: takeMigrants() could cause bad data or crashes, in unusual circumstances
Bug fix: argument processing crash for function/method calls with more than 256 arguments
Bug fix: certain recursive calling patterns in Eidos could cause a segfault
Bug fix: LogFile would give an error writing out a compressed file with zero-length data
Bug fix: SLiMgui would change the directory that LogFile was saving into, to its own directory
Bug fix: incorrect reproductive output tallying for individuals moved by takeMigrants()
Bug fix: memory leak after removeSubpopulation(), could trigger an “internal error” message
Bug fix: spurious error about a “mismatch” with very large dominance coefficients
Bug fix: 3.5 new regression: source() would give a warning and do the wrong thing
Bug fix: output from nested events/callbacks/functions sometimes printed out of order

 817

Bug fix: minor SLiMgui bugs: tab stops, syntax coloring, the Jump menu, help info, status bar

Version 3.5
Feature: SLiMgui is now Qt-based on all platforms; the old app is renamed SLiMguiLegacy
Feature: SLiMgui can now be run on Windows under the WSL (thanks Bernard Kim)
Feature: tabulate() function in Eidos, parallel to R’s tabulate() function
Feature: quantile() function in Eidos, parallel to R’s “type 7” quantile function
Feature: colors() function in Eidos, providing a variety of color palettes
Feature: add new SLiMgui plots for 1D/2D SFS, 2D frequency spectrum, age distribution,

population/subpop fitness distributions, population size ~ time
Feature: tskit 0.3.0 with faster simplification, retention of individuals referenced by retained

nodes; recipes revised for new tskit/pyslim APIs: 17.2, 17.5, 17.6, 17.8, 17.10, 18.13
Feature: automatic tree-seq simplification is now a separate timing category in SLiMgui profiles
Feature: mutation() callbacks can now return an existing mutation, for easy uniquing
Feature: subsetMutations() method on SLiMSim for fast lookup of specific mutations
Feature: SLiMgui now has line numbers, current line highlight, Jump pop-up button, etc.
Feature: SLiMgui now allows multiple graphs of the same type to be opened
Feature: paste() / paste0() take multiple arguments to avoid paste(c()), recipes 4.2.5, 13.5,

14.8, and 16.13 (I) revised for new explicit sep= usage pattern; breaks compatibility
Feature: full relayout option for prettyprinting in SLiMgui, by holding down option/alt
Feature: autosave option in SLiMgui (off by default) whenever you recycle
Feature: new Image class in Eidos can read PNG images, for easy spatial map creation
Feature: defineSpatialMap() now requires a matrix (except for 1D maps), and gridSize is

removed; the matrix is read in correct order (working with Image); revise recipes 15.10 and
15.11 for these changes (and a very small bug fix); breaks compatibility

Feature: Dictionary class in Eidos is now explicit, public, and independent; new methods
Feature: defineGlobal() function in Eidos, allows global variable definitions; scoping improved
Feature: you can keep references to some objects, including Dictionary, Image, Chromosome, &

Mutation, long-term; new recipes 9.9 and 9.10 demonstrate this
Feature: new isFixed and isSegregating properties for Mutation, to diagnose state
Feature: new LogFile class allows easy logging of model statistics; new recipe 4.2.5 demos
Feature: new pop-gen stats functions calcFST(), calcVA(), calcHeterozygosity(),

calcPairHeterozygosity(), calcWattersonsTheta(); revise recipes 11.1, 14.1 to use these
Feature: mutation[Counts|Frequencies]InGenomes() methods for easy sample frequency
Feature: reproductive output tracking when pedigree tracking is enabled; new properties

reproductiveOutput (Individual) and lifetimeReproductiveOutput[F|M] (Subpopulation);
new lifetime reproductive output plot in SLiMgui

Tweak: superclass relationships among Eidos and SLiM classes are explicit and documented
Tweak: new recipe 18.4 demonstrates uniquing of mutations to model identity by state
Tweak: new recipe 10.6 II demonstrates another technique for varying dominance coefficients
Tweak: new recipe 16.20 demonstrates range expansion into empty subpopulations
Tweak: new recipe 16.21 demonstrates logistic growth with the Beverton–Holt model
Tweak: speed up match() for large x vectors, from O(N*M) to O(N+M)
Tweak: speed up sample() for full shuffles and large N; breaks reproducibility
Tweak: faster function/method dispatch by pre-processing of argument lists

 818

Tweak: using “Robin Hood Hashing” to speed up internal algorithms; many models benefit
Tweak: extend codonsToAminoAcids() to be able to return integer codes for amino acids
Tweak: outputFull() can now save pedigree IDs; readFromPopulationFile() can read them
Tweak: recipes 13.5 & 14.8 now emit PNG plots instead of PDF, look for Rscript path
Tweak: recipe 5.4 (Gravel model) better follows the original model (thanks Chase Nelson)
Tweak: the Step button in SLiMgui can be held down to step repeatedly
Tweak: generation play in SLiMgui is now wired to the Play button and can be halted
Tweak: the SLiMgui app icon now darkens while a model is running, for easy monitoring
Tweak: SLiMgui shows elapsed CPU time, # of mutations, and # of substitutions in status bar
Tweak: buffered compressed append date for writeFile() can be flushed with flushFile()
Tweak: functionSource() function in Eidos, to see the source code of Eidos functions
Tweak: slim / eidos (but not SLiMgui) builds for macOS are now Universal (native for M1)
Policy change: disallow adding mutations to individuals of age > 0 to prevent inconsistencies
Policy change: mutation positions, generating gametes, are uniqued; breaks reproducibility
Policy change: originGeneration can no longer be used as scratch space
Policy change: errors during writeFile() are now errors, not warnings
Major bug fix: treatment of NAN in Eidos functions & comparison operators to follow IEEE rules
Bug fix: precedence for operator ^ fixed to be higher than unary minus, following convention
Bug fix: recipe 14.7 now uses L instead of L-1, avoiding a minor off-by-one error

Version 3.4
Feature: add the QtSLiM graphical modeling environment for Linux (SLiMgui port to Qt)
Feature: writeFile() and writeTempFile() now write .gz-compressed data with compress=T
Feature: add qnorm() function to Eidos (quantile function for the normal distribution)
Feature: add dbeta(), dexp(), and dgamma() functions to Eidos (distribution density functions)
Feature: add a SHA-256 hash of the model script to SLiM’s .trees provenance entry
Feature: add includeModel=T option to treeSeqOutput() to allow model script suppression
Tweak: new recipe 16.19 (S-I-R epidemiological model in continuous space)
Tweak: modified recipes 9.5.2 and 9.5.3 to fix a bug involving fitness calculations
Bug fix: reading in a .trees file and then writing one out now handles mutation IDs correctly
Bug fix: an overflow of the tree-sequence tables in a large model is now caught
Bug fix: crash producing a haplotype plot with a large number of genomes
Bug fix: bad appearance of haplotype plots on Retina (high-DPI) displays

Version 3.3.2
Feature: added landscape_ac.slim to SLiM-Extras for autocorrelated landscape generation
Tweak: performance improvements for large models
Tweak: performance improvements for sampleIndividuals() with sample size 1
Tweak: the default nonWF model in SLiMgui now uses subpop, not p1, for generality
Tweak: command line option -l/-long (verbosity) now takes an optional <level> argument
Tweak: new recipe 5.2.4 (joining subpopulations)
Tweak: add recipe 16.18 (meiotic drive)
Tweak: add recipe 13.6 (a variety of fitness functions)
Tweak: extend recipe 5.4 (Gravel model) to show output from a multi-subpop sample

 819

Tweak: increase MS output precision to 10 decimal places to accommodate large models
Bug fix: passing an unsorted positions vector to addNew[Drawn]Mutation() did Very Bad Things
Bug fix: InteractionType now raises if passed new offspring from reproduction() callbacks
Bug fix: SLiMgui now checks for the fonts it needs on launch, to avoid confusing errors later
Bug fix: recipe 13.4 now correctly includes environmental noise in phenotypic values

Version 3.3.1
Feature: add clock type option to clock() and executeLambda() (cpu or monotonic)
Feature: add a wait=T optional parameter to system(), allowing background execution
Feature: add individual property to Genome, to get the individual to which a genome belongs
Tweak: allow access to pedigree IDs when tree-seq recording is enabled, and add to VCF output
Tweak: change recipes that set a new seed to use 2^62 rather than 2^32, to avoid repeats
Bug fix: incorrect results with out-of-order genomic elements with a non-uniform mutrate map
Bug fix: crash with clonal nucleotide-based models using a custom mutation matrix
Bug fix: blank lines in nucleotide-based output when output of back-mutations is suppressed
Bug fix: fixes for self-test with non-existent or non-writeable /tmp, /tmp permissions issues
Bug fix: fix SLiMgui crash with MutationType of type "s" and a fixed display color set
Bug fix: fix SLiMgui crash with the variable browser due to inaccessible properties
Bug fix: fix crash with an InteractionType whose state was invalidated by takeMigrants()
Bug fix: fix crash when takeMigrants() tries to migrate the same individual twice

Version 3.3
Feature: nucleotide-based models, ancestral sequence, sequence-based mutation, hotspot map
Feature: nucleotide/codon/amino-acid utility functions (section 25.18.1)
Feature: new “DSB” recombination model, new gene conversion model
Feature: new gBGC support, heteroduplex mismatch repair, GC bias parameter
Feature: intrinsic support for reading from MS and VCF format files
Feature: new mutation() callback type for seeing/modifying/vetoing auto-generated mutations
Feature: new drawSelectionCoefficient() method on MutationType
Feature: new fileExists() function in Eidos for doing filesystem existence checks
Tweak: new simplificationInterval parameter to tailor automatic tree-seq simplification
Tweak: much faster MS-format output from large models
Tweak: initializeGenomicElement() is now vectorized and returns the created object(s)
Tweak: spatialMapValue() is now vectorized
Tweak: sample() with a weights vector is now optimized
Tweak: operator [] with a singleton integer argument is now optimized
Tweak: extensive recipe renumbering, reordering, revisions, rewriting, removal
Tweak: new section 1.8 (nucleotide models) and chapter 18 (nucleotide model recipes)
Tweak: new chapter 13 (QTL-based models)
Tweak: new recipe 6.1.4 (multiple chromosomes)
Tweak: new recipe 10.6 (varying dominance coefficients)
Tweak: new recipe 12.5 (tracking separate sexes in script)
Tweak: new recipe 14.14 (visualizing ancestry and admixture with mutation() callbacks)
Tweak: new section 26.9 (mutation() callback reference)

 820

Tweak: matches for search keywords now highlighted in the Find Recipe… panel in SLiMgui
Policy change: some methods with float parameters now also accept integer, for ease of use
Policy change: the selected display mutation types in SLiMgui now apply to substitutions also
Policy change: recombination() callbacks no longer supported with gene conversion enabled
Policy change: .trees file format incremented to 0.3 for nucleotides, new pyslim is required
Policy change: file formats updated to include support for nucleotides in various ways
Policy change: tag, tagF, pedigree ID properties now inaccessible when they have no set value
Policy change: subpopulation total fitness must now be finite, to catch overflows
Policy change: update to GSL 2.5, JSON for Modern C++ 3.6.1, kastore C_1.1.0, tskit 0.1.5
Major bug fix: incorrect results from mutationCounts/Frequencies() in early() in nonWF
Major bug fix: incorrect calls in MS format output with filterMonomorphic=T (not the default)
Major bug fix: max() with an integer singleton argument, != 0 and != 1, was incorrect, ugh
Major bug fix: incorrect results from matrixMult() with type float in some cases
Bug fix: imperfect recreation of state after text-format outputFull() and load (float precision)
Bug fix: time base issue when .trees files were loaded in an early() event in a WF model
Bug fix: incorrect sex ratio in sexual nonWF models saved to a SLiM format population file
Bug fix: various leaks, various minor issues never reported by any user
Bug fix: disabling link-time optimization (LTO) (causing build problems for some users)

Version 3.2.1
Feature: drawBreakpoints() method on Chromosome to draw breakpoints using SLiM’s logic
Feature: rbeta() function in Eidos for draws from a beta distribution
Feature: pnorm() function in Eidos for the CDF of the normal distribution
Feature: new SLiMgui class, with an instance named slimgui, available only under SLiMgui
Feature: SLiMgui.openDocument() method to open a file in SLiMgui from script
Feature: SLiMgui.pauseExecution() method to pause a running SLiMgui simulation from script
Feature: SLiMgui.pid property to get the process ID of SLiMgui from script
Feature: Subpopulation.configureDisplay() method to customize SLiMgui display of subpops
Tweak: revised recipes 14.8 and 14.13 to use the new SLiMgui class
Tweak: slim (the command-line tool) can now read its script from stdin (i.e., from a pipe)
Tweak: new recipe 16.16 (Implementing a Wright–Fisher model with a nonWF model)
Tweak: new recipe 16.17 (Alternation of generations)
Tweak: added support for make install with cmake, thanks to Peter Ralph
Tweak: added support for link-time optimization (LTO), thanks to Kevin Thornton
Tweak: improved the reseeding procedure in recipes 10.2, 10.3, 10.6.2, and 17.4
Tweak: SLiMgui should now run on macOS 10.10 and later (formerly 10.11 and later)
Policy change: inSLiMgui property of SLiMSim deprecated; use exists("slimgui")
Bug fix: setValue() did not copy the value, allowing corruption of the set value in rare cases
Bug fix: calling deregisterScriptBlock() more than once on the same block did bad things
Bug fix: the pedigreeGrandparentIDs property returned incorrect values
Bug fix: loading a .trees file with a mismatched chromosome length now gives an error
Bug fix: SLiMgui crash when displaying a large number of genomic element types
Bug fix: code completion bug when completing off a base of return/else/do/in
Bug fix: fixed poor error-reporting for malformed command-line definitions

 821

Bug fix: fixed a raise that would crash SLiMgui, triggered by an illegal numeric constant in script

Version 3.2
Feature: keyword-based “Find Recipe…” panel in SLiMgui to make recipe lookup easier
Feature: code completion in SLiMgui is now much smarter (iTR -> initializeTreeSeq(), e.g.)
Feature: memory usage summary in SLiMgui’s profile, also from new outputUsage() method
Feature: usage() function in Eidos to get the current / peak total memory usage
Feature: addRecombinant() method for nonWF for horizontal gene transfer, haploid models, etc.
Feature: rgeom() function in Eidos for draws from a geometric distribution
Feature: button in SLiMgui’s output area to view/change the current working directory
Feature: outputMS() and outputMSSample() can now filter out in-sample-monomorphic sites
Feature: new color-palette functions heatColors(), rainbow(), terrainColors(), cmColors()
Tweak: new recipe 16.14, modeling clonal haploids in nonWF models with addRecombinant()
Tweak: new recipe 16.15, modeling clonal haploid bacteria with horizontal gene transfer
Tweak: vectorized the Eidos color-manipulation functions, using matrix arguments/returns
Tweak: add a [print=T] flag to version() so switching on version can avoid unwanted output
Tweak: vectorized the exists() function so a vector of symbols can be checked in one call
Tweak: some minor optimization work, especially on property / method dispatch in Eidos
Policy change: asString(NULL) now returns "NULL" for easier output generation
Policy change: string concatenation with + now adds "NULL" for NULL, for easier output
Policy change: scheduling an event/callback into the past now produces an error
Bug fix: fixed a major performance issue for large nonWF models with a lot of genetic diversity
Bug fix: recipe 11.1 issue with the calcFST() function returning NAN in some marginal cases
Bug fix: code completion in SLiMgui after return, in, else, and do now works correctly
Bug fix: many Eidos functions are now more robust to being passed NAN (e.g., rpois() hang)
Bug fix: corrupted spatial location data for some individuals in .trees files
Bug fix: minor issue with SLiMgui’s population visualization graph’s migration rate arrows
Bug fix: symbol table bug that would bite models defining a very large number of symbols
Bug fix: crash in addEmpty() that nobody noticed because nobody uses it
Bug fix: incorrect modifyChild() source subpop when using addCloned()/Crossed()/Selfed()
Bug fix: incorrect isCloning/isSelfing in modifyChild() when using addCloned()/addSelfed()
Bug fix: incorrect parent2 values in modifyChild() in clonal models (shouldn’t be used anyway)

Version 3.1
Feature: greatly increased the performance of spatial interactions with large population size
Feature: added interactionDistance() method to get interaction-conditional distances
Feature: added nearestInteractingNeighbors() to get interaction-conditional neighbors
Feature: added interactingNeighborCount() to count interaction-conditional neighbors
Feature: rememberIndividuals() now actually remembers individuals (as well as genomes)
Feature: added automatic remembering of the initial generation, for easier recapitation
Feature: dmvnorm() added to Eidos to get probability densities from a multivariate normal dist.
Tweak: extended the .trees provenance format for better reproducibility / self-documentation
Tweak: new recipe 14.19, biased gene conversion (two recipes actually)
Tweak: improved recipe 14.3 (reading MS format files), with big performance benefits for it

 822

Tweak: updated all chapter 17 recipes (tree-sequence recording) to reflect changes
Policy change: strength() now requires a singleton first argument, receiver
Policy change: .trees files now have their time rebased to msprime-style times on save
Policy change: initializeInteractionType() now warns if no maximum distance is given
Bug fix: memory leak with cycling/varying subpopulation size (genome recycling bug)
Bug fix: nodes in .trees files occasionally being marked as null genomes incorrectly
Bug fix: incorrect fitness in WF models using only fitnessScaling to modify fitness

Version 3.0
Feature: non-Wright–Fisher (nonWF) models, chosen with initializeSLiMModelType()
Feature: nonWF additions (age, addX() methods, takeMigrants(), removeSubpopulation())
Feature: nonWF additions (reproduction() callbacks, registerReproductionCallback())
Feature: new sampleIndividuals() and subsetIndividuals() methods on Subpopulation
Feature: new fitnessScaling property on Subpopulation and Individual to alter fitness
Feature: tree-sequence recording, enabled with initializeTreeSeq()
Feature: tree-sequence recording additions (treeSeqX() methods)
Feature: new seqLen() function in Eidos to generate a zero-based sequence of a given length
Feature: new getwd() / setwd() functions in Eidos to get and change the working directory
Feature: new var() / cov() / cor() stats functions in Eidos for variance / covariance / correlation
Feature: new rcauchy() function for Cauchy distribution (also new interaction function, “c”)
Feature: new genome1 and genome2 properties on Individual for easier haploid models etc.
Feature: new migrant property on Individual, usable in both WF and nonWF models
Feature: display interaction types in SLiMgui’s drawer, with hover preview for the function
Feature: improved subpopulation display options in SLiMgui, including spatial map choice
Feature: increase maximum chromosome length from 1e9 to 1e15
Feature: code completion in SLiMgui can now supply argument names when in a call
Feature: added getValue() / setValue() functionality to Substitution
Feature: optimization work across SLiM and Eidos
Tweak: new recipes for nonWF (chapter 15) and tree-sequence recording (chapter 17)
Tweak: new recipe 14.2 III (mortality-based fitness using fitnessScaling)
Tweak: new recipe 14.18 (modeling opposite ends of a chromosome)
Tweak: recipe fixes to conform with changes (13.3, 14.1, 14.7, 14.10, 11.2)
Tweak: mean() now works with a logical vector argument
Tweak: vectorize point-processing methods (pointX(), setSpatialPosition())
Tweak: add removeMutations(NULL) option to quickly remove all mutations from a Genome
Tweak: add [returnMutation = F] argument to containsMarkerMutation() to get the mutation
Tweak: new suppressWarnings() function in Eidos to… suppress warnings
Policy change: return values are no longer implied by the value of the last statement
Policy change: void is now a true value type in Eidos, not a synonym for NULL
Policy change: property/method accesses on zero-length vectors now raise if ambiguous in type
Policy change: cachedFitness() may no longer be called from a late() event in WF models
Policy change: the default working directory when running in SLiMgui is now ~/Desktop
Bug fix: incorrect strengths from InteractionType with periodic boundaries
Bug fix: gene conversion rate of exactly 1.0 would be treated as 0.0

 823

Bug fix: crash when setSubpopulationSize(0) was called twice on the same subpop
Bug fix: crash with the “fitness over time” graph in SLiMgui with an invalid simulation
Bug fix: rare crash on quit in SLiMgui
Bug fix: crash due to stack overflow with large population size and callbacks
Bug fix: display glitch in SLiMgui on Retina displays
Bug fix: fix incorrect actual recombination rate for specified rate of 0.5, impose <= 0.5 limit
Bug fix: rdunif() can now generate draws over the full 64-bit range, not limited to 32-bit
Bug fix: crash in SLiMgui displaying haplotypes in a model with null genomes (X/Y models)
Bug fix: dropped model output from just before a simulation terminates due to an error

Version 2.6
Feature: Eidos now supports matrices (2-D) and arrays (n-D), with new related functions
Feature: haplotype plots and haplotype-based chromosome view display mode
Feature: periodic spatial boundary conditions now supported, including in InteractionType
Feature: visualize MutationType DFEs in the info drawer in SLiMgui (hover the mouse to see)
Feature: new rdunif() Eidos function for draws from discrete uniform distributions
Feature: new rmvnorm() Eidos function for draws from multivariate normal distributions
Feature: optimizations of the Eidos core may lead to ~20% speedup for Eidos-intensive models
Tweak: the apply() function is now renamed sapply(), following R
Tweak: increased display flexibility of individual mutation types in the chromosome view
Tweak: the number of bins in the frequency spectrum plot in SLiMgui can now be changed
Tweak: improved display of mutation/recombination maps in SLiMgui, with a broader range
Tweak: addNew[Drawn]Mutation() are now vectorized for speed when adding many mutations
Tweak: new positionsOfMutationsOfType() method on Genome for speed of some models
Tweak: extended the integer() function of Eidos to be able to create two-valued filled vectors
Tweak: defineSpatialMap() now accepts a matrix/array of values (backward compatible)
Tweak: sapply() (which was apply()) has a new simplify parameter to get a matrix/array result
Tweak: extended recipe 14.4 to show off the new haplotype display options, check it out
Tweak: revised recipe 14.7 (tracking true local ancestry) for much greater speed
Tweak: recipe 14.9 (modeling nucleotides) is now much faster, with optimizations in SLiM
Tweak: added recipes 14.11 (modeling microsatellites) and 14.12 (modeling transposons)
Tweak: added recipe 14.13: multiple QTL-based quantitative phenotypic traits with pleiotropy
Tweak: added recipe 15.12 to demonstrate periodic boundary conditions in spatial models
Tweak: revised recipes to use sapply() instead of apply(), other minor recipe tweaks
Policy change: assignment into a subset of a property is no longer legal in Eidos (you don’t care)
Policy change: version() now returns a numeric version number, for runtime version checking
Policy change: Chromosome properties that are undefined now raise when accessed
Policy change: addNew[Drawn]Mutation() returns requested mutations whether added or not
Policy change: periodicity inserted in initializeSLiMOptions(); use named arguments there!
Bug fix: possible incorrect mutation freqs/counts after addMutations() / removeMutations()
Bug fix: fixed a long-standing display bug in SLiMgui with added/removed mutations
Bug fix: very minor bug fixes in doCall(), SLiMgui, etc.; very unlikely impact on model results

 824

Version 2.5
Feature: add support for user-defined Eidos functions in SLiM – make your own functions
Feature: support for variable mutation rate along the chromosome (i.e., “hot” and “cold” spots)
Feature: display of the mutation-rate map in SLiMgui with the R button
Feature: Mutation now supports the getValue()/setValue() mechanism
Feature: SLiMgui can do script prettyprinting, for nice code formatting
Feature: new ternary conditional operator, ?else, added to Eidos, like ?: in C/C++
Feature: support for block-style /* */ comments added to Eidos, as in C/C++
Feature: added a function source() to read in and execute Eidos code from a given file
Feature: the SLiM and Eidos documentation now has hyperlinks in its table of contents
Major bug fix: new mutations were not added correctly in clonal reproduction, in 2.4–2.4.2
Tweak: improved pmax(), pmin(), max(), min(), range(), seq(), any(), all(), unique()
Tweak: added a sumExact() function to Eidos for exact summation of floating-point numbers
Tweak: fixed a bug in recipe 11.1’s FST calculation code, and split it into a standalone function
Tweak: added recipe 14.10, illustrating how to make a simple haploid clonal model in SLiM
Tweak: added recipe 14.11, modeling variation in functional density along the chromosome
Policy change: removed the mutationRate property of Chromosome in favor of new API
Policy change: function(), method(), property() renamed to functionSignature(), etc.
Policy change: argument function for doCall() renamed to functionName
Bug fix: improved numerical accuracy for complex recombination maps
Bug fix: incorrect results from InteractionType if individuals had an identical coordinate value

Version 2.4.2
Major bug fix: fix non-unique mutation id bug (incorrect output from many/most models)

Version 2.4.1
Bug fix: fix stale subpop pointer bug (possible crash or incorrect data in multi-subpop sims)

Version 2.4
Feature: extensive internal optimizations for better performance of many models
Feature: model runtime profiling added in SLiMgui for performance evaluation
Feature: sumOfMutationsOfType() method added for fast QTL effect addition
Feature: preventIncidentalSelfing option added to initializeSLiMOptions()
Feature: optionally configure the mutation run count in initializeSLiMOptions()
Feature: system() function to call out to Unix to run commands
Feature: added PDF viewing to SLiMgui for R plotting integration (see recipe 14.8)
Feature: chromosome view display customization via right-click in SLiMgui
Feature: population view display customization via right-click in SLiMgui
Feature: writeTempFile() function for creating randomly named temporary files
Feature: new catn() and paste0() functions for simpler output generation
Feature: MutationType, GenomicElementType, InteractionType now support get/setValue()
Feature: add mutationStackGroup property to MutationType and improve stacking options
Major bug fix: significant bug in the Eidos function setDifference() (no impact if not using it)
Tweak: added top/bottom splitview in SLiMgui to allow greater display flexibility
Tweak: the play speed slider in SLiMgui now shows the chosen play speed in a tooltip

 825

Tweak: added font size preference in SLiMgui for presentations, etc.
Tweak: new inSLiMgui property on SLiMSim to tell whether the model is running in SLiMgui
Tweak: rescheduleScriptBlock() method added on SLiMSim for easier block rescheduling
Tweak: ttest() function added for performing t-tests in Eidos
Tweak: added -l (-long) command-line option for more verbose output
Policy change: scripted (type “s”) DFEs in MutationType now have access to SLiM constants
Bug fix: for loops on seqAlong() vectors with a zero-length parameter were incorrect

Version 2.3
Feature: continuous space (1D, 2D, or 3D) and spatial positions for Individual (x, y, and z)
Feature: landscape maps that can define environmental values across space
Feature: interactions (both non-spatial and spatial), including interaction() callbacks
Feature: “global” fitness() callbacks that are called once for every individual
Tweak: outputFull() and readFromPopulationFile() now save/restore spatial positions
Tweak: mateChoice() callbacks can now return a vector of all zero to reject the first parent
Tweak: mateChoice() callbacks can now return a singleton Individual as the chosen parent
Tweak: added several color-conversion functions to Eidos (RGB to/from HSV, etc.)
Policy change: readFromPopulationFile() no longer recalculates fitness values
Policy change: readFromPopulationFile() now warns if called outside a late() event

Version 2.2.1
Feature: SLiMgui is now a proper document-based app using the .slim file extension
Feature: tagF property on Individual for storage of float custom state
Feature: order() function that provides sorting indices, like the R order() function
Feature: custom coloring of individuals, etc., in SLiMgui using new color properties
Tweak: SLiMgui’s recycle button now highlights green when the script has been changed
Tweak: arbitrary Eidos expressions are now legal in command-line constant definitions
Policy change: multiple calls to initializeRecombinationRate() is now explicitly illegal

Version 2.2
Feature: recombination() callbacks allow scripted alteration of recombination breakpoints
Feature: containsMarkerMutation() method allows fast checking for “marker” mutations
Feature: clock() function gives the CPU usage of the process, for measuring performance
Feature: setValue() / getValue() methods provide several classes with dictionary-like values
Feature: command-line constant definition using a -define or -d flag passed to slim
Tweak: “tips & tricks” panel for SLiMgui that introduces some obscure features of the app

Version 2.1.1
Feature: mutationCounts() method provides raw mutation reference counts

Version 2.1
Feature: Individual class added to represent individuals, with many associated changes
Feature: optional pedigree-based relatedness tracking for individuals
Feature: overhaul of SLiM output methods to provide file-based output and appending
Feature: new Genome output methods allow output of custom samples
Feature: VCF format output added to the existing SLiM and MS formats

 826

Feature: Mutation now has a unique identifier usable for tracking mutations through time
Feature: Mutation and Substitution now have a tag property like many other SLiM classes
Feature: DFE type "s" now allows scripted DFEs for MutationType
Feature: sex-specific recombination rates and/or recombination maps
Feature: default arguments and named arguments supported for Eidos functions and methods
Feature: deleteFile() and createDirectory() functions added to Eidos
Feature: set operation functions (union, intersection, etc.) added to Eidos
Tweak: size() method added to the Eidos object base class
Tweak: recipes now openable directly from the Recipes submenu in SLiMgui
Policy change: output of mutations now includes a mutation identifier field (format change)
Policy change: readFromPopulationFile() now sets the generation as a side effect
Policy change: class methods in Eidos now provide non-multicasted method invocation
Policy change: addNewMutation() and addNewDrawnMutation() changed to class methods

Version 2.0.4
Minor bug fixes.

Version 2.0.3
Minor bug fixes.

Version 2.0.2
Feature: binary format for outputFull(), for smaller files and much faster save/load
Feature: setMutationType() added to allow mutations to be assigned to a different type
Feature: beep() function allows audible output from scripts
Tweak: readFromPopulationFile() can now read the new binary file format

Version 2.0.1
Feature: format() function added to Eidos for customized formatting of output

Version 2.0
This was the original version of SLiM 2, which was an almost complete rewrite of SLiM and

introduced such major features as Eidos and SLiMgui. The full list of changes is far too extensive to
detail here. Before SLiM 2 came SLiM 1, which was documented in Messer (2013).

 827

31. Credits and licenses for incorporated software

SLiM incorporates code from various other software frameworks and packages. This section
provides credit and license information for the software thus incorporated, as well as for SLiM
itself.

31.1 SLiM
SLiM is free software: you can redistribute it and/or modify it under the terms of the GNU

General Public License as published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

SLiM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with SLiM. If not,
see http://www.gnu.org/licenses/.

31.2 GNU Scientific Library (GSL)
SLiM contains a modified distribution of the GNU Scientific Library (GSL), which is also

licensed under the GNU General Public License under the same terms stated above. Thanks to the
authors of the GSL for their very useful software, which can be found in full form at
http://www.gnu.org/software/gsl/.

31.3 tskit / kastore
SLiM contains code from the tskit and kastore software packages (enabling the tree-sequence

recording feature of SLiM, and the ability to save and load .trees files). Thanks to the tskit and
kastore developers for this code, and to Peter Ralph and Jared Galloway for contributing code to
SLiM to integrate it with these software packages. The tskit package is MIT licensed, and is
available at https://github.com/tskit-dev/tskit. The kastore package is MIT licensed, and is
available at https://github.com/tskit-dev/kastore.

31.4 Boost
SLiM contains modified code from Boost (for a smart pointer implementation), which is licensed

under the Boost Software License version 1.0 (http://www.boost.org/LICENSE_1_0.txt). The Boost
Software License is compatible with the GPL, allowing its use here. Thanks to all of the authors of
Boost for their very useful software, which can be downloaded in its full form from their website at
http://www.boost.org/users/download/#live. Thanks especially to Peter Dimov, who appears to be
the author of the class in question.

31.5 MT19937-64
SLiM contains a 64-bit Mersenne Twister implementation (a random number generator) by

Takuji Nishimura and Makoto Matsumoto; thanks to them for this code, which was obtained from
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/VERSIONS/C-LANG/mt19937-64.c. Following
the terms of their license, the following text is provided from them:

Copyright (C) 2004, Makoto Matsumoto and Takuji Nishimura,

All rights reserved.

 828

http://www.gnu.org/licenses/
http://www.gnu.org/software/gsl/
https://github.com/tskit-dev/tskit
https://github.com/tskit-dev/kastore
http://www.boost.org/LICENSE_1_0.txt
http://www.boost.org/users/download/#live
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/VERSIONS/C-LANG/mt19937-64.c

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

31.6 WiggleTools
SLiM contains code from WiggleTools to perform t-tests. WiggleTools is licensed under the

Apache 2.0 license (http://www.apache.org/licenses/LICENSE-2.0), which is compatible with the
GPL, allowing its use here. Thanks to EMBL-European Bioinformatics Institute for making this code
available.

31.7 ObjectPool
SLiM contains a modified version of a C++ object pool class published by Paulo Zemek at

http://www.codeproject.com/Articles/746630/O-Object-Pool-in-Cplusplus. His code is under the
Code Project Open License (CPOL), available at http://www.codeproject.com/info/cpol10.aspx.
The CPOL is not compatible with the GPL. Paulo Zemek has explicitly granted permission for his
code to be used in Eidos and SLiM, and thus placed under the GPL as an alternative license. An
email granting this permission has been archived and can be provided upon request. This code is
therefore now under the same GPL license as the rest of SLiM and Eidos, as stated above.

31.8 Exact summation
SLiM contains modified (translated to C from Python) code to compute the exact summation

(within available precision limits) of a vector of floating-point numbers. This code is adapted from
Python’s fsum() function, as implemented in the file mathmodule.c in the math_fsum() C function,
from Python version 3.6.2, downloaded from https://www.python.org/getit/source/. The authors of
that code appear to be Raymond Hettinger and Mark Dickinson; thanks to them. The PSF open-
source license for Python 3.6.2, which the PSF states is GSL-compatible, may be found on their
website at https://docs.python.org/3.6/license.html.

 829

http://www.apache.org/licenses/LICENSE-2.0
http://www.codeproject.com/Articles/746630/O-Object-Pool-in-Cplusplus
http://www.codeproject.com/info/cpol10.aspx
https://www.python.org/getit/source/
https://docs.python.org/3.6/license.html

31.9 JSON for Modern C++
SLiM contains code from the JSON for Modern C++ project (https://github.com/nlohmann/json).

Thanks to Niels Lohmann and other contributors for this very useful library. This code is under the
MIT license, and is governed by the following notice:

The class is licensed under the MIT License:

Copyright © 2013-2019 Niels Lohmann

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the “Software”),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

The class contains the UTF-8 Decoder from Bjoern Hoehrmann which is
licensed under the MIT License (see above). Copyright © 2008-2009 Björn
Hoehrmann bjoern@hoehrmann.de

The class contains a slightly modified version of the Grisu2 algorithm
from Florian Loitsch which is licensed under the MIT License (see above).
Copyright © 2009 Florian Loitsch

31.10 SHA-256
SLiM contains code for the computation of SHA-256 hashes, from https://github.com/amosnier/

sha-2. Thanks to Alain Mosnier for this code. It is provided under the public domain “Unlicense”,
which reads as follows:

This is free and unencumbered software released into the public domain.

Anyone is free to copy, modify, publish, use, compile, sell, or distribute
this software, either in source code form or as a compiled binary, for any
purpose, commercial or non-commercial, and by any means.

In jurisdictions that recognize copyright laws, the author or authors of
this software dedicate any and all copyright interest in the software to
the public domain. We make this dedication for the benefit of the public
at large and to the detriment of our heirs and successors. We intend this
dedication to be an overt act of relinquishment in perpetuity of all
present and future rights to this software under copyright law.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER

 830

https://github.com/nlohmann/json
https://github.com/amosnier/sha-2
https://github.com/amosnier/sha-2

IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

For more information, please refer to <http://unlicense.org>

31.11 zlib
SLiM contains a modified copy of the zlib compression/decompression library (version 1.2.11)

to support the writing of compressed files with writeFile() and writeTempFile(). The zlib
library is written by Jean-loup Gailly and Mark Adler; thanks to them. It is made freely available
for reuse, under conditions described in the eidos_zlib/README file included in this project; those
conditions are GPL-compatible. The original, unmodified sources for zlib may be found at http://
zlib.net/.

31.12 Worst-case Optimal Incremental Sorting
SLiM contains code from https://github.com/KukyNekoi/magicode which implements the

“Optimal Incremental Sorting” and “Worst-case Optimal Incremental Sorting” algorithms of
Paredes & Navarro (2006) and Regla & Paredes (2015). This code is by Erik Regla, and is released
under the GPL 3. Thanks very much to Erik Regla for making it available online and for assistance
in getting it working within SLiM.

31.13 tinycolormap
SLiM contains a modified copy of the tinycolormap library (version 0.7.0) for generation of

color maps. The tinycolormap library is written by Yuki Koyama. It is licensed under the MIT
License, which is compatible with the GPL 3.0. The original, unmodified sources for tinycolormap
may be found at https://github.com/yuki-koyama/tinycolormap. That code has been modified, in
particular by merging in a pull request by Shot511 (Tomasz Gałaj) that adds support for the Turbo
colormap, available at https://github.com/yuki-koyama/tinycolormap/pull/27. That code is derived
from original code by Anton Mikhailov licensed under the Apache 2.0 license, which is
compatible with the GPL 3.0; Anton’s code is available at https://gist.github.com/mikhailov-work/
6a308c20e494d9e0ccc29036b28faa7a. Copies of the MIT and Apache 2.0 licenses, under which
this code was originally released, are provided in eidos_tinycolormap.h. Thanks to Yuki, Anton,
and Tomasz for their work.

31.14 LodePNG
SLiM contains a modified copy of the LodePNG library (cloned 8 October 2020, version

20200306) for reading in PNG images for the Eidos built-in class Image. The LodePNG library is
written by Lode Vandevenne. It is licensed under the Zlib License, which is compatible with the
GPL 3.0. The original, unmodified sources for LodePNG may be found at https://lodev.org/lodepng/,
or on GitHub at https://github.com/lvandeve/lodepng. The code has been modified to get rid of
some warnings. Thanks to Lode for this very useful code. The Zlib license used by LodePNG can
be found at https://raw.githubusercontent.com/lvandeve/lodepng/master/lodepng.h; it reads:

Copyright (c) 2005-2020 Lode Vandevenne

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it

 831

http://zlib.net/
http://zlib.net/
https://github.com/KukyNekoi/magicode
https://github.com/yuki-koyama/tinycolormap
https://github.com/yuki-koyama/tinycolormap/pull/27
https://gist.github.com/mikhailov-work/6a308c20e494d9e0ccc29036b28faa7a
https://gist.github.com/mikhailov-work/6a308c20e494d9e0ccc29036b28faa7a
https://lodev.org/lodepng/
https://github.com/lvandeve/lodepng
https://raw.githubusercontent.com/lvandeve/lodepng/master/lodepng.h

freely, subject to the following restrictions:

 1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would be
 appreciated but is not required.

 2. Altered source versions must be plainly marked as such, and must not be
 misrepresented as being the original software.

 3. This notice may not be removed or altered from any source
 distribution.

31.15 Robin Hood Hashing
SLiM contains an unmodified copy of the Robin Hood Hashing library (cloned 29 October

2020, version 3.9.0), a very fast hash table implementation that provides a drop-in replacement for
std::unordered_map. Robin Hood Hashing is by Martin Ankerl, and is available on GitHub at
https://github.com/martinus/robin-hood-hashing; thanks to Martin for this excellent software. It is
licensed under the MIT license, which is compatible with the GPL 3.0. The license for Robin
Hood Hashing is shown here in full:

MIT License

Copyright (c) 2018-2019 Martin Ankerl

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

31.16 Ryan’s CMake Modules Collection
SLiM contains a partial copy of the Ryan’s CMake Modules Collection library (cloned 2 August

2022, version 3.9.0), a very useful collection of modules for the CMake build system. This library
is by Ryan A. Pavlik, and is available on GitHub at https://github.com/rpavlik/cmake-modules;
thanks to Ryan for these very useful tools. It is licensed under the Boost Software License version
1.0, which is compatible with the GPL 3.0. The license for it is shown here in full:

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:

 832

https://github.com/martinus/robin-hood-hashing
https://github.com/rpavlik/cmake-modules

The copyright notices in the Software and this entire statement, including
the above license grant, this restriction and the following disclaimer,
must be included in all copies of the Software, in whole or in part, and
all derivative works of the Software, unless such copies or derivative
works are solely in the form of machine-executable object code generated by
a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

31.17 Other contributions
Smaller snippets of code have been gleaned from the web, particularly from stackoverflow.

Credit is given in the SLiM source code where this has occurred, and in all cases the code is
licensed under terms compatible with the GSL (as far as we, who are not lawyers, can tell). Thanks
to everyone whose code has found its way into SLiM.

 833

32. References

Adrion, J.R., Cole, C.B., Dukler, N., Galloway, J.G., Gladstein, A.L., Gower, G., Kyriazis, C.C.,
Ragsdale, A.P., Tsambos, G., Baumdicker, F., Carlson, J., Cartwright, R.A., Durvasula, A.,
Gronau, I., Kim, B.Y., McKenzie, P., Messer, P.W., Noskova, E., Ortega-Del Vecchyo, D.,
Racimo, F., Struck, T.J., Gravel, S., Gutenkunst, R.N., Lohmueller, K.E., Ralph, P.L., Schrider,
D.R., Siepel, A., Kelleher, J., and Kern, A.D. (2020). A community-maintained standard library
of population genetic models. eLife 9, e54967.

Amorim, C.E.G., Gao, Z., Baker, Z., Diesel, J.F., Simons, V.B., Haque, I.S., Pickrell, J., and Przeworski,
M. (2017). The population genetics of human disease: The case of recessive, lethal mutations.
PLoS Genetics 13(9), e1006915.

Ayala, F.J., and Campbell, C. (1974). Frequency-dependent selection. Annual Review of Ecology,
Evolution, and Systematics 5, 115–138.

Bhatia, G., Patterson, N., Sankararaman, S., and Price, A.L. (2013). Estimating and interpreting FST: The
impact of rare variants. Genome Research 23, 1514–1521.

Boost. (2015). Boost C++ Libraries [version 1.59.0]. URL: http://www.boost.org

Charlesworth, B., Morgan, M.T., and Charlesworth, D. (1993). The effect of deleterious mutations on
neutral molecular variation. Genetics 134(4), 1289–1303.

Chen, J.-M., Cooper, D.N., Chuzhanova, N., Férec, C., and Patrinos, G.P. (2007). Gene conversion:
Mechanisms, evolution and human disease. Nature Reviews Genetics 8(10), 762–775.

Comeron, J.M., Ratnappan, R., and Bailin, S. (2012). The many landscapes of recombination in
Drosophila melanogaster. PLoS Genetics 8(10), e1002905.

Cury, J., Haller, B.C., Achaz, G., and Jay, F. (2022). Simulation of bacterial populations with SLiM. Peer
Community Journal 2(2), e7.

Dawkins, R. (1976). The Selfish Gene. Oxford University Press.

Deutsch, M., and Long, M. (1999). Intron–exon structures of eukaryotic model organisms. Nucleic
Acids Research 27(15), 3219–3228.

Dieckmann, U., and Doebeli, M. (1999). On the origin of species by sympatric speciation. Nature
400(6742), 354–357.

Doebeli, M., and Dieckmann, U. (2003). Speciation along environmental gradients. Nature 421(6920),
259–264.

Doudna, J.A., and Charpentier, E. (2014). The new frontier of genome engineering with CRISPR- Cas9.
Science 346(6213), 1258096-1–1258096-9.

Duret, L., and Galtier, N. (2009). Biased gene conversion and the evolution of mammalian genomic
landscapes. Annual Review of Genomics and Human Genetics 10, 285–311.

Elyashiv, E., Sattath, S., Hu, T. T., Strutsovsky, A., McVicker, G., Andolfatto, P., Coop, G., and Sella, G.
(2016). A genomic map of the effects of linked selection in Drosophila. PLoS Genetics 12(8),
e1006130.

Faure, M., and Schreiber, S.J. (2014). Quasi-stationary distributions for randomly perturbed dynamical
systems. The Annals of Applied Probability 24(2), 553–598.

Fiston-Lavier, A.S., and Petrov, D.A. (2013). Drosophila melanogaster recombination rate calculator.
URL: http://petrov.stanford.edu/cgi-bin/recombination-rates_updateR5.pl.
Drosophila chromosome map URL: http://petrov.stanford.edu/RRC_scripts/RRCv2.3.tar.gz

Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M., and Rossi, F. (2009).
GNU Scientific Library Reference Manual [3rd Ed.]. ISBN 0954612078.

 834

http://www.boost.org
http://petrov.stanford.edu/cgi-bin/recombination-rates_updateR5.pl
http://petrov.stanford.edu/RRC_scripts/RRCv2.3.tar.gz

Gravel, S., Henn, B.M., Gutenkunst, R.N., Indap, A.R., Marth, G.T., Clark, A.G., Yu, F., Gibbs, R.A.,
Bustamante, C.D., Altshuler, D.L., and Durbin, R.M. (2011). Demographic history and rare
allele sharing among human populations. PNAS 108(29), 11983–11988.

Grimm, V. (2002.) Visual debugging: A way of analyzing, understanding and communicating bottom-up
simulation models in ecology. Natural Resource Modeling 15(1): 23–38.

Guerrero, R. F., Rousset, F., and Kirkpatrick, M. (2012). Coalescent patterns for chromosomal inversions
in divergent populations. Phil. Trans. R. Soc. B 367(1587), 430–438.

Haller, B.C. (2016). Eidos: A Simple Scripting Language. URL: http://messerlab.org/slim/

Haller, B.C., and Hendry, A.P. (2013). Solving the paradox of stasis: Squashed stabilizing selection and
the limits of detection. Evolution 68(2), 483–500.

Haller, B.C., Mazzucco, R., and Dieckmann, U. (2013). Evolutionary branching in complex landscapes.
American Naturalist 182(4), E127–E141.

Hamilton, W.D. (1964a). The genetical evolution of social behaviour I. Journal of Theoretical Biology
7(1), 1–16.

Hamilton, W.D. (1964b). The genetical evolution of social behaviour II. Journal of Theoretical Biology
7(1), 17–52.

Hill, W. G., and Robertson, A. (1966). The effect of linkage on limits to artificial selection. Genetical
Research 8(3), 269–294.

Hudson, R.R. (1994). How can the low levels of DNA sequence variation in regions of the Drosophila
genome with low recombination rates be explained? PNAS 91(15), 6815–6818.

Jouganous, J., Long, W., Ragsdale, A.P., and Gravel, S. (2017). Inferring the joint demographic history of
multiple populations: Beyond the diffusion approximation. Genetics 206(3), 1549–1567.

Kelleher, J., Etheridge, A.M., and McVean, G. (2016). Efficient coalescent simulation and genealogical
analysis for large sample sizes. PLoS Computational Biology 12(5): e1004842.

Kelleher, J., Thornton, K.R., Ashander, J., and Ralph, P.L. (2018). Efficient pedigree recording for fast
population genetics simulation. bioRxiv 248500. DOI: https://doi.org/10.1101/248500

Kimura, M. (1962). On the probability of fixation of mutant genes in a population. Genetics 47(6), 713–
719.

L’Ecuyer, P., Simard, R., Chen, E.J., and Kelton, W.D. (2002). An object-oriented random-number
package with many long streams and substreams. Operations Research 50(6), 1073–1075.

Leimar, O., Doebeli, M., and Dieckmann, U. (2008). Evolution of phenotypic clusters through
competition and local adaptation along an environmental gradient. Evolution 62(4), 807–822.

Lewanski, A.L., Grundler, M.C., and Bradburd, G.S. (2023). The era of the ARG: an empiricist’s guide to
ancestral recombination graphs. arXiv 2310.12070. DOI: https://doi.org/10.48550/
arXiv.2310.12070

Mattson, T.G., He, Y., and Koniges, A.E. (2019). The OpenMP Common Core: Making OpenMP Simple
Again. Cambridge, MA: The MIT Press, 295 pp. ISBN 9780262538862.

Mazzucco, R., Doebeli, M., and Dieckmann, U. (2018). The influence of habitat boundaries on
evolutionary branching along environmental gradients. Evolutionary Ecology 32(6), 563–585.

Messer, P.W. (2013). SLiM: Simulating evolution with selection and linkage. Genetics 194(4), 1037–
1039.

Messer, P.W., and Petrov, D.A. (2013). Population genomics of rapid adaptation by soft selective
sweeps. Trends In Ecology & Evolution 28(1), 659–669.

 835

http://messerlab.org/slim/
https://doi.org/10.1101/248500
https://doi.org/10.48550/arXiv.2310.12070
https://doi.org/10.48550/arXiv.2310.12070

Morton, N.E., Crow, J.F., and Muller, H.J. (1956). An estimate of the mutational damage in man from
data on consanguineous marriages. PNAS 42(11), 855–863.

Newbigin, E., Anderson, M.A., and Clarke, A.E. (1993). Gametophytic self-incompatibility systems. The
Plant Cell 5(10), 1315–1324.

OpenMP Architecture Review Board. (2015). OpenMP Application Programming Interface. URL:
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

Payne, J.L., Mazzucco, R., and Dieckmann, U. (2011). The evolution of conditional dispersal and
reproductive isolation along environmental gradients. Journal of Theoretical Biology 273(1),
147–155.

Philipps, P.C. (2008). Epistasis – the essential role of gene interactions in the structure and evolution of
genetic systems. Nature Reviews Genetics 9(11), 855–867.

Pritchard, J. (2023). An Owner's Guide to the Human Genome: an introduction to human population
genetics, variation and disease [V1]. URL: https://web.stanford.edu/group/pritchardlab/
HGbook.html

R Core Team. (2015). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/

Sasaki, A. (1997). Clumped distribution by neighbourhood competition. Journal of Theoretical Biology
184(4), 415–430.

Sattath, S., Elyashiv, E., Kolodny, O., Rinott, Y., and Sella, G. (2011). Pervasive adaptive protein
evolution apparent in diversity patterns around amino acid substitutions in Drosophila
simulans. PLoS Genetics 7(2), e1001302.

Servedio, M.R., Van Doorn, G.S., Kopp, M., Frame, A.M., and Nosil, P. (2011). Magic traits in
speciation: ‘Magic’ but not rare?. Trends in Ecology & Evolution 26(8), 389–397.

Sjödin, P, Kaj, I., Krone, S., Lascoux, M., and Nordborg, M. (2005). On the meaning and existence of an
effective population size. Genetics 169(2), 1061–1070.

Smith, J.M., and Haigh, J. (1974). The hitch-hiking effect of a favorable gene. Genetical Research 23(1),
23–25.

Uricchio, L.H., and Hernandez, R.D. (2014). Robust forward simulations of recurrent hitchhiking.
Genetics 197(1), 221–236.

Vincenot, C.E., Carteni, F., Mazzoleni, S., Rietkerk, M., and Giannino, F. (2016). Spatial Self-
Organization of Vegetation Subject to Climatic Stress—Insights from a System Dynamics—
Individual-Based Hybrid Model. Frontiers in Plant Science 7, 636.

Wang, J., Santiago, E., Caballero, A. (2016). Prediction and estimation of effective population size.
Heredity 117, 193–206.

 836

https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://web.stanford.edu/group/pritchardlab/HGbook.html
https://web.stanford.edu/group/pritchardlab/HGbook.html
https://www.R-project.org/

	1. SLiM overview
	1.1 Introduction
	1.2 Why SLiM?
	1.3 A quick summary of SLiM
	1.4 The typical SLiM usage pattern
	1.5 Conceptual overview
	1.5.1 Individuals and genomes
	1.5.2 Mutations and substitutions
	1.5.3 Mutation stacking
	1.5.4 Genomic elements, genomic element types, mutation types, and the chromosome
	1.5.5 Subpopulations and migration
	1.5.6 Recombination, gene conversion, and biased gene conversion
	1.5.7 Community, Species, ticks, cycles, and generations
	1.5.8 Other concepts

	1.6 Wright–Fisher (WF) versus non-Wright–Fisher (nonWF) models
	1.7 Tree-sequence recording
	1.8 Nucleotide-based models
	1.9 Multispecies models
	1.10 Online resources for SLiM users

	2. Installation
	2.1 Installation on macOS
	2.1.1 Installing the prebuilt SLiM package on macOS
	2.1.2 Building SLiM from sources on macOS

	2.2 Installation on Linux and other Un*x platforms
	2.2.1 Installing SLiMgui using AppImage on Linux
	2.2.2 Installing SLiM with a platform-dependent binary package on Linux
	2.2.3 Building SLiM from sources on Linux

	2.3 Installation on Windows
	2.3.1 Installing SLiM with an installer on Windows
	2.3.2 Building SLiM from sources on Windows

	2.4 Building SLiMgui
	2.4.1 Building SLiMgui on macOS
	2.4.2 Building SLiMgui on Linux / Un*x
	2.4.3 Troubleshooting SLiMgui build issues on Linux / Un*x
	2.4.4 Building SLiMgui on Windows
	2.4.5 Troubleshooting SLiMgui build issues on Windows
	2.4.6 Building SLiMgui on Windows with WSL

	2.5 Installation with conda
	2.6 Testing the SLiM installation
	2.7 Post-installation issues

	3. Running simulations in SLiMgui
	3.1 The SLiMgui simulation window
	3.2 The script help window
	3.3 The Eidos console
	3.4 The Eidos variable browser
	3.5 Automatic code completion and command syntax lookup
	3.6 Script prettyprinting
	3.7 Further SLiMgui features

	4. Getting started: Neutral evolution in a panmictic population
	4.1 A basic neutral simulation
	4.1.1 initialize() callbacks
	4.1.2 Mutation rate
	4.1.3 Mutation types
	4.1.4 Genomic element types
	4.1.5 Genomic elements
	4.1.6 Recombination rate
	4.1.7 Eidos events
	4.1.8 Subpopulations
	4.1.9 Executing the simulation

	4.2 Basic output
	4.2.1 Entire population
	4.2.2 Random population sample
	4.2.3 Sampling individuals rather than genomes
	4.2.4 Substitutions
	4.2.5 Automatic logging with LogFile
	4.2.6 Custom output with Eidos
	4.2.7 The simulation endpoint

	5. Demography and population structure
	5.1 Subpopulation size
	5.1.1 Instantaneous changes
	5.1.2 Exponential growth
	5.1.3 The population visualization graph
	5.1.4 Cyclical changes
	5.1.5 Context-dependent changes: Muller’s Ratchet

	5.2 Population structure
	5.2.1 Adding subpopulations
	5.2.2 Removing subpopulations
	5.2.3 Splitting subpopulations
	5.2.4 Joining subpopulations

	5.3 Migration and admixture
	5.3.1 A linear stepping-stone model
	5.3.2 A non-spatial metapopulation
	5.3.3 A two-dimensional subpopulation matrix
	5.3.4 A random, sparse spatial metapopulation
	5.3.5 Reading a migration matrix from a file

	5.4 The Gravel et al. (2011) model of human evolution
	5.5 Rescaling population sizes to improve simulation performance

	6. Sexual reproduction
	6.1 Recombination
	6.1.1 Crossing over: Making a random recombination map
	6.1.2 Crossing over: Reading a recombination map from a file
	6.1.3 Gene conversion
	6.1.4 Multiple chromosomes

	6.2 Separate sexes
	6.2.1 Enabling separate sexes
	6.2.2 Sex ratios
	6.2.3 Modeling sex-chromosome evolution

	6.3 Selfing and cloning
	6.3.1 Selfing in hermaphroditic populations
	6.3.2 Cloning

	7. Mutation types, genomic elements, and chromosome structure
	7.1 Mutation types and fitness effects
	7.2 Genomic element types
	7.3 Chromosome organization
	7.4 Custom display colors in SLiMgui

	8. SLiMgui visualizations for polymorphism patterns
	8.1 Mutation frequency spectra
	8.2 Mutation frequency trajectories
	8.3 Times to fixation and loss
	8.4 Population fitness over time

	9. Selective sweeps
	9.1 Introducing adaptive mutations
	9.2 Making sweeps conditional on fixation
	9.3 Making sweeps conditional on establishment
	9.4 Partial sweeps
	9.5 Soft sweeps from de novo mutations
	9.5.1 A soft sweep from recurrent de novo mutations in a large population
	9.5.2 A soft sweep with a fixed mutation schedule
	9.5.3 A soft sweep with a random mutation schedule

	9.6 Sweeps from standing genetic variation
	9.6.1 A sweep from standing variation at a random locus
	9.6.2 A sweep from standing variation at a predetermined locus

	9.7 Adaptive introgression
	9.8 Fixation probabilities under Hill–Robertson interference
	9.9 Keeping a reference to a sweep mutation
	9.10 Tracking the fate of background mutations
	9.11 Effective population size versus census population size

	10. Context-dependent selection using mutationEffect() callbacks
	10.1 Temporally varying selection
	10.2 Spatially varying selection
	10.3 Fitness as a function of genomic background
	10.3.1 Epistasis

	10.4 Fitness as a function of population composition
	10.4.1 Frequency-dependent selection
	10.4.2 Cultural effects on fitness
	10.4.3 Kin selection and the green-beard effect

	10.5 Changing selection coefficients with setSelectionCoeff()
	10.6 Varying the dominance coefficient among mutations

	11. Complex mating schemes using mateChoice() callbacks
	11.1 Assortative mating
	11.2 Sequential mate search
	11.3 Gametophytic self-incompatibility

	12. Direct child modifications using modifyChild() callbacks
	12.1 Social learning of cultural traits
	12.2 Lethal epistasis
	12.3 Simulating gene drive
	12.4 Suppressing hermaphroditic selfing
	12.5 Tracking separate sexes in script

	13. Phenotypes, fitness functions, quantitative traits, and QTLs
	13.1 Polygenic selection
	13.2 A simple model of variable QTL effect sizes
	13.3 A model of discrete QTL effects with a structured chromosome
	13.4 A quantitative genetics model with heritability
	13.5 A QTL-based model with two quantitative phenotypic traits and pleiotropy
	13.6 A variety of fitness functions

	14. Advanced WF models
	14.1 Relatedness, inbreeding, and heterozygosity
	14.2 Mortality-based fitness
	14.3 Reading initial simulation state from an MS output file
	14.4 Modeling chromosomal inversions with a recombination() callback
	14.5 Modeling both X and Y Chromosomes with a Pseudo-Autosomal Region (PAR)
	14.6 Estimating model parameters with ABC
	14.7 Tracking true local ancestry along the chromosome
	14.8 Live plotting with R using system()
	14.9 Modeling haploid organisms
	14.10 Using mutation rate variation to model varying functional density
	14.11 Modeling microsatellites
	14.12 Modeling transposable elements
	14.13 Modeling opposite ends of a chromosome
	14.14 Visualizing ancestry and admixture with mutation() callbacks
	14.15 Modeling biallelic loci with a mutation() callback
	14.16 Modeling biallelic loci in script

	15. Going beyond Wright–Fisher models: nonWF model recipes
	15.1 A minimal nonWF model
	15.2 Age structure (a life table model)
	15.3 Monogamous mating and variation in litter size
	15.4 Beneficial mutations and absolute fitness
	15.5 A metapopulation extinction-colonization model
	15.6 Habitat choice
	15.7 Evolutionary rescue after environmental change
	15.8 Pollen flow
	15.9 Litter size and parental investment
	15.10 Forcing a specific pedigree in a nonWF model
	15.11 Modeling clonal haploids in a nonWF model with addRecombinant()
	15.12 Modeling clonal haploid bacteria with horizontal gene transfer
	15.13 Implementing a Wright–Fisher model with a nonWF model
	15.14 Alternation of generations
	15.15 Meiotic drive
	15.16 Range expansion in a stepping-stone model in two recipes
	15.17 Logistic population growth with the Beverton–Holt model
	15.18 Dynamic population structure in nonWF models
	15.19 Sperm storage with a survival() callback
	15.20 Tracking separate sexes in script, nonWF style
	15.21 Modeling haplodiploidy with addRecombinant()

	16. Continuous-space models, interactions, and spatial maps
	16.1 A simple 2D continuous-space model
	16.2 Spatial competition
	16.3 Boundaries, boundary conditions, and dispersal kernels
	16.4 Mate choice with a spatial kernel
	16.5 Mate choice with a nearest-neighbor search
	16.6 Divergence due to phenotypic competition with an interaction() callback
	16.7 Modeling phenotype as a spatial dimension
	16.8 Sympatric speciation facilitated by assortative mating
	16.9 Speciation due to spatial variation in selection
	16.10 A simple biogeographic landscape model
	16.11 Local adaptation on a heterogeneous landscape map
	16.12 Periodic spatial boundaries
	16.13 Density-dependent fecundity with summarizeIndividuals()
	16.14 Directed dispersal with the SpatialMap class
	16.15 Spatial competition and spatial mate choice in a nonWF model
	16.16 A spatial model with carrying-capacity density
	16.17 A spatial epidemiological S-I-R model
	16.18 A sexual, age-structured spatial model

	17. Tree-sequence recording: tracking population history and true local ancestry
	17.1 A minimal tree-seq model
	17.2 Overlaying neutral mutations
	17.3 Simulation conditional upon fixation of a sweep, preserving ancestry
	17.4 Detecting the “dip in diversity”: analyzing tree heights in Python
	17.5 Mapping admixture: analyzing ancestry in Python
	17.6 Measuring the coalescence time of a model
	17.7 Analyzing selection coefficients in Python with tskit
	17.8 Starting a hermaphroditic WF model with a coalescent history
	17.9 Starting a sexual nonWF model with a coalescent history
	17.10 Adding a neutral burn-in after simulation with recapitation
	17.11 Optimizing tree-sequence simplification

	18. Modeling explicit nucleotides
	18.1 A simple neutral nucleotide-based model
	18.2 Reading an ancestral nucleotide sequence from a FASTA file
	18.3 Sequence output from nucleotide-based models
	18.4 Back-mutations, independent mutational lineages, and VCF output
	18.5 Modeling elevated CpG mutation rates and equilibrium nucleotide frequencies
	18.6 A nucleotide-based model with introduced non-nucleotide-based mutations
	18.7 Using standard SLiM fitness effects with nucleotides: modeling synonymous sites
	18.8 Defining sequence-based fitness effects at the nucleotide level
	18.9 Defining sequence-based fitness effects at the amino acid level
	18.10 Varying the mutation rate along the chromosome in a nucleotide-based model
	18.11 Modeling GC-biased gene conversion (gBGC)
	18.12 Reading VCF files to create nucleotide-based SNPs
	18.13 Tree-sequence recording and nucleotide-based models
	18.14 Modeling identity by state (IBS): uniquing mutations with a mutation() callback
	18.15 Modeling identity by state (IBS): uniquing back-mutations to the ancestral state

	19. Multispecies modeling
	19.1 A simple multispecies model
	19.2 A two-species model
	19.3 A deterministic host–parasitoid model
	19.4 An individual-based host–parasitoid model
	19.5 A continuous-space host–parasitoid model
	19.6 A coevolutionary host–parasitoid trait-matching model
	19.7 A coevolutionary host–parasite matching-allele model
	19.8 Within-host reproduction in a host–pathogen model

	20. Runtime control
	20.1 The random number generator
	20.2 Defining constants on the command line
	20.3 Other command-line options
	20.4 File input and output
	20.5 Lambda execution
	20.6 Debugging

	21. Implementation and performance
	21.1 Writing fast SLiM simulations
	21.2 Performance evaluation
	21.3 Memory usage considerations
	21.4 Mutation runs and runtime optimization
	21.5 Profiling simulations in SLiMgui
	21.6 Profiling memory usage in SLiMgui, or with outputUsage()
	21.7 Profiling in SLiM at the command line

	23. SLiM architecture (WF models)
	23.0 Step 0: Execution of first() Eidos events
	23.1 Step 1: Execution of early() Eidos events
	23.2 Step 2: Generation of offspring
	23.2.1 The order of offspring generation
	23.2.2 Mate choice
	23.2.3 Mutation and recombination
	23.2.4 Child modification
	23.2.5 Child generation

	23.3 Step 3: Removal of fixed mutations
	23.4 Step 4: Offspring become parents
	23.5 Step 5: Execution of late() Eidos events
	23.6 Step 6: Fitness value recalculation
	23.7 Step 7: Tick/cycle count increment

	24. SLiM architecture (nonWF models)
	24.0 Step 0: Execution of first() Eidos events
	24.1 Step 1: Generation of offspring
	24.1.1 The order of offspring generation
	24.1.2 Individual-based reproduction with reproduction() callbacks
	24.1.3 Mutation and recombination
	24.1.4 Child modification
	24.1.5 Child generation

	24.2 Step 2: Execution of early() Eidos events
	24.3 Step 3: Fitness value recalculation
	24.4 Step 4: Viability/survival
	24.5 Step 5: Removal of fixed mutations
	24.6 Step 6: Execution of late() Eidos events
	24.7 Step 7: Tick/cycle count increment

	25. SLiM classes and built-in functions
	25.1 Simulation initialization: initialize() callbacks
	25.2 Class Chromosome
	25.2.1 Chromosome properties
	25.2.2 Chromosome methods

	25.3 Class Community
	25.3.1 Community properties
	25.3.2 Community methods

	25.4 Class Genome
	25.4.1 Genome properties
	25.4.2 Genome methods

	25.5 Class GenomicElement
	25.5.1 GenomicElement properties
	25.5.2 GenomicElement methods

	25.6 Class GenomicElementType
	25.6.1 GenomicElementType properties
	25.6.2 GenomicElementType methods

	25.7 Class Individual
	25.7.1 Individual properties
	25.7.2 Individual methods

	25.8 Class InteractionType
	25.8.1 InteractionType properties
	25.8.2 InteractionType methods

	25.9 Class LogFile
	25.9.1 LogFile properties
	25.9.2 LogFile methods

	25.10 Class Mutation
	25.10.1 Mutation properties
	25.10.2 Mutation methods

	25.11 Class MutationType
	25.11.1 MutationType properties
	25.11.2 MutationType methods

	25.12 Class SLiMEidosBlock
	25.12.1 SLiMEidosBlock properties
	25.12.2 SLiMEidosBlock methods

	25.13 Class SLiMgui
	25.13.1 SLiMgui properties
	25.13.2 SLiMgui methods

	25.14 Class SpatialMap
	25.14.1 SpatialMap properties
	25.14.2 SpatialMap methods

	25.15 Class Species
	25.15.1 Species properties
	25.15.2 Species methods

	25.16 Class Subpopulation
	25.16.1 Subpopulation properties
	25.16.2 Subpopulation methods

	25.17 Class Substitution
	25.17.1 Substitution properties
	25.17.2 Substitution methods

	25.18 SLiM built-in functions
	25.18.1 Nucleotide utilities
	25.18.2 Population genetics utilities
	25.18.3 Other utilities

	26. Writing Eidos events and callbacks
	26.1 Defining Eidos events
	26.2 Defining mutation effects with a mutationEffect() callback
	26.3 Defining individual-level fitness effects with a fitnessEffect() callback
	26.4 Defining mate choice with a mateChoice() callback
	26.5 Defining child generation with a modifyChild() callback
	26.6 Defining recombination behavior with a recombination() callback
	26.7 Defining interaction behavior with a interaction() callback
	26.8 Defining reproduction behavior with a reproduction() callback
	26.9 Defining mutation behavior with a mutation() callback
	26.10 Defining survival and mortality with a survival() callback
	26.11 Further details on Eidos events and callbacks

	27. SLiM output formats
	27.1 Species output methods
	27.1.1 outputFull()
	27.1.2 outputFixedMutations()
	27.1.3 outputMutations()

	27.2 Subpopulation output methods
	27.2.1 outputSample()
	27.2.2 outputMSSample()
	27.2.3 outputVCFSample()
	27.2.4 outputVCFSample() in nucleotide-based models

	27.3 Genome output methods
	27.3.1 output()
	27.3.2 outputMS()
	27.3.3 outputVCF()

	27.4 SLiM additions to the .trees file format

	28. SLiM extensions to the Eidos language
	28.1 Extensions to the Eidos grammar
	28.2 SLiM scoping rules

	29. SLiM reference sheet
	30. Revision history
	31. Credits and licenses for incorporated software
	32. References

