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Abstract
Epidemiological models that aim for a high degree of biological realism by simulating every
individual in a population are unavoidably complex, with many free parameters, which makes
systematic explorations of their dynamics computationally challenging. This study
investigates the potential of Gaussian Process emulation to overcome this obstacle. To
simulate disease dynamics, we developed an individual-based model of dengue
transmission that includes factors such as social structure, seasonality, and variation in
human movement. We trained three Gaussian Process surrogate models on three
outcomes: outbreak probability, maximum incidence, and epidemic duration. These models
enable the rapid prediction of outcomes at any point in the eight-dimensional parameter
space of the original model. Our analysis revealed that average infectivity and average
human mobility are key drivers of these epidemiological metrics, while the seasonal timing of
the first infection can influence the course of the epidemic outbreak. We use a dataset
comprising more than 1,000 dengue epidemics observed over 12 years in Colombia to
calibrate our Gaussian Process model and evaluate its predictive power. The calibrated
Gaussian Process model identifies a subset of municipalities with consistently higher
average infectivity estimates, highlighting them as promising areas for targeted public health
interventions. Overall, this work underscores the potential of Gaussian Process emulation to
enable the use of more complex individual-based models in epidemiology, allowing a higher
degree of realism and accuracy that should increase our ability to control important diseases
such as dengue.

Keywords: individual-based modeling, statistical emulation, Gaussian Processes,
epidemiological modeling, variance-based sensitivity analysis

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2024. ; https://doi.org/10.1101/2024.11.28.24318136doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:annamaria.langmueller@gmail.com
mailto:messer@cornell.edu
https://doi.org/10.1101/2024.11.28.24318136
http://creativecommons.org/licenses/by/4.0/


Introduction
Simulation models that describe individual organisms or agents have become a
well-established research tool across numerous scientific fields1. These so-called
individual-based models (IBMs) can allow researchers to explore how system-level
characteristics emerge from individual behaviors, while also investigating the reciprocal
influence of the system on individuals1. In the field of epidemiology, IBMs have provided
valuable insights into the dynamics of pathogen and disease spread and have facilitated
rigorous evaluation of planned intervention strategies, making them an integral part of
modern epidemiological research2–6. Recent computational advances, combined with the
development of comprehensive individual-based simulation frameworks2,7, have enabled the
creation of epidemiological models with unprecedented realism. These models can capture
details ranging from fine-scale human movement5,8 to specific larval breeding sites for
organisms that spread vector-borne diseases3.

While enhanced biological realism has undeniably deepened our understanding of
epidemiological processes, it also introduces increased complexity because of the level of
detail being simulated, which comes at a substantial computational cost. As IBMs become
more realistic, they also become more parameter-rich, making it increasingly difficult to
identify the key drivers of disease dynamics. This is partly because parameters often interact
in complex, non-linear ways, complicating efforts to quantify the contribution of any single
factor to model outcomes. Global sensitivity analysis can help by quantifying the relative
contribution of each parameter — as well as their interactions — to IBM outcomes. For
example, the Sobol method9 is a global sensitivity analysis approach that is able to assess
complex, non-linear parameter interactions by partitioning the observed variance in IBM
output into relative contributions from single parameters as well as interactions between two
or more parameters. This allows researchers to gain a deeper understanding of the key
drivers of the disease dynamics observed in a simulation.

Global sensitivity analysis can provide valuable insights into model dynamics, but generating
sufficient data for robust sensitivity analysis becomes increasingly computationally
demanding with each additional parameter10. Even with IBMs optimized for runtime
performance, comprehensively surveying high-dimensional parameter spaces can be
daunting and time-consuming. This is particularly true when large populations are modeled,
since the computational complexity of IBMs typically scales at least linearly with the number
of individuals modeled. When more intricate behaviors or interactions are included, the
computational burden can even increase quadratically (such as when every pairwise
interaction between individuals must be simulated), further intensifying the challenge of
parameter space exploration.

Statistical emulation11 is a powerful technique for analyzing IBMs with high-dimensional
parameter spaces. It can potentially provide an efficient solution to this dimensionality
problem (sometimes referred to as the “Curse of Dimensionality”10) by greatly reducing the
number of simulation runs required to understand the behavior of the IBM across the
parameter space of interest. This technique involves the creation of a surrogate model,
based on a limited set of IBM simulations, that can rapidly predict the output of the IBM.
Emulators can be developed using either statistical, or, more recently, machine learning
approaches12. A key feature of a well-designed emulator is its ability to provide highly
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accurate predictions significantly faster than the IBM could — often orders of magnitude
faster. In some cases, this can effectively reduce simulation times from days or weeks to
mere seconds or minutes, paving the way for comprehensive sensitivity analysis and
broader model exploration.

Gaussian Processes (GPs), first introduced in the 1960s within the field of geostatistics13,14,
are flexible statistical emulators that have been successfully applied across a range of
disciplines15–17. GPs are non-parametric models that define a distribution over functions
based on observed data. A key advantage of GPs over other machine learning techniques,
such as conventional support vector machines or neural networks, lies in their Bayesian
foundations, which allow GPs to provide confidence intervals alongside their predictions.
This uncertainty quantification enables efficient sampling of additional training data from
regions with the greatest uncertainty, facilitating active learning18 that can quickly produce
highly accurate emulation. Furthermore, with the availability of advanced software packages
supporting GPU acceleration, the computational efficiency of GPs has improved at an
astonishing pace in recent years, making them an increasingly attractive research tool19.

In epidemiology, the ability of GPs to efficiently extrapolate between sparse data points is
often utilized for estimating disease incidence counts in areas where data is missing or
unobserved20,21. Beyond interpolation, GPs serve as valuable forecasting tools17,22, and are
key components of early-warning systems23. Furthermore, as emulators of complex,
computationally intensive IBMs, GPs facilitate the calibration of these IBMs to empirical data
by helping to select parameter values for which the IBM’s outputs closely match observed
real-world data24–26. However, the potential of GPs for enabling comprehensive sensitivity
analysis — particularly to identify key drivers of disease dynamics in an IBM — remains
underexplored. Notable examples of using GPs as emulators to better understand complex
IBMs include recent studies that applied GP emulation to the OpenMalaria model26 (an
advanced IBM developed to simulate malaria transmission and control) to explore key
drivers of the spread of drug-resistant Plasmodium falciparum27, and to assess the
effectiveness of various intervention strategies28,29. However, these previous studies focused
exclusively on malaria.

In this study, we introduce the use of GP-based sensitivity analysis to dengue transmission
modeling, offering a refined perspective on the factors that drive epidemic patterns. We
employed GP surrogate models to efficiently predict three key metrics from a
dengue-inspired individual-based disease transmission model: outbreak probability,
maximum incidence, and duration. Dengue poses a growing global health threat30, with
cases rapidly increasing due to urbanization31 and climate change that has expanded the
habitat of Aedes mosquitoes, the primary vectors of the dengue virus32,33. Our IBM allows us
to simulate disease transmission while accounting for social structure, human movement,
and variation in infection probability. We demonstrate that our GPs explore the parameter
space with impressive speed, enabling a more comprehensive sensitivity analysis than
previous studies have undertaken. We conduct a global sensitivity analysis and find that
average infectivity and average human mobility are primary drivers of outbreak dynamics,
while the interactions between seasonality strength and initial infection timing can critically
influence the course of epidemic outbreaks. To determine whether insights from our
sensitivity analysis could inform our understanding of real-world epidemics, we investigate
weekly dengue incidence data at the municipality level across Colombia over more than a
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decade34,35, identifying municipalities that could serve as potential candidates for targeted
interventions or in-depth studies.

Results

Individual-based model
We implemented an IBM in C++ that simulates and tracks transmission dynamics of dengue
to study how disease dynamics are influenced by infection probability, human movement,
and social structure. The model is designed not to replicate a specific empirical system, but
to illustrate the relative importance of these parameters and their interactions in influencing
the course of epidemic outbreaks. A detailed description of the IBM can be found in the
Materials & Methods section. All model parameters are summarized in Table 1. Briefly, each
simulation begins by generating 10,000 locations that are each home to a group of
susceptible individuals. The number of individuals per location is sampled from a negative
binomial distribution fitted to the demography of Iquitos, Peru — a well-studied dengue
transmission hotspot36,37. These locations are then randomly organized into non-overlapping
family clusters, with the “family cluster size” parameter controlling the number of locations
per cluster. Social structure, controlled by the “social structure” parameter, influences the
likelihood that individuals interact within their family cluster. Human movement — the
number of visits to locations per day — is sampled from a negative binomial distribution,
defined by the “average mobility” and “mobility skewness” parameters. The social structure
of the model is depicted in Supplemental Figure S1.

The disease is introduced by infecting a single randomly chosen individual. Infected
individuals remain contagious for a number of days specified by the “infectious period”
parameter, after which they recover and gain lasting immunity (and thus cannot become
reinfected). When a susceptible individual visits a location that was visited by infectious
individuals the day before, the likelihood of infection from each previous infectious visitor is
determined by the infection probability, which accounts for seasonal fluctuations in infection
risk due to changes in mosquito abundance. We chose not to model individual mosquitoes
explicitly. This choice was driven by the very limited dispersal ability of Aedes aegypti 38, the
primary vector for dengue transmission in the Americas, which predominantly bites during
daylight hours39. Consequently, human movement patterns tend to be more influential than
mosquito movement in shaping dengue dynamics36,40,41.

The infection probability is defined by a cosine function with three parameters: (i) the
“average infectivity” parameter ( ), representing the average infection probability over theα

0

course of a year (365 days); (ii) the “seasonality strength” parameter ( ), controlling theα
𝑠𝑒𝑎𝑠𝑜𝑛

magnitude of seasonal variation in infection probability; and (iii) the “first case timing”
parameter ( ), defining the horizontal shift of the cosine function and thus the timing of𝑡

𝑓𝑖𝑟𝑠𝑡

the first case relative to the peak infection probability due to seasonality. Together, these
parameters define the infection probability at any given day t in the year:

𝑝
𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

(𝑡) =  α
0
 *  (1 +  α

𝑠𝑒𝑎𝑠𝑜𝑛
 *  𝑐𝑜𝑠(2π *  (𝑡/365 − 𝑡

𝑓𝑖𝑟𝑠𝑡
)))
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The IBM progresses by daily timesteps and continues until there are no infectious individuals
left. The output consists of daily counts of individuals in each infection state (susceptible,
exposed, infectious, and recovered). For each combination of parameters, we use 100
replicate simulation runs to calculate three metrics of the simulated epidemics: (i) outbreak
probability, defined as the proportion of simulation runs in which more than 0.1% of the
population becomes infected; (ii) maximum disease incidence (imax), defined as the highest
proportion of infectious individuals seen in any timestep; and (iii) outbreak duration, defined
as the timespan in days from the first infectious case to the recovery of the last infectious
individual. To calculate imax and outbreak duration, we average across 100 simulation runs
where an outbreak occurred (doing additional runs as needed to obtain 100 such runs for
each parameter combination), thereby minimizing confounding effects from stochastic losses
of the disease.

We systematically varied the eight parameters outlined above to explore how the simulated
epidemics change across the parameter space. Across the full range of parameters (Table
1), the three metrics exhibit significant variability: the average outbreak probability is 0.79,
ranging from 0 to 1; the average imax is 0.67, ranging from 0.0003 to 0.99; and the average
duration is 63.88 days, ranging from 19.65 to 424.15 days.

Table 1. Parameters of the individual-based disease transmission model

Parameter Description Default Range

Average
infectivity

The average infection probability across a year,
which removes the effect of seasonality

0.015 [0, 0.03]

Seasonality
strength

A scaling factor between 0 and 1 that controls the
magnitude of seasonal variation in infection
probability

0.5 [0, 1]

First case timing Determines the timing of the first case relative to
the seasonal peak in infection probability

0 [0, 1]

Infectious period The average number of days an individual
remains infectious, with actual days determined
by probabilistically rounding to the nearest
integers around the specified value

5 [4, 6]

Average mobility The average number of visits a human makes to
locations per day, in addition to their family home

2 [1, 5]

Mobility
skewness

The success probability in the negative binomial
distribution that determines the number of visits a
human makes per day; a lower value results in
greater variance in the daily visit count

0.5 [0.05, 0.95]

Social structure The probability of a visit occurring within the
family cluster of the individual moving

0.5 [0, 1]

Family cluster
size

The average number of locations assigned to
each cluster, with actual sizes determined by
probabilistically rounding to the nearest integers
around the specified value

5 [1, 20]

4

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2024. ; https://doi.org/10.1101/2024.11.28.24318136doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.28.24318136
http://creativecommons.org/licenses/by/4.0/


Gaussian Process training & performance
Even for relatively simple IBMs, generating the necessary data for a comprehensive
sensitivity analysis can become computationally prohibitive, especially when the parameter
space is high-dimensional and parameters interact with one another in complex ways. To
address this, we implemented GP surrogate models as statistical emulation tools11,12, and
trained them on input–output data pairs from our IBM (Materials & Methods section). We
trained three independent GPs to predict outbreak probability, imax, and outbreak duration.
The Bayesian nature of GPs allows for uncertainty quantification of single predictions18,
which we utilized in an active learning loop to adaptively select additional training data points
(Figure 1A).

Thanks to the optimization techniques and GPU acceleration implemented in GPyTorch19,
GP training remained computationally manageable. On our local machine (i5-12600K CPU,
GeForce RTX 4090 GPU), one training round with 30,000 iterations took approximately 15
minutes to 2 hours, depending on the size of the training data (5,000 – 20,000 points, Figure
1A: Step 1). The majority of time in the overall process was spent generating additional
training data with the IBM during the active learning rounds (Figure 1A: Step 3). This was
more time-intensive (~10 hours on our local machine) for the GPs modeling imax and
outbreak duration than for the GP modeling outbreak probability, because the training data
for the latter also included many simulation runs where no outbreaks occurred (which are
typically very fast).

One of the primary goals of statistical emulation is to reduce computational time12. GPs are
particularly efficient for this purpose because they provide closed-form solutions for
predictions, and computationally expensive matrix inversions are performed during training,
not during prediction18,42. Thus, once trained, GPs can predict new data points rapidly. In our
case, we observed a significant speed-up: with our local machine we were able to predict the
10,000 data points needed for Figure 3C in only 0.1 seconds. This is equivalent to
performing 106 IBM simulation runs, which, depending on available computational resources,
would typically take several hours in a computing cluster environment. Additionally, the
runtime for GP predictions is deterministic and constant due to the closed-form solution,
whereas the runtime of IBM simulations varies depending on the duration of the disease
outbreak.

Model performance was evaluated using root mean square error (RMSE) — both for
continuous checks against a validation dataset during training to avoid overfitting (Figure
1A), and for assessing the accuracy of the GPs after training was completed (Figure 1B).
During training, we observed that the first few adaptive training rounds tended to lead to the
most significant improvements in model performance, whereas additional rounds later in the
process yielded diminishing returns (Figure S1). The final GPs achieved RMSE values of
0.057 for outbreak probability, 0.042 for imax, and 0.068 for duration (Figure S2).

We observed greater variance in the model’s predictive accuracy for weaker epidemics (i.e.,
lower imax values, Figure 2B) and longer epidemics (i.e., larger duration, Figure 2C). In such
cases, stochasticity plays a larger role, making predictions more challenging. For the imax GP,
there were instances where the intensity of the epidemic outbreak was severely
overpredicted (Figure 2B). This might have resulted from neighboring data points with very
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different properties. Although our kernel choice allows for rather abrupt changes in function
values, the interpolation might not fully capture the true dynamics of the underlying model if it
does not happen exactly at the midpoint between the two points.

Figure 1. (A) Gaussian Process (GP) training loop18. The GP training begins with an initial training
dataset consisting of a Latin hypercube sample (LHS) of 5,000 data points generated from the input
domain (Table 1) using the individual-based simulation model (IBM). During training, the GP is
continuously evaluated against a validation dataset of 10,000 data points to prevent overfitting. After
each training cycle, 107 potential new data points are scored based on a policy that considers their
predicted value and 95% confidence interval. In each iteration of the training loop, 1,000 additional
data points are sampled from those 107 candidate points, where the probability of being sampled is
proportional to their respective scores. The newly selected data points are then simulated using the
IBM, added to the training dataset, and the next training iteration begins. (B) Usage of the trained GP.
After training, the GP is tested using an independent dataset of 10,000 LHS data points to evaluate its
performance. The trained GP can then be used for rapid predictions, enabling large-scale global
sensitivity analyses.
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Figure 2. Gaussian Process performance evaluation. Comparison of observed versus predicted
values for 500 randomly sampled test data points. The yellow line represents the identity line (x = y)
for (A) outbreak probability (B) maximum incidence (imax), and (C ) log10-transformed duration.

Sensitivity analysis & specific model outcomes
The computational efficiency of the GPs allowed us to perform a comprehensive
variance-based sensitivity analysis of our model. For this, we used the Sobol method9, a
variance-based approach that quantifies the contribution of each variable — both
independently and in interaction with others — to the overall variance of the model output.
We estimated first-order effects (the influence of single parameters independent of others),
second-order effects (the contribution of pairwise interactions between parameters), and
total-order effects (which include first-order effects as well as all interactions of any order).

This analysis revealed that average infectivity and average mobility are the primary drivers in
our model, shaping all three epidemiological metrics: outbreak probability, imax, and outbreak
duration. Since there is no correlation between the number of visits sampled for a given
individual over time, our model does not include systematic super-spreading behavior. As a
result, we expected the sensitivity index for mobility skewness to be low across all three
metrics, in contrast to a stronger impact of average mobility. Our findings confirm this
expectation, with mobility skewness showing no influence on the epidemiological metrics
(imax: Figure 3A, outbreak probability: Figure S3A, outbreak duration: Figure S4A).

The first-order effect estimates for average infectivity are nearly identical across all three
metrics: outbreak probability, imax, and duration (0.52, 0.53, and 0.53, respectively; Figures 3,
S3–S4). However, the total effect of average infectivity is notably higher for outbreak
probability (0.69; Figure S3) compared to imax and duration (both 0.58; Figure 3, S4). The
higher total-order effect for outbreak probability is primarily driven by the interaction between
average infectivity and average mobility (Figure S3B–C). This makes intuitive sense, as
highly infectious diseases can still trigger outbreaks even when individual movement is
limited. By contrast, the spread of less infectious diseases relies more heavily on sufficient
individual mobility to compensate for a lower per-contact infection probability. Accordingly,
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the first-order effects of average mobility are smaller for outbreak probability compared to imax
and duration (0.12 vs. 0.26 and 0.27). However, the total-order effects of average mobility
are similar across all three metrics (0.27, 0.29, and 0.3, respectively, Figures 3, S3–S4).

The reduced importance of the interaction between average infectivity and average mobility
for imax and duration is due to the fact that these metrics are calculated only across
simulations in which an actual outbreak occured. For these two metrics, the largest
second-order effect is the interaction between the seasonality strength and the timing of the
first infectious case (Figure 3B, Figure S4B). In our model, the infection probability fluctuates
seasonally, following a cosine pattern, and thus the initial infection timing relative to the
seasonal cycle is crucial. Introducing the disease during a low-risk season (i.e., when the
value of the first case timing parameter falls between 0.25 and 0.75) can lead to prolonged
epidemics with lower imax (Figure 3C, Figure S4C). Since the infection probability depends on
the interaction between the average infectivity, the seasonality strength, and the first case
timing, it is encouraging that sensitivity analyses of the GP surrogate models effectively
uncovered these pairwise interactions (Figure 3B, Figure S3–S4B).

We also observed that family cluster size has only a minor effect on the outcomes, which is
mainly driven by interactions with the social structure parameter (Figure 3B, Figure S3–4B).
Since individuals return home each day, they are more likely to interact with others within
their home location and family cluster (as long as the social structure parameter is > 0).
Family cluster size determines how many individuals, on average, live within each family
cluster, and in combination with social structure, it influences the extent of interaction within
those family clusters, thus having some effect on the investigated model outputs.

As we pointed out earlier, the results of our sensitivity analysis depend on the variance
present in the system. When some parameters explain a disproportionately large amount of
variance in the model output across the entire input domain, the contribution of other
parameters can be hard to detect. To address this, one can fix the former parameters at
specific values and then conduct a “conditional” sensitivity analysis that only varies the latter
parameters to assess their relative effects in this particular subdomain of the parameter
space.

We used this approach to analyze the effect of seasonality strength and first case timing on
outbreak probability across various average infectivity and average mobility scenarios, since
these parameters were previously identified as crucial drivers (Figures 3, S3–4).
Interestingly, we observed a sharp increase in the first-order indices for the first case timing
when the average infectivity was fixed at a low value, followed by a gradual decline as the
average infectivity increased (Figure 4A). This pattern corresponds to a shift in the system:
moving from a state where epidemic outbreaks are rare (Figure 4B: 1st panel) to one where
outbreaks occur in the majority of simulated scenarios (Figure 4B: 4th panel). Under
conditions that are generally unfavorable for disease transmission, outbreaks are rare and
occur only when all parameters align to support an outbreak. Consequently, the first-order
sensitivity indices for the first case timing parameter tend to be low, because this metric
reflects only the independent effects. With increasing average infectivity, the system enters a
state where the outbreak probability is primarily driven by the first case timing, creating a
hit-or-miss dynamic (Figure 4B: 3rd panel). Here, the strength of seasonality plays a minimal
role; the key factor determining whether an outbreak occurs is whether the first case is
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introduced when infection probabilities are above or below the average infectivity. As
average infectivity continues to increase, we observe a U-shape on the outbreak probability
heatmap, especially when first case timing coincides with conditions unfavorable for disease
transmission (Figure 4B: 4th panel). This reflects how, at this stage, seasonality strength
again becomes a critical contributor to outbreak probability. As the average infectivity
increases further, the proportion of unlikely outbreak scenarios shrinks, causing the
sensitivity index of the first case timing parameter to gradually decrease again. We
confirmed that these patterns are not artifacts of the GP model by validating them with the
IBM, which showed the same trend (Figure 4C).
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Figure 3. Sobol sensitivity analysis, maximum incidence (imax). (A) First-order and total effects across
the entire input domain (Table 1). The first-order effect describes the impact of a single parameter on
the model output (imax), while the total effect of a parameter accounts for both its first-order effect and
all interactions with other parameters. Error bars represent the 95% confidence intervals of the
sensitivity index estimates. A total of 9,437,184 points were evaluated for the sensitivity analysis. (B)
Second-order effects across the entire input domain (Table 1). A second-order effect captures the
pairwise interaction between two parameters. Sobol indices with a 95% confidence interval that does
not overlap zero are highlighted with a pink border. The largest second-order effect is emphasized
with a bold pink border. (C) imax predictions with varying "seasonality strength" and "first case timing"
parameters (i.e., the two parameters with the largest second-order effect, see panel B). Other
parameters were fixed at default values (Table 1). Corresponding sobol sensitivity analysis plots for
outbreak probability and outbreak duration can be found in the supplementary figure section (Figures
S3 and S4).
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Figure 4. Summary of model outcomes related to outbreak probability. (A) First-order sensitivity index
estimates for the first case timing parameter across varying average infectivity and average mobility
values. A total of 294,912 points were evaluated for the sensitivity analysis per parameter
combination. All other parameters vary across their full ranges (Table 1). The first-order effect
measures the influence of a single parameter on the model output (outbreak probability). Yellow stars
mark parameter combinations associated with specific model outcomes shown in (B). (B) Predicted
outbreak probabilities using the Gaussian Process surrogate model with varying seasonality strength
and first case timing values. Panels represent different average infectivities. All other parameters are
fixed at default values (Table 1), except for average mobility, which is set to 1.5. (C) Outbreak
probabilities inferred from the individual-based model, with varying seasonality strength and first case
timing values. Panels represent different average infectivities. As in (B), the remaining parameters are
fixed at default values (Table 1), except for average mobility which was set to 1.5. (B) and (C) thus
represent model outcomes for the same model parameters, but conducted with the Gaussian Process
surrogate model (B) versus the original individual-based model (C), allowing a direct comparison
between the two.
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Application to empirical dengue incidence data
To parameterize our model and corroborate its findings with real-world data, we analyzed
over a decade of weekly dengue incidence data from Colombia34, along with
municipality-level processed demographic and environmental data from Siraj et al. (2018)35.
We retrieved weekly dengue incidence data for Colombia from the OpenDengue database34,
covering January 1st, 2007, to December 31st, 2019, resulting in 163,279 entries. We
selected this cutoff date to avoid confounding effects from the COVID-19 pandemic. To
account for potential under-reporting and asymptomatic cases, we adjusted reported dengue
incidences by a correction factor of 2543,44. We focused on 211 municipalities with
populations of at least 30,000 individuals and dengue maximum incidence rates of at least
0.1%. We defined outbreaks as periods of at least four consecutive weeks exceeding the
median dengue incidence rate, resulting in the identification of 1,211 epidemic outbreaks.

On this data set, we first tested our model’s prediction of a potential inverse relationship
between the average infectivity and average human mobility (Figure S3C). Because we
lacked direct fine-scale data, we used mosquito abundance probabilities35,45 as a proxy for
average infectivity and the inverse of mean travel time as a proxy for average human
mobility35,46. Mean travel time reflects the average time it takes to reach a settlement with at
least 50,000 people (the settlement might not necessarily be within the municipality itself).
Shorter travel times suggest more urbanized areas, potentially resulting in greater human
mobility. If this relationship holds, we would expect real epidemics to exhibit a positive
correlation between mean travel time and mosquito abundance probabilities. However, no
significant positive correlation was found, even when restricting the analysis to municipalities
with a travel time at the 85th percentile or above (i.e., very rural areas, Spearman’s rank
correlation test: ρ = 0.1, S = 917,546, p = 0.085).

We then tested our model's prediction that the timing of the first infectious case should play a
crucial role in shaping outbreak dynamics whenever seasonality is important. However,
empirical data only allows us to observe outbreaks that have been measurable in the
population. We do not know when or how the first infectious case was introduced, nor do we
have information about instances where an infectious case was introduced but did not result
in an epidemic. When testing across all observed outbreaks, binned by week, we find that

the distribution of epidemics is not uniform throughout the year (Chi-squared test: = χ2

117.85, df = 52, p < 0.001), which suggests a seasonal effect, and matches our expectations
of dengue outbreak dynamics43,47.

Next, we used the GP predicting imax to systematically explore how different parameter
combinations in our IBM can effectively recapitulate the empirical dengue incidence data
from Colombia. To account for heterogeneity in dengue risk across regions, we incorporated
municipality-specific average infectivities while keeping other parameters constant. We
analyzed municipalities with at least three epidemic outbreaks, resulting in a dataset of 1,186
epidemics across 173 municipalities. For each municipality, we used 67% of the data for
calibration, and withheld 33% for testing. Calibration was done across all municipalities
simultaneously. Withholding a portion of the data allowed us to assess the predictive
performance of the calibrated GP in estimating imax for real-world epidemics.
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The best-fitting parameter combination, which minimized the RMSE on the calibration data,
revealed an unexpectedly high degree of social structure in our IBM (seasonality strength =
0.16; first case timing = 0.58; infectious period = 4.67; average mobility = 4.39; mobility
skewness = 0.47; social structure = 0.99; family cluster size = 4.54; scaling factor = 0.03).
However, across the top 0.1 % (250 out of 25,000) parameter combinations with the lowest
RMSE, we observed a wide range of values (Table S1), often spanning the entire parameter
range. This suggests that in our IBM, multiple distinct parameter combinations can generate
similar epidemic patterns. We also observed variation in average infectivity estimates across
municipalities, though certain municipalities consistently exhibited higher average infectivity
estimates (Figure 5A). Notably, these municipalities had a significantly higher Gross Cell
Product (a measure of economic activity66), compared to the remaining municipalities,
suggesting a possible link between economic activity and dengue incidence (Figure 5B;
Wilcoxon rank sum test: W = 1,037, p = 0.021). Municipalities with higher average infectivity
estimates might merit targeted, in-depth studies to inform public health interventions.

Finally, we evaluated the predictive power of the GP using the best-fit parameters to predict
imax of epidemics across municipalities for the withheld test data. While the model achieved
an RMSE of 0.006, the normalized RMSE (RMSE, scaled by the mean of the observed data)
was 1.02, indicating that the model struggled to capture the full complexity of the system and
that the model’s predictions were not highly accurate (Figure S5A). The rank correlation
coefficient between observed and predicted values was 0.458, with permutation tests placing
the model in the top percentile, confirming it has some predictive power. However, these
results highlight the limitations of our approach when applied to large-scale, heterogeneous
epidemic data.

Figure 5. (A) Distribution of municipality-specific average infectivity estimates for the 250 parameter
combinations with the lowest root mean square errors. The top 5% of municipalities as sorted by
median average infectivity estimates are highlighted in yellow. (B) Average Gross Cell Product (GCP)
— a measure of economic activity66 where higher values represent greater economic activity —
distributions, as reported by Siraj et al. (2018), for the municipalities depicted in (A), with the
municipalities with the largest average infectivity estimates grouped separately.
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Discussion
In this paper, we demonstrated the potential of statistical emulation for studying the
dynamics of epidemiological IBMs. Specifically, we implemented a dengue-inspired
individual-based disease transmission model in C++ and trained Gaussian Process (GP)
emulators of that model on three key metrics: outbreak probability, maximum incidence (imax),
and outbreak duration. Due to their fast prediction speed, these GPs facilitated highly
efficient exploration of the model’s eight-dimensional parameter space, allowing us to
conduct comprehensive sensitivity analyses that would otherwise have been computationally
prohibitive. Our results show that average infectivity and average mobility have large
first-order effects and influence all three epidemiological metrics. The most important
pairwise parameter interaction varies by model outcome: the interaction between average
infectivity and the average human mobility primarily influences outbreak probability, whereas
the timing of the first infectious case, combined with seasonality strength, can shape both imax
and the duration of epidemics. Although our IBM and the trained GPs were not able to
capture the full heterogeneity of complex empirical epidemiological data, they still proved
able to identify regions in Colombia that might merit targeted public health surveillance and
intervention efforts as potential dengue hotspots.

Our IBM’s design is fairly flexible, allowing us to explore a wide range of scenarios, but it
nevertheless makes several simplifying assumptions that could limit its accuracy. For
example, we modeled an initially completely susceptible population in our simulations,
neglecting any preexisting immunities at the onset of the epidemic. This ignores the fact that
dengue is caused by four distinct viral serotypes (DENV–1 to DENV–4), and while infection
with one strain provides long-lasting immunity against that specific strain, immunity to other
strains lasts only a short time48. Moreover, a second infection with a different serotype can
trigger antibody-dependent enhancement, significantly increasing the risk of severe (and
symptomatic) dengue48. In hyperendemic countries such as Colombia43, where multiple
dengue virus serotypes are simultaneously circulating within the population, this can cause
complex immunity dynamics. Unfortunately, strain-specific sequencing data and antibody
measurements that could be used to accurately estimate the proportion of immune
individuals are scarce43.

Furthermore, while our IBM incorporates key aspects of dengue epidemiology, such as
infectious duration33 and the role of human movement36,40, we chose not to explicitly model
mosquito vectors, which could be important in some scenarios5. Combining host models with
detailed vector models that account for factors such as habitat availability and selection
pressures across mosquito life stages could significantly enhance the realism of
epidemiological simulations2,49, albeit at a substantial cost in model complexity, number of
parameters, and simulation runtime.

Another simplifying assumption in our IBM is in the human mobility model. While the “family
cluster size” and “social structure” parameters allow us to model populations with varying
levels of social interconnectivity, locations are not spatially explicit, meaning that the distance
between them is not defined. Thus, the likelihood of a person visiting a location is solely
determined by parameters affecting social population structure and human mobility.
Real-world human movement patterns, on the other hand, are known to exhibit strong spatial
regularity8,50,51. Moreover, in reality, human populations are rarely closed systems like the
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one we modeled here. Migration and a variety of factors — economic shifts, environmental
changes, large public events — often lead to interactions beyond regular social circles,
increasing the risk of disease introduction into areas that were previously unaffected52.

While we decided to train our GPs on outbreak probability, imax, and duration, a GP could
instead be trained on other outputs from the IBM. For example, a GP could be trained on the
total epidemic size or the time to the epidemic peak, if relevant to addressing the research
question at hand. It would also be possible to use a so-called multi-task GP53, which allows
the simultaneous prediction of multiple outputs, and is capable of capturing correlations
between them. This could improve the efficiency of the training process, especially when the
outputs are highly correlated, because multi-task GPs can leverage shared information
between the prediction tasks to enhance accuracy and reduce computational costs. Our
choice of separate GPs was guided by two factors. First, the outbreak probability GP was
trained on the proportion of simulation runs with observed outbreaks, while the imax and
duration GPs were exclusively trained on simulations with observed outbreaks, which made
choosing a consistent set of training points across all three metrics challenging. Second, we
had no clear expectations regarding the correlation between imax and outbreak duration:
simulations with shorter durations might result from severe epidemics where most individuals
are infected rapidly (high imax), or from scenarios where the disease quickly dies out (low
imax). These complex dynamics made separate GPs a simpler, more practical choice.

A key factor in implementing a GP is the choice of an appropriate kernel18,42. We used the
Matérn kernel because of its flexibility in modeling different levels of smoothness in the data.
For this kernel, we chose a smoothness parameter 𝑣 = 0.5, which can be beneficial for
capturing model behavior in which small changes in parameters can result in abrupt changes
in model outputs, as seen here and in a previous study16. Preliminary testing, as well as our
trained GPs, showed satisfactory performance with the Matérn kernel, so we did not pursue
alternative kernels. Whether the accuracy of our GPs could be improved even further with
more customized or composite kernels tailored to specific features of the data remains to be
explored.

One key advantage of GPs is their Bayesian nature, which allows for uncertainty
quantification. This property is particularly useful in active learning, wherein the uncertainty
measurements can be leveraged to choose the most informative points to add to the training
data. During GP training, we selected half of the new points based on the confidence interval
widths, while the other half was selected using the product of the confidence interval widths
and a function of the predicted mean. Specifically, we weighted the confidence interval
widths based on how close the predicted mean is to its most extreme possible values,
assigning the highest weights to intermediate predictions. This approach encourages the
GPs to move away from the edges of the parameter space, where uncertainties are naturally
higher and predicted means often become extreme. These extremes occur either due to
expected model behavior at the parameter boundaries (extreme parameter values cause
extreme model behavior), or because data is sparse in these regions, causing the GP to
revert to its prior (a constant mean of 0 in our case, which is an extreme value relative to the
average predicted value).18. However, this approach might overlook regions that the GP
does not determine to be highly uncertain but which could provide valuable information if
explored. Alternative sampling strategies, such as expected improvement, could help identify
points that boost model performance, even if their initial uncertainty is lower. Moreover, tools

15

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2024. ; https://doi.org/10.1101/2024.11.28.24318136doi: medRxiv preprint 

https://paperpile.com/c/LCUs2X/qb5iK
https://paperpile.com/c/LCUs2X/S6uVD
https://paperpile.com/c/LCUs2X/J1gEz+jatA2
https://paperpile.com/c/LCUs2X/Wxa8N
https://paperpile.com/c/LCUs2X/jatA2
https://doi.org/10.1101/2024.11.28.24318136
http://creativecommons.org/licenses/by/4.0/


like BoTorch54 provide libraries to implement advanced batch optimization techniques,
allowing the selection of sets of data points that are chosen together to maximize their
combined impact on improving GP performance. While more advanced techniques like
expected improvement scores and batch optimization could potentially enhance GP
performance, they would require further model tuning and validation, which is beyond the
scope of this study.

The fast prediction speed of the trained GPs allowed us to conduct comprehensive
variance-based sensitivity analyses. However, this approach could be confounded by
potential discrepancies between the GP surrogate model and the original IBM. While the
GPs generally predicted epidemiological metrics inferred from the IBM well, the width of the
sensitivity analysis confidence intervals should be interpreted cautiously. Furthermore,
average infectivity and average mobility emerged as the dominant contributors to variance in
the epidemiological metrics, making it harder to detect the influence of the other parameters.
This scaling effect can obscure smaller, but still relevant, factors. To address this, we also
performed sensitivity analyses in targeted regions of the parameter space for which average
infectivity and average mobility were fixed, revealing state changes within the model’s
dynamics — sudden transitions from rare epidemic outbreaks to frequent outbreaks — which
were confirmed by simulating selected points directly with the IBM. However, it is important
to note that while a sensitivity analysis captures the variance in model outputs due to
parameter changes, it does not fully capture the underlying dynamics of the model, such as
state transitions or the mechanistic interactions between single parameters that drive these
changes. Specifically, the sensitivity analysis highlights which parameters contribute most to
the output variance, but it does not reveal why certain parameter combinations lead to
changes in the model behavior.

We observed the largest second-order effects between average infectivity and average
mobility for the outbreak probability metric, and between seasonality strength and first case
timing for imax and duration. However, our analysis of over a decade of dengue incidence
data from Colombia did not yield the correlation that we expected between our proxies for
average human mobility and average infectivity in actual outbreaks. This aligns with previous
findings that mean travel time is a broad measure of accessibility rather than a precise
indicator of actual human mobility35. Furthermore, we used mosquito abundance
probabilities35,45 as proxies for the average infectivity, implicitly assuming a constant
mosquito biting rate such that a higher abundance or likelihood of mosquitoes corresponds
to an increased disease transmission risk. However, in reality, this relationship is more
complex. Mosquito abundances can be significantly influenced by human alterations to the
environment, such as vector control measures or urbanization55. Additionally, infection risk
depends on other factors, such as human-mosquito contact rates56 and the behavior of
individual mosquitoes57. While our analysis suggests — in line with previous studies43,47 — a
seasonal distribution of dengue epidemics, we assumed that each epidemic outbreak is
independent. This means that we did not account for potential correlations between
outbreaks occurring within the same municipality over time, or spatial correlations across
neighboring municipalities. As a result, the actual p-value of our test should be interpreted
with caution.

When comparing the predictions of our model with real-world outbreaks, the only empirical
parameter that actually varied within each municipality was the timing of the epidemic's
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onset. This limited the GP’s flexibility to generate diverse predictions. In fact, a simple linear
mixed-effects model that predicts log10-transformed imax values based on the onset timing of
an epidemic, while accounting for the municipality-level variations with random effects,
performed similarly to the GP model on withheld test data (Spearman’s ρ = 0.54). This
suggests that both the abstract IBM and the GP emulators might be too generalized to
effectively predict real-world outbreak data across multiple municipalities. To achieve more
accurate predictions, the IBM would need to be more complex, incorporating
municipality-specific characteristics such as outbreak histories, population immunity levels,
and finer-scale human movement patterns, which might be critical for capturing the nuanced
dynamics of local outbreaks.

Despite the GP struggling to predict complex empirical data, we observed that a subset of
municipalities consistently had higher average infectivity estimates than the other
municipalities. Several of these outlier municipalities are notable for their economic or
geographic importance. For example, Puerto López, which had the highest average
infectivity estimate, is a key river port, while Leticia, another outlier, is located at the
intersection of the borders of Colombia, Brazil, and Peru, serving as a major port on the
Amazon River. Tourist destinations like Melgar and La Mesa also exhibited elevated average
infectivity estimates, possibly because of increased connectivity due to tourism and travel,
which might contribute to higher dengue transmission rates in these areas. This observation
supports the idea that human movement and economic activity could play a significant role
in shaping dengue dynamics in these municipalities58. Furthermore, the higher economic
activity (Gross Cell Product) in these regions might indicate that a larger proportion of the
population has access to healthcare, which could affect our model’s assumptions.
Specifically, better healthcare access could lead to higher detection and reporting of dengue
cases, thereby violating our assumption of constant reporting rates across municipalities.

In conclusion, we explored the utility of statistical emulation to efficiently analyze
epidemiological IBMs. The use of GPs allowed valuable insights into the key drivers of our
simulated disease dynamics, revealing critical interactions between average infectivity,
human mobility, and seasonality. When analyzing empirical dengue outbreaks, our calibrated
GP highlighted municipalities that could serve as candidates for targeted interventions or
in-depth studies. Our work demonstrates both the potential and the challenges of using
statistical emulation to explore complex epidemiological systems, providing a foundation for
future efforts that could incorporate additional model complexity and realism while
maintaining computational efficiency.
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Methods

Individual-based model
This detailed individual-based model (IBM) description is motivated by previous studies
using the ODD protocol for describing IBMs1,5,59. The IBM was implemented in C++.

1. Purpose and patterns

The purpose of our IBM is to explore how human movement, social population structure, and
seasonal variation in infection probability influence infectious disease dynamics. Rather than
replicating a specific empirical system, the model is intended to highlight the relative
importance of these parameters and their interactions in shaping disease spread. Its
performance is evaluated by examining how the absolute number of infectious cases and the
change in infectious cases over time are affected by IBM parameter changes. The model is
abstract, but is designed to loosely replicate dengue transmission dynamics.

2. Entities, state variables, and scales

The model operates in daily timesteps and includes two primary entities: humans and
locations. Each location represents a residential home with a group of residents, who are
collectively considered a 'family'. There are no distinct non-home locations such as
workplaces, schools, or other public spaces. The number of humans in a given family — the
number of humans residing at a given home location — is drawn from a negative binomial
distribution with μ = 6.2 and 𝜃 = 9.07, following the household size distribution observed in
Iquitos, Peru36,37.

Each individual human has the following state variables: a home location, an infection status
(susceptible, exposed, infected, or recovered), the number of remaining days in their current
infection status (how much longer they will stay in their current state), and the number of
elapsed days in their current infection status (how long they have already been in that state).

The basic spatial unit of the model is the location. Simulations are initialized by generating
10,000 locations. Each location has the following state variables: the number of infectious
humans visiting it in the current timestep of the model, its per-contact infection probability
(the probability that an infectious individual that visited the location at time t-1 transmits the
disease to a susceptible individual that visits the same location at time t), a history of the
number of infectious visitors it has had, and a history of its infection probability over time. All
locations are randomly grouped into family clusters of a user-specified size. Each location is
assigned to only one family cluster, ensuring that no locations are shared between clusters.
All family members of a single home location belong to the same family cluster, but not all
members of a given family cluster reside in the same home location. Figure S1 provides a
conceptual overview of family clusters (and human movement) as implemented in our IBM
Conceptually, then, a family cluster is a group of locations, the members of which tend to
socialize together; an individual in a given family cluster is more likely to visit a location
inside the family cluster than to visit a location outside it. This grouping introduces social
structure into the simulation (please refer to the next section for further details). Note that
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“family clusters” are conceptually equivalent to the “social groups” defined by Reiner et al.
(2014)37.

3. Process overview and scheduling

The two core processes of the model are human movement and infection dynamics.

Human movement
For the process of human movement, during each timestep the model iterates through all
individuals to determine which locations they will visit. Each individual visits its home location
at least once every timestep. For each individual, an additional number of visits by the
individual is drawn from a negative binomial distribution at the beginning of each day. The
use of a negative binomial distribution allows for heavy-tailed human mobility distributions
where some individuals are highly mobile, visiting a large number of locations per day.
However, there is no correlation between the various sampled values for a given individual
over time, meaning that we did not model systematic super-spreaders in our IBM. Given that
a large fraction of empirical dengue infections is asymptomatic60, the infection status does
not affect human movement in our IBM: infectious individuals visit, on average, the same
number of locations as susceptible or recovered individuals.

For each visit, whether the visit is to a location inside the individual’s family cluster or to a
location outside that cluster is determined probabilistically, with the social structure
parameter being the probability that a particular visit happens within the family cluster (Table
1). Locations to be visited are then randomly selected from the set of locations inside or
outside the individual’s family cluster, as appropriate. Multiple visits to the same location are
allowed. Figure S1 provides a conceptual overview of human movement patterns as
implemented in our IBM.

Infection dynamics
In our model, each human can have one of four infectious states: susceptible, exposed,
infectious, and recovered. The model tracks the number of days each simulated human will
remain in its current infection state, decreasing this count at the end of each day.

At the start of the simulation, all humans are susceptible. The disease is then introduced into
the population by randomly selecting one individual and immediately changing their infection
status from susceptible to exposed. This exposed status indicates that the individual has
contracted the disease but is not yet infectious. Unless specified otherwise, exposed
individuals become infectious at the end of each day, effectively reducing the model to a
Susceptible-Infectious-Recovered model, where the length of the infectious period is
specified by the user. At the end of an individual’s infectious period, the individual’s infection
status changes to recovered the next day. The model assumes lasting immunity, so once
individuals recover, they cannot be reinfected.

If a susceptible human visits a location that had N infectious visitors the day before, the
probability of contracting the disease and immediately entering the exposed state is

where is the infection probability per contact. (This is simply1 −  (1 − 𝑝
𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

)𝑁 𝑝
𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

 

the probability that a binomial draw B(N,  ) ≥ 1, indicating that infection occurred𝑝
𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

(𝑡)
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from at least one previous visitor.) The infection probability follows a cosine function𝑝
𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

that is determined by three parameters: the average infectivity ( ), the seasonality strength (α
0

), and the first case timing ( , and is calculated as follows:α
𝑠𝑒𝑎𝑠𝑜𝑛

𝑡
𝑓𝑖𝑟𝑠𝑡

)

.𝑝
𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

(𝑡) =  α
0

*  (1 +  α
𝑠𝑒𝑎𝑠𝑜𝑛

*  𝑐𝑜𝑠(2π *  (𝑡/365 −  𝑡
𝑓𝑖𝑟𝑠𝑡

)))

Each location is assigned the same infection probability for a given day, as determined by
the cosine function above. Variations in the overall likelihood of infection, from location to
location, arise from the differing numbers of infectious individuals visiting each location.

If a visiting human is already infectious, the model increments the count of infectious visits
for the current day at each location visited by that human, which will make those locations
infectious in the following timestep as just described.

Since humans only change their infection status at the end of each day, and the likelihood of
infection for susceptible individuals is determined by the number of infectious visitors from
the previous day, the order in which individuals are processed is inconsequential. This
ensures that the model remains asynchronous and order-independent during each day.
Indeed, this design would allow the model to be parallelized to run across multiple
processing cores, although runtimes were fast enough that we did not deem that necessary.

4. Design concepts

Basic principles
The model aims to study abstract disease dynamics within human populations exhibiting
varying levels of social structure. It does not focus on the realistic modeling of a specific city,
or on the biological details of dengue transmission dynamics.

Emergence
The number of infectious individuals each day — the central output of this model, for our
purposes — is an emergent property, not predefined within the model. Stochasticity plays a
major role in introducing uncertainty into these patterns.

Adaptation, objectives, learning, prediction, and sensing
None of the individuals in the model have the ability to adjust their behaviors. There are no
adaptive behaviors, learning abilities, predictive capabilities, or sensing capabilities in the
model.

Interaction
Humans interact by potentially infecting other humans who visit the same location the next
day.

Stochasticity
This IBM incorporates stochasticity in the family sizes, the daily number of visits per human,
and the probabilistic infection dynamics. For detailed descriptions, please refer to Sections 2
and 3.
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Collectives
Each human is assigned a home location and a family cluster, making them members of a
family and a collection of locations. However, no special properties are attributed to sharing
a home location or family cluster, except for the general tendency to interact more frequently
due to the human movement rules described in Section 3.

Observations
The model outputs a table of the counts of susceptible, exposed, infectious, and recovered
individuals for each day of the simulation, across the entire population.

5. Initialization

Please refer to Sections 2 and 3 regarding the initialization of the model.

6. Input

The model has eight parameters that can be specified by the user with command-line
arguments (Table 1).

Out of these eight parameters, three parameters collectively influence the infection
probability, as described by the equation in Section 3: the average infectivity, the seasonality
strength, and the first case timing. Additionally, the user must define:

- The length of the infectious period, after which infectious individuals transition to
being recovered (Section 3: infection dynamics).

- Parameters for the negative binomial distribution describing human movement
(Section 3: human movement).

- The proportion of visits that occur within the family cluster of an individual (Section 3:
human movement).

- The number of locations per family cluster (Section 2).

Gaussian Processes
Statistical emulation involves replacing an individual-based simulation framework with a
statistical surrogate model, or machine learning model trained on input-output pairs from the
original framework12. For this task, we used GPs, which are non-parametric models that
define a distribution over functions. This allows GPs to efficiently interpolate between
scarcely sampled observations. GPs are an attractive choice, not only due to their
mathematical tractability, but also because their Bayesian nature allows for the quantification
of model uncertainty. We incorporated these uncertainty estimates into our policy for scoring
potential additional data points (Figure 1A). We implemented GPs in Python (v3.10.6) using
the GPyTorch library (v1.11)19 for efficient GP modeling, and the torch.cuda module from the
PyTorch package (v2.0.1)61 for GPU acceleration with NVIDIA GPUs. The implementation
was inspired by a GP surrogate model previously used to study the efficiency of gene drives
in rat populations16.
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We trained a separate GP model for each of the three key characteristics described in the
previous section: outbreak probability (proportion of simulation runs in which more than 0.1%
of the population becomes infected), imax (highest proportion of infectious individuals at any
day) and epidemic duration (timespan from the first infectious case to the recovery of the last
infectious individual). While the IBM outputs for outbreak probability and imax are bounded
between 0 and 1, epidemic duration spans a much wider range: In the initial training dataset
(N = 5,000 data points), the observed duration of epidemics ranged from 19.65 to 424.15
days. To manage the variance in epidemic duration and improve the GP’s ability to predict
longer epidemics, we applied a logarithmic transformation to the outbreak duration.

The response variable for each GP is calculated from 100 simulation runs per parameter
combination. While outbreak probability is defined as the proportion of simulation runs with
observed outbreaks, imax and outbreak duration are exclusively calculated from simulations
with epidemic outbreaks. This approach helps minimize unrepresentative input-output pairs.
For example, if a specific parameter combination results in an imax of 10%, but only 50% of
the simulation runs result in an outbreak, averaging across all simulations would result in an
imax estimate of about 5%, not accurately representing the dynamics of the IBM.

The covariance function — or kernel — of a GP determines how much the response values
of different input points covary42. Thus, the choice of kernel is crucial in shaping the GP's
predictions. We selected a Matérn kernel with 𝑣 = 0.5, which corresponds to the exponential
kernel. This kernel is capable of capturing abrupt changes in function values18. We applied
the same kernel type across all three GPs.

Gaussian Process training loop
One key advantage of GPs over other machine learning methods is their Bayesian nature,
which allows us to identify regions in the parameter space where the model's predictions are
highly uncertain. This allows us to strategically select new training data from areas where the
GP is least confident, thereby enhancing prediction accuracy. This approach forms the basis
of the GP’s active learning loop (Figure 1A), which consists of three steps: training the GP,
scoring potential new training data, and then updating the training data with selected new
data points18.

Step 1: GP training We trained each GP for 16 rounds: one initial round with a training
dataset consisting of a Latin hypercube sample (LHS) of 5,000 data points from the entire
input domain (Table 1), followed by 15 active training rounds (Figure 1A). For training, we
utilized the Adam optimizer from PyTorch61 with a learning rate of 0.01. In each training
round, the GP was trained for 30,000 iterations, with a model snapshot saved every 1,000
iterations. To avoid overfitting, we evaluated all 30 snapshots against a separate validation
dataset consisting of 10,000 LHS points. We selected the snapshot with the lowest RMSE
on the validation dataset for step 2 in the training loop.

Step 2: Data scoring In each active learning round, we scored 107 LHS points using two
distinct policies16. These scores are used as probability weights to select 1,000 new data
points to expand the training data. Policy 1 is based solely on model uncertainty. In this
policy, the probability pi that a data point i is selected is proportional to the width of the 95%
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confidence interval for that point (wi), normalized by the total width of all potential data
points:

𝑝
𝑖
 =  

𝑤
𝑖

∑𝑤

Policy 1 assigns larger weights to data points with greater uncertainties. However, regions
with large uncertainties are often clustered near the edges of the observed parameter space,
where the GP must extrapolate far beyond observed training data42. However, while the
uncertainty bounds of these points might be relatively high, the degree of improvement the
GP can gain from sampling points from the edges of the parameter space can be limited. To
avoid oversampling these areas, we developed policy 2. Policy 2 reduces the likelihood of
sampling points with extreme predicted values. Specifically, the 95% confidence intervals
from policy 1 are further weighted by the GP's prediction. The probability pi of selecting a
data point i is given by:

𝑝
𝑖 

=  
𝑤

𝑖 
·((𝑚

𝑚𝑎𝑥
 − 𝑚

𝑖
) ·𝑚

𝑖
 + 1/𝑛)

∑ 𝑤 ·((𝑚
𝑚𝑎𝑥 

− 𝑚) ·𝑚 + 1/𝑛)

where:
- is the 95% confidence interval width for point i𝑤

𝑖

- is the GP’s predicted value for point i𝑚
𝑖

- is the maximum predicted value (3 for duration, 1 otherwise)𝑚
𝑚𝑎𝑥

- n is the total number of potential data points

This formulation ensures that points with high uncertainty yet with predicted values near the
midpoint of the range are assigned the highest weights. The GP's predictions were clipped to
the range [0, 1] for outbreak probability and imax, and to [0, 3] for epidemic duration (since the
GP predicts log10-transformed durations, this range corresponds to durations between 1 and
1,000 days).

For our adaptive sampling strategy, 50% of the points are selected using policy 1, and the
remaining 50% are selected using policy 2.

Step 3: Update training data As mentioned earlier, the data points for imax and duration are
based solely on simulation runs where epidemic outbreaks occurred. If a selected data point
did not result in 100 outbreaks after 2,000 simulation attempts, we chose a new data point.
For the initial training dataset, where no GP predictions were available, this selection was
done randomly from 107 LHS samples. In the active learning rounds, we chose all of the new
data points as described in step 2. After successfully simulating all selected points, the new
results are added to the training dataset, and a new GP training cycle begins (Figure 1A).

Gaussian Process usage
We evaluated the accuracy of the trained GP using an independent test dataset of 10,000
LHS points and calculated the RMSE. For visualization purposes, such as in heatmaps (e.g.,
Figure 3C), we clipped the predictions to the range [0, 1] for epidemic probability and imax,
and to [0, 3] for the log10-transformed epidemic duration.
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Sensitivity analysis
To explore how changes in parameters affect the epidemic metrics, we conducted a series of
variance-based sensitivity analyses62 in Python using the Sobol method implemented in the
SALib library (v1.4.7)63. We performed sensitivity analyses on the output of GP models
rather than the IBM due to the GP's faster prediction capabilities.

The Sobol method quantifies the contribution of single parameters and their interactions to
the variance of a model’s output. Since these variance components are often not analytically
tractable, the Sobol method approximates them using a Monte Carlo method. The resulting
sensitivity indices — first, second, and total order — provide a measure of each parameter's
influence. First-order effects measure single parameter contribution, second-order effects
measure the interactions of two parameters, and total order effects capture the combined
impact of each parameter, including all interactions with other parameters of any order.

To perform the sensitivity analysis, the number of model evaluations is proportional to n * (2d
+ 2), where n is the base sample size and d is the dimensionality of the parameter space (d
= 8; Table 1)63. The accuracy of the Sobol indices improves with a larger n, leading to smaller
confidence intervals. For the sensitivity analysis of the entire input domain, where all
parameters vary across their full range (Table 1, Figure 3A–B), we selected n = 219. To
investigate the first-order effect of the first case timing with the two most influential
parameters (average infectivity and average mobility) held constant, we conducted a
sensitivity analysis with n = 214 for each combination of these parameters (Figure 4A). We
calculated 95% confidence intervals of the sobol indices using the bootstrapping method
provided by SALib63.

Empirical data
We retrieved weekly dengue incidence data at the municipality level for Colombia from the
OpenDengue database, an open-access platform that provides detailed epidemiological data
on dengue34. The selected dataset spans from January 1st, 2007, when weekly resolution
data became consistently available, to December 31st, 2019, comprising 163,279 entries. We
chose to end in 2019 to avoid the potential confounding effects of the COVID-19 pandemic64.
We chose Colombia for this study because it is one of the countries most affected by dengue
in the Americas43 and offers exceptionally well-documented time series data on dengue
incidence34. To adjust dengue incidences for potential under-reporting and asymptomatic
cases, reported dengue incidences were corrected by a factor of 2543,44. Estimates for
under-reporting factors in dengue typically range from 10 to 27, depending on the region and
study44. While we recognize that using a correction factor of 25 for Colombia, which has
well-documented dengue incidence records34, might be cautious, we chose it to include a
broad range of municipalities.

We obtained municipality-level processed data from Siraj et al. (2018), which provides a
global, high-resolution dataset of potential environmental drivers for Zika transmission in
Colombia between January 1st, 2014 and October 1st, 2016. Although the data published by
Siraj et al. (2018) focused on Zika, it is relevant to dengue because both viruses share a
primary vector, Ae. aegypti, which is responsible for the majority of dengue transmission in

24

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2024. ; https://doi.org/10.1101/2024.11.28.24318136doi: medRxiv preprint 

https://paperpile.com/c/LCUs2X/7l9Vd
https://paperpile.com/c/LCUs2X/KcxNI
https://paperpile.com/c/LCUs2X/KcxNI
https://paperpile.com/c/LCUs2X/KcxNI
https://paperpile.com/c/LCUs2X/g03oP
https://paperpile.com/c/LCUs2X/3MgNL
https://paperpile.com/c/LCUs2X/I3VY8
https://paperpile.com/c/LCUs2X/g03oP
https://paperpile.com/c/LCUs2X/I3VY8+1hVYI
https://paperpile.com/c/LCUs2X/1hVYI
https://paperpile.com/c/LCUs2X/g03oP
https://doi.org/10.1101/2024.11.28.24318136
http://creativecommons.org/licenses/by/4.0/


Colombia65. Specifically, we used four metrics from Siraj et. al (2018) (i) the population count
(ii) the weekly occurrence probabilities of Ae. aegypti 45(iii) the Gross Cell Product, which
measures economic activity at a fine spatial scale66, and (iv) the mean travel time to the
nearest city. Please refer to Table 1 in Siraj et al. (2018) for additional information on the
municipality-specific data.

We matched the records from Siraj et al. (2018) and Clarke et al. (2024) based on the
names of municipalities and their respective departments. To improve the matching, we
standardized the municipality and department names by converting them to lowercase and
applying a latin-ascii transformation to remove any accents or special characters. In cases
where mismatches occurred, either at the municipality or departmental level, we followed a
similar approach to Clarke et al. (2024), manually reviewing the records and checking the
geographic boundaries using shapefiles. While we were able to obtain the original shapefiles
from Clarke et al. (2024) (Oliver Brady, personal communication), the original shapefiles for
Siraj et al. (2018) were not accessible at the time of our study. As a substitute, we used
shapefiles from the OCHA database67. Despite this limitation, we successfully matched 95%
(1,009 out of 1,063) of the municipalities present in the raw dengue incidence data. Our goal
was not to achieve a perfect match, but rather to secure a sufficient number of high-quality
matches to proceed with our analysis.

We focused on 211 municipalities that aligned with our IBM in terms of population size (i.e.,
at least 30,000 individuals) and had a maximum dengue incidence rate of at least 0.1% over
the entire study period. To detect epidemics, we fitted a smoothing spline using the ss()
function from the npreg R-package ( 10-10)68. An epidemic outbreak was defined as aλ =
period of at least four consecutive weeks in which the spline function exceeded the median
dengue incidence rate. Using this method, we identified 1,211 potential epidemic outbreaks
with an imax of at least 0.1% which were included in the analysis. On average, each
municipality had 6.34 outbreaks. The average duration per outbreak was 195 days, with an
average imax of 0.6%.

Parameter exploration with Gaussian Processes
The speed of the GP predictions allows for an efficient exploration of which parameter
combinations in our epidemiological IBM provide a best fit to the dengue incidence data from
Colombia. This also allows us to assess whether our GPs — and consequently, our IBM —
can provide insights into real-world epidemic outbreaks. To capture the heterogeneity in
dengue transmission potential, we incorporated municipality-specific average infectivities
while assuming that other model parameters remained constant across all municipalities. We
focused on municipalities with at least three outbreaks, resulting in a total of 1,186 epidemics
across 173 municipalities. For each municipality, we randomly split the data into 67% for
parameter fitting (N = 737) and 33% for testing (N = 449), using the test data to evaluate the
GP’s predictive performance for imax.

We generated 25,000 LHS parameter combinations from the full parameter space (Table 1),
excluding the average infectivity parameter. Additionally, we introduced a scaling parameter
(ranging from 0 to 0.1) to adjust for discrepancies between the simulated and observed
dengue incidence rates, which might arise due to the abstraction in our model as compared
to real-world data. This scaling factor applies uniformly to all incidence values, while
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preserving the relative differences between single outbreaks. For each of the 25,000 LHS
samples, we tested 50 evenly spaced average infectivities over the range [0, 0.03], resulting
in 1.25 million predicted data points for the 737 epidemics used for calibration. For each
epidemic, we accounted for the epidemic’s start time by adjusting the first case timing
parameter, while using municipality-specific infection probabilities. The predictions were
constrained to the range [0, 1] before calculating the RMSE between observed and predicted
imax. We then selected the average infectivity that minimized the RMSE for each of the
25,000 LHS in each municipality. The 25,000 parameter combinations were ranked by
summing the RMSE across all municipalities, using the best-fit (i.e., lowest RMSE) infection
probabilities for each. To further investigate infection probabilities across municipalities, we
examined the 250 LHS combinations with the lowest RMSE sums.

Finally, we evaluated the GP’s predictive performance on the withheld test data by
calculating both the RMSE and Spearman’s rank correlation coefficient (ρ). To test the
significance of Spearman’s ρ, we conducted 1,000 permutation tests, where the start time
and municipality for each epidemic in the test set were randomly shuffled.

Statistical analysis
Unless stated otherwise, statistical analyses were performed using the R statistical
computing environment (v4.2.1)69. Significance is declared at an alpha cut-off of 5%.

Code availability

The source code of the individual-based disease transmission model implemented in C++ is
available on GitHub at https://github.com/AnnaMariaL/DengueSim. Simulated data,
pre-trained GPs, and Jupyter notebooks demonstrating the usage of the GPs are also
available on GitHub at https://github.com/AnnaMariaL/DengueSim-GP.
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Glossary

Abbreviation Definition

GP Gaussian Process

IBM Individual-based model

RMSE Root mean square error

LHS Latin hypercube sample

imax Maximum incidence
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Supplementary information

Supplementary figures

Figure S1. Schematic overview of human movement in the individual-based model. Each colored
frame represents a unique, non-overlapping family cluster, with each cluster containing multiple family
homes. Individuals can make visits within their own family cluster (solid arrows) or to other clusters
(dashed arrows). The likelihood of visits occurring inside the family cluster is determined by the social
structure parameter (Table 1). Each individual visits their home at least once per day and moves
independently of others in the same family (individuals A and B). Multiple visits to the same location
are allowed (individual D). Visits to other family clusters occur randomly and are not restricted to any
specific cluster (individual C).
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Figure S2. The Root Mean Square Error (RMSE) between the Gaussian Process predictions and the
individual-based model results in the validation dataset (N = 10,000 data points). The RMSE
decreased as the size of the dataset used to train the Gaussian Processes increased (x-axis). The
RMSE between the predictions of the final GP model and the test data (N = 10,000 data points) is
indicated by a yellow square. (A) outbreak probability (B) maximum incidence (imax), (C )
log10-transformed duration.
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Figure S3. Sobol sensitivity analysis, outbreak probability. (A) First-order and total effects across the
entire input domain (Table 1). The first-order effect describes the impact of a single parameter on the
model output (outbreak probability), while the total effect accounts for all interactions involving one or
more parameters. Error bars represent the 95% confidence intervals of the sensitivity index estimates.
A total of 9,437,184 points were evaluated for the sensitivity analysis. (B) Second-order effects across
the entire input domain (Table 1). A second-order effect captures the pairwise interaction between two
variables. Sobol indices with a 95% confidence interval that does not overlap zero are highlighted with
a pink border. The largest second-order effect is emphasized with a bold pink border. (C) Predicted
outbreak probabilities with varying "average infectivity" and "average mobility" parameters (i.e., the
two parameters with the largest second-order effect, see panel B). Other parameters were fixed at
default values (Table 1).
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Figure S4. Sobol sensitivity analysis, log10-transformed duration. (A) First-order and total effects
across the entire input domain (Table 1). The first-order effect describes the impact of a single
parameter on the model output (log10(duration)), while the total effect accounts for all interactions
involving one or more parameters. Error bars represent the 95% confidence intervals of the sensitivity
index estimates. A total of 9,437,184 points were evaluated for the sensitivity analysis. (B)
Second-order effects across the entire input domain (Table 1). A second-order effect captures the
pairwise interaction between two variables. Sobol indices with a 95% confidence interval that does not
overlap zero are highlighted with a pink border. The largest second-order effect is emphasized with a
bold pink border. (C) log10(duration) predictions with varying "seasonality strength" and "first case
timing" parameters (i.e., the two parameters with the largest second-order effect, see panel B). Other
parameters were fixed at default values (Table 1).
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Figure S5. (A) Observed vs. predicted maximum incidence (imax) for empirical epidemic outbreaks (N
= 449). The yellow line represents the identity line (x = y). (B) Distribution of Spearman correlation
coefficients between observed and predicted imax from 1,000 permutations, where both the onset and
municipality of the 449 epidemics were randomized. The actual observed correlation coefficient is
shown as a vertical yellow line.

Supplementary tables
Table S1. Summary statistics describing the 250 parameter combinations with the lowest root mean
squared errors from the parameter exploration with the Gaussian Process. These combinations
represent the best-fitting sets of parameters for matching observed and predicted dengue maximum
incidences across municipalities. IQR = Interquartile Range.

Parameter Min Mean Max IQR

Seasonality strength 6e-5 0.05 0.21 0.05

First case timing 0.00 0.50 1.00 0.32

Infectious period 4.00 5.02 6.00 0.97

Average mobility 1.00 2.51 5.00 1.67

Mobility skewness 0.05 0.48 0.95 0.40

Social structure 0.02 0.63 0.99 0.53

Family cluster size 1.16 11.17 19.90 8.71

Scaling factor 0.01 0.03 0.10 0.01
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