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Multispecies SLiM Design Specification 
This is a “white paper” describing a design to extend the SLiM forward genetic simulation framework 
(https://messerlab.org/slim/) to be capable of simulating the evolution, and co-evolution, of multiple species.  I 
will discuss the goals of this work, and then lay out the general approach I have adopted.  After that I’ll get into 
details: exactly how a user specifies a multispecies SLiM model, and what changes in SLiM’s scripting interfaces 
(the Eidos classes and methods used in a SLiM script) are involved.  Familiarity with SLiM is assumed. 

Goals 
The primary goal is that SLiM should be able to simulate the evolution of multiple species in a single model.  
These multiple species should be able to have completely different genetics (chromosome length, mutation types, 
genomic element types, mutation rates, etc.), as well as completely different scripted behaviors. 

Ecological interactions between species should be possible: competition, mutualism, predation, parasitism, 
infection, etc.  In the scripted behavior of one species, it should therefore be possible for that species to access 
state about the other species: their individual positions in space, their genetics, etc.  It should also be possible for 
scripted behavior of one species to modify the state of other species: to influence their fitness, including causing 
mortality, or to influence their dispersal, or their mating, or whatever. 

Species should be able to share an environment (spatial or nonspatial), if desired – being affected by the same 
environmental variables, but also, for example, competing over the same limited resources.  Conversely, they 
should be able to occupy separate environments, with little (parapatric) or no (allopatric) interaction. 

Species should be able to exist on different timescales – different frequencies/schedules for reproduction, 
movement, and mortality, different lifespans and generation times, and so forth.  Species might also exist at 
different, even non-overlapping, times during simulation, perhaps arising and going extinct according to their own 
dynamics.  However, an acceptable limitation, I think, is that all species that will be modeled must be specified up 
front, even if they only emerge later in a model run.  SLiM models of the speciation process itself, with the 
stochastic, unplanned emergence of new species, would probably continue to be written as single-species models 
(which is already possible), since the diverging proto-species would be so similar as to not require representation 
as distinct species in the model; rather, they would be modeled as subpopulations of the same species with 
emerging (or perhaps even complete) reproductive isolation from each other. 

Finally, an important goal is that existing single-species models should require few or, ideally, no changes to their 
code, and the syntax of multi-species models should be as similar as possible to the syntax of single-species 
models; the learning curve for SLiM is already steep enough!  The performance impact on single-species models 
from these multi-species changes should also be minimized. 

General approach 
Repurposing SLiMSim 
In SLiM 3 the class SLiMSim is used, in both Eidos script and in SLiM’s underlying C++ implementation, to 
represent a running simulation; and in SLiM 3, that simulation is of a single species.  For the multispecies 
redesign I have kept SLiMSim as the class representing a single species, but renamed it to Species for clarity, and 
then introduced a new meta-level above Species that manages multiple species as separate Species objects.  This 
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way all of the single-species state that SLiMSim tracks remains species-specific and unchanged: all of the genetic 
architecture (chromosome, mutation types, genomic element types, etc.), all of the internal bookkeeping (tree-
sequence recording of the ancestry of a given species, in particular), and all of the Subpopulation, Individual, 
Genome, and Mutation objects that comprise the population state of a simulated species (Figure 1). 

In SLiM’s C++ code a new class, Community, has been added that contains a vector of Species objects, one per 
species.  Some code related to the overall simulation state has moved from SLiMSim to Community – running the 
phases of each simulated generation, management of script blocks and log files, and management of 
InteractionTypes for spatial interactions, for example.  The Community object is visible in Eidos as a global 
constant named community, and provides some additional new functionality to support multiple species. 

 
Figure 1. The basic approach of repurposing SLiMSim to represent a single species.  (A) The SLiM 3 
design, in which SLiMSim represents a simulation of one species.  (B) The multispecies redesign, in which 
SLiMSim, renamed Species, represents a simulation of a single species within a single-species or 
multispecies model, and a new class, Community (red rounded rectangle), manages the collection of 
Species objects.  Note that some features of SLiMSim, such as InteractionTypes and LogFiles, have moved 
up to Community. 

This design, of separate Species objects for each species in a multispecies model, means that virtually all 
simulation state is distinct between species.  One species could have tree-sequence recording enabled while 
another doesn’t; one could use continuous space while another just uses non-spatial subpopulations; and so forth.  
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Notably, one species might have genetics and be capable of evolution, while another species might still be 
individual-based, with modeled behavior, dispersal, etc., but might not have any associated genetics, if the 
evolution of that species is unimportant to the simulation.  In any case, this separation between the simulation 
state of different species is enforced throughout SLiM’s Eidos interfaces: for example, if you are modeling mice 
and foxes, Mutation objects would be species-specific, and so a mouse mutation could not be added to a fox 
genome.  Similarly, even if both mice and foxes need a “neutral” mutation type, each species would declare its 
own neutral mutation type separately, rather than sharing the same mutation type for that purpose.  Such strict 
enforcement of the separation of state between species is not technically necessary in all cases, but a clean 
division between species seems best for conceptual clarity. 

One place where simulation state is not kept separate – where logic has moved up to the Community level – is in 
the naming of SLiM global variables in Eidos.  These variables are things like the p1, p2, … variables that 
represent subpopulations, the m1, m2, … variables that represent mutation types, etc.  These variable names must 
now be unique across the whole community; if mice live in two subpopulations, p1 and p2, then foxes may not 
use p1 and p2 as names for their subpopulations (even if they occupy the same environments, conceptually).  
Instead, the foxes that eat the mice in p1 might live in p3, and those that eat the mice in p2 might live in p4.  
This allows these variables to continue to be truly global, for both backward compatibility and ease of scripting; 
even when you are executing fox behavior code, as discussed below, you can still access the p1 global to look at 
the mice that live in the same environment as the p3 foxes. 

As mentioned above, another aspect of SLiM that has moved up to Community is the execution of the generation 
cycle.  It is usually desirable for the generation cycles of species to execute somewhat simultaneously, in an 
interleaved fashion, since species can affect each other’s mortality, reproduction, and other behavior, and since 
this is typically biologically realistic – species in the real world exist in the same timestream and live out their life 
histories simultaneously.  For this reason, the Community object now manages SLiM’s Eidos script blocks – 
first(), early(), and late()events, as well as Eidos callbacks.  Community now keeps a vector of all 
script blocks in the simulation and manages them on behalf of all of the individual species, including the 
registration, deregistration, and rescheduling of those script blocks.  The way the generation cycles of species are 
interleaved will be discussed below (and note that if one does not wish the generation cycles of species to be 
interleaved, the new multispecies design also allows that, as we shall see). 

Species declarations 
Species have names that obey the standard naming conventions of variables in Eidos (starting with a letter or an 
underscore, not containing spaces, etc.); a fox/mouse model could have species named fox and mouse in Eidos.  
These species names would be used to create global constants; a fox/mouse model with species named fox and 
mouse would have global constants named fox and mouse that would refer to the Species objects for those 
species, just as sim refers to the single species defined in SLiM 3 models.  The global constant sim would not be 
available in multispecies models (unless one chooses, confusingly, to name a species sim); it would be replaced 
entirely by these new species-specific globals, to avoid ambiguity regarding which species is being referenced.  
Single-species models that do not explicitly declare their species name still use sim, however; that is the default 
name of the single species (preserving backward compatibility). 
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The species implemented by a model are declared by the initialize() callbacks defined in the SLiM script.  
In SLiM 3, initialize() callbacks look like this: 

initialize() { 
   ... 
} 

In a single-species SLiM model this would continue to be the standard syntax, and would implicitly declare a 
species with the default name sim.  In a multi-species SLiM model, however, this declaration syntax would be 
augmented by an additional species specifier, like so: 

species fox initialize() { 
   ... 
} 

A separate initialize() callback would be written to declare the “mouse” species: 

species mouse initialize() { 
   ... 
} 

Since each species is represented by a completely separate Species object, the initialization code for each species 
could, and usually would, be different.  These initialize() declarations establish what species names are 
declared in the model.  In all other contexts, using a species name that has not been so declared results in an error, 
preventing typos (moose instead of mouse) from causing confusion. 

The one thing that is required to match between all species in a multi-species model is their model type (WF or 
nonWF), for practical reasons.  The model type is thus now a property of the whole community, not a species-
level property.  That raises the question of how community-level (i.e., whole-simulation-level) initialization is 
done in multispecies models.  To accommodate that, one uses a similar syntax: 

species all initialize() { 
   ... 
} 

This declares an initialize() callback that is non-species-specific, responsible for initializing state at the 
community/simulation level.  In a multispecies model, your call to initializeSLiMModelType() must be 
in such a non-species-specific initialize() callback; calls to initializeInteractionType() to set 
up spatial interactions must also go into these callbacks, since spatial interactions are now managed at the 
community level.  You might also wish to put configuration of simulation parameters into such a callback, 
particularly to set up parameters that affect the whole community.  These non-species-specific initialize() 
callbacks are always run before any species-specific initialize() callbacks. 

As mentioned above, if no species specifier is given for an initialize() callback then the name sim is 
assumed, and in that case, no other species may be declared (and species all may also not be used).  In this 
case the initialize() callback contains both species-specific and non-species-specific initialization calls; the 
community and species levels are conflated in single-species models, both for simplicity and for backward 
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compatibility with SLiM 3.  In most respects, though, there is very little difference between a multi-species model 
and a single-species model; a single-species model is mostly just a model that happens to implement only one 
species, which happens to be implicitly named sim. 

The global Species constants for all species (fox, mouse, etc.) are created after all initialize() callbacks 
have finished executing (as for sim in single-species models now).  This means that species cannot reference 
each other during initialization, which seems reasonable and avoids order-dependencies during the initialization 
phase.  The new global community object is similarly created after all initialization is complete. 

Ticks, cycles, and generations 
One of the goals stated above is to allow species to run at different “speeds” – one species might reproduce much 
more often than another, for example.  To make this easier, I have generalized SLiM 3’s way of working with 
time.  It was already unfortunate that SLiM used the term “generation” to refer to one cycle of execution in the 
simulation; when SLiM 3 added nonWF models, allowing overlapping generations, variation in individual ages, 
life history tables, and so forth, the term “generation” no longer fitted SLiM’s concept of a cycle of simulation 
execution terribly well.  The term “generation” fits even less well in a multispecies world in which different 
species run on different timescales.  For that reason, although it does cause a minor break in backward 
compatibility, the term “generation” is now being retired in favor of two new terms: ticks and cycles. 

A tick is now what a “generation” was previously: a single cycle of SLiM’s internal engine, allowing 
reproduction, movement, fitness calculations, mortality, and so forth.  Everything defined in terms of 
“generations” in SLiM 3, such as the times at which events and callbacks are scheduled to run, has shifted over to 
being defined in terms of ticks.  The current tick is available from community.tick instead of SLiM 3’s 
sim.generation (since the tick counter is global and the same for all species).  Other similar API changes 
have been made to reflect this shift, and tree-sequence recording times are all in ticks. 

A cycle is also, in a sense, what a “generation” was previously: the number of times that a given species has 
executed its cycle (starting from 1).  The old API, sim.generation, has been removed; instead, we now have 
sim.cycle  (or fox.cycle, mouse.cycle, and so forth).  In the default case (such as a legacy SLiM 3 
single-species model), the cycle counter starts at 1 – you could think of it as counting initialize() callbacks 
as the first cycle – and counts upwards by 1 in synchrony with the tick counter.  As a result, existing model code 
will work without alteration; community.tick and sim.cycle will always have the exact same value in 
single-species models. 

What, then, of “generations”?  In the context of overlapping generations, varying ages of first reproduction and 
mortality, etc., the biological meaning of the “generation time” is somewhat unclear and arbitrary anyway (see, 
e.g., Charlesworth 1994 on generation overlap); one could write Eidos code to measure it, given a particular 
choice of definition, but that is not what SLiM 3 meant by the term “generation”, which caused confusion.  
Generations in SLiM 3 were merely an artificial modeling construct, and so in this redesign the removal of that 
term, in favor of “ticks” and “cycles”, frees up “generation” to once again mean the “biological generation” – 
whatever one might mean by that!  SLiM will still use the term sometimes, particularly in the context of WF 
models where one really does mean a “biological generation”; it is useful to talk of the “parental generation” 
versus the “offspring generation”, for example.  But what used to be called the “generation cycle” is now called 
the “tick cycle”, because it runs every tick – or it can simply be called the “cycle”. 
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To make it easy for different species to run on different timescales, it is now possible to tell SLiM that a given 
species should only execute in particular ticks, referred to as the ticks in which the species is active.  Only when 
the cycle of a given species executes – when it is active – is the cycle counter for that species incremented.  A new 
initialization function, initializeSpecies(), takes two optional parameters: [integer$ tickModulo 
= 1] and [integer$ tickPhase = 1].  A given species will be active every tickModulo ticks, 
beginning in tick tickPhase.  For tickModulo 3 and tickPhase 5, for example, a species would be 
active, and thus execute its cycle, in ticks 5, 8, 11, 14, etc. (Figure 2).  Since each species has its own 
initialize() species declaration, and thus its own call to initializeSpecies(), the tickModulo 
and tickPhase parameters are species-specific. 

 
Figure 2. Scheduling of cycles in an example two-species model.  The fox species, with modulo 3 and 
phase 5, executes its cycle only occasionally; the mouse species, with modulo 1 and phase 1, executes in 
every tick.  In ticks 5 and 8 (red outlines), both species are active and their cycles are executed in an 
interleaved fashion. 

Ticks are thus “objective time”, like the ticking of a clock, and each species might live out its life history different 
as that clock ticks.  Note that the biological meaning of a “tick” is up to the user; they could be days, months, 
seasons, years, or whatever you wish.  If you have two species that run on different timescales, you would want to 
at least configure the model so that the timescale of your model’s “ticks” match the species with the faster 
generation time.  However, you could make the “ticking” even faster than that, if you wanted to, and then 
configure the timescale of each species on that global timescale.  These are model design decisions; SLiM will do 
as you command. 

If this level of control is insufficient (probably rare), a species can control exactly which ticks it is active in.  This 
is done by using the default value of 1 for tickModulo and tickPhase so that the species is given an 
opportunity to execute in every tick.  Then, as the first thing that species does in each tick, it can optionally call a 
new Species method, skipTick().  This method short-circuits the rest of the cycle for that species in that tick.  
This must be done first thing, to ensure that the species does no work in the current tick; the  first() events 
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added in SLiM 3.7 provide a convenient opportunity.  Using a first() event, calling skipTick() is very 
simple, in both WF and nonWF models (the ticks all timing designation will be explained in the next 
section): 

ticks all first() { 
   fox_wants_to_skip = ...;  // whatever custom logic is desired 
 
   if (fox_wants_to_skip) 
      fox.skipTick(); 
} 

If skipTick() is called for a species in this manner, no further species-specific code will be run for that species 
in the current tick, the cycle for that species will not be run, the cycle counter for that species will not be 
incremented, and the species will not be considered to be active in the current tick.  Calling skipTick() at a 
later point in the tick cycle is an error; it must be called in a first() event. 

It’s worth noting that all of these timescale mechanics – tickModulo, tickPhase, and skipTick() – are 
implemented on top of the existing active property of SLiMScriptBlock, which already allows particular 
events/callbacks to be skipped in particular ticks.  Using the new timescale mechanics only does a little bit more 
beyond that existing facility, such as preventing the increment of the cycle counter in ticks that a species skips, 
and preventing the execution of all cycle stages for that species (even those not associated with events or 
callbacks). 

Species-specific callbacks 
SLiM supports a variety of callbacks, which are called by SLiM in order to influence the behavior of the model in 
some way.  Most callbacks are involved in the process of reproduction, including reproduction(), 
mateChoice(), modifyChild(), recombination(), and mutation() callbacks.  One type of 
callback, the fitness() callback, is involved in the process of fitness evaluation (technically, 
fitness(NULL) callbacks are a separate type, also involved in fitness evaluation – a syntactic oddity).  One 
type, the survival() callback, is called to govern the mortality decisions SLiM makes for individuals.  
Finally, interaction() callbacks are called when the strengths of interactions between individuals are being 
evaluated.  (We will skip over initialize() callbacks here since we already discussed them above.) 

All of these types of callbacks except interaction() callbacks involve decisions about modeling a particular 
species – how it reproduces, how it defines fitness, how it undergoes selection/mortality.  These callbacks in 
SLiM are therefore species-specific, conceptually.  This is not the case for interaction() callbacks, which – 
in a multispecies model – might influence interactions between individuals of different species; they are 
something of a special case, therefore, and will be discussed separately at the end of this section. 

The species-specific callbacks in a SLiM script are now required to be species-specific: they always specify 
behavior for one species.  This is designated in the same manner as for initialize() callbacks; for example: 
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species fox 1:100 reproduction() { 
   ... 
} 
 
species mouse fitness(m1) { 
   ... 
} 

And so forth.  In a single-species model with no explicit species declaration, a specifier of species sim is 
implied for all callbacks (and it may not be written explicitly, since the species name was not explicit). 

It is required, then, in a multi-species model, to provide this explicit species specifier for all callbacks except 
interaction() callbacks, and two species cannot share the same callback code even if they want the same 
behavior.  (Sharing identical callback behavior is expected to be fairly rare; even if two species are quite similar 
there are likely to be subtle differences in reproductive timing, fecundity, mate choice details, etc., such that they 
would probably want different callback implementations.  But when code sharing is truly desired, it is easy to 
accomplish with a user-defined function containing the shared code, called by the callback of each species.  The 
small inconvenience of this arrangement, in these rare cases, is outweighed by the conceptual clarity afforded by 
the policy that a species-specific callback is always associated with exactly one species.) 

And what of interaction() callbacks?  Since they are non-species-specific and are managed at the 
community level, their syntax is exactly parallel to the same situation for initialize() callbacks:  

species all interaction(i1) { 
   ... 
} 

The species all specifier is required for interaction() callbacks in multispecies models, to state 
explicitly that the callback is not species-specific.  So, in short, every callback in a multispecies model must be 
declared with a species specifier; for interaction() callbacks it must be species all, whereas for 
other callbacks it must be species-specific.  In single-species models, species specifiers are never used; they 
look just like SLiM 3 models have always looked. 

Event timing 
Events – first(), early(), and late() events – are a bit different from callbacks, because callbacks 
(except interaction() callbacks, as discussed above) are called only for a particular subset of individuals – 
the individuals in one given species.  An event, on the other hand, might affect a single species or more than one – 
or no species at all, if it just manipulates global state.  Even if a given event affects one species, it might in some 
sense be the “responsibility” of another species (such as an event in which foxes hunt mice; that might primarily 
affect the mice, especially if the model doesn’t track individual fox food intake, but it might still be driven by 
behavior on the part of the foxes).  As discussed above in Ticks, cycles, and generations, different species might 
be active (i.e., run their cycle) in different ticks; and yet, also, even if foxes are only active every third tick, you 
might want them to hunt in every tick.  What we want for events, then, is the ability to designate whether an event 
ought to run only in ticks when a particular species is active, or ought to run in every tick, regardless of what 
species that event operates upon, or what species is “responsible” for the behavior of the event.  It therefore makes 
sense for the syntax for designating events to be a little bit different: 
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ticks fox 1:100 first() { 
   ... 
} 
 
ticks mouse early() { 
   ... 
} 
 
ticks all 5: late() { 
   ... 
} 

The first event will run in ticks 1:100, but only if the fox species is active in a given tick.  The second runs in 
every tick in which the mouse species is active, since no tick range is given.  The third runs in every tick from 5 
onward, whether any species is active or not (even in ticks in which no species is active).  This ticks specifier is 
required for events in multispecies models, to avoid confusion and accidental bugs, just as species specifiers 
are mandatory in multispecies models.  In single-species models that do not declare a species name explicitly, 
ticks specifiers are not allowed and ticks sim is assumed (providing backward compatibility), just as 
species specifiers are not allowed and species sim is assumed. 

User-defined functions can never be designated in either of these ways – with a species specifier or a ticks 
specifier.  User-defined functions can use the species-specific global constants, like fox and mouse, to refer 
explicitly to particular species.  A user-defined function could also be passed a Species object on which to 
operate, if desired, to make it agnostic to the particular species implemented in a model (allowing easy reuse of 
user-defined functions between different species).  Note that user-defined functions that reference sim will need 
to be rewritten in order to be reused in a multispecies model; they would continue to work in single-species 
models, though, since the sim symbol would still exist.  User-defined functions can never be limited to running 
only in particular ticks; they can be called from any script block at any time. 

Execution order 
The trickiest design issue to resolve is the order in which things happen within a given tick.  In SLiM 3, the 
overall order of execution within a generation was defined by the generation cycle of the model type (Figure 3). 

Each of the top-level steps of the generation cycle is referred to as a “stage” (or sometimes a “phase” or a “step”).  
In stage 1 of WF models, and stage 2 of nonWF models, for example, early() events are executed.  Within a 
stage, in SLiM 3’s single-species design, particular events or callbacks are executed in the order in which they are 
defined in the user’s SLiM script, from top to bottom.  If multiple early() events are defined that would all run 
in the same tick, for example, then they run from top to bottom within the appropriate cycle stage.  We will call 
this order of execution definition order; events execute in definition order. 

In SLiM 4, if only a single species is running its cycle in a given tick in a multi-species model, the execution 
order would be exactly the same as it is now (preserving backward compatibility).  When more than one species is 
active in a given tick (Figure 2), the same tick cycle would also be used, but the precise execution order requires 
some further clarification. 
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Figure 3. The SLiM 3.7 generation cycle for WF and nonWF models.  This cycle would be unchanged in 
SLiM 4, but the execution order for multiple species within each cycle stage requires clarification. 

First of all, in a given tick the cycles of species that are active are interleaved: all active species execute stage 1, 
then they all execute stage 2, etc.  (If a model does not want this to be true, it can arrange for species 1 to run only 
in even ticks, and species 2 to run only in odd ticks, for example; so this design allows for non-interleaved 
execution of tick cycles if desired, by using non-intersecting tick schedules for the species.)  Within a given stage, 
the order of execution depends upon the type of work being done by SLiM in that phase (Figure 4), as discussed 
next. 

If the stage primarily involves events – first(), early(), or late() – then those events will execute in 
definition order, executing top-to-bottom in the order in which they are defined in the script.  This allows a model 
to do event-type work in whatever order it wishes.  For example, within one event stage, an event might move all 
the mice, then another event might move all the foxes (hunting for mice), then an event might look for fox/mouse 
intersections and have the foxes eat the mice they find, then an event might handle seasonal environmental 
changes, then another event might move foxes that have eaten back toward their dens while decreasing the fitness 
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Figure 4. The new SLiM 4 multispecies tick cycle, for WF and nonWF models.  Phases colored red – the 
first(), early(), and late() event stages – execute all active events in definition order, from top to 
bottom in the user’s script; this allows precise ordering of events.  Stages colored blue – involving 
reproduction or fitness calculations, and potentially involving execution of non-event callbacks – execute 
one species at a time, in species declaration order, the order in which the species themselves are declared 
in the user’s script, from top to bottom.  The execution order of stages colored green – involving no events 
or callbacks – is undefined at present; SLiM will execute these in whatever order is convenient, since the 
effects of these stages on each species are independent and their ordering thus has no user-visible effect. 

of foxes that failed to eat, then an event might handle density-dependent fitness for the mice that survived, and so 
forth.  These events would simply be defined in top-to-bottom order to produce the desired order of execution.  In 
any given tick some of these events might not run, if they are designated with a ticks specifier as running only 
in the ticks when a given species is active (as governed by tickModulo and tickPhase); perhaps the event 
that moves foxes back to their dens would be designated ticks fox, for example, because that movement 
would only happen in ticks in which the foxes are reproducing.  The event in which foxes eat mice, on the other 
hand, might be designated ticks all, which would mean that foxes would eat mice in every tick, even if they 
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were not executing their full cycle in that tick – not reproducing, recalculating fitness, undergoing mortality, etc.  
The designer of a model would need to think carefully about these timing choices, if different timescales were 
used for different species; many simple models would probably just have every species active in every tick. 

If the stage involves species-specific callbacks (reproduction, fitness calculations, survival) then the code for 
that stage for different species will be run consecutively, in species declaration order: for example, foxes would 
do all of their reproduction, then mice would do all of their reproduction, and so forth.  The order in which the 
species do their work, within a single such stage, is determined by the order in which they were declared via their 
initialize() callbacks, from top to bottom: if you want a particular species to go first in the execution of 
these types of stages, simply declare that species first.  Within the execution of a stage for each species, the 
relevant callbacks (if more than one reproduction(), fitness(), or survival() callback is defined for 
that species, for example) will be run in top-to-bottom definition order, exactly as is the case now, preserving 
backward compatibility. 

These rules set out a well-defined order of execution for each tick.  I don’t anticipate this commonly needing to be 
more flexible – e.g., sometimes wanting foxes to reproduce before mice, and other times wanting mice to 
reproduce before foxes, depending upon the tick – so I don’t think the syntax needs to jump through hoops to 
allow finer-grained control of the timing of within-tick execution.  In fact, models wanting really fine control over 
execution order could always adopt a more continuous-time approach, with a first() event in every tick that 
would decide on one single thing that would occur in that tick (a single individual reproducing, a single individual 
dying, etc.), and limiting the species in the model to just fulfilling that single task in that tick; such a “Moran 
model” style of design would be possible, although it would probably run quite slowly.  More likely, models 
might go a little way toward such a design, allowing the custom execution order they need while not being quite 
so extreme in their approach as to only execute a single task in each tick.  Anyway, I think such designs are 
doable within this framework, for users that really need it, but this is a marginal issue.  If the timing rules set out 
here prove to be insufficient, some sort of additional syntax for adjusting timing could be introduced later on, but 
I don’t expect to need to do so. 

Spatial interactions 
Species in a multi-species model will typically interact with each other in some way, and SLiM will need to 
support the implementation of such interactions with its spatial interaction engine, InteractionType.  This is a 
complex topic, and I originally proposed a very different design than the one I have now arrived at.  
Implementation of the final design is now complete, and actually involves no substantive change to the list of 
InteractionType methods present in SLiM 3, summarized in Table 1.  However, the functionality of those existing 
methods has been considerably extended, as will be discussed below. 

For the sake of discussion in the remainder of this section, let’s imagine a model of five species of Darwin’s 
Finches on an island in the Galapagos. 
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Table 1. Spatial queries supported in SLiM 4; this list of methods is much the same as in SLiM 3.7 
(neighborCount() and neighborCountOfPoint() are new, but that is unrelated to the 
multispecies redesign).  However, the functionality of these methods has been extended to accommodate 
queries between subpopulations and between species (see text).  Note that the distanceFromPoint() 
method was named distanceToPoint() in SLiM 3; it has been renamed, and now takes its arguments 
in the opposite order, for greater consistency. 

Indirect interactions 
In one type of model, the interactions between these finch species would be indirect, mediated by the 
environment.  The model might keep a sort of spatial map that has a count of the number of seeds of different 
types, in grid squares across the landscape, and let the finches forage for seeds according to their individual seed-
size preferences and foraging abilities.  Their competition would be indirect and emergent from this feeding 
behavior, as seeds of particular types run out and some finches go hungry.  This type of model would be easily 
implemented with existing tools – in particular, by defining one or more global matrices of seed counts at 
different grid points, and modifying those global matrices as the finches feed.  A model of the effects on other 
species of beaver dam-building, or of afforestation, could work similarly.  Such a model might use 
InteractionType only for within-species mate searches. 

Direct interactions (aggregated count) 
In another type of model, the interactions would be more direct, but aggregated – based upon local density, rather 
than separately handled individual-to-individual interactions.  Here, an individual of one finch species might 
assess the total negative fitness effect exerted upon it by all other nearby finches, in an aggregate estimate of the 
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strength of competition it is experiencing.  In the simplest form, this would involve simply counting the number 
of interacting individuals within an interaction radius, and assigning a total strength of competition based upon 
that count.  In a single-species model, this would most efficiently be implemented using the existing 
InteractionType method interactingNeighborCount(), which returns the number of exerters that interact 
with a focal receiver individual.  In SLiM 3, that method will find only exerters of the interaction within the 
maximum interaction distance of a focal receiver in the same subpopulation.  That is the fundamental limitation 
that needed to be lifted for multispecies support.  The old method signature looked like this: 

– (integer)interactingNeighborCount(object<Individual> individuals) 

In SLiM 4, this method now allows the exerters to be in a different subpopulation from the receivers.  There are 
limitations upon this flexibility, for efficiency; for a given call to interactingNeighborCount(), all of the 
receivers must be in the same subpopulation, and all of the exerters must be in the same subpopulation – but those 
do not have to be the same.  It is assumed that the receivers and exerters exist in the same coordinate system; the 
spatial bounds of their subpopulations need not be identical, but an (x, y) position in one subpopulation must refer 
to the same actual point in space in the other subpopulation.  The new method signature looks like this: 

– (integer)interactingNeighborCount(object<Individual> receivers, 
 [No<Subpopulation>$ exerterSubpop = NULL]) 

The old individuals parameter has been renamed receivers, to emphasize the role that those individuals 
play in the interaction.  More importantly, a new parameter has been added, exerterSubpop.  This parameter 
is optional, and its default value, NULL, falls back on the old SLiM 3 functionality of counting exerters within the 
same subpopulation (and thus the same species) as the receivers; this preserves backward compatibility.  But now 
a different subpopulation, potentially in a different species, can instead be passed in, and the query will then be 
run counting exerters in that different subpopulation that are near the spatial location of each receiver. 

This is the basic approach throughout the new API design.  For methods that took only a receiver or receivers, 
like interactingNeighborCount(), a new optional exerterSubpop parameter has been added that 
allows cross-subpopulation and cross-species queries while preserving backward compatibility.  For methods that 
already took a vector of exerters – the strength() method, for example – those exerters are now permitted to 
be in a different subpopulation, and thus a different species, than the receiver. 

InteractionType has always required that one call a method named evaluate() to “evaluate” a subpopulation 
before interaction queries involving that subpopulation can be done.  This remains true now; one is simply 
required to evaluate both subpopulations involved in the interaction you want to query, the receiver subpopulation 
and the exerter subpopulation.  As in SLiM 3, this takes a snapshot of the spatial positions of all of the individuals 
in the evaluated subpopulation, and those snapped positions are the positions used by InteractionType to respond 
to queries; if individuals change their spatial position after evaluate() is called, the InteractionType will not 
be affected.  This is a nice feature in some ways, providing a consistent baseline state for interaction evaluation 
even if one wishes to move individuals around in response to the interactions they are receiving; but it is also 
necessary, from a software architecture standpoint, to make the underlying algorithms efficient, since it allows 
spatial data structures to be build once and reused many times. 
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Direct interactions (aggregated interaction strength) 
A third type of model makes this aggregated strength of competition depend not only upon the number of nearby 
individuals, but upon the strength of competition each of those nearby individuals exerts, depending upon their 
spatial proximity and perhaps also their phenotypic similarity or other factors.  This is the type of competition 
illustrated in recipes in the SLiM manual, such as in section 15.2 and later chapter 15 recipes.  With a multi-
species model such as the finch model, an individual of one species might feel the strongest competition from 
individuals of its own species, and different, lesser levels of competition from the other two finch species (i.e., 
competition strength depending upon spatial proximity and species identity, without assessing individual 
phenotype); or competition strength might be phenotype-based (based on beak size, probably, in our finch 
example), more accurately representing competitive effects when the phenotypic distributions within each species 
might be somewhat broad and overlapping.  In existing single-species models these types of competition would 
typically be implemented with the vectorized totalOfNeighborStrengths() method of InteractionType, 
which tallies up interaction strengths calculated between interacting pairs of individuals, or with 
localPopulationDensity(), which similarly tallies up interactions but then divides by the available 
habitat in some sense (the integral of the interaction function clipped to spatial bounds, in fact) to provide a metric 
of the “interaction density” exerted upon receivers. 

As before, in SLiM 3 these methods could evaluate interactions only within a single subpopulation, but now they 
allow the receivers and the exerters to live in different subpopulations, and thus different species.  This approach 
raises an additional issue, however, since now we are totaling up interaction strengths, not just counting 
interacting individuals: how can the interaction strength be modified by factors such as phenotypic similarity?  
One might, similarly, wish interaction strengths to depend upon the genetics of coat color for mice versus the 
learned “search image” of a fox used to looking for mice of a particular color; or many other such factors. 

In SLiM 3, such considerations could be coded as an additional spatial dimension (see section 15.7 of the 
manual), which is elegant and efficient when it is possible, but when it is not, one must write an 
interaction() callback.  This callback type allows the interaction strength between a focal receiver/exerter 
pair to be tailored according to their genetics, their phenotypes, their learned behaviors, or anything else you wish 
to write in your Eidos script. 

In SLiM 4, this mechanism remains essentially the same.  The only difference is that now, when an 
interaction() callback is called, the receiver and the exerter might be in different subpopulations or even 
different species.  For that reason, the subpop pseudo-parameter that used to be passed in to interaction() 
callbacks has been removed (breaking backward compatibility, but in a very minor way).  Instead, the callback 
should use receiver.subpopulation and exerter.subpopulation as needed, and recognize that the 
two might not be the same. 

Direct interactions (individual to individual) 
Finally, there are models where individuals interact very directly with specific other individuals, rather than just 
feeling a “total interaction strength”.  In single-species models this often involves mate choice; you don’t just 
want to assess the level of mating interest for a focal individual, you want to find that focal individual a mate.  It 
could also involve, say, predation: you might not want to just assess the overall predation risk felt by a mouse, 
you might want to find the specific fox that eats that mouse.  For this sort of task, methods such as 
nearestNeighbors(), nearestInteractingNeighbors(), or drawByStrength() are typically 
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used.  Given a receiver, these provide, respectively, all individuals within the interaction radius, only the exerters 
within the interaction radius (excluding individuals of one sex, for example, if the interaction is sex-specific), or 
just one individual chosen from among the available exerters weighted by their interaction strength.  These APIs 
are all focused on individual–individual interactions. 

As before, for SLiM 4 these methods have been extended to allow the search for neighbors or exerters to be done 
in a different subpopulation or species than the receiver, and interaction() callbacks can now modify the strength 
of interaction for receiver/exerter pairs that reside in different subpopulations or species. 

How was this implemented? 
This sounds like a very simple change, but an extensive redesign of the internals of InteractionType was 
necessary to achieve it.  Originally I thought that this approach would simply not be possible to implement 
efficiently, which is why the original plan for the InteractionType redesign was so different.  As it turns out, the 
performance after this redesign is remarkably close to SLiM 3.7’s performance – often essentially identical, 
occasionally slightly faster.  For those who are interested, I will explain here how this redesign works under the 
hood; those who are not interested can skip this section. 

In SLiM 3, InteractionType uses two spatial data structures to respond to spatial queries.  One is called a k-d tree; 
it is designed to efficiently search for individuals that are near to a given spatial location.  This is what SLiM uses 
to find exerters that are near the location of a given receiver, and this part of InteractionType did not need to 
change significantly for SLiM 4; now we just feed the spatial location of a receiver in one subpopulation into the 
k-d tree built for a different subpopulation. 

The other spatial data structure in SLiM 3 is called a sparse array; it is designed to efficiently cache the results 
from interaction calculations.  If you have N individuals in a subpopulation, you have N×N potential interactions, 
and if you wish to save the results of those interaction calculations, naively you could store them in an N×N array.  
That is actually what SLiM 2 did, but for large population sizes it used a tremendous amount of memory; it did 
not scale as it needed to.  For SLiM 3, the N×N array was replaced by the sparse array.  The benefit of that is that 
if each of the N individuals interacts only with a small set of nearby individuals – M individuals on average, let’s 
say – then the sparse array occupies only N×M memory rather than N×N memory.  For M << N, this is a huge win, 
and it worked pretty well for SLiM 3. 

But limitations soon became clear.  One is that even for M << N, the memory usage of the sparse array could be 
very large for sufficiently large N; if we want to get to a place where we can model populations sizes of many 
millions or perhaps even a few billions, N×M memory usage remains extremely painful.  The other limitation is 
that it really doesn’t scale well to multispecies models with interactions between subpopulations.  To see why, 
picture the data structures needed for our five-species finch model.  To hold the cached interactions between 
receivers of species 1 and exerters of species 2 (we could notate that as 1←2), we would need a sparse array of 
size N×M, where N is the total size of species 1 and M is the average number of exerters in species 2.  If we want 
the reciprocal interactions – receivers of species 2 and exerters of species 1 (2←1) – that’s another N×M sparse 
array (the species identity of N and M being flipped).  And we probably also need within-species interactions, 
1←1 and 2←2.  So already, for two species, the memory usage has quadrupled; for a single-species model, a 
single N×M sparse array would have sufficed.  Now if we want to add a third finch species, we will need nine 
sparse arrays: 1←2, 2←1, 1←3, 3←1, 2←3, 3←2, 1←1, 2←2, and 3←3.  For five finch species, we will need 25 
sparse arrays, if I have counted them up correctly.  This is a problem. 
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So the sparse array can no longer be relied upon to serve our needs.  The first redesign I envisioned was to make 
all queries between subpopulations be point-based and not use the sparse array design at all.  In other words, you 
would take the spatial location of a receiver, and use a point-based call to ask InteractionType “what exerters are 
near this spatial location, and what interaction strength would they exert upon a receiver there?”  However, this 
shift towards point-based calls had major drawbacks.  One is that the receiver individual drops out of the picture; 
this would mean that interaction() callbacks would no longer know the identity of the receiver, for 
example, making it impossible to tailor interaction strengths according to receiver–exerter genetics and so forth.  
Another drawback is that it means that interaction information is no longer cached at all, even temporarily within 
a given query; this would make the implementation of some of these point-based queries much more complicated, 
and probably less efficient too.  A third drawback is that we still have at least the sparse arrays for each within-
subpopulation interaction: 1←1, 2←2, etc.  These need to be kept because we don’t want to lose existing 
functionality and efficiency for simple models.  So for a five-finch-species model we still have five N×M sparse 
arrays, which is still painful.  And the last drawback is an explosion of new methods in InteractionType for all 
these new point-based queries, making the class quite confusing and difficult to both use and maintain. 

So that was the wrong design, but I scratched my head for a long time trying to think of a better one.  The key 
realization is that the sparse array, for everything that InteractionType does, is always accessed one row at a time: 
we’re always looking at the list of exerters for one focal receiver at a time.  We only need to cache that sparse 
interaction information for a single row at a time – and thus we only need to build it for one row, at any given 
time.  This allows us to switch from a design revolving around sparse arrays of size N×M to a design revolving 
around sparse vectors of size M.  When we need the row of the sparse array for a given receiver, we build it, use 
it, and throw it away.  In memory, at any given time, we have only the single sparse vector of length M that we 
need to service the portion of the query we are currently working on.  Conceptually, we are still using a design 
based upon sparse arrays; but in practice, the memory usage for those sparse arrays disappears almost completely.  
And because of this, it no longer matters how many sparse arrays we have, for a given model; if our five-species 
finch model uses 25 of them, the memory usage is still essentially zero.  And it avoids needing to add a whole 
new wave of point-based query methods to InteractionType, and it scales easily. 

The only concern was whether all of this building and throwing away of temporary sparse vectors would turn out 
to be much slower than building a more permanent sparse array that could be reused repeatedly.  That has turned 
out to really not be an issue, however.  The reason is that a given interaction for a given receiver is almost always 
queried only once before the InteractionType needs to be re-evaluated (e.g., because individuals have died or been 
born).  So in the old design we would build the whole sparse array, use each row of it once (if even that), and then 
throw it away.  In the new design, we build and throw away each row individually, as needed.  The total amount 
of computation is essentially the same; or if some rows are never used (because interactions for some receivers are 
never queried), the new design can be even more efficient. 

The one place where we do lose efficiency, in some cases, is in reciprocality.  A reciprocal interaction is one 
which has the same strength if the receiver and exerter roles are switched; if A exerts a strength of x upon B, then 
B exerts a strength of x upon A.  Such reciprocal interactions are commonplace; if the competition strength 
between two finches depends upon their spatial proximity and their relative beak sizes, for example, then the 
strength of competition one finch exerts upon another might be defined to be equal to the strength the other exerts 
upon the one.  In principle, one could leverage this fact to calculate the interaction strength just once, cache it, and 
reuse it when the reciprocal interaction is queried.  This was actually the motivation behind the original N×N array 
design used in SLiM 2; that made it very easy to cache and reuse reciprocal interactions.  And when interaction 
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strengths are slow to calculate – when interaction() callbacks are active, in particular – that design did 
result in a substantial speedup for models involving reciprocal interactions.  However, that benefit was mostly lost 
when we switched to sparse arrays in SLiM 3, because inserting the reciprocal interaction into the sparse array 
often took more time than it saved; the sparse array data structure is just not optimized for random-access 
insertion in the way that an N×N array is.  So in SLiM 3 the reciprocality property was only used when 
interaction() callbacks were active, and even then it was only a win when those callbacks were fairly slow.  
In SLiM 4 we lose the ability to cache reciprocal interaction strengths at all, because there is literally no data 
structure to cache them in any more – there is only the sparse vector for the interaction we are presently 
evaluating.  This does mean that models that use reciprocal interactions with interaction() callbacks will 
often run more slowly than in SLiM 3 – potentially up to twice as slowly, in the worst case where runtime is 
completely dominated by the callback overhead.  Such is life. 

In summary, then, by removing the sparse array from InteractionType and switching to dynamically generated 
sparse vectors, we can easily and efficiently address the common needs of multi-species models for spatial 
interactions between individuals of different species. 

No-genetics species 
In SLiM 3, one virtually always wants to simulate genetics of some kind; that’s the whole point.  But with 
multispecies models in SLiM 4, that may no longer be the case.  One might want to use SLiM simply as a 
framework for “pure ecology” models; there is no reason why it can’t be used for that!  One might also want to 
write a model in which some species have genetics and can evolve, whereas other species are present in the model 
only for their ecological effects and do not need to evolve.  We’ll use the term “no-genetics species” for such 
species.  In SLiM 3, one would need to make a set of boilerplate initialization calls to set up a no-genetics species: 

initialize() 
{ 
   initializeMutationRate(0.0); 
   initializeMutationType("m1", 0.5, "f", 0.0); 
   initializeGenomicElementType("g1", m1, 1.0); 
   initializeGenomicElement(g1, 0, 0); 
   initializeRecombinationRate(0.0); 
} 

This just sets up an empty chromosome (of length 1, since there is no legal way to set a chromosome length of 
zero in SLiM 3), with mutation and recombination rates of zero.  Since this is expected to be much more common 
in SLiM 4, a streamlined way to do this has been added.  A no-genetics species can now be declared like this: 

initialize() 
{ 
} 

Of course other initialization code might be present in the callback; the point is that all of the genetics 
initialization boilerplate can be omitted.  This actually provides a zero-length chromosome, too, so it is 
functionally superior to the old no-genetics style. 
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Note that these two styles cannot be mixed; there is no intermediate point between “no-genetics” and “genetics”.  
Either you leave out all the boilerplate and declare a no-genetics species, or – as in SLiM 3 – you are required to 
specify the mutation and recombination rates, and set up a chromosome with at least one genomic element (and 
therefore, at least one genomic element type and mutation type). 

API modifications 
This section lists the specific API modifications I have proposed above, as well as some others that have become 
part of the design but were not discussed above.  The list includes a few SLiM 4 changes unrelated to the 
multispecies work, just so people know what’s changing in SLiM’s Eidos APIs.  Now that development work is 
being done, I have divided this list into items that have been completed and items that have not. 

Completed: 

● Add a new class, Community, in both C++ and Eidos, and rename SLiMSim to Species; Species gets 
most of what was in SLiMSim, but Community gets logfiles, tick execution management, script block 
management, InteractionType management, and a few other non-species-specific things 

● Add a community global constant to provide access to the Community shared object 
● Add a tick property to Community to get the current tick counter 
● Add an allSpecies property to Community to get a vector of all Species objects; also add 

allMutationTypes, allGenomicElementTypes, allScriptBlocks, 
allSubpopulations, etc., to Community to get vectors of all of those objects across all species 

● Add a new optional species-initialization function, initializeSpecies(), with an avatar 
parameter that sets a string (typically a single emoji, like a fox or a mouse) and a color parameter that 
sets a color, both used to represent the species in SLiMgui 

● Add [tickModulo = 1] and [tickPhase = 1] to initializeSpecies() for control of 
which ticks the species is “active” in (i.e., executes the tick cycle in) 

● Add tickModulo and tickPhase properties to Species to access those values  
● Add a cycle property to Species to get the current cycle counter for that species; remove the 

generation property 
● Add a skipTick() method to Species to skip running in a given tick for a given species; this sets 

active = F for the species, sets active = 0 for all callbacks designated for that species with 
species <name>, sets active = 0 for all events designated to run only when that species is active 
with ticks <name>, and prevents the cycle counter for that species from incrementing at the end of 
the tick, just as if the species had never been scheduled to run in the current tick at all 

● Add a read-only string$ name property to Species to get the species name ("fox", "mouse", etc., 
or "sim" by default in a single-species model), and a string$ description property for a longer 
description; these get persisted in tree-sequence top-level metadata 

● Add the species <name> syntax for designation of species-specific callbacks, including 
initialize() callbacks (which define the existence of particular species names); this includes the 
species all syntax for non-species-specific initialize() callbacks and interaction() 
callbacks 



Supplement to Haller & Messer, “SLiM 4: Multispecies eco-evolutionary modeling”, Am. Nat. 

 21 

● Require that initializeSLiMModelType() and initializeInteractionType() be called 
from a species all initialize() callback (in multispecies models), since this simulation 
configuration is non-species-specific 

● Add the ticks <name> syntax for designation of events that run only when a given species is active; 
this includes the ticks all syntax for events that should run in every tick 

● Add Community methods subpopulationsWithIDs(), mutationTypesWithIDs(), 
speciesWithIDs(), etc.; these provide a way to quickly look up objects by their id property, to 
make the cross-references that might exist in a multispecies model faster/easier to handle 

● Add a new property, species, to many classes (SLiMEidosBlock, MutationType, Subpopulation, etc.) 
to get the species that they belong to, for whatever purpose the user might have 

● Change the times for tree-sequence recording from generations to ticks; change the 
originGeneration property of Mutation and Substitution to originTick; change the 
fixationGeneration property of Substitution to fixationTick; change the tree-sequence 
metadata schemas as necessary to adjust to these changes; and so forth 

● Change the generationStage property (now on Community) to cycleStage 
● Add a new addTick() method to LogFile; change the addGeneration() and 

addGenerationStage() methods of LogFile to addCycle() and addCycleStage() 
respectively; note that the names for these columns in the logged output also changes, from 
generation and gen_stage, to cycle and cycle_stage 

● The simulationFinished() method on Species should be legal to call only in single-species 
models (to preserve backward compatibility); Community adds a new simulationFinished() 
method that ends the whole simulation 

● Remove the default of early() for events; early() must now be written explicitly, there is no default 
(this removes some excessive complication from the event declaration syntax now that first() events 
and ticks specifiers have been added) 

● Switch InteractionType from using a “sparse array” to using “sparse vectors”, under the hood, enabling 
interactions to be evaluated across subpopulations and even across species 

● Modify InteractionType interfaces to emphasize the (now much more important) distinction between 
“receivers” and “exerters”, to allow an “exerter subpop” to be specified for cross-subpop and cross-
species interactions, and so forth 

● Change the evaluate() method of InteractionType to require receiver and exerter subpopulations to 
be specified explicitly with subpops, since the mechanics of evaluation have become more complex and 
should be made explicit for clarity; remove the immediate parameter since immediate evaluation of 
interactions is no longer supported 

● Relax initialization requirements to allow “no-genetics” species to skip the initialization boilerplate for 
genetics, providing an empty chromosome with mutation and recombination rates of zero 

● SLiMgui improvements: show both the tick and cycle; display multiple species with avatars; add a 
“species tab bar” to select the displayed species; implement auto-fix capabilities to ease the transition to 
SLiM 4 where possible; make graph windows species-specific, bound to the active species when they are 
created; add a “multispecies population size ~ time” graph to see multispecies population dynamics in a 
single plot; etc. 
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● Tweak the output formats, in the header line, for outputFull(), outputMutations(), and 
outputFixedMutations() to include both the tick and generation 

● Remove some obsolete/deprecated APIs: the inSLiMgui property of SLiMSim; the 
originGeneration parameter to addNewMutation() and addNewDrawnMutation(); 
obsolete pseudo-parameters for callbacks such as genome1 and genome2, childGenome1 and 
childGenome2, and so forth (this information can all be accessed through the corresponding Individual 
object) 


