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abstract: The SLiM software framework for genetically explicit
forward simulation has been widely used in population genetics.
However, it has been largely restricted to modeling only a single
species, which has limited its broader utility in evolutionary biology.
Indeed, to our knowledge no general-purpose, flexible modeling
framework exists that provides support for simulating multiple spe-
cies while also providing other key features, such as explicit genetics
and continuous space. The lack of such software has limited our
ability to model higher biological levels such as communities, eco-
systems, coevolutionary and eco-evolutionary processes, and bio-
diversity, which is crucial for many purposes, from extending our
basic understanding of evolutionary ecology to informing conserva-
tion and management decisions. We here announce the release of
SLiM 4, which fills this important gap by adding support for multi-
ple species, including ecological interactions between species such
as predation, parasitism, and mutualism, and illustrate its new fea-
tures with examples.

Keywords: simulation, multispecies, community, evolutionary ecol-
ogy, biodiversity, coevolution.

Introduction

SLiM is an open-source evolutionary simulation frame-
work that provides the ability to run genetically explicit
simulations of complex evolutionary dynamics. It has been
widely used in population genetics and related fields for
reasons including its flexibility, its ease of use, and its high
performance. Because it is individual-based (explicitly sim-
ulating each individual organism), it can capture individual-
level effects of behavior, ecology, and genetics. It is scrip-
table in a language called Eidos to allow for extremely
flexible customization, and it provides a full-featured graph-
ical modeling environment called SLiMgui. For some back-
ground on SLiM and its capabilities, see box 1.
However, SLiM has not yet been widely adopted in areas

such as evolutionary ecology, eco-evolutionary dynamics,
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and biodiversity dynamics because of a key limitation: it
has not provided much support for simulating multiple
species, particularly if those species are not closely related
and thus have widely divergent genetics, behavior, and life
history. This limitation is not unique to SLiM; indeed, we
are not aware of any software package that provides support
for simulating multiple species while also providing other
key functionality that SLiM provides, such as scriptability,
explicit chromosome-scale genetics, support for continuous
space, and so forth.
The importance of this problem has been noted by

others. For example, a review by Zurell et al. (2022) looked
at articles that used spatially explicit models to inform
conservationmanagement and concluded, “Important gaps
for modelling and forecasting biodiversity at the gene to
ecosystem level could be closed by improved integration
of relevant ecological and evolutionary processes at the dif-
ferent organisational levels” (p. 12). This finding is illus-
trated by their figure 3, in which a “typology” of the spa-
tially explicit models for conservation and restoration that
they reviewed is shown; no model type spans the biological
hierarchy fromgenes through individuals, populations, and
communities up to ecosystems. As they write, “Tomeet the
challenges posed by the climate and biodiversity crises and
the growing human population, we need to provide effec-
tive tools for quantifying the trade-offs between economic
and societal well-being, biodiversity, climate adaptation,
and climate mitigation” (p. 12).
Similarly, a review byUrban et al. (2021) reviewed 50 dif-

ferent modeling software packages (including SLiM 3) and
found that overall, “current biodiversity models generally
lack the biological realism, adaptability, interoperability,
and integration needed to address the complexities of the bio-
diversity crisis” (p. 94). Figure 1 of Urban et al. (2021) shows
a summary of their review; SLiM 3 suffers in their review
particularly for its lack of support in areas such as species
diversity, species interactions, biodiversity, and biomass.
As they write, “We now find ourselves in the middle of
hicago. All rights reserved. Published by The University of Chicago Press for
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the Anthropocene and ill equipped to predict and prevent
biodiversity and ecosystem change” (p. 102).
We did a brief survey of the findings of Urban et al.

(2021) to look for existing software packages that satisfied
what we view as three key criteria for this area: (i) the soft-
ware must provide support for genetics that allows evolu-
tion, (ii) the software must provide support for simulating
multiple species, and (iii) the software must be individual-
based (since models of multiple species with complex ge-
netics are generally beyond the reach of analytical and co-
alescent approaches).
We found two software packages among those sum-

marized in their review that satisfy those criteria. One is
sPEGG (Okamoto and Amarasekare 2018), a C11 library
that utilizes advanced GPU programming techniques such
as THRUST and CUDA to provide extremely fast simula-
tions. The other is HexSim (Schumaker and Brookes 2018),
a Windows-based simulator that uses a hexagonal grid to
Box 1: What is SLiM?

SLiM is a software framework for conducting evolutionary simulations (Messer 2013; Haller and Messer 2017;
Haller and Messer 2019b). More specifically, SLiM is a “forward” simulator, meaning that it simulates forward in
time from some specified initial state; this is in contrast to coalescent simulations, for example, which run backward
in time. It is “genetically explicit,”meaning that it simulates actual mutations at specific positions along a simulated
chromosome rather than just allele frequencies, trait means and variances, or other such approximations of genetics;
in fact, you can (optionally) simulate complete nucleotide sequences in SLiM, using FASTA and VCF files to repre-
sent the simulated sequences. SLiM is also “individual-based” (also called “agent-based”), meaning that it simulates
individual organisms that are born, move around, reproduce, perhaps interact with other individuals, and die; every
individual, and indeed every mutation, is simulated explicitly. This allows for a great deal of biological realism when
that is needed to address a research question.

But jargon like “forward simulation,” “genetically explicit,” and “individual-based” only scratches the surface of
why SLiM is popular and widely used in empirical and theoretical studies. One key feature of SLiM is its scriptability.
Every model in SLiM is written in a simple scripting language called Eidos, and one can write a block of Eidos code
called an “event” to provide custom behavior for a simulation—for example, to change the demographic or evolu-
tionary parameters of the simulation, to model competitive interactions between nearby individuals, or to produce
custom output. Furthermore, many of SLiM’s default behaviors for things like fitness evaluation, reproduction, and
mutation generation can be customized by providing a block of Eidos code called a “callback.” This scriptability
makes it possible to model scenarios that go far beyond SLiM’s built-in capabilities, such as CRISPR gene drives,
chromosomal inversions, haplodiploidy, and transposable elements; none of these are supported directly in SLiM,
but if you can implement what you want to simulate in Eidos script, SLiM can run it.

Another key feature of SLiM is its graphical user interface, or GUI. This is a separate software program, called
SLiMgui, that provides a complete modeling environment for SLiM. It displays a visualization of the running sim-
ulation, including a variety of graphs and plots, which makes interactive exploration and visual debugging much
easier. It also has a full-featured code editor for writing Eidos script, including code completion, online documenta-
tion, and much more. Although the final runs of a SLiM model are typically conducted on a computing cluster at the
command line, SLiMgui is a central part of the SLiM user experience during model development and testing.

A third key feature—and one that attracts many users—is SLiM’s performance. Individual-based modeling can
be slow, since so much “state” is tracked by the simulation, but SLiM’s code has been highly optimized to run very
quickly even for genome-scale simulations. There are still computational limits on what can be done with forward
simulation, but SLiM’s speed has extended those limits by several orders of magnitude for some models. This is
especially true with the use of tree-sequence recording, an advanced feature that enables very large speedups by
leveraging complete knowledge of the true local ancestry of every individual (Haller et al. 2019).

There are other advantages to SLiM as well: it is heavily tested, debugged, and reliable; it is documented with
almost 200 example “recipes” showing how to model a wide variety of evolutionary scenarios; it is free and open
source on GitHub; it is cross-platform (Linux, macOS, and Windows); and it integrates well with the msprime
coalescent simulator (Baumdicker et al. 2022) and the tskit tree-sequence framework (Ralph et al. 2020).

A number of resources are available for those who are new to SLiM, such as the introduction to SLiM in Haller and
Messer (2019a), the free online SLiM workshop (available at http://benhaller.com/workshops/workshops.html), and
of course the extensive SLiM manual.

http://benhaller.com/workshops/workshops.html
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represent space. We believe, however, that SLiM offers
advantages over these packages, particularly in terms of
the versatility of its genetics architecture, its overall scrip-
tability and flexibility, and its ease of use. Finally, there are
certainly many other very good forward genetic simula-
tion software packages out there, such as fwdpp (Thornton
2014), Nemo (Guillaume andRougemont 2006),MimicrEE2
(Vlachos and Kofler 2018), and SimBit (Matthey-Doret
2021). However, none of these provide intrinsic support for
simulating multiple species as far as we are aware. In sum-
mary, as Urban et al. (2021) concluded, no existing soft-
ware fulfils the important eco-evo-biodiversity modeling
requirements they describe.
To fill this gap, we here announce the release of SLiM 4,

a new major release of SLiM that adds extensive support
for multispecies modeling. We will discuss the new addi-
tions to SLiM 4 that make multispecies modeling possi-
ble, and we will provide two example multispecies SLiM
models for illustration.
Combined with the existing extensive and scriptable

capabilities of SLiM, all of which can be used in multispe-
cies SLiM 4 models, this represents a significant advance
toward the “universal modeling platform” for biodiversity
envisioned by Urban et al. (2021), although there is no
doubt that much work still remains.
SLiM 4 Architecture

To introduce SLiM 4’s new multispecies capabilities we
will need to get into some technical details, but we will
try to illuminate the important concepts even if there are
some aspects that are not completely clear for those who
have never used SLiM. In SLiM 3, the top-level object class
representing the entire single-species simulation, in the
Eidos script that drives a SLiM simulation, is the class
SLiMSim. The overall redesign strategy for SLiM 4 is to
repurpose the SLiMSim class to represent a single species,
as before, but now embedded in amultispecies context that
is controlled by a new top-level class, the Community
class. To better represent its new role, the SLiMSim class
is renamed to Species. This redesign strategy is shown
in figure 1.
This redesign strategyminimizes the complexity of the ar-

chitectural change. Existing SLiM 3 models will continue to
run in SLiM 4, withminor (if any) code changes, because the
architecture of the two is so parallel. Multispecies models sim-
ply need to manage each species as a single-species SLiM 3
model would, with initialization and setup code, repro-
duction code, callbacks, output events, and so forth; such
code just needs to exist for each species in the multispecies
model. Finally, for situations where the species need to in-
teract with each other or access global simulation state, the
new top-level Community class ties everything together.
SLiM executes the “life cycle” of a simulated organism
as a repeated sequence of stages like reproduction, fitness
calculation, and mortality. In SLiM 3 this sequence was
called the “generation cycle”; in SLiM 4 it is called the
“tick cycle,” and each completed cycle is now called a
“tick” instead of a “generation” for clarity (for details on
this terminological shift, see box 2). The tick cycle exe-
cutes for all active species, in an interleaved fashion; es-
sentially, all species will reproduce (one immediately after
the other), then all species will recalculate their fitness,
then all species will undergo mortality, and so forth. A
species might be inactive if it runs on a slower timescale
than other species; in that case, it will not participate
in the currently executing tick cycle. In a mosquito-
human model, for example, mosquitoes might be active
in every tick, while humans might be active only every
tenth or hundredth tick. In many simple models, how-
ever, all of the species are active in every tick, and so the
tick cycle executes simultaneously, in an interleaved fash-
ion, for all of them.
Some details of the multispecies architecture of SLiM 4

have been glossed over for brevity here; a complete de-
scription of the SLiM 4 rearchitecture is provided in the
supplemental PDF. Rather than getting bogged down in
those technical details, let us look at two example SLiM 4
multispecies models to see what all this looks like in
practice.
A Simple Example

To illustrate the new capabilities outlined above, we will
here look briefly at a simple example model (also shown
in section 19.3 of the SLiMmanual), based on a determin-
istic host-parasitoid model given in Faure and Schreiber
(2014). The hosts are something like insects, perhaps
caterpillars; they compete for food, and if they survive that
competition then they reproduce by generating offspring,
with some mean clutch size. The parasitoids are some-
thing like parasitoid wasps; they hunt the caterpillars and,
when they find one, lay an egg. The egg, when it hatches,
contains a larval wasp that will kill its host caterpillar and
eventually turn into an adult wasp. Unlike the host, then,
the parasitoids have no mean clutch size; instead, they
generate one new offspring for each successful hunt. The
deterministic model of Faure and Schreiber (2014) uses
two iterative equations to calculate the population densi-
ties in the next generation for the host and parasitoid spe-
cies, based on their population densities in the current
generation:

x1[t 1 1]p x1[t]er2x1[t]=K2ax2[t],
x2[t 1 1] p x1[t](12 e2ax2[t]),
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where x1 is the host density and x2 is the parasitoid density,
t is the time (in discrete time, not continuous time), and
a, r, and K are free parameters (discussed more below,
in the context of the SLiM model). The biological moti-
vations for these equations are that (in sequential order)
with probability 12 e2ax2[t] each host is killed by a parasit-
oid, with probability e2x1[t]=K each host then escapes death
via competition, each surviving host produces a Poisson
number of offspring with mean er, and all hosts killed by
a parasitoid turn into a parasitoid in the next year. Faure
and Schreiber (2014) provide further details; it is not really
our focus here.
Instead, our focus is on the realization of this deter-

ministic model in SLiM. Figure 2 shows the population
dynamics of the implemented SLiM model. The abun-
dance of the parasitoid tends to mirror that of the host,
but with a lag of one or more ticks since high host abun-
dance leads to a greater number of parasitoid offspring
in the following tick. The dynamics are approximately cy-
clical, but the cycles are complex, even chaotic, because
of the nature of the ecological interactions between the
two species.
This is a very trivial SLiM model, with no genetics, no

individual-level behavior, and no population structure; it
could be coded just as easily in Python, R, or any other
programming language. The goal, with this first example
model, is not to showcase SLiM’s capabilities; our second
example model will begin to do that. Instead, the goal here
is just to show a minimal multispecies model, to provide a
first look at SLiM for those who have never used it before,
and to show more experienced users the new multispecies
extensions in SLiM 4.
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Figure 1: The architectural shift in SLiM to allow multispecies modeling. A, The architecture of SLiM 3, with a single SLiMSim object
representing the entire simulation, comprising one species. Various aspects of the configuration of that single species are shown with shaded
blocks, managed by the SLiMSim object. B, The new architecture of SLiM 4. The SLiMSim class has been renamed Species and rep-
resents one species in the simulation (as it did in SLiM 3). A new level in the object hierarchy, the Community class, has been added above
the Species class, and can manage more than one Species.
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The model, shown in figure 3, begins with three
initialize() callbacks that initialize the simula-
tion. The first, designated species all, initializes the
overall model by setting up a few parameters: K, a scaling
factor for the strength of competition between hosts; R,
which scales the reproductive output of the host; A, which
scales the probability that a host will be killed by a parasit-
oid; and S, which scales the size of the habitat and thus
scales the population sizes attained by the model. It also
calculates the initial population sizes for the host and par-
asitoid, which are slightly perturbed away from an equilib-
rium point of the model. The other two initialize()
callbacks, designated species host and species
parasitoid, declare the existence of these two species
and configure them. Since this example model contains
no genetics, the initialization code for them is very simple:
we just set an “avatar” emoji and a color for each species,
for the benefit of SLiMgui’s visualization of the model.
As a result of these species declarations, global constants
named host and parasitoid will exist in the simu-
lation representing the two species (just as the global con-
stant sim represents the single species in a SLiM 3model).
After that is an early() event (an Eidos event that

executes early in the tick cycle), declared to execute in
Box 2: Time units in SLiM

In SLiM 3 (and before), the term “generation” was used to refer to a single loop through SLiM’s life cycle stages,
providing an opportunity for reproduction, event execution, fitness calculation, mortality, and so forth. Originally,
when SLiM supported only Wright-Fisher models with nonoverlapping generations, this terminology made sense;
one loop through those life cycle stages was, indeed, one generation. When SLiM 3 added non-Wright-Fisher
models with overlapping generations and age structure, the term no longer fit well; one loop through those life
cycle stages no longer necessarily had any relationship to biological generations at all. Now, with SLiM 4’s mul-
tispecies models, the term fits even less well because each species in a multispecies model might have a different life
cycle with a different generation time.

To avoid further confusion, we have therefore abandoned the term “generation” in SLiM 4 and have instead
introduced two new terms for specifying time: ticks and cycles. Ticks typically correspond to objective time;
one tick might represent a day, a month, a season, a year, or any other fixed duration that you, the modeler,
choose. Because ticks pass at the same rate for all species, the tick counter is managed by the Community object.
By and large, the tick counter is the replacement for the generation counter of SLiM 3. Each species also has its
own “cycle counter,” which represents time as observed by that species; in a model of mosquitoes and humans, for
example, the mosquitoes might move and reproduce much more frequently than the humans do, so their cycle
counter might advance more quickly than the human cycle counter does, but the tick counter kept by the global
Community object is the same for all.
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Figure 2: Population size cycles in the host (blue) and parasitoid (red) species in the simple example model. Cycling begins slowly because
the model starts near an equilibrium point.
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tick 1, that creates initial subpopulations for each spe-
cies, using the global host and parasitoid sym-
bols to specify the species for each subpopulation. The
addSubpop() method is called on each species to cre-
ate the subpopulations, named p1 and p2. This event is
designated with a ticks all prefix; this is a new SLiM 4
extension. The ticks all specifier tells SLiM that this
event is not associated with any particular species, in
terms of the timing of its execution; ticks host or
ticks parasitoid would specify that the event ought
to run only when that species is active, as mentioned
earlier.
Finally, there is a late() event (an Eidos event that

executes late in the tick cycle), declared to execute in every
tick from 1 to 250, that implements the population dy-
namics of the model. It begins by calculating the current
population density for each species (by dividing the pop-
ulation size by the habitat size S). It then uses the equa-
tions from Faure and Schreiber (2014), as shown above,
to calculate the population densities for the two species
in the next tick. (Note that Eidos allows a prime mark
and other Unicode symbols like Greek letters and ac-
cented characters in variable names; x10 and x20 are
simply variable names). At the end it sets the new popu-
lation sizes for p1 and p2, obtained by multiplying the
new population densities by the habitat size S.
That is the entirety of the model; its implementation is
quite straightforward. We will look at a more interesting
model next.
A Coevolutionary Example

As noted above, the first example model was quite trivial—
really just a very fancy way of iterating the deterministic
equations of themathematical model. However, each indi-
vidual in both species is actually created by SLiM as that
model runs, and it would be a fairly small step to then
add genetics to those individuals, make them interact with
each other at an individual level in a way that depends on
those genetics, and evolve in response to the selection
pressures exerted by each other, producing coevolutionary
dynamics. We will explore those possibilities now in our
second example model.
This second model adds a quantitative phenotypic trait

to both the host and the parasitoid species. You might
think of the host phenotype as the scent of the host, per-
haps a cuticular hydrocarbon signature or some such, and
the parasitoid phenotype is the host scent that that para-
sitoid instinctively hunts, as coded by its genetics. If the
phenotypic values of a particular host and parasitoid
match, that parasitoid will be highly attracted by the scent
of that host and thus more likely to find it, lay an egg in it,
Figure 3: The “simple example” multispecies SLiM model.
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and kill it. Both of these phenotypic traits are based on the
genetics of each individual, using a quantitative genetics
type of approach: specific quantitative trait locus (QTL)
mutations are simulated, each with a particular effect size
drawn from an effect size distribution, and the phenotypic
value of each individual is calculated from the additive ef-
fects of the mutations each individual possesses.
Furthermore, the hunting behavior of the parasitoids

in this model is now simulated at the individual level
and depends on the phenotypes of the parasitoids and the
hosts. More specifically, this model simulates trait-based
matching: each parasitoid preferentially hunts for hosts with
a phenotypic value that is similar to the phenotypic value
of the parasitoid itself. Both quantitative traits are under
stabilizing selection; apart from that constraint, they are
free to evolve in response to the ecology simulated by the
model.
The resulting population dynamics from this SLiM

model are shown in figure 4, both for a run with the trait-
based matching in the hunting code turned off (fig. 4A)
and for a run with that code enabled (fig. 4B). In the run
without trait-based hunting (fig. 4A), the mean phenotypic
value of each species essentially does a random walk around
the stabilizing selection optimum and the evolutionary tra-
jectories of the two species are uncorrelated. With trait-
based matching (fig. 4B), however, the host evolves away
from the parasitoid; more extreme phenotypic values de-
crease the probability of being killed. The parasitoid, how-
ever, evolves toward the host, chasing its phenotype. At a
certain point, the host species runs into a wall due to the
stabilizing selection in the model; it is so distant from
the phenotypic optimum that evolving farther away from
the parasitoid is not worth the price of the decrease in fit-
ness due to stabilizing selection. The host is thus trapped
between a rock and a hard place; but a few host individ-
uals with extreme phenotypes exist on the opposite side of
the parasitoid, and those hosts have the highest fitness. They
survive while most of the other hosts get hunted, and so
the host’s phenotypic mean actually jumps over that of the
parasitoid and the host species begins to run away from
the parasitoid species in the opposite direction. This pattern
repeats cyclically, with some variations. These are so-called
Red Queen coevolutionary dynamics (Van Valen 1973):
the two species are both under continuous selective pressure
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Figure 4: Evolutionary dynamics in the “coevolutionary example” multispecies SLiM model. The blue and red curves show the mean phe-
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to evolve, and yet, over time, they donot really get anywhere
but merely cycle around an average phenotypic value.
The implementation of this model is shown in two parts

in figures 5 and 6 (and is also presented in section 19.6
of the SLiM manual, in somewhat different form). The
first part (fig. 5) begins again with initialize()
callbacks. The species all initialize() call-
back sets up model parameters, as before; there are
Figure 5: The “coevolutionary example” multispecies SLiM model (part I).
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two new parameters, S_M and S_S, that we will see be-
low. It also designates this model as a non-Wright-Fisher
(nonWF) model; this will provide us with additional
control over individual reproduction and mortality com-
pared with theWright-Fisher model type used in the first
example.
The two species-specific initialize() callbacks

now set up a genetic architecture for each species. It is
Figure 6: The “coevolutionary example” multispecies SLiM model (part II).
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essentially the same for both: a chromosome with discrete
base positions from 0 to 9999, composed of a single
“genomic element type” that undergoes mutations of a
single “mutation type.” The mutation type models QTL
mutations with additive effects upon a quantitative pheno-
typic trait in each species. The effect sizes for newQTLmu-
tations are drawn from a normal distribution (type "n")
with amean of 0.0 and a standard deviation of0.1. Both
species use a recombination rate of 1028 and amutation rate
of 1027 (per base position per tick). These parameters are
somewhat arbitrarily chosen; we are not closely modeling
any particular organism.
Next come two mutationEffect() callbacks.

These essentially tell SLiM that all of the QTL mutations
in this model (mutation types m1 and m2) should be
treated by SLiM as neutral; we will handle the fitness ef-
fects due to these mutations ourselves, in script. This is
because these mutations are not intrinsically beneficial
or deleterious; instead, their effect on fitness will depend
on the scripted interactions between the individuals in
the two species.
Next, an early() event creates the two subpopula-

tions p1 and p2 in tick 1, just as before.
Finally, this part of the model ends with an early()

event that executes in every tick. This event begins by
enforcing nonoverlapping generations to better match the
Wright-Fisher dynamics of the first example model. To
do this for the host species, it fetches a vector of all the
host individuals into a variable named hosts, calls the
killIndividuals() method to kill every host with
an age greater than 0, and then narrows down the hosts
variable to the survivors—new juveniles just created by
reproduction. Nonoverlapping generations for the para-
sitoids is implemented identically, leaving us with a vari-
able named parasitoids with the survivors.
This event then calculates phenotypic trait values for

all surviving individuals and applies stabilizing selec-
tion to the individuals based on their phenotypes. All of
this work is done with a series of vectorized operations,
first for the hosts and then for the parasitoids: adding
up the effect sizes of the QTL mutations possessed by
each individual with sumOfMutationsOfType() to
produce phenotypic values, looking up fitness values for
those phenotypic values using dnorm() to implement
a Gaussian fitness function, setting those fitness values
into each individual’s fitnessScaling property,
and remembering the phenotype for each individual in its
tagF property. Vectorized operations like this are com-
mon in Eidos because they are highly efficient; a single
Eidos statement can process a given step in these calcula-
tions across the whole vector of individuals in a species.
Note that the stabilizing fitness function provided by

dnorm() has an optimum phenotypic value of 0.0
for both species in this model, and the further the pheno-
typic value of a given individual is from that optimum,
the lower that individual’s fitness will be. The “width,”
or standard deviation, of the Gaussian fitness function
is controlled by the new parameter S_S, and the variable
scale calculated beforehand is used to rescale the
Gaussian fitness function to have a maximum value of ex-
actly 1 at the fitness optimum. In nonWF models such as
this, the default fitness implementation assumes absolute
fitness with hard selection; if an individual’s fitness is, say,
0.6, that individual then has a 60% chance of surviving
selection and a 40% chance of dying. The individual’s
fitnessScaling property gets multiplied together
with any other fitness effects in the model (in this model
there are no others) to produce a final fitness value for
the individual; setting fitnessScaling thus sets up
the probability that each individual will survive stabiliz-
ing selection according to the fitness value provided by
dnorm().
The second part of this model, shown in figure 6, be-

gins with a first() event (executed first thing in each
tick) that will run in every tick from 2 to 10000. (It starts
in tick 2 because the subpopulations for the two species
do not yet exist at that point in tick 1—they are created
in an early() event in tick 1, as we saw above, which
executes after first() events.) This first() event is
really the core of the logic of themodel; it handles the hunt-
ing of the hosts by the parasitoids, as well as the competition
among the surviving hosts. It is fairly complex; we will go
through it part by part beginning at the top, where the host
and parasitoid individuals are fetched from the species ob-
jects and the density of each species is calculated by dividing
by the habitat size S as before.
Next we assess the match between the phenotypes of

the hosts and the phenotypes of the parasitoids. The ap-
peal of a given host to the hunting parasitoids can be ap-
proximated by the match between the phenotype of the
host and the mean phenotype of all of the parasitoids; to
do this, we first calculate the mean parasitoid phenotype,
and we then compare each host’s phenotype to that mean.
Tomake that comparison we use dnorm() to implement
a Gaussian trait-matching function, this time with a width
of S_M, again rescaling to a maximum of 1 for a perfect
match.
Next, armed with the vector host_match that con-

tains the degree of match between each host and the mean
parasitoid, we can conduct the hunt. Each parasitoid keeps
track of the number of eggs it has laid in its tag property;
like tagF above (where we stored individual phenotype
values), this is a general-purpose property that we are free
to use for whatever purpose we wish. We zero out the
tag values for all parasitoids at the start of the hunt. Then
we do a vectorized calculation to obtain the probability
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that each host will be hunted and killed, based on its match
to the mean parasitoid; this is essentially one of the terms
in the original mathematical model, scaled by the degree
of the phenotypic match for each host. Given this vector
of probabilities (one per host), we do a binomial draw for
each host to see whether it does get hunted and killed, pro-
ducing a vector named dead that contains all of the hosts
slated for death. Next we need to determine which para-
sitoid hunted each killed host; this is done with a call to
sapply() that does a weighted draw of a parasitoid for
each killed host. The weights for the draw are the match
between each parasitoid and the host in question, from
the same Gaussian trait-matching function as before, imple-
mented again with dnorm() using the width S_M. (Note
that the syntax for thesapply() function is a bit odd be-
cause it takes executable code, executed for every individ-
ual in dead, as a string value; in its effect it is much
like a for loop run over the elements of dead.) Having
determined which parasitoids got each kill, a for loop
increments the parasitoid tag values for each successful
kill; at the end of this loop, the tag value of each para-
sitoid is equal to its total number of kills. Finally, we actu-
ally kill the hosts that were hunted, by passing dead to
killIndividuals().
The last part of the first() event handles density-

dependent competition among the surviving hosts. This
is essentially the same, mechanistically, as the corre-
sponding term in the mathematical model, but it is
individual-based. As in the hunt code, we use rbinom()
to do a binomial draw for each individual host, deter-
mining which specific individuals live and die. We use
the killIndividuals() method again to kill the
hosts that did not survive competition, as we did for
hunting.
The reproduction() callbacks in figure 6 are

called by SLiM for each living individual in the model,
at the point in the tick cycle when reproduction occurs,
as in SLiM 3. Each time one of these callbacks is called,
there is a specific focal individual that is expected to re-
produce itself, provided by SLiM in the local variable
individual, which lives in the subpopulation named
subpop. The code first determines the litter size to gener-
ate—for the hosts with a Poisson draw with mean er (as
in the mathematical model) and for the parasitoids using
the number of kills that individual got (as recorded in the
parasitoid’s tag property). We then choose a mate with
sampleIndividuals() and generate new offspring
up to the calculated litter size with that mate by calling
the addCrossed()method in a for loop. This is fairly
typical reproduction code for a SLiM nonWF model.
Notice, however, that these callbacks are declared with
species host and species parasitoid prefixes,
just as the species-specific initialize() callbacks were,
to tell SLiM which species each reproduction() call-
back applies to.
That is the entirety of the second model. It is, in some

sense, two separate SLiM 3 models, one for each species;
the two species have separate initialization code and sep-
arate reproduction code, live in different subpopulations,
and have very different behaviors. However, they are
specified in a single script, and their life cycles execute
simultaneously, in an interleaved fashion. They interact
with each other, and their survival and reproduction de-
pends on the outcome of that interaction. This model is a
bit complex to explain line by line, but in about two pages
of code we have constructed a two-species model of co-
evolutionary dynamics, underpinned by explicitly mod-
eled QTLmutations that additively influence quantitative
phenotypic traits in the two species. SLiM handles all of
the details of the genetics for us, including new mutation
generation, recombination, and linkage between QTLs; a
great deal goes on under the covers with each call to
addCrossed().
This model could be extended in many ways. The in-

dividuals could live on a continuous spatial landscape,
for example, with spatial variation in the stabilizing selec-
tion optima. The species could possess multiple pheno-
typic traits influenced (pleiotropically or not) by the
mutations in the model, affecting behaviors besides hunt-
ing, such as dispersal propensity or fecundity. Other spe-
cies—perhaps a plant species for the hosts to eat?—could
be added, perhaps introducing more complex trophic ef-
fects that would cascade through the food web. Temporal
change could occur in the spatial landscape and other
parameters, perhaps due to climate change. Many other
ideas are possible too; because SLiM is scriptable, you
can construct more or less whatever evolutionary model
you wish.
Discussion

SLiM 4 extends the existing SLiM forward genetic simu-
lation framework, adding the capability of modeling mul-
tiple species and the ecological interactions between them.
This moves SLiM much closer to the universal modeling
platform that Urban et al. (2021) make clear is needed
for evolutionary ecology and biodiversity studies.
There are a few changes in SLiM 4 that we have not ex-

plored here, for reasons of brevity. One is extensions to
SLiMgui, SLiM’s graphical modeling environment, to sup-
port multispecies models. Suffice to say that it now displays
the state of each simulated species (or all together, in a uni-
fied view), it can graph results from each species separately
(or, in some cases, show results from multiple species in a
single plot), it can annotate the display of the SLiM script
to indicate which species each code block is associated with,
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and so forth, providing a high level of integration between
the scripting environment and the model.
Another is extensions to InteractionType,

the class used in SLiM to find and evaluate interactions
between individuals (particularly local interactions in
continuous-space models). InteractionType now
supports interspecies interactions, in addition to the in-
traspecies interactions supported in SLiM 3. To achieve
this, a fundamental redesign of InteractionType
was needed under the hood; however, the calling interface
for it is almost completely unchanged, and it is actually
more efficient, particularly in its memory usage, than it
was in SLiM 3.
A third change involves tree-sequence recording, the

recording of true local genetic ancestry information along
the genome for individuals in a SLiM model. In a multi-
species tree-sequence model, each species has its own
separate recorded tree sequence. In most respects this
works as it did in SLiM 3, but some changes, such as the
shift from “generations” to ticks and cycles, necessitated
minor changes to the tree-sequence metadata annotations
used by SLiM. Corresponding changes were made to the
pyslim package; pyslim version 1.0 or later should there-
fore be used with SLiM 4 for correct functioning and
can be installed with pip. Documentation for pyslim is
at https://tskit.dev/pyslim/docs, and an overview of what
changed and how to update your pyslim code is at https://
tskit.dev/pyslim/docs/latest/previous_versions.html.
There are areas pointed out by Urban et al. (2021) where

further additions to SLiMmight make biodiversity model-
ing easier, such as support for modeling physiology and
functional groups (although SLiM’s scriptability may be
the best way to approach some such problems). We plan
to address such limitations in future versions of SLiM,
which remains under very active development. We also
welcome feedback from users, including feature requests,
and we would be particularly interested to hear from re-
searchers who are trying out the new multispecies fea-
tures of SLiM 4.
We are very excited by what SLiM 4 can do, and we

believe that its new features will broaden its utility be-
yond population genetics into eco-evolutionary and eco-
logical modeling, biodiversity modeling, and conserva-
tion and management applications.
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“But in this brief article we must confine ourselves mostly to the limited district, the valley of Lake Fork, in which the Twin lakes are
located, the subject of the illustration. The valley of Lake creek is filled with the morainal deposits for which both sides of the Wasatch range
of mountains are so remarkable. It would seem that the great glacial force moved here in a direction a little south of east, inasmuch as the
mass of the detrital matter is heaped up on the south side.” From “Twin Lakes and Teocalli Mountain, Central Colorado, with Remarks on
the Glacial Phenomena of that Region” by F. V. Hayden (The American Naturalist, 1880, 14:858–862).


