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Supplemental: Model description 

This model description follows conventions proposed by Grimm et al. [1] for the 

standardized presentation of individual-based models. All model parameters are listed in Table 1, 

while individual traits are given in Table 2. The model was implemented in the Objective-C 

language using Cocoa, an object-oriented framework (Apple Inc., http://www.apple.com, Mac 

OS X 10.7.4). 

Purpose 

The purpose of this model is to examine the evolutionary consequences of precise pollen 

transfer, using heterostylous flowers as its basis because this allows the effects of sexual 

interference to be separated from other phenomena. The model simulates the details of pollen 

transfer in sufficient detail to capture phenomena essential to heterostyly such as pollen wastage 

and style clogging, and it allows differences among pollinator species. Reproductive isolation 

due to spatial mismatch of reproductive organs between parapatric populations of heterostylous 

flowers can be an emergent consequence of the evolution of floral morphology in our model, and 

such reproductive isolation can, in turn, affect the extent of adaptation to the local environment 

of each population (Fig. 1). 

Environment and state variables 

Space in the model consists of two discrete patches of equal carrying capacity K. The 

patches differ along some unspecified ecological axis (e.g., wet/dry, warm/cold, etc.), as 

represented by a difference in the optimum ecological phenotype, θ1 and θ2, for individuals in the 

two environments. Each patch is inhabited by a single pollinator species, defined by a “pollinator 

function” that governs the probability that pollen will stick to the pollinator at a given height on 

its body. These functions are designated π1 and π2 for the two patches respectively; the pollinator 

may thus differ between the patches. The pollinators are stateless, do not evolve, choose 

randomly among flowers to visit, and are unaffected by events in the model. 
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Each patch is occupied by a population of individual heterostylous flowers (one flower per 

plant is assumed for simplicity). The heights of the anthers and stigma within the corolla tube are 

determined by two quantitative traits, x and y, constrained to lie within the boundaries of the 

corolla tube (0 ≤ x, y ≤ 1). The specific phenotypic effect of these traits depends upon an diallelic 

trait S not linked with x or y, inherited in a Mendelian fashion, that determines, as in real 

heterostylous flowers, whether a given flower is a “pin” (long-style “L-morph”), with a high 

stigma and low anthers, or a “thrum” (short-style “S-morph”), with a low stigma and high 

anthers (Fig. 1), and that produces the intra-morph self-incompatibility characteristic of 

heterostyly (see Pollination phase). In our model, the meaning of the S trait is not predetermined; 

whether values 0/1 represent pin/thrum or thrum/pin is emergent. The position of the stigma is 

represented by x if S = 0, or by y if S = 1; similarly, the position of the anthers is represented by x 

if S = 1, or by y if S = 0. This design produces morphologically reciprocal flowers with a change 

only in S; it also allows x and y to vary freely, rather than one having to be constrained to be 

greater than the other. Individuals also possess a quantitative “ecological trait”, denoted z, that 

affects their local adaptation to their patch. 

This genetic design is a reasonable approximation of what is known about the empirical 

genetics of heterostyly [2-5]. Heterostyly is governed by a locus (actually a supergene) called the 

S-locus that has, in effect, two alleles, s and S (actually two haplotypes, comprising several 

alleles at tightly linked loci); plants that are ss are pins, while plants that are Ss are thrums. 

Because only “legitimate” crosses – ss × Ss crosses – are typically allowed by the self-

incompatibility system of heterostyly, empirical crosses typically produce equal proportions of ss 

and Ss offspring, and SS individuals do not normally exist in any substantial number; our 

representation of the S-locus with the two-valued trait S is thus reasonable (although extension of 

the model to allow illegitimate crosses, which do often occur in some heterostylous species, 

might provide further insights into the effects of unequal morph ratios on gene flow and 
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divergence). While the S-locus governs which reproductive organ appears at the high position 

and which appears at the low position in a given flower, the actual heights of the high and low 

positions seem likely to be governed by many loci of small effect size unlinked with the S-locus. 

Although the details of this are not known for any heterostylous species, Bissell and Diggle [6] 

did find that anther position and stigma position are genetically independent in species in 

Nicotiana; they argue that this independence provides useful evolvability to species in adapting 

to different pollinators. Other closely related heterostylous species are also known to exhibit 

differences in anther position, stigma position, and anther-stigma separation [e.g., 7], suggesting 

that the genetic independence found by Bissell and Diggle [6] may be general. We thus represent 

the heights of the reproductive organ positions as quantitative traits, x and y, with continuous 

values representing the additive effect of many alleles in an infinitesimal model [8,9]; while this 

architecture is not known to correspond to any particular heterostylous species, neither is it 

contradicted by any empirical findings of which we are aware, and it seems a simple and 

reasonable choice unlikely to bias our results in any important way. Environmental variance is 

not included in our model; in other words, the heritability of the traits is 1. Empirical evidence 

suggests that genetic variation and heritability for reproductive-organ positions is often quite 

high [10-15], so this seemed a reasonable choice for simplicity; evolution is likely more rapid in 

our model than it would be in real heterostylous systems as a result, but this does not affect our 

conclusions since we do not attempt to draw inferences regarding the absolute time required for 

adaptation. In any case, the stochasticity of the movement of pollen in our model (see Pollination 

phase) produces an effect very similar to the expected effect of environmental variance in 

reproductive-organ positions. 

One consequence of our chosen genetic model is that the “polarity” of the S trait (whether 

S = 0 represents pin or thrum) is emergent: it is possible for the two populations to arrive at 

different polarities (almost always when the pollinator crossover probability was very low, since 
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gene flow pushes both patches toward a shared polarity). This resulted in almost complete 

reproductive isolation between patches, because morphs anatomically well-suited to exchange 

pollen (a pin in one patch and a thrum in the other) were blocked from cross-fertilizing by pollen 

incompatibility due to their possession of the same S trait value. This phenomenon of polarity 

differences among closely related heterostylous populations has not been observed in nature, 

likely due to shared ancestry [16]. For this reason, only realizations in which the two patches 

arrived at the same polarity were used; this constituted the large majority of realizations, since 

gene flow tended to cause the polarities in the two patches to synchronize. Removing realizations 

with opposing polarities between the patches amounts to enforcing a shared genetic architecture 

for heterostyly among the plants of the two patches, a reasonable assumption given that they 

represent diverging populations within the same species. Not removing realizations with 

opposing polarities, on the other hand, would produce incorrect results; our model would show 

very high degrees of reproductive isolation in those cases, but that isolation would be due to a 

mechanism that is not observed empirically because the genetic architecture of heterostyly is 

fixed by common ancestry. By removing these realizations, we focus attention on the empirically 

justified case, in which reproductive isolation between populations due to precise pollen transfer 

is the result of smaller, quantitative differences in reproductive organ heights, as shown in Fig. 

1B. 

The reproductive state of individuals is tracked with several non-genetic (i.e., non-heritable) 

state variables. Each individual has a number of pollen grains, p, which can be taken up and 

transported by pollinators, a number of ovules, o, that can be fertilized in each year, and a style 

clogging index, s, representing the empirical fact that the style of a flower becomes progressively 

clogged by pollen tubes that decrease the probability of fertilization. The details of these 

mechanics will be discussed below. 
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Processes and scheduling 

Overlapping yearly generations of individuals are modeled as consisting of three phases 

executed consecutively in each year: germination, mortality, and pollination. In the germination 

phase, seedling individuals are generated from all fertilized ovules, and then seedlings die with a 

probability inversely proportional to their relative fitness in their local patch until the population 

size of each patch is less than or equal to the carrying capacity of the patch; conceptually, this 

represents the germination of seeds and the subsequent trait-dependent natural selection of 

seedlings during maturation. In the mortality phase, individuals die randomly with a fixed 

probability; this may be taken to represent either truly random mortality or natural selection on 

traits not modeled. In the pollination phase, the surviving individuals are visited by pollinators 

that transport pollen between them, resulting in the fertilization of ovules that will germinate at 

the beginning of the following year. 

Interactions 

In the germination phase, seedlings interact through competition in the sense that the 

probability of mortality for each seedling depends upon the number of other seedlings alive; in 

other words, natural selection during this phase is “soft selection” [17]. No interaction occurs 

during the mortality phase. In the pollination phase, each pollinator visit constitutes an 

interaction between two flowers, mediated by a pollinator, which can result in the depletion of 

the pollen reserve p of the donor flower, the increase of the style clogging index s of the recipient 

flower, and the fertilization of ovules o in the recipient flower. A pollinator visit can also result 

in the interaction of a flower with itself, because each flower visited by a pollinator can 

experience the transfer of self pollen from its anthers to its stigma as a result of the jostling of the 

flower by the pollinator. Details of these interactions will be provided in the description of each 

phase. 

In this model, parapatric populations are connected due to “crossover” of pollinators 

between populations. In crossover events, a pollinator visits a flower in one patch, receiving 
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pollen, and then delivers that pollen to a flower in the other patch (and then returns to its native 

patch; see Pollination phase for further mechanistic details). These crossover events thus carry 

pollen between the populations, resulting in gene flow to the extent that that pollen successfully 

fertilizes flowers in the destination population; this gene flow is the only way in which the two 

populations interact. The crossover probability, c, ranges from complete allopatry (c = 0.0) to full 

sympatry (c = 0.5), although even in full sympatry the model separates the flowers into two 

discrete “patches” with distinct carrying capacity; this case corresponds to a heterogeneous local 

environment providing two ecologically distinct niches that are sufficiently spatially proximate 

as to produce no visitation bias in the pollinators. The crossover probability thus produces 

geographic isolation between populations in a similar manner to the behavioral isolation that 

would be produced by a pollinator preference for visitation of one type of plant over the other. 

Indeed, this model is nearly analogous to a fully sympatric model with two types of flowers 

differentiated by floral traits such as petal color that cause pollinators to exhibit visitation 

preferences [e.g., 18,19]. However, the distinct carrying capacity of the patches makes sense 

from a spatial perspective, but would be difficult to justify in a sympatric model of ethological 

isolation. For this reason, the crossover probability in this model controls geographic isolation, 

not ethological isolation, and the two framings are not equivalent. 

Stochasticity 

Stochasticity is present in many aspects of this model. The initial state of individuals is 

stochastic, such that the particular distribution of trait values slightly affects the speed with 

which dimorphism develops from the initial unimodal distribution, as well as the “polarity” of 

the S trait (whether S = 0 represents a pin or a thrum) once stable dimorphism is established. 

Demographic stochasticity is present due to finite population size, occasionally resulting in the 

extinction of one or both populations, and more generally affecting the evolutionary outcome of 

the model through drift. Stochasticity manifests in many aspects of pollination events (see 
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Pollination phase): the particular flowers visited, the number of pollen grains transported, 

whether each pollen grain sticks to the pollinator, the precision (or lack thereof) with which 

pollen grains are delivered at the same height at which they were picked up, whether each pollen 

grain is delivered to the destination flower’s stigma, and whether each delivered pollen grain 

results in the fertilization of an ovule. Finally, stochasticity in the generation of offspring (due to 

mutation and to sexual reproduction) affects the phenotypes of offspring relative to their parents. 

Observables 

Several metrics were observed for each population in each generation of the realizations, 

including (1) the mean ecological trait value, (2) the mean values of the reproductive-organ–

position traits, (3) the mean magnitude of herkogamy (mean absolute difference in height 

between anther and stigma), (4) the mean female reproductive fitness (proportion of ovules 

fertilized), (5) the mean male reproductive fitness (number of pollen grains that fertilized an 

ovule, normalized by dividing by the number of ovules per plant), (6) the proportion of pollen 

taken from anthers, (7) the extent of style clogging due to self pollen, illegitimate pollen (from 

the same morph, and thus blocked by the dimorphic incompatibility mechanism), and legitimate 

pollen (from the opposite, compatible morph), and (8) the magnitude of reproductive isolation at 

fertilization, calculated as the number of ovules fertilized by resident pollen divided by the total 

number of ovules fertilized, which combines the effects of geographic isolation with the effects 

of mechanical isolation due to sexual selection against non-local pollen. The mean value of the 

ecological trait in each patch, z1  and z2 , at the end of each realization is particularly important 

because it allows us to evaluate the extent of local adaptation (or the lack thereof) exhibited by 

the plants in each patch as a consequence of the evolutionary dynamics experienced in each 

realization. All individuals were also observable graphically during model runs, including 

depictions of which flowers they were fertilized by and which flowers they fertilized, in order to 

allow both testing and exploration of the model [20]. 
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Parameters 

Parameter values governing the initial morphological distribution of the population (xi, yi, 

σxi
2, σyi

2) were chosen to generate a unimodal distribution of reproductive-organ positions 

normally distributed around the center of the corolla tube, with a variance similar to that 

observed for natural populations [7]. (Initializing the model with no initial variance, 

σxi
2 = σyi

2 = 0, appears to make no difference, however, as the same equilibrium variance is 

rapidly attained in any case.) Parameter zi was chosen such that the initial population was equally 

maladapted ecologically (that is, with respect to the optimum) to both patches. 

Parameter values governing the mutational variance (μ, α) were chosen to reproduce the 

same empirically observed variance in reproductive-organ position in subsequent generations. As 

is typical of individual-based models, a realistically low mutation rate would have resulted in the 

total loss of genetic variation at all loci, suggesting that processes other than mutation also act to 

maintain genetic variation in natural populations, but those processes are not well understood 

[21] and modeling them is in any case beyond the scope of the present research. The high 

mutation rate here, then, is equivalent to the fixed genetic variance assumed in many analytical 

models, and was not intended to be a realistic estimate of the mutation rate per se. 

Parameter values governing the characteristics of the plants and patches (K, no, nc, np, up, us, 

m, v, σp, σs, lg, lσ) were chosen with reference to personal observation of the “typical” values for 

heterostylous species in the genus Primula, but no attempt was made to precisely measure their 

values, or to make the model refer to any particular species. The model is not particularly 

sensitive to their values, although large changes to them can result in dynamics such as extreme 

pollen limitation that can have large effects. 

The parameter values determining the difference in ecology between patches (θ1, θ2) were 

fixed, representing a standardized ecological difference of 1.0 between patches. The difference 

between θ1 and θ2 may be regarded as a scaling factor defining the meaning of both the 

ecological trait values, z, and the strength of natural selection, ω. Variation of ω thus explores the 
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full dimensionality of the parameter space here (given the initial condition of equal mean 

maladaptation to both patches). 

Five parameters affecting the dynamics of natural selection due to ecology (ω) and sexual 

selection due to pollination (σj, c, π1, π2) were varied. The values used for these parameters are 

given in Table 1. Besides the values of σj listed, “control” realizations of the model were 

conducted that simulated pollen transfer with no precision in height whatsoever; see Pollination 

phase for more details. 

The parameters π1 and π2 represent “pollinator functions” that give the probability that a 

pollen grain will stick to the pollinator at a given height h in the interval [0,1]. Four pollinator 

functions were used in the realizations presented, defined as 

π uniform h( ) = 1 , 

π high-biased h( ) = 0
4 h − 0.75( )

for h < 0.75
for h ≥ 0.75

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
, 

π bimodal-low h( ) = N0.03 h − 0.15( ) +N0.03 h − 0.65( ) , and 

π bimodal-high h( ) = N0.03 h − 0.35( ) +N0.03 h − 0.85( ) , 

where Nσ x( ) = e− x2 2σ 2

 denotes a Gaussian function with standard deviation σ. These functions 

are shown in Fig. 2. Since the “control” realizations of the model considered the height of 

transfer to be completely imprecise, no pollinator function was used in these runs; see 

Pollination phase for more details. 

The biological relevance of the scenarios explored depends on the realism of the pollinator 

functions. Very few studies have examined how pollen sticks differentially to different pollinator 

body parts, or how pollinator behavior affects pollen pick-up and delivery positions. The best 

evidence for fine-scale differential stickiness is provided by Washitani et al. [22], in a detailed 

study of queen bumblebees pollinating Primula sieboldii. They document more than a 50-fold 
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difference in the number of pollen grains stuck to different proboscis regions, with strong spatial 

segregation of pin and thrum pollen; however, the contribution of differential stickiness remains 

unclear since pollen was presented only at naturally occurring anther heights. Other studies have 

generally focused on overall pollinator effectiveness, not fine-scale differential stickiness; 

nevertheless, these studies do indicate substantial variation in stickiness among body parts and 

some degree of precision in pollen transfer [23-30]. Studies have also documented evidence for 

different levels of stickiness at high versus low levels of the corolla tube [29,31], thus 

modulating pollen transfer differently between high and low reproductive organs, resulting in 

outcomes such as the loss of style polymorphism [32] and the evolution of dioecy [33], but the 

generality of these findings is unclear. In short, although evidence for differential stickiness on 

pollinators exists, very little is known about the details in particular systems, or about how this 

translates into a quantitative precision of pollen transfer. Since our results demonstrate that these 

details are important to evolutionary outcomes, further empirical work on pollen transfer 

dynamics is needed. 

Initialization 

Each patch was initially seeded with K adult individuals. Each individual’s x value was 

drawn from a normal distribution with mean xi and variance σxi
2, and the same was done for y 

values using yi and σyi
2. The z values of all individuals were set to zi with no variance; all 

variance in this trait stems from mutational variance introduced in later generations. The S value 

of each individual was chosen randomly with equal probabilities. 

Initially, and at the beginning of the pollination phase of every subsequent year in the model, 

all individuals i were given np pollen grains (pi ← np), no unfertilized ovules (oi ← no), and an 

unclogged style (si ← 0). 
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Germination phase 

At the beginning of the germination phase, some of the ovules of the flowers in each patch 

have been fertilized by pollen in the pollination phase of the preceding year (see Pollination 

phase). In the germination phase, those fertilized ovules become seedlings, and those seedlings 

compete for the opportunity to survive to adulthood. 

As implemented, a fertilized ovule is essentially a contract between two parent plants to 

produce a seedling. The ovule knows the identity of the pollen donor plant i, as well as the 

identity of the pollen recipient j to which the ovule belongs. The seedling is generated directly 

given the genotypes of the parents, avoiding the need to explicitly represent gamete genotypes in 

the model. The offspring’s trait values x, y, and z are drawn from normal distributions with 

means equal to the means of the parental trait values, xi + x j( ) 2 , yi + yj( ) 2 , and zi + z j( ) 2 , 

and standard deviations of half of the absolute difference in parental trait values, xi − x j 2 , 

yi − yj 2 , and zi − z j 2 . This method of obtaining offspring trait values derives from Heinz et 

al. [34]; with it, the offspring’s genotype depends only on the parental genotypes, in contrast to 

the standard quantitative genetics approach, in which the offspring’s genotype depends upon the 

additive genetic variance of the whole population – the latter representing a violation of the 

“individual-based” paradigm. Like the standard quantitative genetics approach, our method 

correctly preserves the parental distribution of genetic values under random mating (R. 

Mazzucco, pers. comm.), and in a previous model it produced results similar to those obtained 

using other genetic architectures [35]. Because x and y are constrained to fall within the height 

range of the corolla tube, values outside of the interval [0,1] are redrawn until a permitted value 

is drawn; the value of z is unconstrained. 

Each of the traits x, y, and z may then undergo mutation, each with a probability equal to the 

mutation rate μ. If a trait mutates, the value of the trait is offset by a draw from a normal 

distribution with mean 0 and standard deviation equal to the mutational effect size α 

(representing the effect of a mutation at a particular locus). Again, since traits x and y are 
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constrained, their mutational deviates are redrawn until the new value of the trait would lie 

within the interval [0,1]. 

Since one parent has S = 0 and one has S = 1, as enforced by the self-incompatibility 

mechanism of heterostyly mentioned previously, the value of the S locus of the offspring is 

randomly chosen as 0 or 1 with equal probabilities (modeling the empirical fact that a cross of Ss 

× ss produces, on average, 50% Ss and 50% ss). 

All of the seedlings generated are added to the patch of their maternal parents. Competition 

then occurs, through soft selection based upon fitness derived from the ecological trait z, for the 

opportunity to mature to adulthood. If the total number of adult plants plus seedlings in a patch is 

less than or equal to the carrying capacity K, all seedlings survive to adulthood; otherwise, 

exactly enough seedlings will mature to fill the patch to carrying capacity. The probability of 

survival of each seedling i in patch j is proportional to its fitness Wi, as defined by a Gaussian 

function 

Wi = e
− zi−θ j( )2
2ω 2 , 

where zi is the ecological trait value of seedling i, θj is the optimum for patch j, and ω is the 

strength of natural selection. Seedlings that do not survive to adulthood die, and are removed 

from the patch. 

Mortality phase 

At the beginning of the mortality phase, each patch contains only adult plants. During this 

phase, each plant dies with probability m. Plants that die are removed from their patch. 

Pollination phase 

At the beginning of the pollination phase, the reproductive state of the survivors of the 

mortality phase is reset (see Initialization). Pollination events are then conducted consecutively 
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until the end of the pollination phase; the pollination season length v dictates the total number of 

pollination events conducted. Each pollination event consists of a set of steps executed 

sequentially: 

 (1) The patch of the donor flower, 0 or 1, is chosen with equal probabilities. 

 (2) A determination is made as to whether this pollination event is a “crossover”, in which 

a pollinator visits one patch and then the other, using the crossover probability c. If it 

is not a crossover, the patch of the recipient flower is the same as the patch of the 

donor flower; if it is a crossover, the patch of the recipient flower is the other patch. 

(Note that pollinators that cross over do not then remain in their non-native patch; see 

step 16.) 

 (3) The donor flower i and the recipient flower j are chosen from their respective patches 

randomly, with equal probability given to every flower within a patch. If either patch 

is empty (due to the extinction of a population), or if the same flower was drawn as 

both donor and recipient, the pollination event terminates. 

 (4) Both flowers now undergo some degree of self pollination due to the jostling of the 

pollinator visit. This self pollination will not result in fertilization (since the self-

incompatibility mechanism of heterostyly prevents that), but will result in pollen 

wastage and style clogging. The probability of a given pollen grain being jostled from 

anther to stigma of individual i (and, similarly, individual j) is determined by a scaled 

Gaussian function 

 Pjostle = use
− hpollen−hstigma( )2

2σ s
2

, 

  where hpollen is the height of the pollen grains (equal to the height of the anthers), hstigma 

is the height of the stigma, σs is a scaling parameter determining how rapidly the 

probability of jostle transfer falls off with increasing difference between anther and 
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stigma heights, and us is the probability of jostle transfer for a flower with anther and 

stigma at the same height. Each available pollen grain in the anthers of flower i (of 

which there are pi) is jostled to the stigma of the flower with probability Pjostle; the total 

number of pollen grains transferred is thus determined by a draw from a binomial 

distribution. Each pollen grain transferred is removed from the anthers (pi ← pi − 1), 

and results in the increment of the style clogging counter of the flower by 1 

(si ← si + 1), representing one more pollen tube clogging the style. 

 (5) The pollinator π conducting the visit is chosen. With probability 1−c the pollinator is 

πi, the pollinator of the donor flower’s patch, while with probability c it is πj, the 

pollinator of the recipient flower’s patch. A given crossover pollination event can 

therefore be executed by either patch’s native pollinator, but it is more likely to be 

executed by the pollinator that is native to the donor flower’s patch, for the obvious 

reason that that pollinator is more likely to visit the donor flower’s patch. 

 (6) The probability that a pollen grain will be removed from an anther by the pollinator is 

equal to the pollination uptake probability up [proportional removal, rather than 

numerical removal, sensu 36]. The number of pollen grains removed is thus 

determined by a draw from a binomial distribution with a number of trials equal to pi, 

the number of pollen grains remaining in the anthers of individual i, and a per-trial 

probability of up. Each pollen grain taken up is removed from the anthers of the donor 

(pi ← pi − 1) and followed through the rest of its journey (steps 7–15, below). As 

implemented, each pollen grain is followed to completion before the next pollen grain 

is handled. The only consequence of this implementation detail is that when each 

pollen grain arrives at the recipient flower, the style clogging index and ovule state of 

that flower depends on the effects of the previous pollen grains delivered. 



 15 

 (7) For each pollen grain, it must now be determined whether it reaches the stigma of 

flower j. If this realization of the model is a “control” realization, delivery is 

guaranteed; skip to step 12. The essence of the control realizations, then, is that the 

height of the donor anthers and the recipient stigma are irrelevant; pollen transfer is 

completely imprecise. For the “treatment” realizations, delivery depends upon the 

height at which the pollen grain is received by the pollinator, the stickiness of the 

pollinator at that height, the height at which the pollen grain is delivered to the 

recipient, and the height of the recipient’s stigma, as detailed in steps 8–11. 

 (8) Each pollen grain removed from the donor is received by the pollinator at the same 

height on the pollinator’s body, deviated by a draw from a normal distribution with 

mean 0 and standard deviation σj representing stochasticity in the transfer. If the 

resulting height is outside of the interval [0,1], the pollen grain is presumed to have 

been lost, and its transfer is terminated. 

 (9) Each pollen grain received by the pollinator at height h has a probability of sticking to 

the pollinator, defined by the pollinator stickiness function π(h). If the pollen does not 

stick, it is presumed lost. 

 (10) Each pollen grain stuck to the pollinator is delivered to the recipient flower at a height 

equal to the height at which it stuck to the pollinator, deviated by a draw from a 

normal distribution with mean 0 and standard deviation σj representing stochasticity in 

the transfer. The delivery height is allowed to be outside the [0,1] interval. 

 (11) For each pollen grain delivered, the probability that it is received by the recipient 

flower’s stigma is determined by a Gaussian function 

 Preceipt = e
− hpollen−hstigma( )2

2σ p
2

, 
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  where hpollen is the height at which the pollen grain is delivered, hstigma is the height of 

the stigma of the recipient flower, and σp is a scaling parameter determining how 

rapidly the probability of receipt of a pollen grain falls off with increasing difference 

between delivery height and stigma height. 

 (12) Each delivered pollen grain causes the increment of the recipient flower’s style 

clogging counter by one (sj ← sj + 1), regardless of the compatibility of the pollen 

grain; it is assumed that all pollen tubes, whether compatible or not, produce the same 

degree of clogging of the style. 

 (13) If the delivered pollen grain is incompatible (conceptually, thrum pollen landing on a 

thrum flower or pin pollen landing on a pin flower; more precisely, if Si = Sj, but see 

Environment and state variables regarding the polarity of the S trait), the pollen grain 

is now discarded. The only side effects of incompatible pollination events are thus the 

removal of pollen from the donor and style clogging in the recipient. 

 (14) Each compatible pollen grain delivered to the recipient stigma now has a probability 

of fertilizing an ovule (assuming one is available, oj > 0) that decreases with the 

proportion of style clogging experienced by the recipient flower: Pfertilization = 1− s j ns , 

where sj is the style clogging counter of the recipient flower and ns is the style 

clogging limit at which fertilization is completely blocked. (If sj > ns, Pfertilization is taken 

to be zero.) 

 (15) Each ovule fertilized is removed from the pool of unfertilized ovules in the recipient 

(oj ← oj − 1). Each fertilized ovule remembers the donor flower that fertilized it, and 

will generate a seedling in the germination phase of the following year. 

 (16) At the end of each pollination event, a pollinator that has crossed over is assumed to 

return to its native patch (or to die, which amounts to the same thing since the supply 

of pollinators in the model is unlimited). This assumption is necessary, since otherwise 
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the pollinators would soon equilibrate at equal frequency in both patches, undermining 

the very idea of a different pollinator native to each patch. 

The preceding description of a pollination event uses Gaussian functions for the probability 

that a pollen grain at height hpollen will be received by a stigma at hstigma, during both self-

pollination (step 4) and pollen delivery (step 11). However, since gravity would tend to pull 

pollen grains downward, the probability of pollen receipt might more closely resemble a 

lognormal function with its maximum where hpollen = hstigma. A pollen grain that arrives at or below 

a threshold lg below the stigma has a probability of zero of being received because pollen doesn’t 

fall upward (the lognormal function is undefined here, but is taken to be zero). Above the 

maximum value of the function at hpollen = hstigma, the probability of receipt falls off asymptotically 

toward zero at a rate defined by the scale parameter of the lognormal, lo, reflecting the possibility 

that pollen can fall downward from any height above the stigma and have some nonzero 

probability of being received by it. 

A version of the model incorporating this lognormal-based pollen delivery was constructed. 

Specifically, in this version of the model the formula in step 4 is replaced by 

Pjostle =
us
L(lg + hpollen − hstigma , l

2
σ + ln lg( ), lσ )

L lg, l
2
σ + ln lg( ), lσ( ) for hpollen − hstigma > −lg

0 otherwise

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

 

and the formula in step 11 is replaced by 

Preceipt =
L(lg + hpollen − hstigma , l

2
σ + ln lg( ), lσ )

L lg, l
2
σ + ln lg( ), lσ( ) for hpollen − hstigma > −lg

0 otherwise

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

, 

where L(x, μ, σ) is the standard lognormal function 
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L(x, µ,σ ) = 1
xσ 2π

e
− ln x( )−µ( )2

2σ 2 . 

The quotient form of the formulas for Pjostle and Preceipt serves to normalize the height of the 

functions to 1 when hpollen = hstigma. The value l2σ + ln lg( )  for the μ parameter of the lognormals 

serves to locate the peak of the functions at x = lg. 

Results from the lognormal version of the model were generally qualitatively similar to 

results from the Gaussian version of the model. In some ways the lognormal model did appear to 

better match empirical data; in particular, thrums received more self pollen than pins in this 

version of the model, increasing their male function and decreasing their female function relative 

to pins, a phenomenon which has often been observed in nature [37-39]. These dynamics did not 

substantially affect the results of the model presented here, however, and so all results presented 

are taken from the Gaussian version of the model, since it is conceptually simpler. In general, the 

dynamics of pollination are remarkably complex [e.g., 40,41,42], and attempting to introduce all 

of this complexity into a model would be premature; we have strived for a balance that includes 

only that complexity necessary to pursue the questions at hand. 
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