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Temporal variation in phenotypic selection is often attributed to environmental change causing movements of the adaptive

surface relating traits to fitness, but this connection is rarely established empirically. Fluctuating phenotypic selection can be

measured by the variance and autocorrelation of directional selection gradients through time. However, the dynamics of these

gradients depend not only on environmental changes altering the fitness surface, but also on evolution of the phenotypic

distribution. Therefore, it is unclear to what extent variability in selection gradients can inform us about the underlying drivers

of their fluctuations. To investigate this question, we derive the temporal distribution of directional gradients under selection

for a phenotypic optimum that is either constant or fluctuates randomly in various ways in a finite population. Our analytical

results, combined with population- and individual-based simulations, show that although some characteristic patterns can be

distinguished, very different types of change in the optimum (including a constant optimum) can generate similar temporal

distributions of selection gradients, making it difficult to infer the processes underlying apparent fluctuating selection. Analyzing

changes in phenotype distributions together with changes in selection gradients should prove more useful for inferring the

mechanisms underlying estimated fluctuating selection.
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Temporally variable natural selection is a topic of central im-

portance in evolutionary genetics (reviewed by Felsenstein 1974;

Hedrick et al. 1976; Hedrick 2006; Bell 2010). Its potential to

maintain genetic polymorphism has been thoroughly investigated:

Although early model concluded that no stable polymorphism

exists in the simplest case of haploid density-independent (and

frequency-independent) selection (Dempster 1955), further work

showed that polymorphism can be maintained in more complex

models that allow for genetic variation in the form of the den-

sity dependence function (“relative nonlinearity,” Chesson 2000),

stochastic (marginal) overdominance in diploids (Haldane and

Jayakar 1963; Gillespie 1991), or “storage” effects in overlap-

ping generations (Ellner and Hairston 1994; Svardal et al. 2011).

Fluctuating selection also can drive the evolution of mechanisms

that generate phenotypic variation, such as bet hedging (Gillespie

1974; Slatkin 1974; Bull 1987; Svardal et al. 2011), phenotypic

plasticity (e.g., Gavrilets and Scheiner 1993; Lande 2009), or their

combination (Scheiner 2014; J. Tufto, unpubl. ms.). And because

individual fitness generally emerges from demographic vital rates

(survival and fecundity), fluctuating selection has a close con-

nection to environmental stochasticity in population growth rates

(Lande 2007; Engen et al. 2011; Engen and Saether 2014), which

is itself a strong determinant of extinction risk (Lande 1993; Lande

et al. 2003). On the more technical side, stationary fluctuating se-

lection may also explain why phenotypic evolution often involves

rapid changes over a few generations, but stasis over geological

time (Simpson 1944; Eldredge and Gould 1972; Gingerich 2001;

Kinnison and Hendry 2001; Estes and Arnold 2007; Uyeda et al.

2011).

Several classic examples of natural selection in the wild ex-

hibit temporal variation, from beak shape in Darwin’s finches

(Grant and Grant 2002) to banding patterns in Cepea snails

(Cain et al. 1990), or spine number in three-spined sticklebacks

(Reimchen and Nosil 2002). This variation is generally thought

to be caused by a variable environment, although this connection

is seldom demonstrated and quantified (Wade and Kalisz 1990;

MacColl 2011). In some instances, selection varies in a largely

predictable way, for instance because of seasonal environmental
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change (Kingsolver 1995; Benkman and Miller 1996); but it also

often appears random (Fisher and Ford 1947; Cain et al. 1990;

Grant and Grant 2002; reviewed in Bell 2010). In the latter case,

the strength of selection can be modeled as a stochastic process,

and detected as such.

For quantitative traits with a (nearly) continuous distribution,

directional phenotypic selection in a given generation is com-

monly measured using the directional (or linear) selection gradi-

ent β, the regression slope of relative fitness (individual over mean

fitness) on trait value (Lande and Arnold 1983). An attractive fea-

ture of β is that for a normally distributed trait, it is directly related

to the change in the mean phenotype per generation through the

equation �z = Gβ, with G being the trait’s additive genetic vari-

ance (or covariance matrix, for multiple traits, with β a vector)

(Lande 1976, 1979). The selection gradient β is also the local slope

of the surface relating population mean fitness to the mean phe-

notype, which extends Wright’s fitness landscape (Wright 1937)

to (normally distributed) quantitative traits (Lande 1976). When

natural selection changes in time, it thus seems natural to use the

temporal distribution of directional selection gradients to mea-

sure its fluctuations (Siepielski et al. 2009; Siepielski et al. 2011;

Morrissey and Hadfield 2012). A benefit of this approach is that,

under some assumptions about the genetic architecture of the trait,

it can be used to predict temporal patterns of phenotypic change

without making any assumption about the shape of the fitness

surface. However, very different processes may lead to similar

temporal distributions of β, making it difficult to infer the mech-

anism that is actually driving evolution, as we elaborate below.

Stationary random variation in selection is not only charac-

terized by its variance, but also by its temporal autocorrelation,

which determines its predictability over different time scales. Pre-

vious theory has made it clear that the autocorrelation of selection

strongly affects whether (and how much) genetic responses to

selection optimize long-term fitness and population growth in a

fluctuating environment (Charlesworth 1993; Lande and Shannon

1996; Bürger and Gimelfarb 2002; Chevin 2013). A genetic re-

sponse to selection in one generation is more likely to be ben-

eficial in the next if the direction of selection does not change.

For a given variance of selection gradients, genetic responses to

selection are thus expected to improve long-term fitness when

selection gradients are positively autocorrelated across genera-

tions (Chevin 2013). When they are negatively autocorrelated,

on the other hand, genetic responses are detrimental on aver-

age. This means that arguments about improving or maintain-

ing the “adaptive potential” of populations to favor their persis-

tence in a changing environment depend on information about

the predictability of selection on traits that strongly affect fit-

ness; high “adaptive potential” could actually be detrimental

to a population exposed to largely unpredictable environmental

fluctuations.

We here investigate the temporal variance and autocorrela-

tion of selection gradients for a population subject to a fitness

function that has a maximum for an optimum value of a trait,

under various patterns of movement of this optimum due to a

changing environment. Several arguments, from basic functional

considerations (Wright 1935; van Asch et al. 2007) to standard

properties of dynamical systems (Otto and Day 2007), and anal-

yses of empirical rates of evolution across different timescales

(Estes and Arnold 2007; Uyeda et al. 2011), support the idea

that many traits are under stabilizing selection for an optimum

phenotype (see Charlesworth et al. 1982 for a critical review of

such arguments). Direct measurements of selection also com-

monly find fitness functions with an optimum phenotype (e.g.,

Schluter and Nychka 1994; Benkman and Miller 1996; Gimenez

et al. 2006; Garant et al. 2007; Martin and Wainwright 2013).

Although meta-analyses did not find a prevalent role of negative

over positive quadratic gradients in the literature (Kingsolver et al.

2001; Kingsolver and Diamond 2011), positive curvature is also

detected when the mean phenotype is far from an optimum, and

does not necessarily imply disruptive selection (Schluter 1988).

Furthermore, fitness functions with a moving optimum have a

long history in evolutionary theory, where they are the most com-

mon way to model adaptation to a changing environment, in both

the population genetic (Fisher 1930; Orr 1998; Kopp and Her-

misson 2007; Gordo and Campos 2012) and quantitative genetic

traditions (Lynch and Lande 1993; Bürger and Lynch 1995; Go-

mulkiewicz and Holt 1995; Gomulkiewicz and Houle 2009; Jones

et al. 2012; Zhang 2012; Chevin 2013), so it is natural to ask what

the distribution of selection gradients would be in this context.

Under stabilizing selection, the temporal variation in selec-

tion gradients need not directly reflect the temporal variation of

the optimum. The strength and direction of natural selection also

depends on the current phenotype distribution, which is the re-

sult of all past genetic responses to selection and random genetic

drift. This is very clear in the case of a single abrupt shift in

the optimum (e.g., Lande 1976; Gomulkiewicz and Holt 1995):

Although the optimum does not move in generations following

the shift, the magnitude of the selection gradient nevertheless di-

minishes as the mean phenotype approaches the optimum. More

generally, evolution of the mean phenotype needs to be included

to interpret temporal variation of selection gradients in terms of

temporal changes in the optimum phenotype—the latter being

more useful for predicting the long-term evolution and persis-

tence of a population (Lynch and Lande 1993; Bürger and Lynch

1995; Gomulkiewicz and Holt 1995; Lande and Shannon 1996;

Gomulkiewicz and Houle 2009; Chevin 2013). By performing

such an analysis in the case of randomly changing environments,

we show that although some patterns are specific and distinguish-

able, very different processes may lead to similar temporal dis-

tributions of selection gradients, such that further information
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would be needed to uncover the underlying cause of measured

fluctuations in selection.

Methods
MODEL AND ANALYTICAL DERIVATIONS:

We focus on a quantitative trait z = g + e, where g is the additive

genetic value (for simplicity, we ignore dominance and epistasis

effects), and e is a normally distributed residual component of

variation, with mean 0, variance Ve, and no covariance with g

(Falconer and MacKay 1996). We assume that substantial poly-

morphism across numerous loci causes the additive genetic values

to be normally distributed, such that z also has a normal distri-

bution, with mean z = g and phenotypic variance P = G + Ve

(G is the additive genetic variance). Generations are discrete and

nonoverlapping, and the fitness of an individual with phenotype

z is proportional to W (z) = exp
(−(z − θ)2/(2ω2)

)
, where θ is

the optimum phenotype and ω is the width of the fitness func-

tion. We assume that the optimum phenotype may change with

the environment, but not the width of the fitness function, in line

with most theory of adaptation to a moving optimum (Lynch

and Lande 1993; Bürger and Lynch 1995; Gomulkiewicz and

Holt 1995; Hansen 1997; Kopp and Hermisson 2007; Jones et al.

2012; Chevin 2013); see Revell (2007) for a study of fluctuating

peak width. The height of the fitness peak could also change with

the environment but this would not affect phenotypic selection,

so we standardize this height to 1 without loss of generality. We

investigate several situations that can cause random changes in

phenotypic selection: random genetic drift with a constant opti-

mum; a stationary fluctuating optimum without or with autocorre-

lation (white noise and autoregressive process, respectively); and

a nonstationary fluctuating optimum (random walk).

The response to selection in any given generation is �z =
Gβ, where β = ∂ ln W/∂z = −S(z − θ) is the directional selec-

tion gradient, and S = 1/(ω2 + P) is the strength of stabilizing

selection (Lande 1976). Our analytical results rest on the assump-

tion that the genetic variance G is constant, which is a good

approximation under substantial mutation with Gaussian stabiliz-

ing selection, even in a changing environment (Bürger 2000, and

our simulation results below). All the scenarios we investigate

lead to a stationary distribution of selection gradients β, and we

derive the stochastic variance and autocorrelation function (ACF)

of these gradients.

POPULATION-BASED SIMULATIONS

To check the validity of some approximations used to derive

the analytical results (notably the “weak selection” assumption

required for the continuous-time approximation below), we ran

population-based numerical simulations. Such simulations are

rapid, and allow running several replicates for each parameter

set. In these simulations, we used the recursion equation for evo-

lution of a normally distributed quantitative trait under natural

selection and random genetic drift, �z = Gβ + √
G/Neζ, where

ζ is a standard normal random deviate and Ne the effective pop-

ulation size (Lande 1976). We iterated this recursion over 5000

generations, under the required pattern of change in the optimum,

and assuming a constant genetic variance G. In each generation,

we recorded the selection gradient β = −S(z − θ). We then com-

puted the variance and ACF of these gradients over the last 4000

generations. For the ACF, we computed the correlation of β in a

given generation with β in 100 future generations, over all gener-

ations between 1000 and 4900.

INDIVIDUAL-BASED SIMULATIONS

Despite their efficiency, our population-based simulations still rest

on the somewhat strong assumptions of normality of phenotype

and breeding value distributions, constant genetic variance G, and

constant effective population size Ne. These assumptions are nec-

essarily violated in reality, although they may be good approxima-

tions in some cases. To investigate the robustness of predictions

to these assumptions, we also ran extensive individual-based sim-

ulations with explicit loci. The simulation program we used is

described in detail in Haller and Hendry (2014), and has basic

assumptions similar to the mathematical model above, notably

discrete nonoverlapping generations in a single panmictic popu-

lation subject to stabilizing selection. However, the simulations

also allow the population size to change because of variation in

mean fitness across generations, with a ceiling type of density

regulation (e.g., Lande 1993) at carrying capacity K = 1000.

Here, we modified this framework to fit the requirements of

the present model. Specifically, we modeled a trait determined

by 32 freely recombining additive loci with a continuum of al-

leles, with mutation rate μ = 10−5, 10−4, or 10−3, and standard

deviation of mutational phenotypic effects a = 2 per locus (the

environmental variance was set to Ve = 1). The probability that

individuals survive to reproduce was determined by a Gaussian

fitness function as described above, with width ω = 1, 2, 4, or 8

(larger values cause weaker stabilizing selection). The pattern of

fluctuating selection was modified by changing the variance (σ2
θ

= 0.05, 0.1, 0.2, or 0.5) and the autocorrelation time (T = 1, 4,

15, 50, or 200) of the optimum (the autocorrelation of two optima

separated by lag τ being ρ(θ, τ) = exp(− |τ| /T ), see below). Sim-

ulations were run for 15,000 generations (30,000 generations for

T = 200). For each generation (past a burn-in time of 10,000 gen-

erations), directional selection gradients were computed by linear

regression of relative fitness on the phenotype (Lande and Arnold

1983; Lande 1993), over the whole population. The temporal

variance and autocorrelation of these selection gradients were

then computed. To compare these values to the analytical predic-

tions, we computed the mean genetic variance across generations
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Table 1. Summary of the temporal distribution of selection gradients under different patterns of environmental change in the optimum

phenotype.

No drift Drift
Pattern of change in
optimum Variance V(β) ACF ρ(β,τ) Variance V(β) ACF ρ(β,τ)

Constant NA NA S
(2−SG)Ne

(1 − SG)τ

Random walk SB2

(2−SG)G (1 − SG)τ S Ne B2+G
(2−SG)Ne G (1 − SG)τ

White noise 2S2σ2
θ

2−SG − SG
2 (1 − SG)τ−1 S 1+2α

(2−SG)Ne

1−αSG(1−SG)−1

1+2α
(1 − SG)τ

Autoregressive S2σ2
θ

1+κ
e−τ/T −κe−SGτ

1−κ
S 2α+κ+1

2Ne(1+κ)
2α e−τ/T −κe−SGτ

1−κ
+(1+κ)e−SGτ

2α+κ+1

ACF, autocorrelation function; Ne, effective population size; G, additive genetic variance; S = 1/(ω2 + P ), strength of stabilizing selection, with ω the width of

the fitness function and P the phenotypic variance; σ2
θ , variance of fluctuations in the optimum; T, characteristic autocorrelation time of the optimum, such that

the autocorrelation over one generation is ρ = e−(1/T ); α = NeSσ2
θ , compound parameter comparing the relative importance of fluctuating selection and drift

as stochastic factors; κ = SGT , compound parameter characterizing responses to selection under an autoregressive optimum. Formulas for the autoregressive

optimum with drift were obtained by using the continuous-time approximation for the effect of genetic drift, V (β) = S/(2Ne) and ρ(β, τ) = e−SGτ .

E(G) (where E() denotes the expectation of a stochastic process)

for each parameter set, using E(S) = (ω2 + E(G) + Ve)−1 for the

strength of stabilizing selection. The effective population size Ne

was computed as the harmonic mean of population sizes across

generations, following standard population genetic theory (e.g.,

Hartl and Clark 2007, p. 122). We simulated only two replicates

per parameter set, but averaged measurements over many genera-

tions, such as to get accurate stochastic expectations owing to the

ergodicity property of our stationary systems.

Results
Our main results are the analytical solutions for the variance and

ACF of selection gradients under various regimes of environmen-

tal change in the optimum phenotype; the corresponding formulas

are summarized in Table 1. The robustness of approximations un-

derlying these derivations is then checked by population- and

individual-based simulations. For brevity, we only apply these

simulations to one scenario of environmental change, the au-

toregressive optimum, because this regime encompasses a wide

variety of situations that approach other scenarios as limits, as

detailed below. Throughout the results, V (x) denotes the vari-

ance of a stochastic variable x, whereas ρ(x, τ) denotes its ACF

E(xt , xt+τ)/V (x).

DRIFT IN A FINITE POPULATION

In finite populations, random genetic drift causes changes in the

mean phenotype, resulting in directional selection to bring it back

toward the optimum. This produces changes in β, even when the

optimum does not move. Defining x = z − θ, and denoting values

in the next generation with primes, we have (from Lande 1976)

x ′ = (1 − SG)x + √
G/Neζ, where ζ is a standard normal random

deviate. The first term is the deterministic force of selection bring-

ing the mean phenotype back toward the optimum, whereas the

second term is the effect of random genetic drift. From this, the re-

cursion for the variance of x is V (x ′) = (1 − SG)2V (x) + G/Ne.

Solving for the equilibrium and replacing β = −Sx , the stationary

variance of selection gradients caused by drift around a constant

optimum is

V (β|drift) = S

(2 − SG)Ne
, (1a)

It is easily shown that the autocorrelation of selection gradients τ

generations apart is

ρ(β, τ|drift) = (1 − SG)τ. (1b)

Under weak stabilizing selection (SG << 1), equations (1a–

b) converge to V (β|drift) = S/(2Ne) and ρ(β, τ|drift) = e−SGτ,

which can also be obtained as solutions of the continuous-time

Orstein–Uhlenbeck process for x (as described in Lande 1976).

Even with a constant optimum, random genetic drift in a finite

population thus causes temporally variable directional selection.

The magnitude of these apparent fluctuations is larger under small

effective population size, as expected, but also increases with the

strength of stabilizing selection S. This may seem paradoxical, as

a large S prevents phenotypes from deviating strongly from the

optimum. However, a given deviation from the optimum results

in stronger directional selection with a large S, and this effect

dominates. With a constant optimum, all autocorrelation in β is

generated by evolutionary inertia determined by responses to se-

lection, which have a time scale of 1/(SG): Selection gradients

measured over a given time interval have stronger positive auto-

correlation when stabilizing selection is weak, or genetic variance

is low (see Hansen 1997 for the effect of the same process on the
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covariance between mean phenotypes across species). For a given

SG, autocorrelation decreases exponentially with the interval τ

between the generations in which the selection gradients are mea-

sured.

If environmental change causes the optimum phenotype to

fluctuate in time following a stationary Gaussian process, then the

mean phenotype and the selection gradient also follow a Gaus-

sian process (e.g., Bürger and Lynch 1995). Hence, by standard

properties of Gaussian processes (Feller 1968; Karlin and Taylor

1981), the stochastic variance of β is the sum of the variances

caused by drift and by the fluctuating optimum, and similarly for

the autocovariance, which can be used to derive the autocorrela-

tion. Below, we therefore derive the variance and autocorrelation

caused by fluctuating selection in a changing environment using

an assumption of infinite population size for simplicity, and then

combine those results with equation (1a) to include the effect of

drift. The final equations including the effect of drift appear in the

right column of Table 1.

RANDOM WALK OF THE OPTIMUM

A model of random change in the optimum that shares similarities

with random genetic drift is one in which the optimum follows

a random walk (the discrete-time analog of Brownian motion),

such that θ′ = θ + Bζ, where ζ is a standard normal random in-

crement (Hansen 1997). The recursion for the selection gradient

then is β′ = S(θ′ − z′) = (1 − SG)β + SBζ, which leads to the

stationary variance and ACF

V (β|RW ) = SB2

(2 − SG)G
(2a)

ρ(β, τ|RW ) = (1 − SG)τ, (2b)

where the “RW” stands for “random walk.” Under weak sta-

bilizing selection, these can again be approximated by the

solutions of a continuous-time OU process, Vβ,RW = SB2/(2G)

and ρβ,RW (τ) = e−SGτ. When the optimum phenotype undergoes

a random walk, the variance of selection gradients thus increases

with the squared magnitude B2 of increments of the optimum, but

decreases with the genetic variance of the trait (as long as SG is

small). Interestingly, the ACF of selection gradients in this case

is the same as under genetic drift with a constant optimum.

WHITE NOISE IN THE OPTIMUM

A random walk is a nonstationary stochastic process, wherein the

squared distance of the optimum phenotype from its initial value

is expected to increase with time. This does not accurately de-

scribe scenarios in which an optimum fluctuates within constant

bounds. Stationary fluctuating selection in a randomly changing

environment can be modeled by assuming for instance that the

optimum phenotype has constant mean (set to 0 without loss of

generality) and variance σ2
θ , and no correlation across generations

(Lynch and Lande 1993; Bürger and Lynch 1995), which corre-

sponds to a white noise process in continuous time (Karlin and

Taylor 1981). Under this assumption, we show in the Appendix

that

V (β|W N ) = 2S2σ2
θ

2 − SG
(3a)

ρ(β, τ > 0|W N ) = − SG

2
(1 − SG)τ−1, (3b)

where the “WN” stands for “white noise.” Equation (3a) shows

that the variance of selection gradients increases with the stochas-

tic variance σ2
θ of the optimum phenotype and the strength S of

stabilizing selection, but that it also increases with the amount of

response to selection, as measured by SG for a given deviation

from the optimum. This is because in an unpredictable environ-

ment, responding to selection in one generation generally means

being farther from the optimum in the next, resulting in stronger

directional selection, as highlighted in previous work about the

lag load (Charlesworth 1993; Lynch and Lande 1993; Lande and

Shannon 1996; Chevin 2013).

Strikingly, the autocorrelation of β in equation (3b) is neg-

ative for all nonzero intervals, contrary to the drift and random

walk cases. This is a consequence of unpredictable fluctuations

in the optimum: Whenever the population responds strongly to

selection in a given generation, the mean phenotype remains dis-

placed from the average optimum for some time, and selection

gradients in subsequent generations thus tend to be in the op-

posite direction. The strength of this autocorrelation decreases

in a geometric series, but with a maximum absolute value (for

τ = 1) of SG/2 rather than 1. This is because autocorrelation

of β is here generated by persistent deviations from the average

optimum caused by responses to selection, which scale with the

evolutionary potential SG.

Summing equations (1a) and (3a) yields the variance of se-

lection gradients under white noise in a finite population subject

to drift, as given in Table 1. It depends on a compound parameter

α = Ne Sσ2
θ , which determines the relative importance of fluctu-

ations in the optimum versus random genetic drift. In populations

small enough that α << 1, most of the variation in selection gra-

dients is caused by drift in the mean phenotype, whereas in the

opposite case (α >> 1), most of this variation is due to the move-

ment of the phenotypic optimum. The ACF is similarly obtained

as a weighted average of the ACFs caused by the two processes,

leading to the formula in Table 1, which under weak stabilizing

selection (SG << 1) can be approximated as

ρ(β, τ > 0|W N +drift) ≈ 1 − αSG

1 + 2α
e−SGτ. (4)

This shows that even under completely uncorrelated fluctuations

in the optimum, random genetic drift is sufficiently strong to

EVOLUTION DECEMBER 2014 3 3 8 5



L.-M. CHEVIN AND B. C. HALLER

make the autocorrelation of β positive for all τ > 0 whenever

α < (SG)−1.

AUTOREGRESSIVE OPTIMUM

Although white noise is a good approximation for rapid fluc-

tuations, any changing environment will be autocorrelated over

relevant time scales, leading to some degree of predictability. One

of the simplest ways to include autocorrelation in a stationary pro-

cess is through a first-order autoregressive process (AR(1), Box

et al. 2008). We thus assume that θ′ = ρθ +
√

1 − ρ2σθζ, where

ρ = ρ(θ, 1) is the autocorrelation of the optimum over one genera-

tion (and we assume 0 < ρ < 1), σ2
θ its stochastic variance, and ζ is

a standard normal random deviate. It is convenient to parameterize

the autocorrelation as ρ = exp(−1/T ), such that the ACF between

two optima separated by τ generations is ρ(θ, τ) = exp(− |τ| /T ).

The parameter T is the characteristic timescale for the autocorre-

lation of the optimum: Optima are similar over periods of time on

the order of (or shorter than) T generations. Dynamics with T � 1

resemble white noise, whereas with very large T the dynamics are

similar to (bounded) Brownian motion. Simple expressions can

be derived for the stochastic variance and ACF of selection gra-

dients in this context by using a continuous-time approximation

that assumes weak stabilizing selection (SG << 1, Appendix),

leading to

V(β|AR1) = S2σ2
θ

1 + κ
, (5a)

ρ(β, τ|AR1) = e−τ/T − κe−SGτ

1 − κ
, (5b)

where κ = SGT and AR1 stands for first-order autoregressive

process. Note that the expression for the variance is similar to

that for the expected lag load in the same context, but replacing

S/2 by S2, as expected from the definition of variance in selection

gradients (e.g., Lande and Shannon 1996, replacing S by γ, or

Appendix 1 in Chevin 2013).

Equation (5b) shows that autocorrelation of selection gra-

dients is produced by two processes: (1) autocorrelation in the

optimum phenotype (first term in numerator) and (2) persistent

deviations of the mean phenotype from the average optimum

caused by responses to selection, as in the case of white noise

(second term in numerator). The latter term can even cause the

autocorrelation to become negative for τ > T ln(κ)/(κ − 1), al-

though these negative values approach 0 for large T. Under strong

autocorrelation of the optimum (T → ∞), the ACF of β tends to

e−SGτ as under Brownian motion of the optimum (see eq. (2b)).

This sets an upper limit to the ACF: Even in highly autocorrelated

environments, the autocorrelation of selection gradients cannot

exceed that caused by the inertia of evolutionary responses to

selection. For time intervals much shorter than T and (SG)−1,

the ACF can be approximated as e−(SG+1/T )τ. This indicates that

under weak stabilizing selection and when the optimum is auto-

correlated over more than a few generations, the ACF of selection

gradients over a short timescale (i.e., a few generations) is a simple

exponential decay with rate SG + 1/T . This confirms that fluc-

tuations in the optimum decrease the autocorrelation in selection

gradients below the baseline of e−SGτ, particularly when fluctu-

ations in the optimum are not strongly autocorrelated (small T).

Combining these equations with the equations for drift in a finite

population yields the formulas given in Table 1. Autocorrelation

of β is mostly determined by drift when α << 1 and α << κ, in

which case ρ(β, τ|AR1+drift) → e−SGτ.

SIMULATIONS

Our analytical results rest on a number of assumptions (normality

of phenotype and breeding value distributions, constant additive

genetic variance G, and effective population size Ne), as well as

approximations that produce more easily interpretable formulas

(notably the continuous-time approximation). We investigated the

robustness of predictions to these simplifications using two types

of simulations: population-based simulations with constant G and

Ne, and individual-based simulations with explicit loci. The first

type allows us to check the validity of our derivations for evolu-

tion in a stochastic environment, conditional on a constant genetic

variance. The second type introduces further realism by allowing

for changes in G, but is also hugely more computationally inten-

sive, which necessarily limits the number of replicates that can

be run. We focused on the case of an autoregressive optimum

because it can approximate white noise (for T � 1) and random

walk (for T → ∞), as well as more intermediate scenarios.

The variance of selection gradients under genetic drift and

a fluctuating optimum is plotted against the autocorrelation time

of the optimum in Figure 1. The prediction for an autoregres-

sive optimum with drift (summing eqs. (5a) and (1a), formula in

Table 1) matches population-based numerical simulations better

for T > 2, as expected because the continuous-time approximation

is not valid for very rapid changes. For T << 1, simulation results

are accurately described by the prediction under white noise with

drift (summing eqs. (3a) and (1a), see Table 1). For a given

Ne, the variance is largest under essentially nonautocorrelated

fluctuations (T << 1), because the mean phenotype is then una-

ble to track the optimum, and when it does it results in larger devi-

ations from the optimum (and stronger directional selection) in the

future, on average. In contrast, with a very slow and predictable

optimum (T → ∞), the variance of β converges to its minimum

value, the constant-optimum case in which all deviations from the

optimum are caused by genetic drift (eq. (1a)).

Figure 2 shows how the ACF of selection gradients

changes with the characteristic timescale of autocorrelation in the
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Figure 1. Stationary variance of selection gradients. The variance

of selection gradients under an autoregressive optimum is plotted

against the autocorrelation time T of the optimum, for an effective

population size of Ne = 50 (gray) or Ne = 5000 (black). The contin-

uous lines show the analytical predictions for an autoregressive

optimum with drift (Table 1). The dashed lines on the right repre-

sent the limit for drift and a constant optimum (eq. 1a), whereas

those on the left are the results assuming white noise optimum

with drift (Table 1). The dots show results of population-based

simulations (10 replicates) of evolution of a quantitative trait with

constant genetic variance in response to an autoregressive opti-

mum. Parameters are G = 1, S = 0.1, and σ2
θ = 0.2.

optimum. The results of population-based simulations with con-

stant variance and weak stabilizing selection are captured well

by the analytical prediction for an autoregressive process when

T � 1, and by the prediction for a white noise process when

T < 1. (Note that the effects of genetic drift can be ignored here

because α = 100 >> 1.) For T < 1 (top left panel), the ACF is

similar to that under white noise, with weak negative autocorre-

lation (dashed line). When T is on the order of the generation

time, the ACF shows a rapid exponential-like decrease (with rate

SG + 1/T ) for small τ, followed by a dip into negative values,

until a minimum is reached and autocorrelation increases back

toward zero (top right panel). As T increases, the initial decay

in autocorrelation becomes less pronounced, and negative values

are smaller in magnitude (bottom left panel in Fig. 2). Finally, for

very large T, the ACF tends toward a simple exponential decay

with rate SG determined only by responses to selection (dotted

line in Fig. 2).

In individual-based simulations with explicit loci, the ge-

netic variance may change substantially across generations (e.g.,

Bürger and Lande 1994). We thus used the long-term mean ge-

netic variance from the simulations E(G) in the analytical formulas

for comparison. The variance of selection gradients in individual-

based simulations is accurately predicted by the analytical formula

for an autoregressive optimum with drift (all points close to the

x = y line in Fig. 3). All else being equal, V (β) increases with the

strength of stabilizing selection (from blue to red) and the vari-

ance in the optimum (size of dots within each color), as predicted

by the analytical theory. The prediction in Table 1 performs less

well under weak stabilizing selection and small variance in the

optimum (small blue dots to the left), that is, under conditions

leading to the smallest predictedV (β). Indeed in simulations (and

in actual finite populations), the randomness of birth and death
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Figure 2. Autocorrelation function of selection gradients. The ACF of selection gradients under an autoregressive optimum is illustrated

for several values of the autocorrelation time T of the optimum. The black line shows the prediction for an autoregressive optimum

neglecting drift (eq. 5b), whereas the gray lines show results of population-based simulations of evolution of a quantitative trait with

constant genetic variance in responses to an autoregressive optimum (10 replicates). Also shown in each graph are the limits for high

autocorrelation of the optimum, which equals that for drift with a constant optimum (eq. 1b, dotted), and the limit for a white noise

optimum neglecting drift (eq. 3b, dashed). Parameters are G = 1, S = 0.2, σ2
θ = 0.2, and Ne = 5000.
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Figure 3. Variance of β in individual-based simulations. The ob-

served variance in β in individual-based simulations with explicit

loci is plotted against its expectation under autoregressive opti-

mum with drift (Table 1). Colors indicate different strengths of

stabilizing selection (red: ω = 1, yellow: ω = 2, green: ω = 4, blue:

ω = 8), and the size of the dots is proportional to the variance of

optimum phenotypes (σ2
θ = 0.05, 0.1, 0.2, or 0.5). Other variable

parameters are the autocorrelation time of the optimum (T = 1, 4,

15, 50, or 200), and the mutation rate per locus (μ = 10−5, 10−4, or

10−3). The black line shows y = x.

events (demographic stochasticity) causes variance in selection

gradient for a given phenotype distribution and fitness surface

(e.g., Engen and Saether 2014), and this variance acts as noise for

the detection of V (β): theoretical predictions do not perform well

below this precision threshold.

The ACF in individual-based simulations is also predicted

well by the theory, under parameters allowing maintenance of

substantial genetic variance (Fig. 4). However, this ACF may

be noisy in individual realizations, despite being computed over

several thousand generations. This noise is reduced under higher

mutational variance (with μ= 10−3 and a = 10, Fig. S1), probably

because this limits the stochastic changes in the genetic variance.

Our prediction for the ACF becomes less accurate under smaller

fluctuations (σ2
θ = 0.05 instead of 1, Fig. S2), because genetic

drift then contributes more to the autocorrelation (Table 1, autore-

gressive with drift), and our approximations neglect its effects on

the genetic variance. Overall, the temporal distribution of selec-

tion gradients is thus reasonably well predicted by a model that

neglects temporal changes in genetic variance, as long as the trait

maintains substantial variance in every generation, and fluctua-

tions in the optimum are sufficiently large that drift is not a strong

driver of phenotypic change.

Although our analytical formulas make no assumptions about

relationships between variables, the graphs in Figures 1 and 2 were

obtained by keeping the same genetic variance, while varying the

pattern of environmental fluctuations. This amounts to assuming

that the long-term mean genetic variance E(G) and strength of

stabilizing selection E(S) do not depend on patterns of fluctua-

tions in the optimum, which is not true in general (Bürger and

Gimelfarb 2002). The validity of this assumption in individual-

based simulations is assessed in the left panel of Figure 5, in

which we used a single value for the mutation rate, such that all

heterogeneity of genetic variance is due to the parameter values

used for the strength of stabilizing selection and the pattern of en-

vironmental change. More genetic variance is maintained under

weaker stabilizing selection (lighter gray), as expected. But for a

given strength of stabilizing selection, the mean genetic variance

across generations also changes with Sσ2
θ , the effective magni-

tude of fluctuations. Genetic variance is larger under stronger

fluctuations, and the slope of the relationship between E(G) and

E(S)σ2
θ depends little on the width ω of the fitness function: The

two darker set of dots in Figure 5 (left panel) have similar slopes

over the same range of E(S)σ2
θ . For large E(S)σ2

θ , there is also

a tendency for E(G) to increase with the autocorrelation time T

(size of dots). This is consistent with the fact that strongly auto-

correlated random change in the optimum is similar to directional

change, and the latter is known to cause increased genetic variance

(relative to a constant optimum) in individual-based simulations

(Fig. 6 in Bürger and Lynch 1995; Fig. 1 in Bürger 1999).

In all scenarios but the random walk, the genetic variance

enters the analytical formulas only through the product SG. Be-

cause S is a decreasing function of the phenotypic (and genetic)

variance, changes in G are not sufficient to understand how the

accuracy of analytical predictions depends on patterns of change

in the optimum. We report changes of E(SG), the long-term

mean of SG, with the intensity of fluctuations of the optimum,

in the right panel of Figure 5. Weaker stabilizing selection (in

lighter gray) results in smaller E(SG), which varies little with

the magnitude of fluctuations in the optimum. But under stronger

stabilizing selection, E(SG) increases with the effective intensity

of fluctuations Sσ2
θ , and to some extent with the autocorrelation

time T.

Discussion and Conclusions
Measuring the temporal variance of β, the directional selection

gradient, is perhaps the most straightforward way to quantify

temporal variation of phenotypic selection (as done by Siepiel-

ski et al. 2009 on individual estimates of β, and corrected for

sampling error by Morrissey and Hadfield 2012). However, for

any temporal measurement, variation is not only characterized by

its variance, but also by its autocorrelation, which determines its

predictability. This is particularly important for measurements of

natural selection, for which the predictability of fluctuations is at

least as important as their variance for predicting how responses to
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Figure 4. Autocorrelation of β in individual-based simulations. The observed ACF of β in single realizations of individual-based simula-

tions is shown as dots, together with its expectation under autoregressive optimum with drift (Table 1), as continuous line. Parameters

are as indicated in the text, with ω = 4, μ = 10−4, and σ2
θ = 1.
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Figure 5. Effect of fluctuations on the evolutionary potential. The

long-term mean for the additive genetic variance G and the prod-

uct SG that determines the potential to respond to selection are

plotted against the effective intensity of fluctuations in the opti-

mum, Sσ2
θ . Each gray level corresponds to a strength of stabilizing

selection, with ω = 1, 2, 4, and 8 from black to light gray. The dot

sizes increase with autocorrelation time T. Only mutation rate μ =
10−4 is shown for clarity.

selection affect population long-term fitness (Charlesworth 1993;

Lande and Shannon 1996; Chevin 2013). Ideally, phenotypic se-

lection should thus be treated explicitly as a time series to estimate

not only the variance, but also the ACF, of selection gradients.

Here, we computed β over the entire population for simplic-

ity, but in principle time series of selection gradients can also

be analyzed from population subsamples, by using state-space

models such as dynamic linear regression (Petris et al. 2009;

Shumway and Stoffer 2010). However, in practice, estimating the

autocorrelation of selection gradients may require a large sample

size and many time points. In any case, a proper use of such meth-

ods would warrant a careful investigation of the properties of the

underlying statistical approach, which is beyond the scope of the

present article, and will be addressed elsewhere.

Even assuming that the variance and ACF of selection gra-

dients can be estimated accurately, it is worth asking what can

be inferred from them about the mechanisms that drive apparent

fluctuating selection. It is well known from quantitative genetic

theory that changes in directional selection gradients do not neces-

sarily imply changes in the phenotype-fitness map. For instance,

β decreases deterministically when the mean trait in a popula-

tion approaches a constant optimum phenotype (Lande 1976; Go-

mulkiewicz and Holt 1995). And random genetic drift can also

cause temporally variable phenotypic selection, by moving the

mean phenotype away from a constant optimum. Here, we de-

rived the temporal distribution of directional selection gradients

β under several scenarios of adaptation to a fixed or moving opti-

mum. All situations we investigated produced both variance and

autocorrelation of β. Even a nonautocorrelated optimum produces

weak negative autocorrelation of β, because genetic responses to

occasional large environmental changes cause persistent devia-

tions from the average optimum, resulting in an average selection

gradient in the opposite direction. An autoregressive optimum

may in some cases by inferred through a characteristic pattern,

where the autocorrelation of β changes from positive to negative

with increasing time lag (Fig. 2). In contrast, a similar exponential
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decay of positive autocorrelation across time is produced under

drift with a constant optimum, random walk of the optimum, or a

highly autocorrelated autoregressive optimum, the first of which

is causally very different from the other two.

Our results thus suggest that measurements of the tempo-

ral variance and autocorrelation of selection gradients, although

informative about the overall amount of directional selection tak-

ing place in a population, are not always sufficient to infer the

underlying processes driving variation in that selection. A more

powerful approach for mechanistic inference would be to jointly

analyze phenotypic selection and changes in the phenotype distri-

bution, to directly estimate temporal changes in the fitness surface.

For instance, Johnson et al. (2014) recently analyzed temporally

changing phenotypic selection by assuming a fitness surface with

a constant optimum, but this is likely to be an oversimplification in

many cases. A Gaussian fitness function with a moving optimum,

as modeled here, can be estimated in a generalized linear-mixed

model that includes a quadratic term in the relationship between

log fitness and phenotype, and a random effect with the relevant

temporal structure, such as AR1 (L.–M. Chevin and J. Tufto, un-

publ. ms.). Such an approach would afford a better understanding

and prediction of the evolution and demography of populations,

by relating more explicitly to theoretical predictions (Lynch and

Lande 1993; Bürger and Lynch 1995; Gomulkiewicz and Holt

1995; Lande and Shannon 1996; Gomulkiewicz and Houle 2009;

Chevin 2013).

Our model assumes that the environment only causes changes

in the position of the optimum phenotype, but in reality the envi-

ronment might also affect the width of the fitness peak (as modeled

by Revell 2007). If changes in peak width are moderate and uncor-

related to those in the optimum, then using the mean peak width

over time in the formulas of Table 1 should still provide good

approximations for the variance and autocorrelation of selection

gradients, although more time points would then be required for

accurate estimation. Note that in all our results, the peak width

only acts through the compound parameter S = 1/(ω2 + G +
Ve), which is allowed to vary in individual-based simulations

(through changes in G), so we addressed changes in the strength

of stabilizing selection to some extent.

Our analytical predictions are for a quantitative trait with

substantial standing genetic variance, and in simulations we also

mostly investigated cases in which substantial genetic variance

can be maintained—although some results also hold under some-

what strong stabilizing selection and weak mutation (Fig. 3). In

the opposite limit of very little polymorphism (“strong selec-

tion weak mutation,” Gillespie 1991), adaptation mostly relies on

new mutations, and has different properties, even in environments

that change deterministically and at a constant rate (genetically

limited adaptation regime, Kopp and Hermisson 2007, 2009).

In a random environment, whether the population will respond

to each chance displacement of the optimum in that regime de-

pends on the availability of mutations in the required direction.

This adds the randomness of mutation events as another layer of

evolutionary stochasticity, beyond those caused by genetic drift

and fluctuating selection (Lenormand et al. 2009), which should

substantially complicate the analysis. In this low polymorphism

regime, it should be more fruitful to focus on the temporal distribu-

tion of selection coefficients of mutations (Gillespie 1991), rather

than on phenotypic selection gradients as studied here. However,

these genotypic selection coefficients may still ultimately arise

from stabilizing selection on quantitative traits (Martin and Lenor-

mand 2006; Chevin and Hospital 2008), so it might be possible to

use the temporal changes in the distribution of fitness effects of

mutations to infer fluctuations in the phenotypic fitness surface.
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Appendix
Derivation of the Variance and ACF of Selection

Gradients

WHITE NOISE OPTIMUM
To derive the variance and autocorrelation of directional se-

lection gradients under white noise in the optimum, we rely

on the fact that optimum phenotypes are independent across

generations in this case, and the mean phenotype in one

generation is also independent from the optimum in future

generations. From the definition of the selection gradient in

generation t as βt = −S(zt − θt ) in the main text, we have di-

rectly V (βt ) = S2[σ2
θ + V (zt )], where V (zt ) is the variance of the

stochastic distribution of mean phenotypes in generation t. In the

next generation, the selection gradient is βt+1 = −S(zt+1 − θt+1),

which using zt+1 = zt (1 − SG) + SGθt can be written as βt+1 =
−S[(1 − SG)zt − (θt+1 − SGθt )]. Because the distribution of

θ is assumed to be stationary, we have V (θt+1) = V (θt ) = σ2
θ ,

leading to

V (βt+1) = S2
[
(1 − SG)2V (zt ) + (1 + (SG)2)σ2

θ

]
,

or replacing with the expression for V (βt ) above,

V (βt+1) = (1 − SG)2V (βt ) + 2S3Gσ2
θ .

This is a simple arithmetico-geometric sequence, which for

SG < 1 (i.e., moderately strong stabilizing selection) converges

to an equilibrium variance V (β). We can thus replace V (βt+1) =
V (βt ) = V (β) in the equation above, leading to V (β)[1 − (1 −
SG)2] = 2S3Gσ2

θ . Solving for V (β) yields equation (3a)) in the

main text.

The covariance of selection gradients across generations can

be derived in a similar way. First note that for all time lags τ,

the autocovariance is cov(βt , βt+τ) = E(βtβt+τ) (where E denotes

expectation of the stochastic process), since E(βt ) = 0 for all

t. For τ = 1 (one generation of lag), the autocovariance is the

expectation of

βtβt+1 = S2(zt − θt ) [(1 − SG)zt − (θt+1 − SGθt )] .

Taking the expectation accounting for all independent stochastic

variables (optimum and mean phenotype), we have

cov(βt , βt+1) = S2[(1 − SG)V (zt ) − SGσ2
θ],

or replacing with the expression for V (βt ) above,

cov(βt , βt+1) = (1 − SG)V (βt ) − S2σ2
θ .

For all delays τ ≥ 1 we have in a similar way

βtβt+τ+1 = S2(zt − θt )[(1 − SG)zt+τ − (θt+τ+1 − SGθt+τ)]

= S2(zt − θt )[(1 − SG)(zt+τ − θt+τ) − θt+τ+1 + θt+τ].

Taking the expectations on both sides yields

cov(βt , βt+τ+1) = (1 − SG)cov(βt , βt+τ).
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Induction from this recursion indicates that for all τ ≥ 1, we have

cov(βt , βt+τ) = (1 − SG)τ−1cov(βt , βt+1).

The final step to find the stationary autocorrelation function is to

replace V (βt ) by its equilibrium value V (β) in the expression for

cov(βt , βt+1). This yields

cov(βt , βt+1) = 2S2σ2
θ(1 − SG)

2 − SG
− S2σ2

θ,

or grouping in a single fraction,

cov(βt , βt+1) = 2S2σ2
θ

2 − SG
(1 − SG − 1 + SG

2
).

We then have for all τ ≥ 1

cov(βt , βt+τ) = − SG

2
(1 − SG)τ−1V (β),

which produces equation (3b) in the main text for the autocorre-

lation function.

AUTOREGRESSIVE OPTIMUM
Although the analysis of responses to selection with an autoregres-

sive optimum also can be analyzed in discrete time (Charlesworth

1993), it is more convenient to approximate the dynamics in con-

tinuous time (Lande and Shannon 1996; Chevin 2013). After long

enough time that the effect of initial conditions have vanished, as-

suming constant G the mean phenotype in generation t can be

written zt = SG
∫ ∞

0 e−SGxθt−x dx (Lande and Shannon 1996).

The autocorrelation of selection gradients is derived by plugging

this into the expression for the autocovariance,

cov(βt , βt−τ)= S2 [E(θtθt−τ)+E(zt zt−τ)−E(zt−τθt )−E(θt−τzt )] .

Note that the last two terms in the equation above are not the

same because τ introduces some asymmetry. Let us assume that

τ > 0 (but the results hold for τ < 0). For the first expectation, we

have by definition E(θtθt−τ) = σ2
θ exp(−τ/T ). For the first cross

product of z and θ, we have

E(zt−τθt ) = SG
∫ ∞

0
e−SGx E(θtθt−(τ+x))dx

= SGσ2
θ

∫ ∞

0
exp

{
−

(
SGx + τ + x

T

)}
dx

= SGT

1 + SGT
σ2

θe−τ/T ,

where we have used the fact that τ + x > 0 between the first and

second line. For the second cross product, the expectation inside

the integral is E(θt−xθt−τ) = σ2
θ exp(−|τ − x |/T ). Because of the

absolute value, the integral needs to be split in two at x = τ,

E(θt−τzt )

SGσ2
θ

=
∫ τ

0
exp

{
−

(
SGx + τ − x

T

)}
dx

+
∫ ∞

τ

exp

{
−

(
SGx + x − τ

T

)}
dx

= T

SGT − 1

(
e−τ/T − e−SGτ

) + T

SGT + 1
e−SGτ.

For the integral involving the mean phenotype in two generations,

we have

E(zt−τzt )

(SG)2 σ2
θ

=
∫ ∞

0

∫ ∞

0
exp

{
−

(
SG(x + y) + |x − (τ + y)|

T

)}
dxdy.

Here again, the absolute value entails that the double integral

needs to be split into three parts: one for x > τ + y (which we

denote A), another for τ + y > x and x < τ (integral B), and the

other for τ < x < τ + y (integral C). Solving the integrals yields,

A =
∫ ∞

0

(∫ ∞

y+τ

exp

{
−

(
SG(x + y) + x − (τ + y)

T

)}
dx

)
dy

= T e−SGτ

2SG(SGT + 1)

B =
∫ τ

0

(∫ ∞

0
exp

{
−

(
SG(x + y) + τ + y − x

T

)}
dy

)
dx

= T 2

(SGT )2 − 1

(
e−τ/T − e−SGτ

)

C =
∫ ∞

τ

(∫ ∞

x−τ

exp

{
−

(
SG(x + y) + τ + y − x

T

)}
dy

)
dx

= A.

Summing A+B+C, we thus have

E(zt−τzt )

(SG)2 σ2
θ

= 1

SGT + 1

[
T e−SGτ

SG
+ T 2

SGT − 1

(
e−τ/T −e−SGτ

)]
,

which yields for the autocovariance of selection gradients

caused by an autoregressive optimum,

cov(βt , βt−τ)

S2σ2
θ

= e−τ/T − SG

(
T

1 + SGT
e−τ/T

+ T

SGT − 1

(
e−τ/T − e−SGτ

)
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+ T

SGT + 1
e−SGτ

)

+(SG)2

(
1

SGT + 1

[
T e−SGτ

SG
+ T 2

SGT − 1

(
e−τ/T − e−SGτ

)])

or writing κ = SGT ,

κ2 − 1

S2σ2
θ

cov(βt , βt−τ) = (κ − 1)(1 + κ)e−τ/T

−κ(κ − 1)e−τ/T − (1 + κ)κ
(
e−τ/T − e−SGτ

) − (κ − 1)κe−SGτ

+κ(κ − 1)e−SGτ + κ2
(
e−τ/T − e−SGτ

)
.

= −(e−τ/T − κe−SGτ)

The stochastic variance is obtained by setting τ = 0 above,

and the autocorrelation function is found by dividing the covari-

ance by the variance, yielding the expressions equations (5a–b)

in the main text.
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Figure S1. Autocorrelation of β under high mutational variance.
Figure S2. Autocorrelation of β under weak fluctuations.
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